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1 Maxwell’s Equations

1.1 Introduction

This chapter gives a general overview of Maxwell’s equations.

1.2 Maxwell’s Equations

All classical (i.e., non-quantum) electromagnetic phenomena are governed by Maxwell’s equa-
tions, which take the form

∇ · E = ρ

ε0
, (1.1)

∇ · B = 0, (1.2)

∇ × E = −∂B
∂t
, (1.3)

∇ × B = µ0 j + µ0 ε0
∂E
∂t
. (1.4)

Here, E(r, t), B(r, t), ρ(r, t), and j(r, t) represent the electric field-strength, the magnetic field-
strength, the electric charge density, and the electric current density, respectively. Moreover,

ε0 = 8.8542 × 10−12 C 2 N−1 m−2 (1.5)

is the electric permittivity of free space, whereas

µ0 = 4π × 10−7 N A−2 (1.6)

is the magnetic permeability of free space. As is well known, Equation (1.1) is equivalent to
Coulomb’s law (for the electric fields generated by point charges), Equation (1.2) is equivalent to
the statement that magnetic monopoles do not exist (which implies that magnetic field-lines can
never begin or end), Equation (1.3) is equivalent to Faraday’s law of electromagnetic induction,
and Equation (1.4) is equivalent to the Biot-Savart law (for the magnetic fields generated by line
currents) augmented by the induction of magnetic fields by changing electric fields.

Maxwell’s equations are linear in nature. In other words, if ρ→ α ρ and j→ α j, where α is an
arbitrary (spatial and temporal) constant, then it is clear from Equations (1.1)–(1.4) that E → αE
and B → αB. The linearity of Maxwell’s equations accounts for the well-known fact that the
electric fields generated by point charges, as well as the magnetic fields generated by line currents,
are superposable.

Taking the divergence of Equation (1.4), and combining the resulting expression with Equa-
tion (1.1), we obtain

∂ρ

∂t
+ ∇ · j = 0. (1.7)
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In integral form, making use of the divergence theorem, this equation becomes

d
dt

∫
V
ρ dV +

∫
S

j · dS = 0, (1.8)

where V is a fixed volume bounded by a surface S . The volume integral represents the net electric
charge contained within the volume, whereas the surface integral represents the outward flux of
charge across the bounding surface. The previous equation, which states that the net rate of change
of the charge contained within the volume V is equal to minus the net flux of charge across the
bounding surface S , is clearly a statement of the conservation of electric charge. Thus, Equa-
tion (1.7) is the differential form of this conservation equation.

As is well known, a point electric charge q moving with velocity v in the presence of an electric
field E and a magnetic field B experiences a force

F = q (E + v × B). (1.9)

Likewise, a distributed charge distribution of charge density ρ and current density j experiences a
force density

f = ρE + j × B. (1.10)

1.3 Scalar and Vector Potentials

We can automatically satisfy Equation (1.2) by writing

B = ∇ × A, (1.11)

where A(r, t) is termed the vector potential. Furthermore, we can automatically satisfy Equa-
tion (1.3) by writing

E = −∇φ − ∂A
∂t
, (1.12)

where φ(r, t) is termed the scalar potential.
The previous prescription for expressing electric and magnetic fields in terms of the scalar and

vector potentials does not uniquely define the potentials. Indeed, it can be seen that if A→ A−∇ψ
and φ → φ + ∂ψ/∂t, where ψ(r, t) is an arbitrary scalar field, then the associated electric and
magnetic fields are unaffected. The root of the problem lies in the fact that Equation (1.11) specifies
the curl of the vector potential, but leaves the divergence of this vector field completely unspecified.
We can make our prescription unique by adopting a convention that specifies the divergence of the
vector potential—such a convention is usually called a gauge condition. It turns out that Maxwell’s
equations are Lorentz invariant. (See Chapter 12.) In other words, they take the same form in all
inertial frames. Thus, it makes sense to adopt a gauge condition that is also Lorentz invariant. This
leads us to the so-called Lorenz gauge condition (see Section 12.12),

ε0 µ0
∂φ

∂t
+ ∇ · A = 0. (1.13)
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Equations (1.11)–(1.13) can be combined with Equations (1.1) and (1.4) to give

1
c 2

∂ 2φ

∂t 2 − ∇ 2φ =
ρ

ε0
, (1.14)

1
c 2

∂ 2A
∂t 2 − ∇ 2A = µ0 j, (1.15)

where
c =

1√
ε0 µ0

= 2.988 × 108 m s−1 (1.16)

is the velocity of light in vacuum. Thus, Maxwell’s equations essentially boil down to Equa-
tions (1.14) and (1.15).

1.4 Dirac Delta Function

The Dirac delta function, δ(t − t′), has the property

δ(t − t′) = 0 for t � t′. (1.17)

In addition, however, the function is singular at t = t′ in such a manner that∫ ∞

−∞
δ(t − t′) dt′ = 1. (1.18)

It follows that ∫ ∞

−∞
f (t) δ(t − t′) dt′ = f (t), (1.19)

where f (t) is an arbitrary function that is well behaved at t = t′. It is also easy to see that

δ(t′ − t) = δ(t − t′). (1.20)

1.5 Three-Dimensional Dirac Delta Function

The three-dimensional Dirac delta function, δ(r − r′), has the property

δ(r − r′) = 0 for r � r′. (1.21)

In addition, however, the function is singular at r = r′ in such a manner that∫
V
δ(r − r′) dV = 1. (1.22)

Here, V is any volume that contains the point r = r′. (Also, dV is an element of V expressed in
terms of the components of r, but independent of the components of r′.) It follows that∫

V
f (r) δ(r − r′) dV = f (r′), (1.23)
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where f (r) is an arbitrary function that is well behaved at r = r′. It is also easy to see that

δ(r′ − r) = δ(r − r′). (1.24)

We can show that

∇ 2
(

1
|r − r′|

)
= −4π δ(r − r′). (1.25)

(Here, ∇ 2 is a Laplacian operator expressed in terms of the components of r, but independent of
the components of r′.) We must first prove that

∇ 2
(

1
|r − r′|

)
= 0 for r � r′, (1.26)

in accordance with Equation (1.21). If R = |r − r′| then this is equivalent to showing that

1
R 2

d
dR

[
R 2 d

dR

(
1
R

)]
= 0 (1.27)

for R > 0, which is indeed the case. (Here, R is treated as a radial spherical coordinate.) Next, we
must show that ∫

V
∇ 2

(
1

|r − r′|
)

dV = −4π, (1.28)

in accordance with Equations (1.22) and (1.25). Suppose that S is a spherical surface, of radius R,
centered on r = r′. Making use of the definition ∇ 2φ ≡ ∇ · ∇φ, as well as the divergence theorem,
we can write ∫

V
∇ 2

(
1

|r − r′|
)

dV =
∫

V
∇ · ∇

(
1

|r − r′|
)

dV =
∫

S
∇

(
1

|r − r′|
)
· dS

= 4πR 2 d
dR

(
1
R

)
= −4π. (1.29)

(Here, ∇ is a gradient operator expressed in terms of the components of r, but independent of the
components of r′. Likewise, dS is a surface element involving the components of r, but indepen-
dent of the components of r′.) Finally, if S is deformed into a general surface (without crossing
the point r = r′) then the value of the volume integral is unchanged, as a consequence of Equa-
tion (1.26). Hence, we have demonstrated the validity of Equation (1.25).

1.6 Solution of Inhomogeneous Wave Equation

Equation (1.14), as well as the three Cartesian components of Equation (1.15), are inhomogeneous
three-dimensional wave equations of the general form(

1
c 2

∂ 2

∂t 2 − ∇ 2
)

u = v, (1.30)
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where u(r, t) is an unknown potential, and v(r, t) a known source function. Let us investigate
whether it is possible to find a unique solution of this type of equation.

Let us assume that the source function v(r, t) can be expressed as a Fourier integral,

v(r, t) =
∫ ∞

−∞
vω(r) e−iω t dω. (1.31)

The inverse transform is

vω(r) =
1

2π

∫ ∞

−∞
v(r, t) e+iω t dt. (1.32)

Similarly, we can write the general potential u(r, t) as a Fourier integral,

u(r, t) =
∫ ∞

−∞
uω(r) e−iω t dω, (1.33)

with the corresponding inverse

uω(r) =
1

2π

∫ ∞

−∞
u(r, t) e+iω t dt. (1.34)

Fourier transformation of Equation (1.30) yields

(∇ 2 + k 2) uω = −vω, (1.35)

where k = ω/c.
Equation (1.35), which reduces to Poisson’s equation (see Section 2.3),

∇ 2 uω = −vω, (1.36)

in the limit k→ 0, is known as Helmholtz’s equation. Because Helmholtz’s equation is linear, it is
appropriate to attempt a Green’s function method of solution. Let us try to find a Green’s function,
Gω(r, r′), such that

(∇ 2 + k 2) Gω(r, r′) = −δ(r − r′). (1.37)

The general solution to Equation (1.35) is then [cf., Equation (2.16)]

uω(r) =
∫

vω(r′) Gω(r, r′) dV ′. (1.38)

Let us adopt the spatial boundary condition Gω(r, r′) → 0 as |r − r′| → ∞, so as to ensure that
the potential goes to zero a long way from the source. Because Equation (1.37) is spherically
symmetric about the point r′, it is plausible that the Green’s function itself is spherically symmetric:
that is, Gω(r − r′) = Gω(|r − r′|). In this case, Equation (1.37) reduces to

1
R

d 2(R Gω)
dR 2 + k 2 Gω = −δ(R), (1.39)
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where R = r − r′, and R = |R|. The most general solution to the above equation in the region R > 0
is1

Gω(R) =
A e+i k R + B e−i k R

4πR
. (1.40)

However, we know that Helmholtz’s equation tends towards Poisson’s equation in the limit k → 0.
It stands to reason that the Green’s function for Helmholtz’s equation much tend toward that for
Poisson’s equation in the same limit. Now, the Green’s function for Poisson’s equation, (1.36),
satisfies

∇ 2G(r, r′) = −δ(r − r′), (1.41)

as well as the usual constraint that G(r, r′) → 0 as |r − r′| → ∞. It follows from Equation (1.25)
that

G(r, r′) = G(|r − r′|) = 1
4π |r − r′| =

1
4πR

. (1.42)

Thus, the condition that Gω(R)→ G(R) as k→ 0 implies that A + B = 1.
Reconstructing u(r, t) from Equations (1.33), (1.38), and (1.40), we obtain

u(r, t) =
1

4π

∫ ∫
vω(r′)

R

[
A e−iω (t−R/c) + B e−iω (t+R/c)

]
dω dV ′. (1.43)

It follows from Equation (1.31) that

u(r, t) =
A
4π

∫
v(r′, t − R/c)

R
dV ′ +

B
4π

∫
v(r′, t + R/c)

R
dV ′. (1.44)

Now, the real-space Green’s function for the inhomogeneous three-dimensional wave equation,
(1.30), satisfies (

1
c 2

∂ 2

∂t 2 − ∇ 2
)

G(r, r′; t, t′) = δ(r − r′) δ(t − t′). (1.45)

Hence, the most general solution of Equation (1.30) takes the form

u(r, t) =
∫ ∫

v(r′, t′) G(r, r′; t, t′) dV ′dt′. (1.46)

Comparing Equations (1.44) and (1.46), we obtain

G(r, r′; t, t′) = A G(+)(r, r′; t, t′) + B G(−)(r, r′; t, t′), (1.47)

where
G(±)(r, r′; t, t′) =

δ(t′ − [t ∓ |r − r′|/c])
4π |r − r′| , (1.48)

and A + B = 1.
1In principle, A = A(ω) and B = B(ω), with A + B = 1. However, we shall demonstrate, later on, that B = 0,

otherwise causality is violated. It follows that A = 1. Thus, it is legitimate to assume, for the moment, that A and B
are independent of ω.
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The real-space Green’s function specifies the response of the system to a point source located
at position r′ that appears momentarily at time t′. According to the retarded Green’s function, G(+),
this response consists of a spherical wave, centered on the point r′, that propagates forward in time.
In order for the wave to reach position r at time t, it must have been emitted from the source at
r′ at the retarded time tr = t − |r − r′|/c. According to the advanced Green’s function, G(−), the
response consists of a spherical wave, centered on the point r′, that propagates backward in time.
Clearly, the advanced potential is not consistent with our ideas about causality, which demand that
an effect can never precede its cause in time. Thus, the Green’s function that is consistent with our
experience is

G(r, r′; t, t′) = G(+)(r, r′; t, t′) =
δ(t′ − [t − |r − r′|/c])

4π |r − r′| . (1.49)

Incidentally, we are able to find solutions of the inhomogeneous wave equation, (1.30), that prop-
agate backward in time because this equation is time symmetric (i.e., it is invariant under the
transformation t → −t).

In conclusion, the most general solution of the inhomogeneous wave equation, (1.30), that
satisfies sensible boundary conditions at infinity, and is consistent with causality, is

u(r, t) =
∫

v(r′, t − |r − r′|/c)
4π |r − r′| dV ′. (1.50)

This expression is sometimes written

u(r, t) =
∫

[v(r′)]
4π |r − r′| dV ′, (1.51)

where the rectangular bracket symbol [ ] denotes that the terms inside the bracket are to be eval-
uated at the retarded time t − |r − r′|/c. Note, in particular, from Equation (1.50), that if there
is no source [i.e., if v(r, t) = 0] then there is no field [i.e., u(r, t) = 0]. But, is expression (1.50)
really the only solution of Equation (1.30) that satisfies sensible boundary conditions at infinity? In
other words, is this solution really unique? Unfortunately, there is a weak link in our derivation—
between Equations (1.38) and (1.39)—where we assumed, without proof, that the Green’s function
for Helmholtz’s equation, subject to the boundary condition Gω(r, r′)→ 0 as |r−r′| → ∞, is spher-
ically symmetric. Let us try to fix this problem.

With the benefit of hindsight, we can see that the Fourier-space Green’s function

Gω =
e+i k R

4πR
(1.52)

corresponds to the retarded solution in real space, and is, therefore, the correct physical Green’s
function in Fourier space. The Fourier-space Green’s function

Gω =
e−i k R

4πR
(1.53)

corresponds to the advanced solution in real space, and must, therefore, be rejected. We can select
the retarded Green’s function in Fourier space by imposing the following boundary condition at
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infinity

lim
R→∞R

(
∂Gω

∂R
− i k Gω

)
= 0. (1.54)

This is called the Sommerfeld radiation condition, and basically ensures that infinity is an absorber
of radiation, but not a source. But, does this boundary condition uniquely select the spherically
symmetric Green’s function (1.52) as the solution of

(∇ 2 + k 2) Gω(R, θ, ϕ) = −δ(R)? (1.55)

Here, (R, θ, ϕ) are spherical polar coordinates. If it does then we can be sure that Equation (1.50)
represents the unique solution of the inhomogeneous wave equation, (1.30), that is consistent with
causality.

Let us suppose that there are two different solutions of Equation (1.55), both of which satisfy
the boundary condition (1.54), and revert to the unique (see Section 2.3) Green’s function for
Poisson’s equation, (1.42), in the limit R → 0. Let us call these solutions u1 and u2, and let us
form the difference w = u1 − u2. Consider a surface Σ0 which is a sphere of arbitrarily small radius
centred on the origin. Consider a second surface Σ∞ which is a sphere of arbitrarily large radius
centred on the origin. Let V denote the volume enclosed by these surfaces. The difference function
w satisfies the homogeneous Helmholtz equation,

(∇ 2 + k 2)w = 0, (1.56)

throughout V . According to the generalized (to deal with complex potentials) Green’s theorem
(see Section 2.9), ∫

V
(w∇ 2w∗ − w∗ ∇ 2w) dV =

(∫
Σ0

+

∫
Σ∞

) (
w
∂w∗

∂n
− w∗ ∂w

∂n

)
dS , (1.57)

where ∂/∂n denotes a derivative normal to the surface in question. It is clear from Equation (1.56)
that the volume integral is zero. It is also clear that the first surface integral is zero, because both
u1 and u2 must revert to the Green’s function for Poisson’s equation in the limit R→ 0. Thus,∫

Σ∞

(
w
∂w∗

∂n
− w∗ ∂w

∂n

)
dS = 0. (1.58)

Equation (1.56) can be written

∂ 2(Rw)
∂R 2 +

D (Rw)
R 2 + k 2 Rw = 0, (1.59)

where D is the spherical harmonic operator

D =
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂ 2

∂ϕ 2 . (1.60)
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The most general solution to Equation (1.59) takes the form

w(R, θ, ϕ) =
∑

l,m=0,∞

[
Cl,m h(1)

l (k R) + Dl,m h(2)
l (k R)

]
Yl,m(θ, ϕ). (1.61)

Here, the Cl,m and Dl,m are arbitrary coefficients, the Yl,m are spherical harmonics (see Section 3.3),
and

h(1,2)
l (ρ) =

√
π

2 ρ
H1,2

l+1/2(ρ), (1.62)

where the H1,2
n are Hankel functions of the first and second kind.2 It can be demonstrated that3

H1
n(ρ) =

√
2
π ρ

e+i [ρ−(n+1/2) π/2]
∑

m=0,1,2,···

(n,m)
(−2 i ρ) m , (1.63)

H 2
n (ρ) =

√
2
π ρ

e−i [ρ−(n+1/2) π/2]
∑

m=0,1,2,···

(n,m)
(+2 i ρ) m , (1.64)

where

(n,m) =
(4 n 2 − 1) (4 n 2 − 9) · · · (4 n 2 − {2 m − 1}2)

2 2 m m!
(1.65)

and (n, 0) = 1. Note that the summations in Equations (1.63) and (1.64) terminate after n + 1/2
terms.

The large-R behavior of the h(2)
l (k R) functions is clearly inconsistent with the Sommerfeld

radiation condition, (1.54). It follows that all of the Dl,m in Equations (1.61) are zero. The most
general solution can now be expressed in the form

w(R, θ, ϕ) =
e+i k R

R

∑
n=0,∞

fn(θ, ϕ)
R n

, (1.66)

where the fn(θ, ϕ) are various weighted sums of the spherical harmonics. Substitution of this
solution into the differential equation (1.59) yields

e+i k R
∑

n=0,∞

[
−2 i k n

R n+1 +
n (n + 1)

R n+2 +
D

R n+2

]
fn = 0. (1.67)

Replacing the index of summation n in the first term of the parentheses by n + 1, we obtain

e+i k R
∑

n=0∞

−2 i k (n + 1) fn+1 + [n (n + 1) + D] fn

R n+2 = 0, (1.68)

which yields the recursion relation

2 i k (n + 1) fn+1 = [n (n + 1) + D] fn. (1.69)
2J.D. Jackson, Classical Electrodynamics, 2nd Edition, (Wiley, 1962), p. 104.
3A. Sommerfeld, Partial Differential Equations in Physics, (Academic Press, New York, 1964), p. 117.
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It follows that if f0 = 0 then all of the fn are equal to zero.
Let us now consider the surface integral (1.58). Because we are interested in the limit R→ ∞,

we can replace w by the first term of its expansion in (1.66), so that∫
Σ∞

(
w
∂w∗

∂n
− w∗ ∂w

∂n

)
dS = −2 i k

∫
| f0| 2 dΩ = 0, (1.70)

where dΩ is an element of solid angle. It is clear that f0 = 0. This implies that f1 = f2 = · · · = 0,
and, hence, that w = 0. Thus, there is only one solution of Equation (1.55) that is consistent with
the Sommerfeld radiation condition, and this is given by Equation (1.52). We can now be sure that
Equation (1.50) is the unique solution of Equation (1.30), subject to the boundary condition (1.54).
This boundary condition ensures that infinity is an absorber of electromagnetic radiation, but not
an emitter, which seems entirely reasonable.

1.7 Retarded Potentials

We are now in a position to solve Maxwell’s equations. Recall, from Section 1.3, that Maxwell
equations reduce to (

1
c 2

∂ 2

∂t 2 − ∇ 2
)
φ =

ρ

ε0
, (1.71)(

1
c 2

∂ 2

∂t 2 − ∇ 2
)

A = µ0 j. (1.72)

We can solve these inhomogeneous three-dimensional waves equations using the appropriate Green’s
function, (1.49). In fact, making use of Equation (1.46), we find that

φ(r, t) =
1

4π ε0

∫
ρ(r′, t − |r − r′|/c)

|r − r′| dV ′ (1.73)

A(r, t) =
µ0

4π

∫
j(r′, t − |r − r′|/c)

|r − r′| dV ′. (1.74)

Alternatively, we can write

φ(r, t) =
1

4π ε0

∫ [
ρ(r′)

]
|r − r′| dV ′, (1.75)

A(r, t) =
µ0

4π

∫ [
j(r′)

]
|r − r′| dV ′. (1.76)

The above potentials are termed retarded potentials (because the integrands are evaluated at the
retarded time). Finally, according to the discussion in the previous section, we can be sure that
Equations (1.75) and (1.76) are the unique solutions to Equations (1.71) and (1.72), respectively,
subject to sensible boundary conditions at infinity.
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1.8 Retarded Fields

We have found the solution to Maxwell’s equations in terms of retarded potentials. Let us now
construct the associated retarded electric and magnetic fields using (see Section 1.3)

E = −∇φ − ∂A
∂t
, (1.77)

B = ∇ × A. (1.78)

It is helpful to write
R = r − r′, (1.79)

where R = |r − r′|. The retarded time becomes tr = t − R/c, and a general retarded quantity is
written [F(r′, t)] ≡ F(r′, tr). Thus, we can express the retarded potential solutions of Maxwell’s
equations in the particularly compact form

φ(r, t) =
1

4π ε0

∫
[ρ]
R

dV ′, (1.80)

A(r, t) =
µ0

4π

∫
[j]
R

dV ′. (1.81)

It is easily seen that

∇φ = 1
4π ε0

∫ (
[ρ]∇

(
R−1

)
+

[∂ρ/∂t]
R

∇tr

)
dV ′

= − 1
4π ε0

∫ (
[ρ]
R 3 R +

[∂ρ/∂t]
c R 2 R

)
dV ′, (1.82)

where use has been made of

∇R =
R
R
, ∇

(
R−1

)
= − R

R 3 , ∇tr = − R
c R

. (1.83)

Likewise,

∇ × A =
µ0

4π

∫ (
∇

(
R−1

)
× [j] +

∇tr × [∂j/∂t]
R

)
dV ′

= −µ0

4π

∫ (
R × [j]

R 3 +
R × [∂j/∂t]

c R 2

)
dV ′. (1.84)

Equations (1.77), (1.78), (1.82), and (1.84) can be combined to give

E =
1

4π ε0

∫ (
[ρ]

R
R 3 +

[
∂ρ

∂t

]
R

c R 2 −
[∂j/∂t]

c 2 R

)
dV ′, (1.85)

and

B =
µ0

4π

∫ (
[j] × R

R 3 +
[∂j/∂t] × R

c R 2

)
dV ′. (1.86)
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Suppose that our charges and currents vary on some characteristic timescale t0. Let us define
R0 = c t0, which is the distance a light ray travels in time t0. We can evaluate Equations (1.85) and
(1.86) in two asymptotic regions: the near field region R 	 R0, and the far field region R
 R0. In
the near field region,

|t − tr|
t0
=

R
R0
	 1, (1.87)

so the difference between retarded time and standard time is relatively small. This allows us to
expand retarded quantities in a Taylor series. Thus,

[ρ] � ρ + ∂ρ
∂t

(tr − t) +
1
2
∂ 2ρ

∂t 2 (tr − t)2 + · · · , (1.88)

giving

[ρ] � ρ − ∂ρ
∂t

R
c
+

1
2
∂ 2ρ

∂t 2

R 2

c 2 + · · · . (1.89)

Expansion of the retarded quantities in the near field region yields

E(r, t) � 1
4π ε0

∫ (
ρR
R 3 −

1
2
∂ 2ρ

∂t 2

R
c 2 R

− ∂j/∂t
c 2 R

+ · · ·
)

dV ′, (1.90)

B(r, t) � µ0

4π

∫ (
j × R

R 3 −
1
2

(∂ 2j/∂t 2) × R
c 2 R

+ · · ·
)

dV ′. (1.91)

In Equation (1.90), the first term on the right-hand side corresponds to Coulomb’s law, the second
term is the lowest order correction to Coulomb’s law due to retardation effects, and the third term
corresponds to Faraday induction. In Equation (1.91), the first term on the right-hand side is the
Biot-Savart law, and the second term is the lowest order correction to the Biot-Savart law due
to retardation effects. Note that the retardation corrections are only of order (R/R0)2. We might
suppose, from looking at Equations (1.85) and (1.86), that the corrections should be of order R/R0.
However, all of the order R/R0 terms canceled out in the previous expansion.

In the far field region, R 
 R0, Equations (1.85) and (1.86) are dominated by the terms that
vary like R−1, so that

E(r, t) � − 1
4π ε0

∫
[∂j⊥/∂t]

c 2 R
dV ′, (1.92)

B(r, t) � µ0

4π

∫
[∂j⊥/∂t] × R

c R 2 dV ′, (1.93)

where
j⊥ = j − (j · R)

R 2 R. (1.94)

Here, use has been made of [∂ρ/∂t] = −[∇ · j] and [∇ · j] � −[∂j/∂t] · R/(c R). Suppose that our
charges and currents are localized to some finite region of space in the vicinity of the origin, and
that the extent of the current-and-charge-containing region is much less than |r|. It follows that
retarded quantities can be written

[ρ(r′, t)] � ρ(r′, t − r/c), (1.95)
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et cetera. Thus, the electric field reduces to

E(r, t) � − 1
4π ε0

[∫
∂j⊥/∂t dV ′

]
c 2 r

, (1.96)

whereas the magnetic field is given by

B(r, t) � 1
4π ε0

[∫
∂j⊥/∂t dV ′

]
× r

c 3 r 2 . (1.97)

Here, [· · · ] merely denotes evaluation at the retarded time t − r/c. Note that

E
B
= c, (1.98)

and
E · B = 0. (1.99)

This configuration of electric and magnetic fields is characteristic of an electromagnetic wave.
In fact, Equations (1.96) and (1.97) describe an electromagnetic wave propagating radially away
from the charge and current containing region. The wave is clearly driven by time-varying electric
currents. Now, charges moving with a constant velocity constitute a steady current, so a nonsteady
current is associated with accelerating charges. We conclude that accelerating electric charges emit
electromagnetic waves. The wave fields, (1.96) and (1.97), fall off like the inverse of the distance
from the wave source. This behavior should be contrasted with that of Coulomb or Biot-Savart
fields, which fall off like the inverse square of the distance from the source.

In conclusion, electric and magnetic fields look simple in the near field region (they are just
Coulomb fields, etc.), and also in the far field region (they are just electromagnetic waves). Only
in the intermediate region, R ∼ R0, do the fields get really complicated.

1.9 Electromagnetic Energy Conservation

Consider the fourth Maxwell equation:

∇ × B = µ0 j + ε0 µ0
∂E
∂t
. (1.100)

Forming the scalar product with the electric field, and rearranging, we obtain

−E · j = −E · ∇ × B
µ0

+ ε0 E · ∂E
∂t
, (1.101)

which can be rewritten

−E · j = −E · ∇ × B
µ0

+
∂

∂t

(
ε0 E 2

2

)
. (1.102)

Now,
∇ · (E × B) ≡ B · ∇ × E − E · ∇ × B, (1.103)
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so

−E · j = ∇ ·
(
E × B
µ0

)
− B · ∇ × E

µ0
+
∂

∂t

(
ε0 E 2

2

)
. (1.104)

Making use of third Maxwell equation,

∇ × E = −∂B
∂t
, (1.105)

we obtain

−E · j = ∇ ·
(
E × B
µ0

)
+ µ−1

0 B · ∂B
∂t
+
∂

∂t

(
ε0 E 2

2

)
, (1.106)

which can be rewritten

−E · j = ∇ ·
(
E × B
µ0

)
+
∂

∂t

(
ε0 E 2

2
+

B 2

2 µ0

)
. (1.107)

Thus, we get
∂U
∂t
+ ∇ · u = −E · j, (1.108)

where U and u are specified in Equations (1.109) and (1.110), respectively.
By comparison with Equation (1.7), we can recognize the previous expression as some sort

of conservation equation. Here, U is the density of the conserved quantity, u is the flux of the
conserved quantity, and −E ·j is the rate at which the conserved quantity is created per unit volume.
However, E · j is the rate per unit volume at which electric charges gain energy via interaction with
electromagnetic fields. Hence, −E·j is the rate per unit volume at which electromagnetic fields gain
energy via interaction with charges. It follows that Equation (1.108) is a conservation equation for
electromagnetic energy. Thus.

U =
ε0 E 2

2
+

B 2

2 µ0
(1.109)

can be interpreted as the electromagnetic energy density, and

u =
E × B
µ0

(1.110)

as the electromagnetic energy flux. The latter quantity is usually called the Poynting flux, after its
discoverer.

1.10 Electromagnetic Momentum Conservation

Let g(i) be the density of electromagnetic momentum directed parallel to the ith Cartesian axis.
(Here, i = 1 corresponds to the x-axis, i = 2 to the y-axis, and i = 3 to the z-axis.) Furthermore, let
G(i) be the flux of such momentum. We would expect the conservation equation for electromagnetic
momentum directed parallel to the ith Cartesian axis to take the form

∂g(i)

∂t
+ ∇ ·G(i) = −(ρE + j × B)i, (1.111)
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where the subscript i denotes a component of a vector parallel to the ith Cartesian axis. The term
on the right-hand side is the rate per unit volume at which electromagnetic fields gain momentum
parallel to the ith Cartesian axis via interaction with matter. Thus, the term is minus the rate at
which matter gains momentum parallel to the ith Cartesian axis via interaction with electromag-
netic fields. In other words, the term is minus the ith component of the force per unit volume
exerted on matter by electromagnetic fields. [See Equation (1.10).] Equation (1.111) can be gen-
eralized to give

∂g
∂t
+ ∇ ·G = −(ρE + j × B), (1.112)

where g is the electromagnetic momentum density (the ith Cartesian component of g is thus g(i)),
and G is a tensor (see Section 12.5) whose Cartesian components Gi j = G(i) · e j, where e j is a unit
vector parallel to the jth Cartesian axis, specify the flux of electromagnetic momentum parallel to
the ith Cartesian axis across a plane surface whose normal is parallel to the jth Cartesian axis. Let
us attempt to derive an expression of the form (1.112) from Maxwell’s equations.

Maxwell’s equations are as follows:

∇ · E = ρ

ε0
, (1.113)

∇ · B = 0, (1.114)

∇ × E = −∂B
∂t
, (1.115)

∇ × B = µ0 j + ε0 µ0
∂E
∂t
. (1.116)

We can take the vector product of Equation (1.116) divided by µ0 with B, and rearrange, to give

−ε0
∂E
∂t
× B =

B × (∇ × B)
µ0

+ j × B. (1.117)

Next, we can take the vector product of E with Equation (1.115) times ε0, rearrange, and add the
result to the previous equation. We obtain

−ε0
∂E
∂t
× B − ε0 E × ∂B

∂t
= ε0 E × (∇ × E) +

B × (∇ × B)
µ0

+ j × B. (1.118)

Making use of Equations (1.113) and (1.114), we get

− ∂
∂t

(ε0 E × B) = ε0 E × (∇ × E) +
B × (∇ × B)

µ0

− ε0 (∇ · E) E − 1
µ0

(∇ · B) B + ρE + j × B. (1.119)

Now,
∇(E 2/2) ≡ E × (∇ × E) + (E · ∇) E, (1.120)
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with a similar equation for B. Hence, Equation (1.119) can be written

− ∂
∂t

(ε0 E × B) = ε0

[
∇(E 2/2) − (∇ · E) E − (E · ∇) E

]
+

1
µ0

[
∇(B 2/2) − (∇ · B) B − (B · ∇) B

]
+ ρE + j × B. (1.121)

Finally, when written in terms of components, the above equation becomes

− ∂
∂t

(ε0 E × B)i =
∂

∂x j

(
ε0 E 2 δi j/2 − ε0 Ei E j + B 2 δi j/2 µ0 − Bi Bj/µ0

)
+ (ρE + j × B)i , (1.122)

because [(∇ · E) E]i ≡ (∂E j/∂x j) Ei, and [(E · ∇) E]i ≡ E j (∂Ei/∂x j). Here, x1 corresponds to x, x2

to y, and x3 to z. Furthermore, δi j is a Kronecker delta symbol (i.e., δi j = 1 if i = j, and δi j = 0
otherwise). Finally, we are making use of the Einstein summation convention (that repeated indices
are summed from 1 to 3). Comparing the previous expression with Equation (1.112), we conclude
that the momentum density of electromagnetic fields takes the form

g = ε0 (E × B), (1.123)

whereas the corresponding momentum flux tensor has the Cartesian components

Gi j = ε0 (E 2 δi j/2 − Ei E j) + (B 2 δi j/2 − Bi Bj)/µ0. (1.124)

The momentum conservation equation, (1.112), is sometimes written

ρE + j × B = ∇ · T − ∂

∂t
(ε0 E × B) , (1.125)

where
Ti j = −Gi j = ε0 (Ei E j − E 2 δi j/2) + (Bi Bj − B 2 δi j/2)/µ0 (1.126)

is called the Maxwell stress tensor.

1.11 Exercises

1.1 Demonstrate that the energy contained in the magnetic field generated by a stationary cur-
rent distribution j(r) in vacuum is given by

W =
µ0

8π

∫ ∫
j(r) · j(r′)
|r − r′| dV dV ′.

1.2 A transverse plane wave is incident normally in vacuum on a perfectly absorbing flat screen.
Show that the pressure exerted on the screen is equal to the electromagnetic energy density
of the wave.
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1.3 Consider an infinite parallel-plate capacitor. Let the lower plate lie at z = −d/2, and carry
the charge density −σ. Likewise, let the upper plate lie at z = +d/2, and carry the charge
density +σ. Calculate the electromagnetic momentum flux across the y-z plane. Hence,
determine the direction and magnitude of the force per unit area that the plates exert on one
another.

1.4 The equation of electromagnetic angular momentum conservation takes the general form

∂L
∂t
+ ∇ ·M = −r × (ρE + j × B),

where L is the electromagnetic angular momentum density, and the tensor M is the elec-
tromagnetic angular momentum flux. Demonstrate that

L = r × g,

and
M = r ×G,

where g is the electromagnetic momentum density, and G the electromagnetic momentum
flux tensor.

1.5 A long solenoid of radius R, with N turn per unit length, carries a steady current I. Two
hollow cylinders of length l are fixed coaxially such that they are free to rotate. The first
cylinder, whose radius is a < R, carries the uniformly distributed electric charge Q. The
second cylinder, whose radius is b > R, carries the uniformly distributed electric charge
−Q. Both cylinders are initially stationary. When the current is switched off the cylinders
start to rotate. Find the final angular momenta of the two cylinders, and demonstrate that the
total angular momentum of the system is the same before and after the current is switched
off.

1.6 Consider a system consisting of an electric charge e and a magnetic monopole g separated
by a distance d. Demonstrate that the total angular momentum stored in the resulting
electromagnetic fields is

L =
µ0

4π
e g.

[Hint: The radial magnetic field generated a distance r from a magnetic monopole of
strength g is of magnitude (µ0/4π) (g/r 2).]
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2 Electrostatic Fields

2.1 Introduction

This chapter discusses electric fields generated by stationary charge distributions. Such fields are
termed electrostatic. However, before commencing this discussion (in Section 2.4), it is convenient
to review some useful mathematics.

2.2 Laplace’s Equation

Laplace’s equation is written
∇ 2φ(r) = 0, (2.1)

where the function φ(r) is often referred to as a potential. Suppose that we wish to find a solution
to this equation in some finite volume V , bounded by a closed surface S , subject to the boundary
condition

φ(r) = 0, (2.2)

when r lies on S . Consider the vector identity

∇ · (φ∇φ) ≡ φ∇ 2φ + ∇φ · ∇φ. (2.3)

Integrating this expression over V , making use of the divergence theorem, we obtain∫
S
φ∇φ · dS =

∫
V

(
φ∇ 2φ + ∇φ · ∇φ

)
dV. (2.4)

It follows from Equations (2.1) and (2.2) that∫
V
|∇φ| 2 dV = 0, (2.5)

which implies that ∇φ = 0 throughout V and on S . Hence, Equation (2.2) yields

φ(r) = 0 (2.6)

throughout V and on S . We conclude that the only solution to Laplace’s equation, (2.1), subject
to the boundary condition (2.2), is the trivial solution (2.6). Finally, if we let the surface S tend to
infinity then we deduce that the only solution to Laplace’s equation, (2.1), subject to the boundary
condition

φ(r)→ 0 as |r| → ∞, (2.7)

is
φ(r) = 0 (2.8)
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for all r.
Consider a potential φ(r) that satisfies Laplace’s equation, (2.1), in some finite volume V ,

bounded by the closed surface S , subject to the boundary condition

φ(r) = φS (r), (2.9)

when r lies on S . Here, φS (r) is a known surface distribution. We can demonstrate that this
potential is unique. Let φ1(r) and φ2(r) be two supposedly different potentials that both satisfy
Laplace’s equation throughout V , as well as the previous boundary condition on S . Let us form the
difference φ3(r) = φ1(r) − φ2(r). This function satisfies Laplace’s equation throughout V , subject
to the boundary condition

φ3(r) = 0 (2.10)

when r lies on S . However, as we have already seen, this implies that φ3(r) = 0 throughout V and
on S . Hence, φ1(r) and φ2(r) are identical, and the potential φ(r) is therefore unique.

2.3 Poisson’s Equation

Poisson’s equation is written
∇ 2φ(r) = v(r). (2.11)

Here, the function v(r) is conventionally referred to as a source. Suppose that we have to solve
Equation (2.11) over all space, subject to the boundary condition

φ(r)→ 0 as |r| → ∞. (2.12)

We can achieve this task by searching for a so-called Green’s function, G(r, r′), that satisfies

∇ 2G(r, r′) = δ(r − r′), (2.13)

subject to the boundary condition

G(r, r′)→ 0 as |r| → ∞. (2.14)

[Note that the source in Equation (2.11) is minus the source in the previously defined version of
Poisson’s equation, (1.36). Likewise, the Green’s function (2.13) is minus the previously defined
Green’s function (1.41). These differences in sign are purely for the sake of convenience.] Once we
have found the Green’s function, the general solution to Equation (2.11), subject to the boundary
condition (2.12), is given by

φ(r) =
∫

v(r′) G(r, r′) dV ′, (2.15)

where the integral is over all space. We can prove that this expression is indeed a solution to
Equation (2.11) as follows:

∇ 2φ(r) =
∫

v(r′)∇ 2G(r, r′) dV ′ =
∫

v(r′) δ(r − r′) dV ′ = v(r). (2.16)
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Here, use has been made of Equations (1.23) and (1.24), as well as the fact that r and r′ are
independent variables. From Equation (2.14), the expression for φ(r) given in Equation (2.15)
satisfies the boundary condition (2.12) provided that the volume integral on the right-hand side [of
(2.15)] converges to a finite value.

According to Equation (1.25), a solution to Equation (2.13), subject to the boundary condition
(2.14), is

G(r, r′) = − 1
4π |r − r′| . (2.17)

Actually, we can prove that this is the only solution. Let there be two supposedly different func-
tions, G1(r, r′) and G2(r, r′), that both satisfy Equation (2.13), subject to the boundary condition
(2.14). Let us form the difference G3(r, r′) = G1(r, r′) −G2(r, r′). It follows that

∇ 2G3(r, r′) = 0, (2.18)

subject to the boundary condition

G3(r, r′)→ 0 as |r| → ∞. (2.19)

However, as we saw in Section 2.2, the only solution to the previous two equations is

G3(r, r′) = 0 (2.20)

for all r (and r′). Hence, the functions G1(r, r′) and G2(r, r′) are identical, and the Green’s function
(2.17) is unique. It follows from Equation (2.15) that the general solution to Poisson’s equation,
(2.11), subject to the boundary condition (2.12), is

φ(r) = − 1
4π

∫
v(r′)
|r − r′| dV ′. (2.21)

Furthermore, this solution is unique.

2.4 Coulomb’s Law

Coulomb’s law is equivalent to the statement that the electric field E(r) generated by a point charge
q′ located at r = r′ is

E(r) =
q′

4π ε0

r − r′

|r − r′| 3 . (2.22)

The electric force F exerted on a point charge q located at position vector r is

F = q E(r). (2.23)

Hence,

F =
q q′

4π ε0

r − r′

|r − r′| 3 . (2.24)
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It follows that the electrostatic force acting between two point charges is inverse-square, central,
proportional to the product of the charges, and repulsive if both charges are of the same sign.

Electric fields are superposable (see Section 1.2), which means that the electric field generated
by N point charges, qi, located at position vectors ri, for i = 1,N, is

E(r) =
∑
i=1,N

qi

4π ε0

r − ri

|r − ri| 3 . (2.25)

In the continuum limit, the previous expression becomes

E(r) =
1

4π ε0

∫
ρ(r′) (r − r′)
|r − r′| 3 dV ′, (2.26)

where ρ(r) is the charge density (i.e., the electric charge per unit volume), and the integral is over
all space.

2.5 Electric Scalar Potential

It is easily demonstrated that
r − r′

|r − r′| 3 = −∇
(

1
|r − r′|

)
. (2.27)

Hence, Equation (2.26) yields
E(r) = −∇φ, (2.28)

where
φ(r) =

1
4π ε0

∫
ρ(r′)
|r − r′| dV ′ (2.29)

is the scalar potential. (See Section 1.3.) It follows from Equation (2.28) that

∇ × E = 0. (2.30)

In other words, an electric field generated by (stationary) charges is irrotational.
According to Equation (2.27), we can write Equation (2.26) in the form

E(r) = − 1
4π ε0

∫
ρ(r′)∇

(
1

|r − r′|
)

dV ′. (2.31)

Hence,

∇ · E = − 1
4π ε0

∫
ρ(r′)∇ 2

(
1

|r − r′|
)

dV ′ =
1
ε0

∫
ρ(r′) δ(r − r′) dV ′ =

ρ(r)
ε0

, (2.32)

where use has been made of Equations (1.23)–(1.25). We deduce that

∇ · E = ρ

ε0
, (2.33)
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which we recognize as the first Maxwell equation. (See Section 1.2.) The integral form of this
equation, which follows from the divergence theorem,∫

S
E · dS =

1
ε0

∫
V
ρ(r) dV, (2.34)

is known as Gauss’ law. Here, S is the bounding surface of volume V .
Equations (2.28) and (2.33) can be combined to give

∇ 2φ = − ρ
ε0
, (2.35)

which we recognize as Poisson’s equation, with v(r) = −ρ(r)/ε0. (See Section 2.3.) Hence, Equa-
tion (2.21) yields

φ(r) =
1

4π ε0

∫
ρ(r′)
|r − r′| dV ′, (2.36)

which is equivalent to Equation (2.29). Incidentally, according to the analysis of Sections 2.2
and 2.3, the previous expression represents the unique solution to Equation (2.35), subject to the
boundary condition

φ(r)→ 0 as |r| → ∞. (2.37)

2.6 Electrostatic Energy

Consider a collection of N static point charges qi, located at position vectors ri, respectively (where
i runs from 1 to N). Let us determine the electrostatic energy stored in such a collection. In other
words, let us calculate the amount of work required to assemble the charges, starting from an initial
state in which they are all at rest and very widely separated.

The work we would have to do against electrical forces in order to slowly move a charge q
from point P to point Q is

W =
∫ Q

P
(−F) · dr = −q

∫ Q

P
E · dr = q

∫ Q

P
∇φ · dr = q

[
φ(Q) − φ(P)

]
, (2.38)

where use has been made of Equations (2.23) and (2.28). Note that to move the charge we have
to exert on it a force −F, where F is specified in Equation (2.23), in order to counteract the force
exerted by the electric field. Recall that the scalar potential field generated by a point charge q,
located at position r′, is

φ(r) =
1

4π ε0

q
|r − r′| . (2.39)

Let us build up our collection of charges one by one. It takes no work to bring the first charge
from infinity, because there is no electric field to fight against. Let us clamp this charge in position
at r1. In order to bring the second charge into position at r2, we have to do work against the electric
field generated by the first charge. According to Equations (2.38) and Equations (2.39), this work
is given by

W2 =
1

4π ε0

q2 q1

|r2 − r1| . (2.40)
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Let us now bring the third charge into position. Because electric fields and scalar potentials are
superposable, the work done while moving the third charge from infinity to r3 is simply the sum of
the works done against the electric fields generated by charges 1 and 2 taken in isolation: that is,

W3 =
1

4π ε0

(
q3 q1

|r3 − r1| +
q3 q2

|r3 − r2|
)
. (2.41)

Thus, the total work done in assembling the three charges is given by

W =
1

4π ε0

(
q2 q1

|r2 − r1| +
q3 q1

|r3 − r1| +
q3 q2

|r3 − r2|
)
. (2.42)

This result can easily be generalized to N charges:

W =
1

4π ε0

∑
i=1,N

∑
j=1,i−1

qi q j

|ri − r j| . (2.43)

The restriction that j must be less than i makes the above summation rather cumbersome. If we
were to sum without restriction (other than j � i) then each pair of charges would be counted
twice. It is convenient to do just this, and then to divide the result by two. Thus, we obtain

W =
1
2

1
4π ε0

∑
i=1,N

j�i∑
j=1,N

qi q j

|ri − r j| . (2.44)

This expression specifies the electrostatic potential energy of a collection of point charges. We can
think of this energy as the work required to bring stationary charges from infinity and assemble
them in the required formation. Alternatively, it is the kinetic energy that would be released if the
collection were dissolved, and the charges returned to infinity. Let us investigate how the potential
energy of a collection of electric charges is stored.

Equation (2.44) can be written

W =
1
2

∑
i=1,N

qi φi, (2.45)

where

φi =
1

4π ε0

j�i∑
j=1,N

q j

|ri − r j| (2.46)

is the scalar potential experienced by the i th charge due to the other charges in the distribution.
Let us now consider the potential energy of a continuous charge distribution. It is tempting to

write
W =

1
2

∫
ρ(r) φ(r) dV, (2.47)

by analogy with Equations (2.45) and (2.46), where

φ(r) =
1

4π ε0

∫
ρ(r′)
|r − r′| dV ′ (2.48)
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is the familiar scalar potential generated by a continuous charge distribution of charge density ρ(r).
Let us try this ansatz out. We know from Equation (2.33) that

ρ = ε0 ∇ · E, (2.49)

so Equation (2.47) can be written

W =
ε0

2

∫
φ∇ · E dV. (2.50)

Making use of the vector identity,

∇ · (E φ) ≡ φ∇ · E + E · ∇φ, (2.51)

as well as the fact that ∇φ = −E, we obtain

W =
ε0

2

[∫
∇ · (E φ) dV +

∫
E 2 dV

]
. (2.52)

Application of the divergence theorem gives

W =
ε0

2

(∫
S
φE · dS +

∫
V

E 2 dV
)
, (2.53)

where V is some volume that contains all of the charges, and S is its bounding surface. Let us
assume that V is a sphere, centered on the origin, and let us take the limit in which the radius r of
this sphere goes to infinity. We know that, in general, the electric field a large distance r from a
bounded charge distribution looks like the field of a point charge, and, therefore, falls off like 1/r 2.
Likewise, the potential falls off like 1/r. However, the surface area of a sphere of radius r increases
like r 2. Hence, it is clear that, in the limit as r → ∞, the surface integral in Equation (2.53) falls
off like 1/r, and is consequently zero. Thus, Equation (2.53) reduces to

W =
ε0

2

∫
E 2 dV, (2.54)

where the integral is over all space. This expression implies that the potential energy of a contin-
uous charge distribution is stored in the electric field generated by the distribution, assuming that
this field possesses the energy density (see Section 1.9)

U =
ε0

2
E 2. (2.55)

We can easily check that Equation (2.54) is correct. Suppose that we have an amount of charge
Q that is uniformly distributed within a sphere of radius a, centered on the origin. Let us imag-
ine building up this charge distribution from a succession of thin spherical layers of infinitesimal
thickness. At each stage, we gather a small amount of charge dq from infinity, and spread it over
the surface of the sphere in a thin layer extending from r to r + dr. We continue this process until
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the final radius of the sphere is a. If q(r) is the sphere’s charge when it has attained radius r then
the work done in bringing a charge dq to its surface is

dW =
1

4π ε0

q(r) dq
r

. (2.56)

This follows from Equation (2.40), because the electric field generated outside a spherical charge
distribution is the same as that of a point charge q(r) located at its geometric center (r = 0). If the
uniform charge density of the sphere is ρ then

q(r) =
4π
3

r 3 ρ, (2.57)

and
dq = 4π r 2 ρ dr. (2.58)

Thus, Equation (2.56) becomes

dW =
4π
3 ε0

ρ 2 r 4 dr. (2.59)

The total work needed to build up the sphere from nothing to radius a is plainly

W =
4π
3 ε0

ρ 2
∫ a

0
r 4 dr =

4π
15 ε0

ρ 2 a 5. (2.60)

This can also be written in terms of the total charge Q = (4π/3) a 3 ρ as

W =
3
5

Q 2

4π ε0 a
. (2.61)

Now that we have evaluated the potential energy of a spherical charge distribution by the direct
method, let us work it out using Equation (2.54). We shall assume that the electric field is both
radial and spherically symmetric, so that E = Er(r) er. Application of Gauss’ law,∫

S
E · dS =

1
ε0

∫
V
ρ dV, (2.62)

where V is a sphere of radius r, centered on the origin, gives

Er(r) =
Q

4π ε0

r
a 3 (2.63)

for r < a, and

Er(r) =
Q

4π ε0 r 2 (2.64)

for r ≥ a. Equations (2.54), (2.63), and (2.64) yield

W =
Q 2

8π ε0

(
1
a 6

∫ a

0
r 4 dr +

∫ ∞

a

dr
r 2

)
, (2.65)
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which reduces to

W =
Q 2

8π ε0 a

(
1
5
+ 1

)
=

3
5

Q 2

4π ε0 a
. (2.66)

Thus, Equation (2.54) gives the correct answer.
The reason that we have checked Equation (2.54) so carefully is that, on close inspection,

it is found to be inconsistent with Equation (2.45), from which it was supposedly derived. For
instance, the energy given by Equation (2.54) is manifestly positive definite, whereas the energy
given by Equation (2.45) can be negative (it is certainly negative for a collection of two point
charges of opposite sign). The inconsistency was introduced into our analysis when we replaced
Equation (2.46) by Equation (2.48). In Equation (2.46), the self-interaction of the i th charge with
its own electric field is specifically excluded, whereas it is included in Equation (2.48). Thus,
the potential energies (2.45) and (2.54) are different because in the former we start from ready-
made point charges, whereas in the latter we build up the whole charge distribution from scratch.
Consequently, if we were to calculate the potential energy of a point charge distribution using
Equation (2.54) then we would obtain the energy (2.45) plus the energy required to assemble the
point charges. However, the latter energy is infinite. To see this, let us suppose, for the sake of
argument, that our point charges actually consist of charge uniformly distributed in small spheres
of radius b. According to Equation (2.61), the energy required to assemble the i th point charge is

Wi =
3
5

q 2
i

4π ε0 b
. (2.67)

We can think of this as the self-energy of the i th charge. Thus, we can write

W =
ε0

2

∫
E 2 dV =

1
2

∑
i=1,N

qi φi +
∑
i=1,N

Wi (2.68)

which enables us to reconcile Equations (2.45) and (2.54). Unfortunately, if our point charges
really are point charges then b → 0, and the self-energy of each charge becomes infinite. Thus,
the potential energies specified by Equations (2.45) and (2.54) differ by an infinite amount. We are
forced to the conclusion that the idea of locating electrostatic potential energy in the electric field is
inconsistent with the existence of point charges. One way out of this difficulty would be to say that
elementary charges, such as electrons, are not points objects, but instead have finite spatial extents.
Regrettably, there is no experimental evidence to back up this assertion. Alternatively, we could
say that our classical theory of electromagnetism breaks down on very small length-scales due to
quantum effects. Unfortunately, the quantum mechanical version of electromagnetism (which is
called quantum electrodynamics) suffers from the same infinities in the self-energies of charged
particles as the classical version. There is a prescription, called renormalization, for steering round
these infinities, and getting finite answers that agree with experimental data to extraordinary accu-
racy. However, nobody really understands why this prescription works.

2.7 Electric Dipoles

Consider a charge q located at position vector r′, and a charge −q located at position vector r′ − d.
In the limit that |d| → 0, but |q| |d| remains finite, this combination of charges constitutes an electric
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dipole, of dipole moment
p = q d, (2.69)

located at position vector r′. We have seen that the electric field generated at point r by an electric
charge q located at point r′ is

E(r) = −∇
(

q
4π ε0

1
|r − r′|

)
. (2.70)

Hence, the electric field generated at point r by an electric dipole of moment p located at point r′
is

E(r) = −∇
(

q
4π ε0

1
|r − r′| −

q
4π ε0

1
|r − r′ + d|

)
. (2.71)

However, in the limit that |d| → 0,

1
|r − r′ + d| �

1
|r − r′| −

d · (r − r′)
|r − r′| 3 . (2.72)

Thus, the electric field due to the dipole becomes

E(r) = −∇
(

1
4π ε0

p · (r − r′)
|r − r′| 3

)
. (2.73)

It follows from Equation (2.28) that the scalar electric potential due to the dipole is

φ(r) =
1

4π ε0

p · (r − r′)
|r − r′| 3 = −

1
4π ε0

p · ∇
(

1
|r − r′|

)
=

1
4π ε0

p · ∇′
(

1
|r − r′|

)
. (2.74)

(Here, ∇′ is a gradient operator expressed in terms of the components of r′, but independent of the
components of r.) Finally, because electric fields are superposable, the electric potential due to a
volume distribution of electric dipoles is

φ(r) =
1

4π ε0

∫
P(r′) · ∇′

(
1

|r − r′|
)

dV ′, (2.75)

where P(r) is the electric polarization (i.e., the electric dipole moment per unit volume), and the
integral is over all space.

2.8 Charge Sheets and Dipole Sheets

The electric potential due to a charge sheet (i.e., a charge distribution that is confined to a surface)
can be obtained from Equation (2.36) by replacing ρ(r′) dV ′ with σ(r′) dS ′. Here, σ(r′) is the
surface charge density (i.e., the charge per unit area) at position r′. We obtain

φ(r) =
1

4π ε0

∫
S

σ(r′)
|r − r′| dS ′, (2.76)

where dS ′ is an element of the surface S , on which the charges are distributed, located at position
vector r′. Incidentally, we are assuming that the distribution is negligibly thin in the direction
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normal to the surface. As is well known, application of Gauss’ law to a thin pill-box aligned with
an element of S tells us that there is a discontinuity in the normal electric field across the sheet. In
fact,

(E2 − E1) · n = σ

ε0
, (2.77)

where n is a unit normal at a given point on the sheet, E1 and E2 are the electric fields immediately
to either side of the sheet at this point (E2 being the field on the side toward which n is directed),
and σ is the local charge density. As is also well known, integration of Equation (2.30) around a
small loop that straddles the sheet reveals that there is no discontinuity in the tangential electric
field across the sheet.

The electric potential due to a dipole sheet (i.e., a dipole distribution that is confined to a
surface) can be obtained from Equation (2.75) by replacing P(r′) dV ′ with D(r′) dS ′. Here, D(r′)
is the surface dipole density (i.e., the dipole moment per unit area) at position r′. We obtain

φ(r) =
1

4π ε0

∫
S

D(r′) · ∇′
(

1
|r − r′|

)
dS ′. (2.78)

We are again assuming that the distribution is negligibly thin in the direction normal to the surface
S on which the dipoles are distributed. Suppose that D(r) = D(r) n, where n is a unit normal to
the sheet at position vector r. In other words, suppose that the constituent dipoles are all locally
perpendicular to S . It follows that

φ(r) =
1

4π ε0

∫
S

D(r′) n′ · ∇′
(

1
|r − r′|

)
dS ′, (2.79)

where n′ is the unit normal to S at position r′. Now, according to Equation (2.28) and (2.76), the
normal electric field generated by a charge sheet is

E ·n = −n · ∇φ = − 1
4π ε0

∫
S
σ(r′) n · ∇

(
1

|r − r′|
)

dS ′ =
1

4π ε0

∫
S
σ(r′) n · ∇′

(
1

|r − r′|
)

dS ′. (2.80)

A comparison between Equations (2.77), (2.79), and (2.80) reveals that there is a discontinuity of
the electric potential across a dipole sheet. In fact,

φ2 − φ1 =
D
ε0
, (2.81)

where φ1 and φ2 are the potentials immediately to either side of a given point on the sheet [φ2

being the potential on the side toward which n (and, hence, D) is directed], and D is the magnitude
of the local dipole density. [We can neglect the distinction between n′ in Equation (2.79), and
n in Equation (2.80), because the discontinuous part of the electric field due to a current sheet
(as well as the discontinuous part of the potential due to a dipole sheet) is generated locally.]
Incidentally, there is no discontinuity in the normal electric field across a dipole sheet because
the local charge density is zero. Hence, although the potential is discontinuous across a dipole
sheet, the normal derivative of the potential is continuous. Likewise, there is no discontinuity in
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the electric potential across a charge sheet because the local dipole density is zero. Thus, although
the normal derivative of the potential is discontinuous across a charge sheet (because the normal
electric field is discontinuous), the potential itself is continuous.

As an example, consider a charge sheet of uniform charge density σ that corresponds to the
plane x = 0. Gauss’ law, in combination with symmetry arguments, reveals that

E =
{

(σ/2 ε0) ex x > 0
−(σ/2 ε0) ex x < 0

, (2.82)

which is in accordance with Equation (2.77). It follows from Equation (2.28), and the requirement
that the electric potential be continuous across the sheet, that

φ =

{ −(σ/2 ε0) x x > 0
(σ/2 ε0) x x < 0

. (2.83)

Consider, now, a dipole sheet of uniform dipole density D = D ex that corresponds to the plane
x = 0. We can think of this sheet as a combination of two charge sheets: the first, of charge density
σ, located at x = d/2, and the second, of charge density −σ, located at x = −d/2. In the limit
d → 0, but dσ → D, the two charge sheets are equivalent to the dipole sheet. It follows, from the
previous two equations, that the electric field, and potential, generated by the dipole sheet are

E =
{

0 x > 0
0 x < 0

, (2.84)

and

φ =

{
D/(2 ε0) x > 0
−D/(2 ε0) x < 0

, (2.85)

respectively. The latter equation is in accordance with Equation (2.81). Note that, although the
dipole sheet does not generated an external electric field, its internal field accelerates any charge
that crosses the sheet. In fact, assuming that D > 0, a positive charge gains energy by crossing the
sheet from the region x > 0 to the region x < 0.

As a second example, consider a charge sheet of uniform charge density σ that lies on the
surface of a sphere, of radius a, centered on the origin. Gauss’ law, in combination with symmetry
arguments, reveals that

E =
{

0 r < a
(σ/ε0) (a/r)2 er r > a

, (2.86)

where r is a spherical polar coordinate. The above expression is again in accordance with Equa-
tion (2.77). It follows from Equation (2.28), and the requirement that the electric potential be
continuous across the sheet (as well as zero at infinity), that

φ =

{
σ a/ε0 r < a
(σ a/ε0) (a/r) r > a

. (2.87)

Consider, now, a dipole sheet of uniform dipole density D = D er that lies on the surface of the
sphere. We can think of this sheet as a combination of two charge sheets: the first, of charge density
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σ [a/(a+d/2)] 2, located at r = a+d/2, and the second, of charge density−σ [a/(a−d/2)] 2, located
at r = a − d/2. (The factors [a/(a ± d/2)] 2 are needed to ensure that both sheets contain equal and
opposite net charge.) In the limit d → 0, but dσ → D, the two charge sheets are equivalent to
the dipole sheet. It follows, from the previous two equations, that the electric field, and potential,
generated by the dipole sheet are

E =
{

0 r < a
0 r > a

, (2.88)

and

φ =

{ −D/ε0 r < a
0 r > a

, (2.89)

respectively. The latter equation is in accordance with Equation (2.81). As before, the dipole sheet
does not generate an external electric field, but its internal field is capable of accelerating a charge
that crosses the sheet.

2.9 Green’s Theorem

Consider the vector identity
∇ · (ψ∇φ) ≡ ψ∇ 2φ + ∇ψ · ∇φ, (2.90)

where φ(r) and ψ(r) are two arbitrary (but differentiable) vector fields. We can also write

∇ · (φ∇ψ) ≡ φ∇ 2ψ + ∇φ · ∇ψ. (2.91)

Forming the difference between the previous two equation, we get

∇ · (ψ∇φ − φ∇ψ) = ψ∇ 2φ − φ∇ 2ψ. (2.92)

Finally, integrating this expression over some volume V , bounded by the closed surface S , and
making use of the divergence theorem, we obtain∫

V
(ψ∇ 2φ − φ∇ 2ψ) dV =

∫
S
(ψ∇φ − φ∇ψ) · dS. (2.93)

This result is known as Green’s theorem.
Changing the variable of integration, the above result can be rewritten∫

V

[
ψ(r′)∇′ 2φ(r′) − φ(r′)∇′ 2ψ(r′)

]
dV ′ =

∫
S

[
ψ(r′)

∂φ(r′)
∂n′

− φ(r′)
∂ψ(r′)
∂n′

]
dS ′, (2.94)

where ∂φ(r′)/∂n′ is shorthand for n′ · ∇′φ(r′), et cetera. Suppose that φ(r) is a solution to Poisson’s
equation,

∇ 2φ = − ρ
ε0
, (2.95)
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associated with some charge distribution, ρ(r), that extends over all space, subject to the boundary
condition

φ(r)→ 0 as |r| → ∞. (2.96)

Suppose, further, that

ψ(r, r′) =
1

4π |r − r′| . (2.97)

It follows from Equation (1.25), and symmetry, that

∇ 2ψ = ∇′ 2ψ = −δ(r − r′). (2.98)

The previous five equations can be combined to give∫
V
φ(r′) δ(r − r′) dV ′ =

1
4π ε0

∫
V

ρ(r′)
|r − r′| dV ′ +

1
4π ε0

∫
S

σ(r′)
|r − r′| dS ′

+
1

4π ε0

∫
S

D(r′)
∂

∂n′

(
1

|r − r′|
)

dS ′, (2.99)

where

σ = ε0 n · ∇φ = −ε0 n · E, (2.100)

D = −ε0 φ. (2.101)

It follows, by comparison with Equations (2.36), (2.76), and (2.79), that the three terms on the
right-hand side of Equation (2.99) are the electric potential generated by the charges distributed
within S , the potential generated by the surface charge distribution, σ(r), on S , and the potential
generated by the surface dipole distribution, D(r), on S , respectively.

Suppose that the point r lies within S . In this case, Equation (2.99) yields

φ(r) =
1

4π ε0

∫
V

ρ(r′)
|r − r′| dV ′ +

1
4π ε0

∫
S

σ(r′)
|r − r′| dS ′ +

1
4π ε0

∫
S

D(r′)
∂

∂n′

(
1

|r − r′|
)

dS ′. (2.102)

However, we know that the general solution to Equation (2.95), subject to the boundary condition
(2.96), is

φ(r) =
1

4π ε0

∫
V

ρ(r′)
|r − r′| dV ′ +

1
4π ε0

∫
V̄

ρ(r′)
|r − r′| dV ′. (2.103)

Here, V denotes the region of space lying within the closed surface S , whereas V̄ denotes the
region lying outside S . A comparison of the previous two equations reveals that, for a point r lying
within S ,

1
4π ε0

∫
V̄

ρ(r′)
|r − r′| dV ′ =

1
4π ε0

∫
S

σ(r′)
|r − r′| dS ′ +

1
4π ε0

∫
S

D(r′)
∂

∂n′

(
1

|r − r′|
)

dS ′. (2.104)

In other words, the electric potential (and, hence, the electric field) generated within S by the
charges external to S is equivalent to that generated by the charge sheet σ(r), and the dipole sheet
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D(r), distributed on S . Furthermore, because σ depends on the normal derivative of the potential
at S , whereas D depends on the potential at S , it follows that we can completely determine the
potential within S once we known the distribution of charges within S , and the values of the
potential and its normal derivative on S . In fact, this is an overstatement, because the potential and
its normal derivative are not independent of one another, but are related via Poisson’s equation. In
other words, a knowledge of the potential on S also implies a knowledge of its normal derivative,
and vice versa. Hence, we can, actually, determine the potential within S from a knowledge of the
distribution of charges inside S , and the distribution of either the potential, or its normal derivative,
on S . The specification of the potential on S is known as a Dirichlet boundary condition. On the
other hand, the specification of the normal derivative of the potential on S is called a Neumann
boundary condition.

Suppose that the point r lies outside S . In this case, Equation (2.99) yields

0 =
1

4π ε0

∫
V

ρ(r′)
|r − r′| dV ′ +

1
4π ε0

∫
S

σ(r′)
|r − r′| dS ′ +

1
4π ε0

∫
S

D(r′)
∂

∂n′

(
1

|r − r′|
)

dS ′. (2.105)

In other words, outside S , the electric potential generated by the surface charge distribution σ(r),
combined with that generated by the surface dipole distribution D(r), completely cancels out the
electric potential (and, hence, the electric field) produced by the charges distributed within S . As
an example of this type of cancellation, suppose that S is a spherical surface of radius a, centered
on the origin. Within S , let there be a single charge q, located at the origin. The electric field and
potential generated by this charge are

E =
q

4π ε0 r 2 er, (2.106)

and
φ =

q
4π ε0 r

, (2.107)

respectively. It follows from Equations (2.100) and (2.101) that the densities of the charge and
dipole sheets at r = a that are needed to cancel out the effect of the central charge in the region
r > a are

σ = − q
4π a 2 , (2.108)

D = − q
4π a

, (2.109)

respectively. Making use of Equations (2.86)–(2.89), and (2.106)–(2.109), the electric field and
potential generated by the combination of the charge at the origin, the charge sheet at r = a, and
the dipole sheet at r = a, are

E =
{

[q/(4π ε0 r 2)] er r < a
0 r > a

, (2.110)

and

φ =

{
q/(4π ε0 r) r < a
0 r > a

, (2.111)



40 CLASSICAL ELECTROMAGNETISM

respectively. We can see that the charge and dipole sheet at r = a do not affect the electric field, or
the potential, due to the central charge in the region r < a, but completely cancel out this charge’s
field and potential in the region r > a.

2.10 Boundary Value Problems

Consider a volume V bounded by a surface S . Suppose that we wish to solve Poisson’s equation,

∇ 2φ = − ρ
ε0
, (2.112)

throughout V , subject to given Dirichlet or Neumann boundary conditions on S . The charge density
distribution, ρ(r), is assumed to be known throughout V . This type of problem is called a boundary
value problem.

Similarly to the approach taken in Section 2.3, we can solve Poisson’s equation by means of a
Green’s function, G(r, r′), that satisfies

∇′ 2G(r, r′) = δ(r − r′). (2.113)

In fact, it follows from Equation (1.25) [because ∇ 2(|r− r′|−1) = ∇′ 2(|r − r′|−1), by symmetry] that

G(r, r′) = − 1
4π |r − r′| + F(r, r′), (2.114)

where
∇′ 2F(r, r′) = 0 (2.115)

throughout V . Here, the function F(r, r′) is chosen in such a manner as to satisfy the boundary
conditions on S . Making use of Green’s theorem, (2.94), where ψ(r′) = G(r, r′), we find that

φ(r) = − 1
ε0

∫
V

G(r, r′) ρ(r′) dV ′ −
∫

S

[
G(r, r′)

∂φ(r′)
∂n′

− φ(r′)
∂G(r, r′)
∂n′

]
dS ′. (2.116)

Here, use has been made of Equations (1.23), (2.112), and (2.113). Note, incidentally, that the
divergence theorem, combined with Equation (2.113), yields∫

S

∂G(r, r′)
∂n′

dS ′ = 1. (2.117)

Consider the Dirichlet problem in which φ(r) is known on S , but ∂φ(r)/∂n is unknown. We
can construct an appropriate Green’s function for this problem, GD(r, r′), where

∇′ 2GD(r, r′) = δ(r − r′), (2.118)

by choosing the function F(r, r′) in Equation (2.114) in such a manner that

GD(r, r′) = 0 (2.119)
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when r′ lies on S . It then follows from Equation (2.116) that

φ(r) = − 1
ε0

∫
V

GD(r, r′) ρ(r′) dV ′ +
∫

S
φ(r′)

∂GD(r, r′)
∂n′

dS ′. (2.120)

Hence, the potential φ(r) is specified in terms of integrals over known functions throughout V and
on S .

It is possible to prove that the Dirichlet Green’s function is symmetric with respect to its argu-
ments. In other words,

GD(r, r′) = GD(r′, r). (2.121)

Making use of Green’s theorem, (2.94), where ψ(r′) = GD(r, r′) and φ(r′) = GD(r′′, r′), we find
that∫

V

[
GD(r, r′)∇′ 2GD(r′′, r′) −GD(r′′, r′)∇′ 2GD(r, r′)

]
dV ′

=

∫
S

[
GD(r, r′)

∂GD(r′′, r′)
∂n′

−GD(r′′, r′)
∂GD(r, r′)

∂n′

]
dS ′. (2.122)

However, by definition, ∇′ 2GD(r, r′) = δ(r − r′), ∇′ 2GD(r′′, r′) = δ(r′′ − r′), and GD(r, r′) =
GD(r′′, r′) = 0 when r′ lies on S . Hence,∫

V

[
GD(r, r′) δ(r′′ − r′) −GD(r′′, r′) δ(r − r′)

]
dV ′ = 0, (2.123)

which yields
GD(r, r′′) = GD(r′′, r). (2.124)

It is also possible to demonstrate that the Dirichlet Green’s function is unique. Proceeding in
the usual fashion, suppose that there are two different functions, G1(r, r′) and G2(r, r′), that both
satisfy Equations (2.118) and (2.119). It follows that G3(r, r′) = G1(r, r′) −G2(r, r′) satisfies

∇′ 2G3(r, r′) = 0 (2.125)

throughout V , subject to the boundary condition

G3(r, r′) = 0 (2.126)

when r′ lies on S . However, we saw in Section 2.2 that the only solution to this problem is
G3(r, r′) = 0 for r′ in V or on S . Hence, the functions G1(r, r′) and G2(r, r′) are identical, and the
Dirichlet Green’s function is unique. It follows that the potential specified in Equation (2.120) is
also unique.

Consider the Neumann problem in which ∂φ(r)/∂n is known on S , but φ(r) is unknown. In
this case, the obvious ansatz, ∂GN(r, r′)/∂n′ = 0 when r′ lies on S , is incorrect, because it is
inconsistent with the constraint (2.117). The simplest ansatz that works is a choice of F(r, r′) in
Equation (2.114) such that

∂GN(r, r′)
∂n′

= 1
/∫

S
dS ′ (2.127)
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when r′ lies on S . Hence, Equation (2.116) yields

φ(r) = 〈φ〉S − 1
ε0

∫
V

GN(r, r′) ρ(r′) dV ′ −
∫

S
GN(r, r′)

∂φ(r′)
∂n′

dS ′, (2.128)

where 〈φ〉S =
∫

S
φ(r′) dS ′

/∫
S

dS ′ is the average value of the potential on S . This average value
can be absorbed into the arbitrary constant that can always be added to a scalar potential. Thus,
the potential is again specified in terms of integrals over known functions throughout V and on S .

It is possible to prove that the Neumann Green’s function can be chosen in such a manner that
it is symmetric with respect to its arguments. In other words,

GN(r, r′) = GN(r′, r). (2.129)

Consider a Neumann Green’s function that is not symmetric with respect to its arguments. That is,
an asymmetric function GN(r, r′) which satisfies

∇′ 2GN(r, r′) = δ(r − r′) (2.130)

and
∂GN(r, r′)

∂n′
= 1

/∫
S

dS ′ (2.131)

when r′ lies on S . Consider
G̃N(r, r′) = GN(r, r′) + F(r), (2.132)

where F(r) is arbitrary. It follows that

∇′ 2G̃N(r, r′) = δ(r − r′) (2.133)

and
∂G̃N(r, r′)

∂n′
= 1

/∫
S

dS ′ (2.134)

when r′ lies on S . Hence, G̃(r, r′) is also a valid Neumann Green’s function. Making use of
Green’s theorem, (2.94), where ψ(r′) = G̃N(r, r′) and φ(r′) = G̃N(r′′, r′), we find that

G̃N(r, r′′) − G̃N(r′′, r) =
∫

S

[
G̃N(r, r′) − G̃N(r′′, r′)

]
dS ′

/∫
S

dS ′ . (2.135)

We deduce that G̃N(r, r′) is symmetric provided that
∫

S
G̃N(r, r′) dS ′

/∫
S

dS ′ = 0. We can ensure
that this is the case by choosing

F(r) = −
∫

S
GN(r, r′) dS ′

/ ∫
S

dS ′. (2.136)

Thus, given an asymmetric Neumann Green’s function, it is always possible to construct a sym-
metric Green’s function that satisfies

∇′ 2GN(r, r′) = δ(r − r′), (2.137)∫
S

GN(r, r′) dS ′
/∫

S
dS ′ = 0, (2.138)
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and
∂GN(r, r′)

∂n′
= 1

/∫
S

dS ′ (2.139)

when r′ lies on S .
We can also show that the symmetric Neumann Green’s function is unique. Proceeding in

the usual fashion, suppose that there are two different functions, G1(r, r′) and G2(r, r′), that both
satisfy Equations (2.137)—(2.139). It follows that G3(r, r′) = G1(r, r′) −G2(r, r′) satisfies

∇′ 2G3(r, r′) = 0 (2.140)

throughout V , subject to the boundary condition

∂G3(r, r′)
∂n′

= 0 (2.141)

when r′ lies on S . Equation (2.4) can be written∫
S
φ(r′)

∂φ

∂n′
dS ′ =

∫
V

[
φ(r′)∇′ 2φ + ∇′φ · ∇′φ

]
dV ′. (2.142)

Suppose that φ(r′) = G3(r, r′). It follows that∫
V
|∇′G3(r, r′)| 2 dV ′ = 0, (2.143)

which implies that
G3(r, r′) = F(r), (2.144)

where F(r) is arbitrary. However, G3(r, r′) also satisfies∫
S

G3(r, r′) dS ′
/∫

S
dS ′ = F(r) = 0. (2.145)

Hence, F(r) = G3(r, r′) = 0, and the Green’s function is unique. It follows that the potential
specified in Equation (2.128) is also unique (up to an arbitrary additive constant).

Finally, the fact that the Green’s function for Poisson’s equation, G(r, r′), is (or can be chosen
to be) symmetric implies from Equation (2.113) that

∇′ 2GD(r, r′) = ∇ 2GD(r, r′) = δ(r − r′), (2.146)

because δ(r′ − r) = δ(r − r′).

2.11 Dirichlet Green’s Function for Spherical Surface

As an example of a boundary value problem, suppose that we wish to solve Poisson’s equation,
subject to Dirichlet boundary conditions, in some domain V that lies between the spherical surfaces
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r = a and r = ∞, where r is a radial spherical coordinate. Let S and S ′ denote the former and latter
surfaces, respectively. The Green’s function for the problem, GD(r, r′), must satisfy

∇ 2GD(r, r′) = δ(r − r′), (2.147)

for r, r′ not outside V , and
GD(r, r′) = 0 (2.148)

when r′ lies on S or on S ′. The Green’s function also has the symmetry property

GD(r′, r) = GD(r, r′). (2.149)

Let us try

GD(r, r′) = − 1
4π |r′ − r| +

a
4π r′ |a 2 r′/r′ 2 − r| . (2.150)

Note that the above function is symmetric with respect to its arguments, because r′ |a 2 r′/r′ 2− r| =
r |a 2 r/r 2 − r′|. It follows from Equation (1.25) that

∇ 2GD(r, r′) = δ(r − r′) − a
r′
δ(r − a 2 r′/r′ 2). (2.151)

However, if r, r′ do not lie outside V then the argument of the latter delta function cannot be zero.
Hence, for r, r′ not outside V , this function takes the value zero, and the above expression reduces
to

∇ 2GD(r, r′) = δ(r − r′), (2.152)

as required. Equation (2.150) can be written

GD(r, r′) = − 1
4π (r 2 − 2 r r′ cos γ + r′ 2)1/2 +

1
4π (r 2 r′ 2/a 2 − 2 r r′ cos γ + a 2)1/2 , (2.153)

where cos γ = r · r′/(r r′). When written in this form, it becomes clear that GD(r, r′) = 0 when r′
lies on S (i.e., when r′ = a) or on S ′ (i.e., when r′ = ∞). We conclude that expression (2.153) is
the unique Green’s function for the Dirichlet problem within the domain V .

According to Equation (2.120), the electrostatic potential within the domain V is written

φ(r) = − 1
ε0

∫
V

GD(r, r′) ρ(r′) dV ′ −
∫

S
φS (r′)

∂GD(r, r′)
∂r′

dS ′. (2.154)

Here, ρ(r) is the charge distribution within V (i.e., the region r > a), φS (r) is the potential on S
(i.e., the surface r = a), and the potential at infinity (i.e., on the surface S ′) is assumed to be zero.
Moreover, we have made use of the fact that ∂/∂n′ = −∂/∂r′ on S , because the unit vector n′ points
radially inward. Finally, it is easily demonstrated that

∂GD

∂r′

∣∣∣∣∣
r′=a
=

a − r 2/a
4π (r 2 − 2 r a cos γ + a 2)3/2 . (2.155)
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Hence,

φ(r, θ, ϕ) =
1

4π ε0

∫ ∞

a

∫ π

0

∫ 2π

0

ρ(r′, θ′, ϕ′) r′ 2 sin θ′ dr′ dθ′ dϕ′

(r 2 − 2 r r′ cos γ + r′ 2)1/2

− 1
4π ε0

∫ ∞

a

∫ π

0

∫ 2π

0

ρ(r′, θ′, ϕ′) r′ 2 sin θ′ dr′ dθ′ dϕ′

(r 2 r′ 2/a 2 − 2 r r′ cos γ + a 2)1/2

+
1

4π

∫ π

0

∫ 2π

0

φS (θ′, ϕ′) (r 2 − a 2) a sin θ′ dθ′ dϕ′

(r 2 − 2 r a cos γ + a 2)3/2 , (2.156)

where r, θ, ϕ and r′, θ′, ϕ′ are standard spherical coordinates, in terms of which,

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′). (2.157)

As a specific example, suppose that S represents the surface of a grounded spherical conductor.
It follows that φS = 0. Suppose that there is a single charge, q, in the domain V , located on the
z-axis at r = b > a, θ = 0, and ϕ = 0. It follows that

ρ(r′) dV ′ → q δ(r′ − b) δ(θ′) δ(ϕ′) dr′ dθ′ dϕ′. (2.158)

Thus, Equations (2.156) and (2.157) yield

φ(r, θ) =
q

4π ε0

[
1

(r 2 − 2 r b cos θ + b 2)1/2 −
1

(r 2 b 2/a 2 − 2 r b cos θ + a 2)1/2

]
(2.159)

in the region r > a. Of course, φ = 0 in the region r < a. It follows from Equations (2.28) and
(2.77) that there is a charge sheet on the surface of the conductor (because the normal electric field
is non-zero just above the surface, but zero just below) whose density is given by

σ(θ) = −ε0
∂φ

∂r

∣∣∣∣∣
r=a
= − q

4π a
(b 2 − a 2)

(a 2 − 2 a b cos θ + b 2)3/2 . (2.160)

Thus, the net charge induced on the surface of the conductor is

q′ =
∫

σ dS = 2π a 2
∫ π

0
σ(θ) dθ = −q

a
b
. (2.161)

In Equation (2.159), the first term inside the square brackets clearly represents the electric potential
generated by the charge q, which suggests that

φ′(r, θ) = − q
4π ε0

1
(r 2 b 2/a 2 − 2 r b cos θ + a 2)1/2 (2.162)

is the potential generated by the charges induced on the surface of the conductor. Hence, the
attractive force acting on the charge q due to the induced charges is

F′ = − q∇φ′|r=b,θ=0 = −
q2

4π ε0

b a
(b 2 − a 2)2 ez. (2.163)
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Of course, an equal and opposite force acts on the conductor.
As a final example, suppose that there are no charges in the domain V , but that φS is prescribed

on the surface S . It follows from Equation (2.156) that the electric potential on the z-axis (i.e.,
r = z, θ = 0, and ϕ = 0) is

φ(z) =
1

4π

∫ π

0

∫ 2π

0

φS (θ′, ϕ′) (z 2 − a 2) a sin θ′ dθ′ dϕ′

(z 2 − 2 z a cos θ′ + a 2)3/2 (2.164)

for |z| ≥ a. Let S correspond to the surface of two conducting hemispheres (separated by a thin
insulator). Suppose that the upper (i.e., 0 ≤ θ < π/2) hemisphere is held at the potential +V ,
whereas the lower (i.e., π/2 < θ ≤ π) hemisphere is held at the potential −V . It follows that

φ(z) =
V
2

(z 2 − a 2) a
[∫ 1

0

dµ
(z 2 − 2 z a µ + a 2)3/2 −

∫ 0

−1

dµ
(z 2 − 2 z a µ + a 2)3/2

]
, (2.165)

where µ = cos θ, which yields

φ(z) = sgn(z) V
[
1 − z 2 − a 2

|z| (z 2 + a 2)1/2

]
(2.166)

for |z| ≥ a.

2.12 Exercises

2.1 Prove the mean value theorem: for charge-free space the value of the electrostatic potential
at any point is equal to the average of the potential over the surface of any sphere centered
on that point.

2.2 Prove Green’s reciprocation theorem: if φ is the potential due to a volume charge density
ρ within a volume V and a surface charge density σ on the conducting surface S bounding
the volume V , while φ′ is the potential due to another charge distribution ρ′ and σ′ (non-
simultaneously occupying the same volume and the same surface, respectively), then∫

V
ρ φ′ dV +

∫
S
σφ′ dS =

∫
V
ρ′ φ dV +

∫
S
σ′ φ dS .

2.3 Two infinite grounded parallel conducting planes are separated by a distance d. A point
charge q is placed between the planes. Use Green’s reciprocation theorem to prove that the
total charge induced on one of the planes is equal to (−q) times the fractional perpendicular
distance of the point charge from the other plane. [Hint: Choose as your comparison
electrostatic problem with the same surfaces one whose charge densities and potential are
known and simple.]

2.4 Consider two insulated conductors, labeled 1 and 2. Let φ1 be the potential of the first
conductor when it is uncharged and the second conductor holds a charge Q. Likewise, let
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φ2 be the potential of the second conductor when it is uncharged and the first conductor
holds a charge Q. Use Green’s reciprocation theorem to demonstrate that

φ1 = φ2.

2.5 Consider two insulated spherical conductors. Let the first have radius a. Let the second be
sufficiently small that it can effectively be treated as a point charge, and let it also be located
a distance b > a from the center of the first. Suppose that the first conductor is uncharged,
and that the second carries a charge q. What is the potential of the first conductor? [Hint:
Consider the result proved in Exercise 2.1.]

2.6 Consider a set of N conductors distributed in a vacuum. Suppose that the ith conduc-
tor carries the charge Qi and is at the scalar potential φi. It follows from the linearity of
Maxwell’s equations and Ohm’s law that a linear relationship exists between the potentials
and the charges: that is,

φi =
∑
j=1,N

pi j Qj.

Here, the pi j are termed the coefficients of potential. Demonstrate that pi j = pji for all
i, j. [Hint: Consider the result proved in Exercise 2.1.] Show that the total electrostatic
potential energy of the charged conductors is

W =
1
2

∑
i, j=1,N

pi j Qi Qj.

2.7 Demonstrate that the Green’s function for Poisson’s equation in two dimensions (i.e., ∂/∂z ≡
0) is

G(r, r′) =
ln |r − r′|

2π
,

where r = (x, y), et cetera. Hence, deduce that the scalar potential field generated by the
two-dimensional charge distribution ρ(r) is

φ(r) = − 1
2π ε0

∫
ρ(r′) ln |r − r′| dV ′.

2.8 A electric dipole of fixed moment p is situated at position r in a non-uniform external
electric field E(r). Demonstrate that the net force on the dipole can be written f = −∇W,
where

W = −p · E.

2.9 Demonstrate that the electric field generated by an electric dipole of dipole moment p is

E(r) =
3 (p · r) r − r 2 p

4π ε0 r 5 ,
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where r represents vector displacement relative to the dipole. Show that the potential en-
ergy of an electric dipole of moment p1 in the electric field generated by a second dipole of
moment p2 is

W =
r 2 (p1 · p2) − 3 (p1 · r) (p2 · r)

4π ε0 r 5 ,

where r is the displacement of one dipole from another.

2.10 Show that the torque on an electric dipole of moment p in a uniform external electric field
E is

τ = p × E.

Hence, deduce that the potential energy of the dipole is

W = −p · E.

2.11 Consider two coplanar electric dipoles with their centers a fixed distance apart. Show that
if the angles the dipoles make with the line joining their centers are θ and θ′, respectively,
and θ is held fixed, then

tan θ = −1
2

tan θ′

in equilibrium.
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3 Potential Theory

3.1 Introduction

This chapter discusses various techniques for solving Poisson’s equation in multiple dimensions.

3.2 Associated Legendre Functions

The associated Legendre functions, P m
l (x), are the well-behaved solutions of the differential equa-

tion
d

dx

[
(1 − x 2)

dP m
l

dx

]
+

[
l (l + 1) − m 2

1 − x 2

]
P m

l = 0, (3.1)

for x in the range −1 ≤ x ≤ +1. Here, l is a non-negative integer (known as the degree), and m is
an integer (known as the order) lying in the range −l ≤ m ≤ l. The functions themselves take the
form 1

P m
l (x) =

(−1) l+m

2 l l!
(1 − x 2) m/2 d l+m

dx l+m (1 − x 2) l, (3.2)

which implies that

P−m
l (x) = (−1) m (l − m)!

(l + m)!
P m

l (x). (3.3)

Assuming that 0 ≤ m ≤ l, the P m
l (x) satisfy the orthogonality condition∫ 1

−1
P m

l (x) P m
k (x) dx =

2 (l + m)!
(2 l + 1) (l − m)!

δlk, (3.4)

where δlk is a Kronecker delta symbol.
The associated Legendre functions of order 0 (i.e., m = 0) are called Legendre polynomials,

and are denoted the Pl(x): that is, P0
l (x) = Pl(x). It follows that 2

∫ 1

−1
Pl(x) Pk(x) dx =

2
(2 l + 1)

δlk. (3.5)

It can also be shown that
1

(1 − 2 x t + t 2)1/2 =
∑

l=0,∞
Pl(x) t l, (3.6)

provided |t| < 1 and |x| ≤ 1.

1J.D. Jackson, Classical Electrodynamics, 2nd Edition, (Wiley, 1962). Section 3.5.
2Ibid. Section 3.2.
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All of the associated Legendre functions of degree less than 3 are listed below:

P 0
0 (x) = 1, (3.7)

P−1
1 (x) = (1/2) (1 − x 2)1/2, (3.8)

P 0
1 (x) = x, (3.9)

P+1
1 (x) = −(1 − x 2)1/2, (3.10)

P−2
2 (x) = (1/8) (1 − x 2), (3.11)

P−1
2 (x) = (1/2) x (1 − x 2)1/2, (3.12)

P 0
2 (x) = (1/2) (3 x 2 − 1), (3.13)

P+1
2 (x) = −3 x (1 − x 2)1/2, (3.14)

P+2
2 (x) = 3 (1 − x 2). (3.15)

3.3 Spherical Harmonics

The spherical harmonics, Yl,m(θ, ϕ), are the angular portions of the global solutions to Laplace’s
equation in standard spherical coordinates, r, θ, ϕ. Here, l is a non-negative integer (known as the
degree), and m is an integer (known as the order) lying in the range −l ≤ m ≤ l. The spherical
harmonics are well behaved and single valued functions that satisfy the differential equation

r 2 ∇ 2Yl,m + l (l + 1) Yl,m = 0, (3.16)

and take the form 3

Yl,m(θ, ϕ) =
[
(2 l + 1) (l − m)!

4π (l + m)!

]1/2

P m
l (cos θ) e i mϕ. (3.17)

It follows from Equation (3.3) that

Yl,−m = (−1) m Y ∗l,m. (3.18)

The Yl,m(θ, ϕ) satisfy the orthonormality constraint∮
Yl,m(θ, ϕ) Y ∗l′,m′(θ, ϕ) dΩ = δll′ δmm′ , (3.19)

where dΩ = sin θ dθ dϕ is a an element of solid angle, and the integral is taken over all solid angle.
Note that the spherical harmonics form a complete set of angular functions.

3Ibid. Section 3.5.
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All of the spherical harmonics of degree less than 3 are listed below:

Y0,0(θ, ϕ) =
(

1
4π

)1/2

, (3.20)

Y1,−1(θ, ϕ) =
(

3
8π

)1/2

sin θ e−i ϕ, (3.21)

Y1,0(θ, ϕ) =
(

3
4π

)1/2

cos θ, (3.22)

Y1,+1(θ, ϕ) = −
(

3
8π

)1/2

sin θ e+i ϕ, (3.23)

Y2,−2(θ, ϕ) =
(

15
32π

)1/2

sin2 θ e−2 iϕ, (3.24)

Y2,−1(θ, ϕ) =
(
15
8π

)1/2

sin θ cos θ e−i ϕ, (3.25)

Y2,0(θ, ϕ) =
(

5
16π

)1/2

(3 cos2 θ − 1) (3.26)

Y2,+1(θ, ϕ) = −
(
15
8π

)1/2

sin θ cos θ e+i ϕ, (3.27)

Y2,+2(θ, ϕ) =
(

15
32π

)1/2

sin2 θ e+2 iϕ. (3.28)

Consider two spherical coordinate systems, r, θ, ϕ and r′, θ′, ϕ′, whose origins coincide, but
whose polar axes subtend an angle γ with respect to one another. It follows that

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′). (3.29)

Moreover, the so-called addition theorem for spherical harmonics states that 4

Pl(cos γ) =
4π

2 l + 1

∑
m=−l,+l

Y ∗l,m(θ′, ϕ′) Yl,m(θ, ϕ). (3.30)

3.4 Laplace’s Equation in Spherical Coordinates

Consider the general solution to Laplace’s equation,

∇ 2φ = 0, (3.31)

4Ibid. Section 3.6.
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in spherical coordinates. Let us write

φ(r, θ, ϕ) =
∑

l=0,∞

∑
m=−l,+l

φl,m(r) Yl,m(θ, ϕ). (3.32)

It follows from Equation (3.16) that∑
l=0,∞

∑
m=−l,+l

[
d
dr

(
r 2 dφl,m

dr

)
− l (l + 1) φl,m

]
Yl,m(θ, ϕ) = 0. (3.33)

However, given that the spherical harmonics are mutually orthogonal [in the sense that they satisfy
Equation (3.19)], we can separately equate the coefficients of each in the above equation, to give

d
dr

(
r 2 dφl,m

dr

)
− l (l + 1) φl,m = 0, (3.34)

for all l ≥ 0 and |m| ≤ l. It follows that

φl,m(r) = αl,m r l + βl,m r−(l+1), (3.35)

where the αl,m and βl,m are arbitrary constants. Hence, the general solution to Laplace’s equation
in spherical coordinates is written

φ(r, θ, ϕ) =
∑

l=0,∞

∑
m=−l,+l

[
αl,m r l + βl,m r−(l+1)

]
Yl,m(θ, ϕ). (3.36)

If the domain of solution includes the origin then all of the βl,m must be zero, in order to ensure
that the potential remains finite at r = 0. On the other hand, if the domain of solution extends to
infinity then all of the αl,m (except α0,0) must be zero, otherwise the potential would be infinite at
r = ∞.

3.5 Poisson’s Equation in Spherical Coordinates

Consider the general solution to Poisson’s equation,

∇ 2φ = − ρ
ε0
, (3.37)

in spherical coordinates. According to Section 2.3, the general three-dimensional Green’s function
for Poisson’s equation is

G(r, r′) = − 1
4π |r − r′| . (3.38)

When expressed in terms of spherical coordinates, this becomes

G(r, r′) = − 1
4π (r 2 − 2 r r′ cos γ + r′ 2)1/2 , (3.39)
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where
cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′). (3.40)

is the angle subtended between r and r′. According to Equation (3.6), we can write

G(r, r′) = − 1
4π r

∑
l=0,∞

(
r′

r

)l

Pl(cos γ) (3.41)

for r′ < r, and

G(r, r′) = − 1
4π r′

∑
l=0,∞

( r
r′

)l
Pl(cos γ) (3.42)

for r′ > r. Thus, it follows from the spherical harmonic addition theorem, (3.30), that

G(r, r′) = −
∑

l=0,∞

∑
m=−l,+l

1
2 l + 1

(
r l
<

r l+1
>

)
Y ∗l,m(θ′, ϕ′) Yl,m(θ, ϕ), (3.43)

where r< represents the lesser of r and r′, whereas r> represents the greater of r and r′.
According to Section 2.3, the general solution to Poisson’s equation, (3.37), is

φ(r) = − 1
ε0

∫
G(r, r′) ρ(r′) dV ′. (3.44)

Thus, Equation (3.43) yields

φ(r) =
1
ε0

∑
l=0,∞

∑
m=−l,+l

1
2 l + 1

[
r l p ∗l,m(r) +

q ∗l,m(r)

r l+1

]
Yl,m(θ, ϕ), (3.45)

where

pl,m(r) =
∫ ∞

r

∮
1

r′ l+1 ρ(r′, θ, ϕ) Yl,m(θ, ϕ) r′2 dΩ dr′, (3.46)

ql,m(r) =
∫ r

0

∮
r′ l ρ(r′, θ, ϕ) Yl,m(θ, ϕ) r′ 2 dΩ dr′. (3.47)

3.6 Multipole Expansion

Consider a bounded charge distribution that lies inside the sphere r = a. It follows that ρ = 0 in
the region r > a. According to the previous three equations, the electrostatic potential in the region
r > a takes the form

φ(r) =
1
ε0

∑
l=0,∞

∑
m=−l,+l

q ∗l,m
2 l + 1

Yl,m(θ, ϕ)
r l+1 , (3.48)

where the
q ∗l,m =

∫
r l ρ(r, θ, ϕ) Yl,m(θ, ϕ) dV (3.49)



54 CLASSICAL ELECTROMAGNETISM

are known as the multipole moments of the charge distribution ρ(r). Here, the integral is over
all space. Incidentally, the type of expansion specified in Equation (3.48) is called a multipole
expansion.

The most important q ∗l,m are those corresponding to l = 0, l = 1, and l = 2, which are known
as monopole, dipole, and quadrupole moments, respectively. For each l, the multipole moments
q ∗l,m, for m = −l to +l, form an lth-rank tensor with 2 l + 1 components. However, Equation (3.18)
implies that

q ∗l,m = (−1)m ql,−m. (3.50)

Hence, only l + 1 of these components are independent.
For l = 0, there is only one monopole moment. Namely,

q ∗0,0 =
∫

ρ(r′) Y ∗0,0(θ, ϕ) dV =
1√
4π

∫
ρ(r) dV =

Q√
4π
, (3.51)

where Q is the net charge contained in the distribution, and use has been made of Equation (3.20).
It follows from Equation (3.48) that, at sufficiently large r, the charge distribution acts like a point
charge Q situated at the origin. That is,

φ(r) � φ0(r) =
q ∗0,0
ε0

Y0,0(θ, ϕ)
r

=
Q

4π ε0 r
. (3.52)

By analogy with Equation (2.69), the dipole moment of the charge distribution is written

p =
∫

ρ(r) r dV. (3.53)

The three Cartesian components of this vector are

px =

∫
ρ(r) x dV =

∫
ρ(r) r sin θ cosϕ dV, (3.54)

py =
∫

ρ(r) y dV =
∫

ρ(r) r sin θ sinϕ dV, (3.55)

pz =

∫
ρ(r) z dV =

∫
ρ(r) r cos θ dV. (3.56)

On the other hand, the spherical components of the dipole moment take the form

q ∗1,−1 =

(
3

8π

)1/2 ∫
ρ(r) r sin θ e+i ϕ dV =

(
3

8π

)1/2

(px + i py), (3.57)

q ∗1,0 =
(

3
4π

)1/2 ∫
ρ(r) r cos θ dV =

(
3

4π

)1/2

pz, (3.58)

q ∗1,+1 = −
(

3
8π

)1/2 ∫
ρ(r) r sin θ e−i ϕ dV = −

(
3

8π

)1/2

(px − i py), (3.59)
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where use has been made of Equations (3.21)–(3.23). It can be seen that the three spherical dipole
moments are independent linear combinations of the three Cartesian moments. The potential asso-
ciated with the dipole moment is

φ1(r) =
1

3 ε0

(q ∗1,−1 r Y1,−1 + q ∗1,0 r Y1,0 + q ∗1,+1 r Y1,+1

r 3

)
. (3.60)

However, from Equations (3.21)–(3.23),

r Y1,−1 =

(
3

8π

)1/2

(x − i y), (3.61)

r Y1,0 =

(
3

4π

)1/2

z, (3.62)

r Y1,+1 = −
(

3
8π

)1/2

(x + i y). (3.63)

Hence,

φ1(r) =
1

4π ε0

px x + py y + pz z
r 3 =

1
4π ε0

p · r
r 3 , (3.64)

in accordance with Equation (2.74). Note, finally, that if the net charge, Q, contained in the distri-
butions is non-zero then it is always possible to choose the origin of the coordinate system in such
a manner that p = 0.

The Cartesian components of the quadrupole tensor are defined

Qi j =

∫
ρ(r) (3 xi x j − r 2 δi j) dV, (3.65)

for i, j = 1, 2, 3. Here, x1 = x, x2 = y, and x3 = z. Incidentally, because the quadrupole tensor
is symmetric (i.e., Qji = Qi j) and traceless (i.e., Q11 + Q22 + Q33 = 0), it only possesses five
independent Cartesian components. The five spherical components of the quadrupole tensor take
the form

q ∗2,−2 =

(
5

96π

)1/2

(Q11 + 2 i Q12 − Q22), (3.66)

q ∗2,−1 =

(
5

24π

)1/2

(Q13 + i Q23), (3.67)

q ∗2,0 =
(

5
16π

)1/2

Q33, (3.68)

q ∗2,+1 = −
(

5
24π

)1/2

(Q13 − i Q23), (3.69)

q ∗2,+2 =

(
5

96π

)1/2

(Q11 − 2 i Q12 − Q22). (3.70)
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Moreover, the potential associated with the quadrupole tensor is

φ2(r) =
1

5 ε0

∑
m=−2,+2

q ∗2,m Y2,m(θ, ϕ)

r 3 =
1

8π ε0

∑
i, j=1,3

Qi j xi x j

r 5 . (3.71)

It follows, from the previous analysis, that the first three terms in the multipole expansion,
(3.48), can be written

φ(r) � φ0(r) + φ1(r) + φ2(r) =
Q

4π ε0 r
+

p · r
4π ε0 r 3 +

∑
i, j=1,3

Qi j xi x j

8π ε0 r 5 . (3.72)

Moreover, at sufficiently large r, these are always the dominant terms in the expansion.

3.7 Axisymmetric Charge Distributions

For the case of an axisymmetric charge distribution (i.e., a charge distribution that is independent
of the azimuthal angle ϕ), we can neglect the spherical harmonics of non-zero order (i.e., the non-
axisymmetric harmonics) in Equation (3.43), which reduces to the following expression for the
general axisymmetric Green’s function:

G(r, r′) = − 1
4π

∑
l=0,∞

r l
<

r l+1
>

Pl(cos θ′) Pl(cos θ). (3.73)

Here, use have been made of the fact that [see Equation (3.17)]

Yl,0(θ, ϕ) =
(
2 l + 1

4π

)1/2

Pl(cos θ). (3.74)

In this case, the general solution to Poisson’s equation, (3.45), reduces to

φ(r) =
1

4π ε0

∑
l=0,∞

[
r l pl(r) +

ql(r)
r l+1

]
Pl(cos θ), (3.75)

where

pl(r) =
∫ ∞

r

∫ π

0

1
r′ l+1 ρ(r′, θ) Pl(cos θ) 2π r′2 sin θ dθ dr′, (3.76)

ql(r) =
∫ r

0

∫ π

0
r′ l ρ(r′, θ) Pl(cos θ) 2π r′ 2 sin θ dθ dr′. (3.77)

Consider the potential generated by a charge q distributed uniformly in a thin ring of radius a
that lies in the x-y plane, and is centered at the origin. It follows that

ρ(r, θ) 2π r 2 sin θ dθ dr → q δ(r − a) δ(θ − π/2) dθ dr. (3.78)

Hence, for r < a we obtain ql = 0 and pl = q Pl(0)/a l+1. On the other hand, for r > a we get pl = 0
and ql = q a l Pl(0). Thus,

φ(r, θ) =
q

4π ε0

∑
l=0,∞

r l
<

r l+1
>

Pl(0) Pl(cos θ), (3.79)

where r< represents the lesser of r and a, whereas r> represents the greater.
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3.8 Dirichlet Problem in Spherical Coordinates

We saw in Section 2.10 that the solution to the Dirichlet problem, in which the charge density is
specified within some volume V , and the potential given on the bounding surface S , takes the form

φ(r) = − 1
ε0

∫
V

GD(r, r′) ρ(r′) dV ′ +
∫

S
φ(r′)

∂GD(r, r′)
dn′

dS ′, (3.80)

where the Dirichlet Green’s function is written

GD(r, r′) = − 1
4π |r − r′| + F(r, r′). (3.81)

Here, F(r, r′) is solution of Laplace’s equation (i.e., ∇ 2F = 0) which is chosen so as to ensure that
GD(r, r′) = 0 when r (or r′) lies on S . Thus, it follows from Sections 3.4 and 3.5 that

GD(r, r′) = −
∑

l=0,∞

∑
m=−l,+l

1
2 l + 1

r l
<

r l+1
>

Y∗l,m(θ′, ϕ′) Yl,m(θ, ϕ)

+
∑

l=0,∞

∑
m=−l,+l

[
αl,m(r′, θ′, ϕ′) r l +

βl,m(r′, θ′, ϕ′)
r l+1

]
Yl,m(θ, ϕ), (3.82)

where the αl,m and the βl,m are chosen in such a manner that the Green’s function is zero when r
lies on S .

As a specific example, suppose that the volume V lies between the two spherical surfaces r = a
and r = ∞. The constraint that GD(r, r′) → 0 as r → ∞ implies that the αl,m are all zero. On the
other hand, the constraint GD(r, r′) = 0 when r = a yields

βl,m =
1

2 l + 1
a 2 l+1

r′ l+1 Y∗l,m(θ′, ϕ′). (3.83)

Hence, the unique Green’s function for the problem becomes

GD(r, r′) = −
∑

l=0,∞

∑
m=−l,+l

1
2 l + 1

(
r l
<

r l+1
>

− a 2 l+1

r l+1
< r l+1

>

)
Y∗l,m(θ′, ϕ′) Yl,m(θ, ϕ). (3.84)

Furthermore, it is readily demonstrated that

∂GD

∂r′

∣∣∣∣∣
r′=a
= −

∑
l=0,∞

∑
−l,+l

a l−1

r l+1 Y∗l,m(θ′, ϕ′) Yl,m(θ, ϕ). (3.85)

It is convenient to write

φ(r, θ, ϕ) =
∑

l=0,∞

∑
m=−l,+l

φl,m(r) Yl,m(θ, ϕ), (3.86)

ρ(r, θ, ϕ) =
∑

l=0,∞

∑
m=−l,+l

ρl,m(r) Yl,m(θ, ϕ). (3.87)
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It follows from Equation (3.19) that

φl,m(r) =
∮

φ(r, θ, ϕ) Y∗l,m(θ, ϕ) dΩ, (3.88)

ρl,m(r) =
∮

ρ(r, θ, ϕ) Y∗l,m(θ, ϕ) dΩ. (3.89)

Thus, Equations (3.80), (3.84) and (3.85) yield

φl,m(r) =
1

2 l + 1

∫ r

a

ρl,m(r′)
ε0

(
r′ l

r l+1 −
a 2 l+1

r′ l+1 r l+1

)
r′ 2 dr′

+
1

2 l + 1

∫ ∞

r

ρl,m(r′)
ε0

(
r l

r′ l+1 −
a 2 l+1

r′ l+1 r l+1

)
r′ 2 dr′ + φl,m(a)

(a
r

)l+1
. (3.90)

3.9 Newmann Problem in Spherical Coordinates

According to Section 2.10, the solution to the Newmann problem, in which the charge density is
specified within some volume V , and the normal derivative of the potential given on the bounding
surface S , takes the form

φ(r) = − 1
ε0

∫
V

GN(r, r′) ρ(r′) dV ′ −
∫

S
GN(r, r′)

∂φ(r′)
dn′

dS ′, (3.91)

where the Newmann Green’s function is written

GN(r, r′) = − 1
4π |r − r′| + F(r, r′). (3.92)

Here, F(r, r′) is solution of Laplace’s equation (i.e., ∇ 2F = 0) which is chosen so as to ensure that∫
S

GN(r, r′) dS = 0, (3.93)

and
∂GN(r, r′)

∂n
= 1

/∫
S

dS . (3.94)

The latter constraint holds when r (or r′) lies on S . Note that we have chosen the arbitrary constant
to which the potential φ(r) is undetermined such that 〈φ〉S = 0. It again follows from Sections 3.4
and 3.5 that

GN(r, r′) = −
∑

l=0,∞

∑
m=−l,+l

1
2 l + 1

r l
<

r l+1
>

Y∗l,m(θ′, ϕ′) Yl,m(θ, ϕ)

+
∑

l=0,∞

∑
m=−l,+l

[
αl,m(r′, θ′, ϕ′) r l +

βl,m(r′, θ′, ϕ′)
r l+1

]
Yl,m(θ, ϕ), (3.95)
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where the αl,m and the βl,m are chosen in such a manner that the constraints (3.93) and (3.94) are
satisfied.

As a specific example, suppose that the volume V lies inside the spherical surface r = a. The
physical constraint that the Green’s function remain finite at r = 0 implies that the βl,m are all zero.
Applying the constraint (3.93) at r = a, we get

α0,0(r′, θ′, ϕ′) =
Y∗0,0(θ′, ϕ′)

a
. (3.96)

Similarly, the constraint (3.94) leads to

αl,m(r′, θ′, ϕ′) = −
(

l + 1
2 l + 1

)
r′ l

a l+2 Y∗l,m(θ′, ϕ′) (3.97)

for l > 0. Hence, the unique Green’s function for the problem becomes

GD(r, r′) = −
(

1
r>
− 1

a

)
Y∗0,0(θ′, ϕ′) Y0,0(θ, ϕ)

−
∑

l=1,∞

∑
m=−l,+l

1
2 l + 1

(
r l
<

r l+1
>

+
l + 1

l
r l
< r l

>

a 2 l+1

)
Y∗l,m(θ′, ϕ′) Yl,m(θ, ϕ). (3.98)

Finally, expanding φ(r) and ρ(r) in the forms (3.86) and (3.87), respectively, Equations (3.91) and
(3.98) yield

φ0,0(r) =
∫ r

0

ρ0,0(r′)
ε0

(
1
r
− 1

a

)
r′ 2 dr′ +

∫ a

r

ρ0,0(r′)
ε0

(
1
r′
− 1

a

)
r′ 2 dr′, (3.99)

and

φl,m(r) =
1

2 l + 1

∫ r

0

ρl,m(r′)
ε0

(
r′ l

r l+1 +
l + 1

l
r′ l r l

a 2 l+1

)
r′ 2 dr′

+
1

2 l + 1

∫ a

r

ρl,m(r′)
ε0

(
r l

r′ l+1 +
l + 1

l
r′ l r l

a 2 l+1

)
r′ 2 dr′ + r

dφl,m

dr

∣∣∣∣∣
r=a

1
l

( r
a

)l
(3.100)

for l > 0.

3.10 Laplace’s Equation in Cylindrical Coordinates

Suppose that we wish to solve Laplace’s equation,

∇ 2φ = 0, (3.101)

within a cylindrical volume of radius a and height L. Let us adopt the standard cylindrical coor-
dinates, r, θ, z. Suppose that the curved portion of the bounding surface corresponds to r = a,
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while the two flat portions correspond to z = 0 and z = L, respectively. Suppose, finally, that the
boundary conditions that are imposed at the bounding surface are

φ(r, θ, 0) = 0, (3.102)

φ(a, θ, z) = 0, (3.103)

φ(r, θ, L) = Φ(r, θ), (3.104)

where Φ(r, θ) is a given function. In other words, the potential is zero on the curved and bottom
surfaces of the cylinder, and specified on the top surface.

In cylindrical coordinates, Laplace’s equation is written

1
r
∂

∂r

(
r
∂φ

∂r

)
+

1
r 2

∂ 2φ

∂θ 2 +
∂ 2φ

∂z 2 = 0. (3.105)

Let us try a separable solution of the form

φ(r, θ, z) = R(r) Q(θ) Z(z). (3.106)

Proceeding in the usual manner, we obtain

d 2Z
dz 2 − k 2 Z = 0, (3.107)

d 2Q
dθ 2 + m 2 Q = 0, (3.108)

d 2R
dr 2 +

1
r

dR
dr
+

(
k 2 − m 2

r 2

)
R = 0. (3.109)

Note that we have selected exponential, rather than oscillating, solutions in the z-direction [by
writing −k 2 Z, instead of +k 2 Z, in Equation (3.107)]. As will become clear, this implies that
the radial solutions oscillate, which is the appropriate choice for the particular set of boundary
conditions under consideration. The solution to Equation (3.107), subject to the constraint that
Z(0) = 0 [which follows from the first boundary condition, (3.102)] is

Z(z) = sinh(k z). (3.110)

The most general solution to Equation (3.108) is

Q(θ) =
∑

m=0,∞
[Am cos(m θ) + Bm sin(m θ)] . (3.111)

Note that, to ensure that the potential is single-valued in θ, the constant m is constrained to be an
integer. Finally, if we write p = k r then Equation (3.109) becomes

d 2R
dp 2 +

1
p

dR
dp
+

(
1 − m 2

p 2

)
R = 0. (3.112)
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This equation is known as Bessel’s equation. The standard solution of this equation that is well
behaved at r = 0 is 5

Jm(p) =
1
π

∫ π

0
cos(p sin θ − m θ) dθ. (3.113)

This solution, which is known as a Bessel function, has the properties that

Jm(p)→ 1
m!

( p
2

)m
as p→ 0, (3.114)

Jm(p)→
(

2
π p

)1/2

cos
(
p − m

π

2
− π

4

)
as p→ ∞. (3.115)

In other words, at small arguments the function has a power-law behavior, whereas at large argu-
ments it takes the form of an oscillation of slowly decaying amplitude. It follows that

R(r) = Jm(k r). (3.116)

Let jmn denote the nth zero of the Bessel function Jm(p). In other words, jmn is the nth root (in
order, as p increases from zero) of Jm(p) = 0. The values of the jmn can be looked up in standard
reference books.6 (For example, j01 = 2.405 and j02 = 5.520.) We can satisfy our second boundary
condition, (3.103), by making the choice k = kmn, where

kmn =
jmn

a
. (3.117)

Thus, our separable solution becomes

φ(r, θ, z) =
∑

m=0,∞

∑
n=1,∞

sinh( jmn z/a) Jm( jmn r/a) [Amn cos(m θ) + Bmn sin(m θ)] . (3.118)

It is convenient to express the specified function Φ(r, θ) in the form of a Fourier series: that is,

Φ(r, θ) =
∑

m=0,∞
[Cm(r) cos(m θ) + S m(r) sin(m θ)] . (3.119)

Our final boundary condition, (3.104), then yields

Cm(r) =
∑

n=1,∞
Amn sinh( jmn L/a) Jm( jmn r/a), (3.120)

S m(r) =
∑

n=1,∞
Bmn sinh( jmn L/a) Jm( jmn r/a). (3.121)

It remains to invert the previous two expressions to obtain the coefficients Amn and Bmn. In fact, it
is possible to demonstrate that if

f (p) =
∑

n=1,∞
amn Jm( jmn p) (3.122)

5M. Abramowitz, and I. Stegun (eds.), Handbook of Mathematical Functions: with Formulas, Graphs, and Math-
ematical Tables, (Dover, New York, 1965). Chapter 9.

6Ibid.
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then

amn =
2

J 2
m+1( jmn)

∫ 1

0
p f (p) Jm( jmn p) dp. (3.123)

Hence,

Amn =
2

a2 J 2
m+1( jmn) sinh( jmn L/a)

∫ a

0
r Cm(r) Jm( jmn r/a) dr, (3.124)

Bmn =
2

a2 J 2
m+1( jmn) sinh( jmn L/a)

∫ a

0
r S m(r) Jm( jmn r/a) dr, (3.125)

and our solution is fully determined.
Consider the limit that a→ ∞. In this case, according to Equation (3.117), the allowed values

of k become more and more closely spaced. Consequently, the sum over discrete k-values in
(3.118) morphs into an integral over a continuous range of k-values. For instance, suppose that
we wish to solve Laplace’s equation in the region z ≥ 0, subject to the boundary condition that
φ → 0 as z → ∞ and r → ∞, with φ(r, θ, 0) = Φ(r, θ), where Φ(r, θ) is specified. In this case,
we would choose Z(z) = e−k z in order to satisfy the boundary condition at large z. The choice
R(r) = Jm(k r) ensures that the potential is well behaved at r = 0, and automatically satisfies the
boundary condition at large r. Hence, our general solution becomes

φ(r, θ, z) =
∑

m=0,∞

∫ ∞

0
e−k z Jm(k r) [Am(k) cos(m θ) + Bm(k) sin(m θ)] dk. (3.126)

If we write
Φ(r, θ) =

∑
m=0,∞

[Cm(r) cos(m θ) + S m(r) sin(m θ)] (3.127)

then the final boundary condition implies that

Cm(r) =
∫ ∞

0
Jm(k r) Am(k) dk, (3.128)

S m(r) =
∫ ∞

0
Jm(k r) Bm(k) dk. (3.129)

We can invert the previous two expressions by means of the identity∫ ∞

0
r Jm(k r) Jm(k′ r) dr =

1
k
δ(k − k′). (3.130)

Hence, we obtain

Am(k) =
∫ ∞

0
k r Jm(k r) Cm(r) dr, (3.131)

Bm(k) =
∫ ∞

0
k r Jm(k r) S m(r) dr, (3.132)
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and our solution is fully defined.
Suppose that we wish to solve Laplace’s equation in a cylindrical volume of radius a and height

L, subject to the boundary conditions

φ(r, θ, 0) = 0, (3.133)

φ(r, θ, L) = 0, (3.134)

φ(a, θ, z) = Φ(θ, z), (3.135)

where Φ(θ, z) is specified. In other words, the potential is zero on the two flat portions of the
bounding surface, and given on the curved portion. We can again look for a separable solution of
the form (3.106). Proceeding in the usual manner, we obtain

d 2Z
dz 2 + k 2 Z = 0, (3.136)

d 2Q
dθ 2 + m 2 Q = 0, (3.137)

d 2R
dr 2 +

1
r

dR
dr
−

(
k 2 +

m 2

r 2

)
R = 0. (3.138)

Note that we have selected oscillating, rather than exponential solutions in the z-direction [by writ-
ing +k 2 Z, instead of −k 2 Z, in Equation (3.136)]. This is the appropriate choice for the particular
set of boundary conditions under consideration. The solution to Equation (3.136), subject to the
constraints that Z(0) = Z(L) = 0 [which follow from the boundary conditions (3.133) and (3.134)]
is

Z(k) = sin(kn z), (3.139)

where
kn = n

π

L
. (3.140)

Here, n is a positive integer. The single-valued solution to Equation (3.137) is again

Q(θ) =
∑

m=0,∞
[Am cos(m θ) + Bm sin(m θ)] . (3.141)

Finally, writing p = kn r, Equation (3.138) takes the form

d 2R
dp 2 +

1
p

dR
dp
−

(
1 +

m 2

p 2

)
R = 0. (3.142)

This equation is known as the modified Bessel equation. The standard solution of this equation that
is well behaved at r = 0 is 7

Im(p) =
1
π

∫ π

0
e p cos θ cos(m θ) dθ. (3.143)

7Ibid.
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This solution, which is known as a modified Bessel function, has the properties that

Im(p) → 1
m!

( p
2

)m
as p→ 0, (3.144)

Im(p) → e p√
2π p

as p→ ∞. (3.145)

In other words, at small arguments the function has a power-law behavior, whereas at large argu-
ments it grows exponentially. It follows that

R(r) = Im(kn r). (3.146)

Thus, our separable solution becomes

φ(r, θ, z) =
∑

m=0,∞

∑
n=1,∞

sin(kn z) Im(kn z) [Amn cos(m θ) + Bmn sin(m θ)] . (3.147)

If we express the function Φ(θ, z) as a Fourier series in θ and z, so that

Φ(θ, z) =
∑

m=0,∞

∑
n=1,∞

sin(kn z) [Cmn cos(m θ) + S mn sin(m θ)] , (3.148)

then the boundary condition (3.135) yields

Amn =
Cmn

Im(kn a)
, (3.149)

Bmn =
S mn

Im(kn a)
. (3.150)

Hence, our solution is fully specified.

3.11 Poisson’s Equation in Cylindrical Coordinates

Let us, finally, consider the solution of Poisson’s equation,

∇ 2φ = − ρ
ε0
, (3.151)

in cylindrical coordinates. Suppose that the domain of solution extends over all space, and the
potential is subject to the simple boundary condition

φ(r)→ 0 as |r| → ∞. (3.152)

In this case, the solution is written (see Section 2.3)

φ(r) = −
∫

ρ(r′)
ε0

G(r, r′) dV ′, (3.153)
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where the integral is over all space, and G(r, r′) is a symmetric Green’s function [i.e., G(r′, r) =
G(r, r′)—see Equation (2.17)] that satisfies

∇ 2G(r, r′) = δ(r − r′), (3.154)

subject to the constraint [see Equation (2.17)]

G(r, r′)→ 0 as |r| → ∞. (3.155)

In cylindrical coordinates,

δ(r − r′) =
1
r
δ(r − r′) δ(θ − θ′) δ(z − z′). (3.156)

This follows because, by definition (see Section 1.5),∫
V
δ(r − r′) dV =

∫
V
δ(r − r′) r dr dθ dz = 1 (3.157)

whenever r′ lies within the volume V . Thus, Equation (3.154) becomes

1
r
∂

∂r

(
r
∂G
∂r

)
+

1
r 2

∂ 2G
∂θ 2 +

∂ 2G
∂z 2 =

1
r
δ(r − r′) δ(θ − θ′) δ(z − z′). (3.158)

The well-known mathematical identities

δ(θ − θ′) = 1
2π

∑
m=−∞,∞

e i m (θ−θ′), (3.159)

δ(z − z′) =
1

2π

∫ ∞

−∞
e i k (z−z′) dk, (3.160)

are conventionally used to invert Fourier series and Fourier transforms, respectively. In the present
case, if we write

G(r, r′) =
1

4π2

∑
m=−∞,∞

∫ ∞

−∞
e i k (z−z′) e i m (θ−θ′) gm(r, r′) dk (3.161)

then, making use of these identities, Equation (3.158) becomes

1
r

d
dr

(
r

dgm

dr

)
−

(
k 2 +

m 2

r 2

)
gm =

1
r
δ(r − r′). (3.162)

In the general case, when r � r′, the previous equation reduces to the modified Bessel equation,

1
r

d
dr

(
r

dgm

dr

)
−

(
k 2 +

m 2

r 2

)
gm = 0. (3.163)
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As we saw in Section 3.10, the modified Bessel function Im(k r) [defined in Equation (3.143)] is
a solution of the modified Bessel equation that is well behaved at r = 0, and badly behaved as
r →∞. On the other hand, the modified Bessel function Km(k r), where 8

Km(p) =
∫ ∞

0
e− p cosh t cosh(m t) dt, (3.164)

is a solution that is badly behaved at r = 0, and well behaved as r → ∞. In fact,

Km(p)→ ∞ as p→ 0, (3.165)

Km(p)→
√

π

2 p
e−p as p→∞. (3.166)

We are searching for a solution of Equation (3.162) that is well behaved at r = 0 (because there
is no reason for the potential to be infinite at r = 0) and goes to zero as r →∞, in accordance with
the constraint (3.155). It follows that

gm(r, r′) =
{
α(r′) Im(k r) r < r′

β(r′) Km(k r) r > r′
. (3.167)

However, given that G(r, r′) is a symmetric function, we expect gm(r, r′) to also be symmetric: that
is, gm(r′, r) = gm(r, r′). Consequently,

gm(r, r′) = A Im(k r<) Km(k r>), (3.168)

where r< is the lesser of r and r′, and r> the greater. Integration of Equation (3.162) across r = r′

yields [
dgm

dr

]r=r′+

r=r′−

=
1
r′
, (3.169)

which implies that

A k
[
K′m(k r′) Im(k r′) − Km(k r′) I′m(k r′)

]
=

1
r′
, (3.170)

where ′ denotes differentiation with respect to argument. However, the modified Bessel functions
Im(p) and Km(p) satisfy the well-known mathematical identity 9

Km(p) I′m(p) − K′m(p) Im(p) =
1
p
. (3.171)

Hence, we deduce that A = −1. Thus, our general Green’s function becomes

G(r, r′) = − 1
4π2

∑
m=−∞,∞

∫ ∞

−∞
e i k (z−z′) e i m (θ−θ′) Im(k r<) Km(k r>) dk. (3.172)

8Ibid.
9Ibid.
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The previous expression for the Green’s function, in combination with Equation (3.153), leads
to the following expressions for the general solution to Poisson’s equation in cylindrical geometry,
subject to the boundary condition (3.152):

φ(r, θ, z) =
∑

m=−∞,∞
φm(r, z) e i m θ, (3.173)

φm(r, z) =
∫ ∞

−∞
Φm(r, k) e i k z dk, (3.174)

Φm(r, k) = Km(k r)
∫ r

0
Rm(r′, k) Im(k r′) r′ dr′ + Im(k r)

∫ ∞

r
Rm(r′, k) Km(k r′) r′ dr′, (3.175)

Rm(r′, k) =
1

2π

∫ ∞

−∞
ρm(r′, z′) e−i k z′ dz′, (3.176)

ρm(r′, z′) =
1

2π

∮
ρ(r′, θ′, z′)

ε0
e−i m θ′dθ′. (3.177)

Suppose that we wish to solve Poisson’s equation within a finite cylindrical volume, V , bounded
by the surfaces z = 0, z = L, and r = a. Let the boundary conditions imposed at the surface be

φ(r, θ, 0) = 0, (3.178)

φ(r, θ, L) = 0, (3.179)

φ(a, θ, z) = Φ(θ, z), (3.180)

where Φ(r, θ) is a specified function. According to Section 2.10, the solution to this Dirichlet
problem is written

φ(r) = −
∫

V
G(r, r′)

ρ(r′)
ε0

dV ′ +
∫

S
φ(r′)

∂G(r, r′)
∂n′

dS ′, (3.181)

where S represents the bounding surface. Here, the Green’s function is the symmetric solution to

∇ 2G(r, r′) = δ(r − r′) (3.182)

that satisfies
G(r, r′) = 0 (3.183)

when r (or r′) lies on S .
As before, in cylindrical coordinates, Equation (3.182) is written

1
r
∂

∂r

(
r
∂G
∂r

)
+

1
r 2

∂ 2G
∂θ 2 +

∂ 2G
∂z 2 =

1
r
δ(r − r′) δ(θ − θ′) δ(z − z′). (3.184)

If we search for a separable solution of the form R(r) Q(θ) Z(z) then it is clear that

Z(z) =
∑

n=1,∞
Zn sin(kn z), (3.185)
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where
kn = n

π

L
, (3.186)

is the appropriate expression for Z(z) that satisfies the constraint Z = 0 when z = 0 and z = L. The
Fourier series (3.185) can be inverted in the usual fashion to give

Zn =
2
L

∫ L

0
Z(z) sin(kn z) dz, (3.187)

which implies that

δ(z − z′) =
2
L

∑
n=1,∞

sin(kn z) sin(kn z′). (3.188)

Thus, searching for a Green’s function of the form

G(r, r′) =
1

L π

∑
m=−∞,∞

∑
n=1,∞

sin(kn z) sin(kn z′) e i m (θ−θ′) gm,n(r, r′), (3.189)

Equation (3.184) reduces to

1
r

d
dr

(
r

dgm,n

dr

)
−

(
k 2

n +
m 2

r 2

)
gm,n =

1
r
δ(r − r′). (3.190)

Of course, gm,n(r, r′) must be well behaved at r = 0. Moreover, the constraint G(r, r′) = 0 when
r = a implies that gm,n(a, r′) = 0. Hence,

gm,n(r, r′) =
{

α(r′) Im(kn r) r < r′

β(r′) [Im(kn r) Km(kn a) − Im(kn a) Km(kn r)] r > r′
. (3.191)

Now, the Green’s function must be continuous when r = r′ (otherwise, it would not be a symmetric
function of r and r′): that is,

gm,n(r = r′+, r
′) = gm,n(r = r′−, r

′). (3.192)

This implies that

α(r′) Im(kn r′) = β(r′)
[
Im(kn r′) Km(kn a) − Im(kn a) Km(kn r′)

]
. (3.193)

Integration of Equation (3.184) across r = r′ again gives (3.169), which leads to

β(r′) =
Im(kn r′)
Im(kn a)

, (3.194)

where use has been made of Equations (3.171) and (3.193). It follows that

gm,n(r, r′) = − [Im(kn a) Km(kn r>) − Im(kn r>) Km(kn a)]
Im(kn r<)
Im(kn a)

. (3.195)
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Our general expression for the Dirichlet Green’s function becomes

G(r, r′) = − 1
L π

∑
m=−∞,∞

∑
n=1,∞

sin(kn z) sin(kn z′) e i m (θ−θ′)

[Im(kn a) Km(kn r>) − Im(kn r>) Km(kn a)]
Im(kn r<)
Im(kn a)

. (3.196)

It is easily demonstrated that

r′
∂G(r, r′)
∂r′

∣∣∣∣∣
r′=a
=

1
L π

∑
m=−∞,∞

∑
n=1,∞

sin(kn z) sin(kn z′) e i m (θ−θ′) Im(kn r)
Im(kn a)

. (3.197)

Hence, making use of Equation (3.181), in combination with the previous two expressions, our
general solution to the problem under discussion is specified by the following set of equations:

φ(r, θ, z) =
∑

m=−∞,∞
φm(r, z) e i m θ, (3.198)

φm(r, z) =
∑

n=0,∞
φm,n(r) sin(kn z), (3.199)

φm,n(r) =
[
Km(kn r) − Im(kn r) Km(kn a)

Im(kn a)

] ∫ r

0
Rm,n(r′) Im(kn r′) r′ dr′

+ Im(kn r)
∫ ∞

r
Rm,n(r′)

[
Km(kn r′) − Im(kn r′) Km(kn a)

Im(kn a)

]
r′ dr′

+
Im(kn r)
Im(kn a)

Φm,n, (3.200)

Rm,n(r′) =
2
L

∫ L

0
ρm(r′, z′) sin(kn z′) dz′, (3.201)

ρm(r′, z′) =
1

2π

∮
ρ(r′, θ′, z′)

ε0
e−i m θ′dθ′, (3.202)

Φm,n =
2
L

∫ L

0
Φm(z′) sin(kn z′) dz′, (3.203)

Φm(z′) =
1

2π

∮
Φ(θ′, z′) e−i m θ′dθ′. (3.204)

3.12 Exercises

3.1 Two concentric spheres have radii a, b (b > a) and are each divided into two hemispheres
by the same horizontal plane. The upper hemisphere of the inner sphere and the lower
hemisphere of the outer sphere are maintained at potential V . The other hemispheres are at
zero potential. Demonstrate that the potential in the region a ≤ r ≤ b can be written

φ(r, θ) =
∑

l=0,∞

(
αl r l + βl r−l−1

)
Pl(cos θ),
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where

αl =
V
2

[
a l+1 − (−1)l b l+1

a 2 l+1 − b 2 l+1

]
[Pl−1(0) − Pl+1(0)] ,

βl =
V
2

[
a−l − (−1)l b−l

a−2 l−1 − b−2 l−1

]
[Pl−1(0) − Pl+1(0)] .

Here, r, θ, ϕ are conventional spherical coordinates whose origin coincides with the com-
mon center of the spheres, and are such that the dividing plane corresponds to θ = π/2.

3.2 A spherical surface of radius R has charge uniformly distributed over its surface with den-
sity Q/4πR 2, except for a spherical cap at the north pole, defined by the cone θ = α. Here,
r, θ, ϕ are conventional spherical coordinates whose origin coincides with the center of the
surface.

(a) Show that the potential inside the spherical surface can be expressed as

φ(r, θ) =
Q

8π ε0

∑
l=0,∞

1
2 l + 1

[Pl+1 cos(α) − Pl−1(cosα)]
r l

R l+1 Pl(cos θ),

where P−1(cosα) = −1.

(b) Show that the electric field at the origin is

E(0) =
Q

16 π ε0 R 2 sin2 α ez.

(c) Show that in the limit α→ 0,

φ(r, θ)→ Q
4π ε0 R

− Qα 2

16π ε0 R

∑
l=0,∞

r l

R l
Pl(cos θ).

(d) Show that in the limit α→ π,

φ(r, θ)→ Q (π − α) 2

16π ε0 R

∑
l=0,∞

(−1)l r l

R l
Pl(cos θ).

3.3 The Dirichlet Green’s function for the unbounded space between planes at z = 0 and z = L
allows a discussion of a point charge, or a distribution of charge, between parallel conduct-
ing planes held at zero potential.

(a) Using cylindrical coordinates, show that one form of the Green’s function is

G(r, r′) = − 1
π L

∑
n=1,∞

∑
m=−∞,∞

sin
(n π

L
z
)

sin
(n π

L
z′
)

e i m (θ−θ′)

Im

(n π
L

r<
)

Km

(n π
L

r>
)
.
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(b) Show that an alternative form of the Green’s function is

G(r, r′) = − 1
2π

∑
m=−∞,∞

∫ ∞

0

sinh(k z<) sinh[k (L − z>)]
sinh(k L)

Jm(k r) Jm(k r′) e i m (θ−θ′) dk.

3.4 From the results of the previous exercise, show that the potential due to a point charge q
placed between two infinite parallel conducting planes held at zero potential can be written
as

φ(z, r) =
q

π ε0 L

∑
n=1,∞

sin
(n π

L
zn

)
sin

(n π
L

z
)

K0

(n π
L

r
)
,

where the planes are at z = 0 and z = L, and the charge is on the z-axis at z = z0. Show that
induced surface charge densities on the lower and upper planes are

σ−(r) = − q
π L

∑
n=1,∞

(n π
L

)
sin

(n π
L

z0

)
K0

(n π
L

r
)
,

σ+(r) =
q
π L

∑
n=1,∞

cos(n π)
(n π

L

)
sin

(n π
L

z0

)
K0

(n π
L

r
)
,

respectively.

3.5 Show that the potential due to a conducting disk of radius a carrying a charge q is

φ(r, z) =
q

4π ε0 a

∫ ∞

0
e−k |z| J0(k r)

sin(k a)
k

dk

in cylindrical coordinates (whose origin coincides with the center of the disk, and whose
symmetry axis coincides with that of the disk.)

3.6 A conducting spherical shell of radius a is placed in a uniform electric field E. Show that
the force tending to separate two halves of the sphere across a diametral plane perpendicular
to E is given by

F =
9
4
π ε0 a 2 E 2.
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4 Electrostatics in Dielectric Media

4.1 Polarization

The terrestrial environment is characterized by dielectric media (e.g., air and water) that are, for the
most part, electrically neutral, because they are made up of neutral atoms and molecules. However,
when the constituent atoms and molecules of such media are placed in an electric field they tend to
polarize: that is, to develop electric dipole moments. Suppose that when a given neutral molecule
is placed in an electric field, E, the centre of charge of its constituent electrons (whose total charge
is −q) is displaced by a distance −r with respect to the centre of charge of its nucleus (whose
charge is +q). The dipole moment of the molecule is then p = q r. (See Section 2.7.) If there are
N such molecules per unit volume then the electric polarization P (i.e., the dipole moment per unit
volume) is given by P = N p. More generally,

P(r) =
∑

i

Ni 〈pi〉, (4.1)

where 〈pi〉 is the average dipole moment of the ith type of molecule in the vicinity of point r, and
Ni is the average number of such molecules per unit volume at r.

It is easily demonstrated [e.g., by integrating Equation (2.75) by parts, and then comparing
the result with Equation (2.36)] that any divergence of the polarization field, P(r), gives rise to a
charge density, ρb(r), in the medium. In fact,

ρb = −∇ · P. (4.2)

This density is attributable to bound charges (i.e., charges that arise from the polarization of neu-
tral atoms), and is usually distinguished from the charge density, ρ f , due to free charges, which
represents a net surplus or deficit of electrons in the medium. Thus, the total charge density, ρ, in
the medium is

ρ = ρ f + ρb. (4.3)

It must be emphasized that both terms on the right-hand side of this equation represent real phys-
ical charge. Nevertheless, it is useful to make the distinction between bound and free charges,
especially when it comes to working out the energy associated with electric fields in dielectric
media.

Gauss’ law takes the differential form

∇ · E = ρ

ε0
=
ρ f + ρb

ε0
. (4.4)

This expression can be rearranged to give

∇ · D = ρ f , (4.5)
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where
D = ε0 E + P (4.6)

is termed the electric displacement (which should not be confused with dipole moment per unit
area—see Section 2.8), and has the same dimensions as P (i.e., dipole moment per unit volume).
The divergence theorem tells us that ∮

S
D · dS =

∫
V
ρ f dV. (4.7)

In other words, the flux of D out of some closed surface S is equal to the total free charge enclosed
within that surface. Unlike the electric field E (which is the force acting on unit charge), or the
polarization P (which is the dipole moment per unit volume), the electric displacement D has
no clear physical meaning. The only reason for introducing this quantity is that it enables us to
calculate electric fields in the presence of dielectric materials without first having to know the
distribution of bound charges. However, this is only possible if we have a constitutive relation
connecting E and D. It is conventional to assume that the induced polarization, P, is directly
proportional to the electric field, E, so that

P = ε0 χe E, (4.8)

where χe is termed the medium’s electric susceptibility. It follows that

D = ε0 ε E, (4.9)

where the dimensionless quantity
ε = 1 + χe (4.10)

is known as the relative dielectric constant or relative permittivity of the medium. It follows from
Equations (4.5) and (4.9) that

∇ · E = ρ f

ε0 ε
. (4.11)

Thus, the electric fields produced by free charges in a dielectric medium are analogous to those
produced by the same charges in a vacuum, except that they are reduced by a factor ε. This reduc-
tion can be understood in terms of a polarization of the medium’s constituent atoms or molecules
that produces electric fields in opposition to those of the free charges. One immediate consequence
is that the capacitance of a capacitor is increased by a factor ε if the empty space between the elec-
trodes is filled with a dielectric medium of dielectric constant ε (assuming that fringing fields can
be neglected).

It must be understood that Equations (4.8)–(4.11) constitute an approximation that is generally
found to hold under terrestrial conditions (provided the electric field-strength does not become too
large) when dealing with isotropic media. For anisotropic media (e.g., crystals), Equation (4.9)
generalizes to

D = ε0 ε · E, (4.12)

where ε is a symmetric second-rank tensor known as the dielectric tensor. For strong electric fields,
D ceases to vary linearly with E. Indeed, for sufficiently strong electric fields, neutral molecules
are disrupted, and the medium becomes a plasma.
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4.2 Boundary Conditions for E and D

If the region in the vicinity of a collection of free charges contains dielectric material of non-
uniform dielectric constant then the electric field no longer has the same form as in a vacuum.
Suppose, for example, that space is occupied by two dielectric media whose uniform dielectric
constants are ε1 and ε2. What are the matching conditions on E and D at the interface between the
two media?

Imagine a Gaussian pill-box enclosing part of the interface. The thickness of the pill-box is
allowed to tend towards zero, so that the only contribution to the outward flux of D comes from
its two flat faces. These faces are parallel to the interface, and lie in each of the two media. Their
outward normals are dS1 (in medium 1) and dS2, where dS1 = −dS2. Assuming that there is no
free charge inside the pill-box (which is reasonable in the limit that the volume of the box tends
towards zero), Equation (4.7) yields

D1 · dS1 + D2 · dS2 = 0, (4.13)

where D1 is the electric displacement in medium 1 at the interface with medium 2, et cetera. The
above equation can be rewritten

(D2 − D1) · n21 = 0, (4.14)

where n21 is the normal to the interface, directed from medium 1 to medium 2. If the fields and
charges are non-time-varying then Maxwell’s equations yield

∇ × E = 0, (4.15)

which gives the familiar boundary condition (obtained by integrating around a small loop that
straddles the interface)

(E2 − E1) × n21 = 0. (4.16)

In other word, the normal component of the electric displacement, and the tangential component
of the electric field, are both continuous across any interface between two dielectric media.

4.3 Boundary Value Problems with Dielectrics

Consider a point charge q embedded in a semi-infinite dielectric medium of dielectric constant
ε1, and located a distance d from a plane interface that separates the first medium from another
semi-infinite dielectric medium of dielectric constant ε2. Suppose that the interface coincides with
the plane z = 0. We need to solve

ε1∇ · E = ρ

ε0
(4.17)

in the region z > 0,
ε2∇ · E = 0 (4.18)

in the region z < 0, and
∇ × E = 0 (4.19)
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P
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ε2 ε1
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R2

z →

z = 0

A′

Figure 4.1: The method of images for a plane interface between two dielectric media.

everywhere, subject to the following constraints at z = 0:

ε1 Ez(z = 0+) = ε2 Ez(z = 0−), (4.20)

Ex(z = 0+) = Ex(z = 0−), (4.21)

Ey(z = 0+) = Ey(z = 0−). (4.22)

In order to solve this problem, we shall employ a slightly modified form of the well-known
method of images. Because ∇ × E = 0 everywhere, the electric field can be written in terms of
a scalar potential: that is, E = −∇φ. Consider the region z > 0. Let us assume that the scalar
potential in this region is the same as that obtained when the whole of space is filled with dielectric
of dielectric constant ε1, and, in addition to the real charge q at position A, there is a second charge
q′ at the image position A′. (See Figure 4.1.) If this is the case then the potential at some point P
in the region z > 0 is given by

φ(z > 0) =
1

4π ε0 ε1

(
q
R1
+

q′

R2

)
, (4.23)

where R1 =
√

r 2 + (d − z) 2 and R2 =
√

r 2 + (d + z) 2. Here, r, θ, z are conventional cylindrical
coordinates. Note that the potential (4.23) is clearly a solution of Equation (4.17) in the region
z > 0: that is, it satisfies ∇ · E = 0, with the appropriate singularity at the position of the point
charge q.

Consider the region z < 0. Let us assume that the scalar potential in this region is the same as
that obtained when the whole of space is filled with a dielectric medium of dielectric constant ε2,
and a charge q′′ is located at the point A. If this is the case then the potential in this region is given
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by

φ(z < 0) =
1

4π ε0 ε2

q′′

R1
. (4.24)

The above potential is clearly a solution of Equation (4.18) in the region z < 0: that is, it satisfies
∇ · E = 0, with no singularities.

It now remains to choose q′ and q′′ in such a manner that the constraints (4.20)–(4.22) are sat-
isfied. The constraints (4.21) and (4.22) are obviously satisfied if the scalar potential is continuous
across the interface between the two media: that is,

φ(z = 0+) = φ(z = 0−). (4.25)

The constraint (4.20) implies a jump in the normal derivative of the scalar potential across the
interface. In fact,

ε1
∂φ(z = 0+)

∂z
= ε2

∂φ(z = 0−)
∂z

. (4.26)

The first matching condition yields
q + q′

ε1
=

q′′

ε2
, (4.27)

whereas the second gives
q − q′ = q′′. (4.28)

Here, use has been made of

∂

∂z

(
1

R1

)
z=0
= − ∂

∂z

(
1
R2

)
z=0
=

d
(r 2 + d 2)3/2 . (4.29)

Equations (4.27) and (4.28) imply that

q′ = −
(
ε2 − ε1

ε2 + ε1

)
q, (4.30)

q′′ =
(

2 ε2

ε2 + ε1

)
q. (4.31)

The polarization charge density is given by ρb = −∇ · P, However, P = ε0 χe E inside either
dielectric, which implies that

∇ · P = ε0 χe ∇ · E = 0, (4.32)

except at the point charge q. Thus, there is zero bound charge density in either dielectric medium.
At the interface, χe jumps discontinuously,

∆χe = ε1 − ε2. (4.33)

This implies that there is a bound charge sheet on the interface between the two dielectric media.
In fact, it follows from Equation (4.2) that

σb = −(P2 − P1) · n21, (4.34)
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where n21 is a unit normal to the interface pointing from medium 1 to medium 2 (i.e., along the
positive z-axis). Because

Pi = ε0 (εi − 1) E = −ε0 (εi − 1)∇φ (4.35)

in either medium, it is easily demonstrated that

σb(r) = − q
2π ε1

(
ε2 − ε1

ε2 + ε1

)
d

(r 2 + d 2)3/2 . (4.36)

In the limit ε2 
 ε1, the dielectric ε2 behaves like a conducting medium (i.e., E → 0 in the region
z < 0), and the bound surface charge density on the interface approaches that obtained in the case
when the plane z = 0 coincides with a conducting surface.

The above argument can easily be generalized to deal with problems involving multiple point
charges in the presence of multiple dielectric media whose interfaces form parallel planes.

Consider a second boundary value problem in which a slab of dielectric, of dielectric constant
ε, lies between the planes z = 0 and z = b. Suppose that this slab is placed in a uniform z-directed
electric field of strength E0. Let us calculate the field-strength E1 inside the slab.

Because there are no free charges, and this is essentially a one-dimensional problem, it is clear
from Equation (4.5) that the electric displacement D is the same in both the dielectric slab and the
surrounding vacuum. In the vacuum region, D = ε0 E0, whereas D = ε0 ε E1 in the dielectric. It
follows that

E1 =
E0

ε
. (4.37)

In other words, the electric field inside the slab is reduced by polarization charges. As before, there
is zero polarization charge density inside the dielectric. However, there is a uniform bound charge
sheet on both surfaces of the slab. It is easily demonstrated that

σb(z = b) = −σb(z = 0) = ε0

(
ε − 1
ε

)
E0. (4.38)

In the limit ε 
 1, the slab acts like a conductor, and E1 → 0.
Let us now generalize this result. Consider a dielectric medium whose dielectric constant ε

varies with z. The medium is assumed to be of finite extent, and to be surrounded by a vacuum.
It follows that ε(z) → 1 as |z| → ∞. Suppose that this dielectric is placed in a uniform z-directed
electric field of strength E0. What is the field E(z) inside the dielectric?

We know that the electric displacement inside the dielectric is given by D(z) = ε0 ε(z) E(z).
We also know from Equation (4.5) that, because there are no free charges, and this is essentially a
one-dimensional problem,

dD(z)
dz
= ε0

d[ε(z) E(z)]
dz

= 0. (4.39)

Furthermore, E(z)→ E0 as |z| → ∞. It follows that

E(z) =
E0

ε(z)
. (4.40)
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Thus, the electric field is inversely proportional to the dielectric constant of the medium. The
bound charge density within the medium is given by

ρb = ε0
dE(z)

dz
= ε0 E0

d
dz

[
1
ε(z)

]
. (4.41)

Consider a third, and final, boundary value problem in which a dielectric sphere of radius a,
and dielectric constant ε, is placed in a z-directed electric field of strength E0 (in the absence of the
sphere). Let us calculate the electric field inside and around the sphere.

Because this is a static problem, we can write E = −∇φ. There are no free charges, so Equa-
tions (4.5) and (4.9) imply that

∇ 2φ = 0 (4.42)

everywhere. The matching conditions (4.14) and (4.16) reduce to

ε
∂φ

∂r

∣∣∣∣∣
r=a−
=
∂φ

∂r

∣∣∣∣∣
r=a+

, (4.43)

∂φ

∂θ

∣∣∣∣∣
r=a−
=
∂φ

∂θ

∣∣∣∣∣
r=a+

. (4.44)

Furthermore,
φ(r, θ, ϕ)→ −E0 r cos θ (4.45)

as r → 0: that is, the electric field asymptotes to uniform z-directed field of strength E0 far from
the sphere. Here, r, θ, ϕ) are spherical coordinates centered on the sphere.

Let us search for an axisymmetric solution, φ = φ(r, θ). Because the solutions to Poisson’s
equation are unique, we know that if we can find such a solution that satisfies all of the boundary
conditions then we can be sure that this is the correct solution. Equation (4.42) reduces to

1
r
∂ 2(r φ)
∂r 2 +

1
r 2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
= 0. (4.46)

Straightforward separation of the variables yields (see Section 3.7)

φ(r, θ) =
∑

l=0,∞

[
Al r l + Bl r −(l+1)

]
Pl(cos θ), (4.47)

where l is a non-negative integer, the Al and Bl are arbitrary constants, and the Pl(x) are Legendre
polynomials. (See Section 3.2.)

The Legendre polynomials form a complete set of angular functions, and it is easily demon-
strated that the r l and the r −(l+1) form a complete set of radial functions. It follows that Equa-
tion (4.47), with the Al and Bl unspecified, represents a completely general (single-valued) ax-
isymmetric solution to Equation (4.42). It remains to determine the values of the Al and Bl that are
consistent with the boundary conditions.

Let us divide space into the regions r ≤ a and r > a. In the former region

φ(r, θ) =
∑

l=0,∞
Al r l Pl(cos θ), (4.48)
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where we have rejected the r −(l+1) radial solutions because they diverge unphysically as r → 0. In
the latter region

φ(r, θ) =
∑

l=0,∞

[
Bl r l +Cl r −(l+1)

]
Pl(cos θ). (4.49)

However, it is clear from the boundary condition (4.45) that the only non-vanishing Bl is B1 = −E0.
This follows because P1(cos θ) = cos θ. The boundary condition (4.44) [which can be integrated
to give φ(r = a−) = φ(r = a+) for a potential that is single-valued in θ] gives

A1 = −E0 +
C1

a 3 , (4.50)

and
Al =

Cl

a 2 l+1 (4.51)

for l � 1. Note that it is appropriate to match the coefficients of the Pl(cos θ) because these
functions are mutually orthogonal. (See Section 3.2.) The boundary condition (4.43) yields

ε A1 = −E0 − 2
C1

a 3 , (4.52)

and
ε l Al = −(l + 1)

Cl

a 2 l+1 (4.53)

for l � 1. Equations (4.51) and (4.53) give Al = Cl = 0 for l � 1. Equations (4.50) and (4.52)
reduce to

A1 = −
(

3
2 + ε

)
E0, (4.54)

C1 =

(
ε − 1
ε + 2

)
a 3 E0. (4.55)

The solution to the problem is therefore

φ(r, θ) = −
(

3
2 + ε

)
E0 r cos θ (4.56)

for r ≤ a, and

φ(r, θ) = −E0 r cos θ +
(
ε − 1
ε + 2

)
E0

a 3

r 2 cos θ (4.57)

for r > a.
Equation (4.56) is the potential of a uniform z-directed electric field of strength

E1 =
3

2 + ε
E0. (4.58)

Note that E1 < E0, provided that ε > 1. Thus, the electric field-strength is reduced inside the
dielectric sphere due to partial shielding by polarization charges. Outside the sphere, the potential
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is equivalent to that of the applied field E0, plus the field of an electric dipole (see Section 2.7),
located at the origin, and directed along the z-axis, whose dipole moment is

p = 4π ε0

(
ε − 1
ε + 2

)
a 3 E0. (4.59)

This dipole moment can be interpreted as the volume integral of the polarization P over the sphere.
The polarization is

P = ε0 (ε − 1) E1 ez = 3 ε0

(
ε − 1
ε + 2

)
E0 ez. (4.60)

Because the polarization is uniform there is zero bound charge density inside the sphere. However,
there is a bound charge sheet on the surface of the sphere, whose density is given by σb = P · er

[see Equation (4.34)]. It follows that

σb(θ) = 3 ε0

(
ε − 1
ε + 2

)
E0 cos θ. (4.61)

The problem of a dielectric cavity of radius a inside a dielectric medium of dielectric constant
ε, and in the presence of an applied electric field E0, parallel to the z-axis, can be treated in much
the same manner as that of a dielectric sphere. In fact, it is easily demonstrated that the results for
the cavity can be obtained from those for the sphere by making the transformation ε → 1/ε. Thus,
the field inside the cavity is uniform, parallel to the z-axis, and of magnitude

E1 =
3 ε

2 ε + 1
E0. (4.62)

Note that E1 > E0, provided that ε > 1. The field outside the cavity is the original field, plus that
of a z-directed dipole, located at the origin, whose dipole moment is

p = −4π ε0

(
ε − 1

2 ε + 1

)
a 3 E0. (4.63)

Here, the negative sign implies that the dipole points in the opposite direction to the external field.

4.4 Energy Density Within Dielectric Medium

Consider a system of free charges embedded in a dielectric medium. The increase in the total
energy when a small amount of free charge δρ f is added to the system is given by

δU =
∫

V
φ δρ f dV, (4.64)

where the integral is taken over all space, and φ(r) is the electrostatic potential. Here, it is assumed
that the original charges and the dielectric are held fixed, so that no mechanical work is performed.
It follows from Equation (4.5) that

δU =
∫

V
φ∇ · δD dV, (4.65)
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where δD is the change in the electric displacement associated with the charge increment. Now,
the above equation can also be written

δU =
∫

V
∇ · (φ δD) dV −

∫
V
∇φ · δD dV, (4.66)

giving

δU =
∫

S
φ δD · dS −

∫
V
∇φ · δD dV, (4.67)

where use has been made of the divergence theorem. If the dielectric medium is of finite spatial
extent then we can neglect the surface term to give

δU = −
∫

V
∇φ · δD dV =

∫
V

E · δD dV. (4.68)

This energy increment cannot be integrated unless E is a known function of D. Let us adopt the
conventional approach, and assume that D = ε0 ε E, where the dielectric constant ε is independent
of the electric field. The change in energy associated with taking the displacement field from zero
to D(r) at all points in space is given by

U =
∫ D

0
δU =

∫ D

0

∫
V

E · δD dV, (4.69)

or

U =
∫

V

∫ E

0

ε0 ε δ(E 2)
2

dV =
1
2

∫
V
ε0 ε E 2 dV, (4.70)

which reduces to
U =

1
2

∫
V

E · D dV. (4.71)

Thus, the electrostatic energy density inside a dielectric is given by

W =
1
2

E · D. (4.72)

This is a standard result that is often quoted in textbooks. Nevertheless, it is important to realize
that the above formula is only valid in dielectric media in which the electric displacement, D, varies
linearly with the electric field, E.

4.5 Force Density Within Dielectric Medium

Equation (4.71) was derived by considering a virtual process in which true charges are added to a
system of charges and dielectrics that are held fixed, so that no mechanical work is done against
physical displacements. Consider a different virtual process in which the physical coordinates of
the charges and dielectric are given a virtual displacement δr at each point in space, but no free
charges are added to the system. Because we are dealing with a conservative system, the energy
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expression (4.71) can still be employed, despite the fact that it was derived in terms of another
virtual process. The variation in the total electrostatic energy δU when the system undergoes a
virtual displacement δr is related to the electrostatic force density, f, acting within the dielectric
medium via

δU = −
∫

V
f · δr dV. (4.73)

If the medium is moving with a velocity field u then the rate at which electrostatic energy is drained
from the E and D fields is given by

dU
dt
= −

∫
V

f · u dV. (4.74)

Consider the energy increment due to a change, δρ f , in the free charge distribution, and a
change, δε, in the dielectric constant, which are both assumed to be caused by the virtual displace-
ment. From Equation (4.71),

δU =
1

2 ε0

∫
V

[
D 2 δ(1/ε) + 2 D · δD/ε

]
dV, (4.75)

or

δU = −ε0

2

∫
V

E 2 δε dV +
∫

V
E · δD dV. (4.76)

Here, the first term represents the energy increment due to the change in dielectric constant associ-
ated with the virtual displacement, whereas the second term corresponds to the energy increment
caused by displacement of the free charges. The second term can be written∫

V
E · δD dV = −

∫
V
∇φ · δD dV =

∫
V
φ∇ · δD dV =

∫
V
φ δρ f dV, (4.77)

where surface terms have been neglected. Thus, Equation (4.76) implies that

dU
dt
=

∫
V

(
φ
∂ρ f

∂t
− ε0

2
E 2 ∂ε

∂t

)
dV. (4.78)

In order to arrive at an expression for the force density, f, we need to express the time derivatives
∂ρ/∂t and ∂ε/∂t in terms of the velocity field, u. This can be achieved by adopting a dielectric
equation of state: that is, a relation that specifies the dependence of the dielectric constant, ε, on
the mass density, ρm. Let us assume that ε(ρm) is a known function. It follows that

Dε
Dt
=

dε
dρm

Dρm

Dt
, (4.79)

where
D
Dt
≡ ∂

∂t
+ u · ∇ (4.80)
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is the total time derivative (i.e., the time derivative in a frame of reference that is locally co-moving
with the dielectric.) The hydrodynamic equation of continuity of the dielectric is

∂ρm

∂t
+ ∇ · (ρm u) = 0, (4.81)

which implies that
Dρm

Dt
= −ρm∇ · u. (4.82)

It follows that
∂ε

∂t
= − dε

dρm
ρm ∇ · u − u · ∇ε. (4.83)

The conservation equation for the free charges is written

∂ρ f

∂t
+ ∇ · (ρ f u) = 0. (4.84)

Thus, we can express Equation (4.78) in the form

dU
dt
=

∫
V

[
−φ∇ · (ρ f u) +

ε0

2
E 2 dε

dρm
ρm ∇ · u + ε0

2
E 2 ∇ε · u

]
dV. (4.85)

Integrating the first term by parts, and neglecting any surface contributions, we obtain

−
∫

V
φ∇ · (ρ f u) dV =

∫
V
ρ f ∇φ · u dV. (4.86)

Likewise, ∫
V

ε0

2
E 2 dε

dρm
ρm ∇ · u dV = −

∫
ε0

2
∇
(
E 2 dε

dρm
ρm

)
· u dV. (4.87)

Thus, Equation (4.85) becomes

dU
dt
=

∫
V

[
−ρ f E +

ε0

2
E 2 ∇ε − ε0

2
∇

(
E 2 dε

dρm
ρm

)]
· u dV. (4.88)

Comparing with Equation (4.74), we deduce that the force density inside the dielectric is given by

f = ρ f E − ε0

2
E 2 ∇ε + ε0

2
∇
(
E 2 dε

dρm
ρm

)
. (4.89)

The first term in the above equation is the standard electrostatic force density (due to the pres-
ence of free charges). The second term represents a force that appears whenever an inhomogeneous
dielectric is placed in an electric field. The last term, which is known as the electrostriction term,
gives a force acting on a dielectric in an inhomogeneous electric field. Note that the magnitude
of the electrostriction force density depends explicitly on the dielectric equation of state of the
material, through dε/dρm. The electrostriction term gives zero net force acting on any finite re-
gion of dielectric, provided we can integrate over a large enough portion of the dielectric that its
extremities lie in a field-free region. For this reason, the term is frequently omitted, because in the
calculation of the total forces acting on dielectric bodies it usually makes no contribution. Note,
however, that if the electrostriction term is omitted then an incorrect pressure variation within the
dielectric is obtained, even though the total force is given correctly.
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4.6 Clausius-Mossotti Relation

Let us now investigate what a dielectric equation of state actually looks like. Suppose that a
dielectric medium is made up of identical molecules that develop a dipole moment

p = α ε0 E (4.90)

when placed in an electric field E. The constant α is called the molecular polarizability. If N is
the number density of such molecules then the polarization of the medium is

P = N p = N α ε0 E, (4.91)

or
P =

NA ρm α

M
ε0 E, (4.92)

where ρm is the mass density, NA is Avogadro’s number, and M is the molecular weight. But, how
does the electric field experienced by an individual molecule relate to the average electric field in
the medium? This is not a trivial question because we expect the electric field to vary strongly (on
atomic lengthscales) within the dielectric.

Suppose that the dielectric is polarized by a mean electric field E0 that is uniform (on macro-
scopic lengthscales), and directed along the z-axis. Consider one of the dielectric’s constituent
molecules. Let us draw a sphere of radius a around this particular molecule. The surface of the
sphere is intended to represent the boundary between the microscopic and the macroscopic ranges
of phenomena affecting the molecule. We shall treat the dielectric outside the sphere as a continu-
ous medium, and the dielectric inside the sphere as a collection of polarized molecules. According
to Equation (4.34), there is a bound surface charge of magnitude

σb(θ) = −P cos θ (4.93)

on the inside of the sphere’s surface, where r, θ, ϕ are conventional spherical coordinates, and
P = P ez = ε0 (ε − 1) E0 ez is the uniform polarization of the uniform dielectric outside the sphere.
The magnitude of Ez at the molecule due to this surface charge is

Ez = − 1
4π ε0

∫
S

σb(θ) cos θ
a 2 dS , (4.94)

where dS = 2π a2 sin θ dθ is an element of the surface. It follows that

Ez =
P

2 ε0

∫ π

0
cos2 θ sin θ dθ =

P
3 ε0

. (4.95)

It is easily demonstrated, from symmetry, that Eθ = Eϕ = 0 at the molecule. Thus, the field at the
molecule due to the bound charges distributed on the inside of the sphere’s surface is

E =
P

3 ε0
. (4.96)
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The field due to the individual molecules within the sphere is obtained by summing over the
dipole fields of these molecules. The electric field a distance r from a dipole p is (see Section 2.7)

E = − 1
4π ε0

[
p
r 3 −

3 (p · r) r
r 5

]
. (4.97)

It is assumed that the dipole moments of the molecules within the sphere are all the same, and also
that the molecules are evenly distributed throughout the sphere. This being the case, the value of
Ez at the molecule due to all of the other molecules within in the sphere,

Ez = − 1
4π ε0

∑
mols

[
pz

r 3 −
3 (px x z + py y z + pz z 2)

r 5

]
, (4.98)

is zero, because, for evenly distributed molecules,∑
mols

x 2 =
∑
mols

y 2 =
∑
mols

z 2 =
1
3

∑
mols

r 2 (4.99)

and ∑
mols

x y =
∑
mols

y z =
∑
mols

z x = 0. (4.100)

It is also easily demonstrated that Eθ = Eϕ = 0. Hence, the electric field at the molecule due to the
other molecules within the sphere averages to zero.

It is clear that the net electric field experienced by an individual molecule is

E = E0 +
P

3 ε0
, (4.101)

which is larger than the average electric field, E0, in the dielectric. The above analysis indicates that
this effect is ascribable to the long range (rather than the short range) interactions of the molecule
with the other molecules in the medium. Making use of Equation (4.92), as well as the definition
P = ε0 (ε − 1) E0, we obtain

ε − 1
ε + 2

=
NA ρm α

3 M
, (4.102)

which is known as the Clausius-Mossotti relation. This expression is found to work very well for
a wide class of dielectric liquids and gases. The Clausius-Mossotti relation also yields

dε
dρm
=

(ε − 1) (ε + 2)
3 ρm

. (4.103)

4.7 Dielectric Liquids in Electrostatic Fields

Consider the behavior of an uncharged dielectric liquid placed in an electrostatic field. If p is
the pressure within the liquid when in equilibrium with the electrostatic force density f then force
balance requires that

∇p = f. (4.104)
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It follows from Equation (4.89) that

∇p = −ε0

2
E 2 ∇ε + ε0

2
∇
(
E 2 dε

dρm
ρm

)
=
ε0 ρm

2
∇
(
E 2 dε

dρm

)
. (4.105)

We can integrate this equation to give∫ p2

p1

dp
ρm
=
ε0

2

([
E 2 dε

dρm

]
2
−

[
E 2 dε

dρm

]
1

)
, (4.106)

where 1 and 2 refer to two general points in the liquid. Here, it is assumed that the liquid possesses
an equation of state, so that p = p(ρm). If the liquid is essentially incompressible (i.e., ρm �
constant) then

p2 − p1 =
ε0 ρm

2

[
E 2 dε

dρm

]2

1
. (4.107)

Finally, if the liquid obeys the Clausius-Mossotti relation then

p2 − p1 =

[
ε0 E 2

2
(ε − 1) (ε + 2)

3

]2

1
. (4.108)

According to Equations (4.58) and (4.108), if a sphere of dielectric liquid is placed in a uniform
electric field E0 then the pressure inside the liquid takes the constant value

p =
3
2
ε0 E 2

0
ε − 1
ε + 2

. (4.109)

It is clear that the electrostatic forces acting on the dielectric are all concentrated at the edge of
the sphere, and are directed radially inwards: that is, the dielectric is compressed by the external
electric field. This is a somewhat surprising result because the electrostatic forces acting on a rigid
conducting sphere are concentrated at the edge of the sphere, but are directed radially outwards.
We might expect these two cases to give the same result in the limit ε → ∞. The reason that this
does not occur is because a dielectric liquid is slightly compressible, and is, therefore, subject to an
electrostriction force. There is no electrostriction force for the case of a completely rigid body. In
fact, the force density inside a rigid dielectric (for which ∇·u = 0) is given by Equation (4.89), with
the third term (the electrostriction term) missing. It is easily demonstrated that the force exerted
by an electric field on a rigid dielectric is directed outwards, and approaches that exerted on a rigid
conductor in the limit ε → 0.

As is well known, if a pair of charged (parallel plane) capacitor plates are dipped into a dielec-
tric liquid then the liquid is drawn up between the plates to some extent. Let us examine this effect.
We can, without loss of generality, assume that the transition from dielectric to vacuum takes place
in a continuous manner. Consider the electrostatic pressure difference between a point A lying just
above the surface of the liquid in between the plates, and a point B lying just above the surface of
the liquid well away from the capacitor (where E = 0). The pressure difference is given by

pA − pB = −
∫ B

A
f · dr. (4.110)
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Note, however, that the Clausius-Mossotti relation yields dε/dρm = 0 at both A and B, because ε =
1 in a vacuum [see Equation (4.103)]. Thus, it is clear from Equation (4.89) that the electrostriction
term makes no contribution to the line integral (4.110). It follows that

pA − pB =
ε0

2

∫ B

A
E 2 ∇ε · dr. (4.111)

The only contribution to this integral comes from the vacuum/dielectric interface in the vicinity of
point A (because ε is constant inside the liquid, and E = 0 in the vicinity of point B). Suppose
that the electric field at point A has normal and tangential (to the surface) components E⊥ and
E‖, respectively. Making use of the boundary conditions that ε E⊥ and E‖ are constant across a
vacuum/dielectric interface, we obtain

pA − pB =
ε0

2

[
E 2
‖ (ε − 1) + ε 2 E 2

⊥(ε)
∫ ε

1

dε
ε 2

]
, (4.112)

giving

pA − pB =
ε0 (ε − 1)

2

[
E 2
‖ +

E 2
⊥
ε

]
. (4.113)

This electrostatic pressure difference can be equated to the hydrostatic pressure difference ρm g h
to determine the height, h, that the liquid rises between the plates. At first sight, the above analysis
appears to suggest that the dielectric liquid is drawn upward by a surface force acting on the
vacuum/dielectric interface in the region between the plates. In fact, this is far from being the
case. A brief examination of Equation (4.108) shows that this surface force is actually directed
downwards. According to Equation (4.89), the force which causes the liquid to rise between the
plates is a volume force that develops in the region of non-uniform electric field at the base of
the capacitor, where the field splays out between the plates. Thus, although we can determine the
height to which the fluid rises between the plates without reference to the electrostriction force, it
is, somewhat paradoxically, this force that is actually responsible for supporting the liquid against
gravity.

Let us consider another paradox concerning the electrostatic forces exerted in a dielectric
medium. Suppose that we have two charges embedded in a uniform dielectric of dielectric con-
stant ε. The electric field generated by each charge is the same as that in a vacuum, except that it
is reduced by a factor ε. We, therefore, expect the force exerted by one charge on the other to be
the same as that in a vacuum, except that it is also reduced by a factor ε. Let us examine how this
reduction in force comes about. Consider a simple example. Suppose that we take a parallel plate
capacitor, and insert a block of solid dielectric between the plates. Suppose, further, that there is
a small vacuum gap between the faces of the block and each of the capacitor plates. Let ±σ be
the surface charge densities on each of the capacitor plates, and let ±σb be the bound charge den-
sities that develop on the outer faces of the intervening dielectric block. The two layers of bound
charge produce equal and opposite electric fields on each plate, and their effects therefore cancel
each other. Thus, from the point of view of electrical interaction alone there would appear to be
no change in the force exerted by one capacitor plate on the other when a dielectric slab is placed
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between them (assuming that σ remains constant during this process). That is, the force per unit
area (which is attractive) remains

fs =
σ 2

2 ε0
. (4.114)

However, in experiments in which a capacitor is submerged in a dielectric liquid the force per unit
area exerted by one plate on another is observed to decrease to

fs =
σ 2

2 ε0 ε
. (4.115)

This apparent paradox can be explained by taking into account the difference in liquid pressure
in the field-filled space between the plates, and the field-free region outside the capacitor. This
pressure difference is balanced by internal elastic forces in the case of the solid dielectric discussed
earlier, but is transmitted to the plates in the case of the liquid. We can compute the pressure
difference between a point A on the inside surface of one of the capacitor plates, and a point B on
the outside surface of the same plate using Equation (4.111). If we neglect end effects then the
electric field is normal to the plates in the region between the plates, and is zero everywhere else.
Thus, the only contribution to the line integral (4.111) comes from the plate/dielectric interface in
the vicinity of point A. Using Equation (4.113), we find that

pA − pB =
ε0

2

(
1 − 1

ε

)
E 2 =

σ 2

2 ε0

(
1 − 1

ε

)
, (4.116)

where E is the normal field-strength between the plates in the absence of dielectric. The sum of
this pressure force and the purely electrical force (4.114) yields a net attractive force per unit area

fs =
σ 2

2 ε0 ε
(4.117)

acting between the plates. Thus, any decrease in the forces exerted by charges on one another
when they are immersed or embedded in a dielectric medium can only be understood in terms of
mechanical forces transmitted between these charges by the medium itself.

4.8 Exercises

4.1 Starting from Equation (2.75), derive the result ρb = −∇ · P.

4.2 Consider an electron of charge −e moving in a circular orbit of radius a0 about a charge +e
in a field directed at right angles to the plane of the orbit. Show that the polarizability α is
approximately 4π a 3

0 .

4.3 A point charge q is located in free space a distance d from the center of a dielectric sphere
of radius a (a < d) and dielectric constant ε. Find the potential at all points in space as
an expansion in spherical harmonics. Calculate the rectangular components of the electric
field in the vicinity of the center of the sphere.
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4.4 A dielectric sphere of radius a and dielectric constant ε1 is imbedded in an infinite dielectric
block of dielectric constant ε2. The block is placed in a uniform electric field E = E0 ez. In
other words, if ε1 = ε2 then the electric field would be E = E0 ez. Find the potential both
inside and outside the sphere (assuming that ε1 � ε2), and the distribution of bound charges
on the surface of the sphere.

4.5 An electric dipole of moment p = p ez lies at the center of a spherical cavity of radius a in a
uniform dielectric material of relative dielectric constant ε. Find the electrostatic potential
throughout space. Find the bound charge sheet density on the surface of the cavity.

4.6 A cylindrical coaxial cable consists of a thin inner conductor of radius a, surrounded by
a dielectric sheath of dielectric constant ε1 and outer radius b, surrounded by a second
dielectric sheath of dielectric constant ε2 and outer radius c, surrounded by a thin outer
conductor. All components of the cable are touching. What is the capacitance per unit
length of the cable?

4.7 A very long, right circular, cylindrical shell of dielectric constant ε and inner and outer
radii a and b, respectively, is placed in a previously uniform electric field E0 with its axis
perpendicular to the field. The medium inside and outside the cylinder has a dielectric
constant of unity. Determine the potential in the three regions, neglecting end effects.
Discuss the limiting forms of your solutions for a solid dielectric cylinder in a uniform
field, and a cylindrical cavity in a uniform dielectric.

4.8 Suppose that
D = ε0 ε · E,

where the dielectric tensor, ε, is constant (i.e., it is indepedent of E). Demonstrate that

U =
∫ D

0

∫
V

E · δD dV

can only be integrated to give

U =
1
2

∫
V

E · D dV

if ε is symmetric. (Incidentally, because we generally expect a dielectric system to be
conservative, this proves that ε must be a symmetric tensor, otherwise the final energy of a
dielectric system would not be independent of its past history.)

4.9 Show that for an electret (i.e., a material of fixed P) the integral
∫

E · D dV over all space
vanishes.

4.10 Two long, coaxial, cylindrical conducting surfaces of radii a and b (b > a) are lowered
vertically into a liquid dielectric. If the liquid rises a mean height h between the electrodes
when a potential difference V is established between them, show that the susceptibility of
the liquid is

χe =
(b 2 − a 2) ρm g h ln(b/a)

ε0 V 2
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where ρm is the mass density of the liquid, g the acceleration due to gravity, and the sus-
ceptibility of air is neglected.
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5 Magnetostatic Fields

5.1 Introduction

This chapter discusses magnetic fields generated by stationary current distributions. Such fields
are conventionally termed magnetostatic.

5.2 Biot-Savart Law

According to the Biot-Savart law, the magnetic field generated at position vector r by a current I1

circulating around a thin loop, an element of which is located at position vector r1, is

B(r) =
µ0 I1

4π

∮
1

dr1 × (r − r1)
|r − r1| 3 . (5.1)

Suppose that a second current loop carries the current I2. The net magnetic force exerted on an
element, I2 dr2, of this loop, located at position vector r2, is

dF21 = I2 dr2 × B(r2). (5.2)

Hence, the net magnetic force exerted on loop 2 by loop 1 is

F21 =
µ0 I1 I2

4π

∮
1

∮
2

dr2 × (dr1 × r12)
|r12| 3 , (5.3)

where r12 = r2 − r1.

5.3 Continuous Current Distribution

Making use of the fact that the magnetic fields generated by different current loops are superposable
(see Section 1.2), Equation (5.1) can easily be generalized to deal with the magnetic field B(r)
generated by a continuous current distribution of current density j(r). In fact,

B(r) =
µ0

4π

∫
j(r′) × (r − r′)
|r − r′| 3 dV ′. (5.4)

For the case of a steady (i.e., ∂/∂t = 0) current distribution, the charge conservation law (1.7)
yields the constraint

∇ · j = 0. (5.5)

Given that [see Equation (2.27)]

r − r′

|r − r′| 3 = −∇
(

1
|r − r′|

)
, (5.6)
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Equation (5.4) can also be written

B = ∇ × A, (5.7)

where

A(r) =
µ0

4π

∫
j(r′)
|r − r′| dV ′. (5.8)

Here, A is termed the vector potential. (See Section 1.3.) It immediately follows that

∇ · B = 0, (5.9)

which is the second Maxwell equation. (See Section 1.2.) Now,

∇ · A(r) =
µ0

4π

∫
j(r′) · ∇

(
1

|r − r′|
)

dV ′ = −µ0

4π

∫
j(r′) · ∇′

(
1

|r − r′|
)

dV ′

=
µ0

4π

∫ ∇′ · j(r′)
|r − r′| dV ′, (5.10)

where we have integrated by parts, and neglected surface terms. Thus, according to Equation (5.5),

∇ · A = 0. (5.11)

In other words, the vector potential defined in Equation (5.8) automatically satisfies the time inde-
pendent version of the Lorenz gauge condition, (1.13). Finally,

∇ × B = ∇ × (∇ × A) ≡ ∇(∇ · A) − ∇ 2A = −∇ 2A, (5.12)

where use has been made of Equations (5.7) and (5.11). It follows from Equations (5.8) and (1.25)
that

∇ × B(r) = −µ0

4π

∫
j(r′)∇ 2

(
1

|r − r′|
)

dV ′ = µ0

∫
j(r′) δ(r − r′) dV ′ = µ0 j(r), (5.13)

or

∇ × B = µ0 j, (5.14)

which is the time independent form of the fourth Maxwell equation. (See Section 1.2.) The integral
version of the previous equation, which follows from the curl theorem, is∮

C
B · dr = µ0

∫
S

j · dS. (5.15)

This result is known as Ampère’s law. Here, C is a closed curve spanned by a general surface S .
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5.4 Circular Current Loop

Let us calculate the magnetic field generated by a thin circular loop of radius a, lying in the x-y
plane, centered on the origin, and carrying the steady current I. Let r, θ, ϕ be spherical coordinates
whose origin lies at the center of the loop, and whose symmetry axis is coincident with that of the
loop. It follows that the distribution of current density in space is

j(r′) = I
δ(r′ − a)

a
δ(cos θ′) eϕ′ = I

δ(r′ − a)
a

δ(cos θ′) (− sinϕ′ ex + cosϕ′ ey). (5.16)

Because the geometry is cylindrically symmetric, we can, without loss of generality, choose the
observation point to lie in the x-z plane (i.e., ϕ = 0). It follows from Equation (5.8) that

Ax = − µ0 I
4π a

∫
sinϕ′ δ(cos θ′) δ(r′ − a)

|r − r′|ϕ=0
r′ 2 dr′ dΩ′, (5.17)

Ay =
µ0 I
4π a

∫
cosϕ′ δ(cos θ′) δ(r′ − a)

|r − r′|ϕ=0
r′ 2 dr′ dΩ′, (5.18)

Az = 0, (5.19)

where |r− r′|ϕ=0 = [r 2 + r′ 2 − 2 r r′ (cos θ cos θ′ + sin θ sin θ′ cos ϕ′)]1/2. It is clear that the integral
for Ax averages to zero. Hence, only Ay, which corresponds to Aϕ, is non-zero, and we can write

A = Aϕ(r, θ) eϕ, (5.20)

where
Aϕ(r, θ) =

µ0 I
4π a

∫
cosϕ′ δ(cos θ′) δ(r′ − a)

|r − r′| r′ 2 dr′ dΩ′, (5.21)

which reduces to

Aϕ(r, θ) =
µ0 I a

4π

∮
cosϕ′ dϕ′

|r − r′|r′=a,θ′=π/2, ϕ=0
=
µ0 I a

4π

∮
cosϕ′ dϕ′

(r 2 + a 2 − 2 a r sin θ cosϕ′)1/2 . (5.22)

The previous integral can be expressed in terms of complete elliptic integrals,1 but this is not
particularly illuminating. A better approach is to make use of the expansion of the Green’s function
for Poisson’s equation in terms of spherical harmonics given in Section 3.5:

1
4π |r − r′| =

∑
l=0,∞

∑
m=−l,+l

1
2 l + 1

(
r l
<

r l+1
>

)
Y ∗l,m(θ′, ϕ′) Yl,m(θ, ϕ). (5.23)

Here, r< represents the lesser of r and r′, whereas r> represents the greater of r and r′. Hence,

Aϕ(r, θ) = µ0 I a Re
∑

l=0,∞

∑
m=−l,+l

Yl,m(θ, 0)
2 l + 1

(
r l
<

r l+1
>

) ∮
Yl,m(π/2, ϕ′) e i ϕ′ dϕ′, (5.24)

1J.D. Jackson, Classical Electrodynamics, 2nd Edition, (Wiley, 1962). Section 5.5.
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where r< now represents the lesser of r and a, whereas r> represents the greater of r and a. It
follows from Equation (3.17) that∮

Y ∗l,m(θ′, ϕ′) e iϕ′ dϕ′ = 2π Y ∗l,m(θ′, ϕ′) e iϕ′ δm1. (5.25)

Thus, Equation (5.24) yields

Aϕ(r, θ) = 2π µ0 I a Re
∑

l=0,∞

Yl,1(θ, 0)
2 l + 1

(
r l
<

r l+1
>

)
Y ∗l,1(π/2, ϕ′) e i ϕ′ . (5.26)

However, according to Equation (3.17),

Yl,1(θ, 0) =
[

(2 l + 1)
4π l (l + 1)

]1/2

P 1
l (cos θ), (5.27)

Y ∗l,1(π/2, ϕ′) e i ϕ′ =

[
(2 l + 1)

4π l (l + 1)

]1/2

P 1
l (0). (5.28)

Hence, we obtain

Aϕ(r, θ) =
1
2
µ0 I a

∑
l=1,3,5,···

P1
l (0)

l (l + 1)

(
r l
<

r l+1
>

)
P1

l (cos θ), (5.29)

where we have made use of the fact that P1
l (0) = 0 when l is even.2 To be more exact,

Aϕ(r, θ) =
1
2
µ0 I

∑
l=1,3,5,···

P1
l (0)

l (l + 1)

( r
a

)l
P1

l (cos θ) (5.30)

for r < a, and

Aϕ(r, θ) =
1
2
µ0 I

∑
l=1,3,5,···

P1
l (0)

l (l + 1)

(a
r

)l+1
P1

l (cos θ) (5.31)

for r > a.
Now, according to Equations (5.7) and (5.20),

Br =
1

r sin θ
∂

∂θ
(sin θ Aϕ), (5.32)

Bθ = −1
r
∂

∂r
(r Aϕ), (5.33)

Bϕ = 0. (5.34)

Given that 3

1
sin θ

d
dθ

[
sin θ P1

l (cos θ)
]
= −l (l + 1) Pl(cos θ), (5.35)

2Ibid.
3Ibid.
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we find that

Br(r, θ) = −µ0 I
2 a

∑
l=1,3,5,···

P1
l (0)

( r
a

)l−1
Pl(cos θ), (5.36)

Bθ(r, θ) = −µ0 I
2 a

∑
l=1,3,5,···

P1
l (0)
l

( r
a

)l−1
P1

l (cos θ) (5.37)

in the region r < a. In particular, because Pl(x) = −x and P1
1(x) = −(1 − x2)1/2, we obtain

Br(0) =
µ0 I
2 a

cos θ, (5.38)

Bθ(0) = −µ0 I
2 a

sin θ. (5.39)

The previous two equations can be combined to give

B(0) =
µ0 I
2 a

ez. (5.40)

Of course, this result can be obtained in a more straightforward fashion via the direct application
of the Biot-Savart law. We also have

Br(r, θ) = −µ0 I
2 a

∑
l=1,3,5,···

P1
l (0)

(a
r

)l+2
Pl(cos θ), (5.41)

Bθ(r, θ) =
µ0 I
2 a

∑
l=1,3,5,···

P1
l (0)

l + 1

(a
r

)l+2
P1

l (cos θ) (5.42)

in the region r > a. A long way from the current loop (i.e., r/a→∞), we obtain

Aϕ(r, θ) =
µ0

4π
m

sin θ
r 2 , (5.43)

Br(r, θ) =
µ0

4π
m

2 cos θ
r 3 , (5.44)

Bθ(r, θ) =
µ0

4π
m

sin θ
r 3 , (5.45)

where m = I π a 2.
Now, a small planar current loop of area A, carrying a current I, constitutes a magnetic dipole

of moment
m = I A n. (5.46)

Here, n is a unit normal to the loop in the sense determined by the right-hand circulation rule
(with the current determining the sense of circulation). It follows that in the limit a → 0 and
I π a 2 → m the current loop considered previously constitutes a magnetic dipole of moment m =
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m ez. Moreover, Equations (5.43)–(5.45) specify the non-zero components of the vector potential
and the magnetic field generated by the dipole. It is easily seen from Equation (5.43) that

A =
µ0

4π
m × r

r 3 . (5.47)

Taking the curl of this expression, we obtain

B =
µ0

4π

[
3 (m · r) r − r 2 m

r 5

]
, (5.48)

which is consistent with Equations (5.44) and (5.45).

5.5 Localized Current Distribution

Consider the magnetic field generated by a current distribution that is localized in some relatively
small region of space centered on the origin. From Equation (5.8), we have

A(r) =
µ0

4π

∫
j(r′)
|r − r′| dV ′. (5.49)

Assuming that r 
 r′, so that our observation point lies well outside the distribution, we can write

1
|r − r′| =

1
|r| +

r · r′
|r| 3 + · · · . (5.50)

Thus, the ith Cartesian component of the vector potential has the expansion

Ai(r) =
µ0

4π
1
|r|

∫
ji(r′) dV ′ +

µ0

4π
r
|r| 3 ·

∫
ji(r′) r′ dV ′ + · · · (5.51)

Consider the integral

K =
∫

( f j · ∇′g + g j · ∇′ f ) dV ′, (5.52)

where j(r′) is a divergence-free [see Equation (5.5)] localized current distribution, and f (r′) and
g(r′) are two well-behaved functions. Integrating the first term by parts, making use of the fact that
j′(r′)→ 0 as |r′| → ∞ (because the current distribution is localized), we obtain

K =
∫ [−g∇′ · ( f j) + g j · ∇′ f ] dV ′ (5.53)

Hence,

K =
∫ [−g j · ∇′ f − g f ∇′ · j + g j · ∇′ f ] dV ′ = 0, (5.54)

because ∇′ · j = 0. Thus, we have proved that∫
( f j · ∇′g + g j · ∇′ f ) dV ′ = 0. (5.55)
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Let f = 1 and g = x′i (where x′i is the ith component of r′). It immediately follows from
Equation (5.55) that ∫

ji(r′) dV ′ = 0. (5.56)

Likewise, if f = x′i and g = x′j then Equation (5.55) implies that∫ (
x′i j j + x′j ji

)
dV ′ = 0. (5.57)

According to Equations (5.51) and (5.56),

Ai(r) =
µ0

4π
r
|r| 3 ·

∫
ji(r′) r′ dV ′ + · · · . (5.58)

Now,

r ·
∫

ji(r′) r′ dV ′ = x j

∫
x′j ji dV ′ = −1

2
x j

∫
(x′i j j − x′j ji) dV ′, (5.59)

where use has been made of Equation (5.57), as well as the Einstein summation convention. Thus,

r ·
∫

ji r′ dV ′ = −1
2

∫ [
(r · j) r′ − (r · r′) j

]
i dV ′ = −1

2

[
r ×

∫
(r′ × j) dV ′

]
i
. (5.60)

Hence, we obtain

A(r) = −µ0

8π
r
|r| 3 ×

∫
(r′ × j) dV ′ + · · · . (5.61)

It is conventional to define the magnetization, or magnetic moment density, as

M(r) =
1
2

r × j(r). (5.62)

The integral of this quantity is known as the magnetic moment:

m =
1
2

∫
r′ × j′(r′) dV ′. (5.63)

It immediately follows from Equation (5.61) that the vector potential a long way from a localized
current distribution takes the form

A(r) =
µ0

4π
m × r

r 3 . (5.64)

The corresponding magnetic field is

B(r) = ∇ × A =
µ0

4π

[
3 (m · r) r − r 2 m

r 5

]
. (5.65)

Thus, we have demonstrated that the magnetic field far from any localized current distribution
takes the form of a magnetic dipole field whose moment is given by the integral (5.63).
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Consider a localized current distribution that consists of a closed planar loop carrying the cur-
rent I. If dr is a line element of the loop then Equation (5.63) reduces to

m = I
∮

1
2

r × dr. (5.66)

However, (1/2) r × dr = dA, where dA is a triangular element of vector area defined by the two
ends of dr and the origin. Thus, the loop integral gives the total vector area, A, of the loop. It
follows that

m = I A n, (5.67)

where n is a unit normal to the loop in the sense determined by the right-hand circulation rule
(with the current determining the sense of circulation). Of course, Equation (5.67) is identical to
Equation (5.46).

5.6 Exercises

5.1 Consider two thin current loops. Let loops 1 and 2 carry the currents I1 and I2, respectively.
The magnetic force exerted on loop 2 by loop 1 is [see Equation (5.3)]

F21 =
µ0 I1 I2

4π

∮
1

∮
2

dr2 × (dr1 × r12)
|r12| 3 ,

where r12 = r2 − r1. Here, r1 and r2 are the position vectors of elements of loops 1 and 2,
respectively. Demonstrate that the previous expression can also be written

F21 = −µ0 I1 I2

4π

∮
1

∮
2

(dr1 · dr2) r12

|r12| 3 .

Hence, deduce that
F12 = −F21,

in accordance with Newton’s third law of motion.

5.2 Consider the two current loops discussed in the previous question. The magnetic field
generated at a general position vector r by the current flowing around loop 1 is [see Equa-
tion (5.1)]

B(r) =
µ0 I1

4π

∮
1

dr1 × (r − r1)
|r − r1| 3 .

Demonstrate that
B = ∇ × A,

where

A(r) =
µ0 I1

4π

∮
1

dr1

|r − r1| .
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Show that the magnetic flux passing through loop 2, as a consequence of the current flowing
around loop 1, is

Φ21 =
µ0 I1

4π

∮
1

∮
2

dr2 · dr1

|r1 − r2| .
Hence, deduce that the mutual inductance of the two current loops takes the form

M =
µ0

4π

∮
1

∮
2

dr1 · dr2

|r2 − r1| .

5.3 The vector potential of a magnetic dipole of moment m is given by

A(r) =
µ0

4π
m × r

r 3 .

Show that the corresponding magnetic field is

B(r) =
µ0

4π

[
3 (r ·m) r − r 2 m

r 5

]
.

5.4 Demonstrate that the torque acting on a magnetic dipole of moment m placed in a uniform
external magnetic field B is

τ = m × B.

Hence, deduce that the potential energy of the magnetic dipole is

W = −m · B.

5.5 Consider two magnetic dipoles, m1 and m2. Suppose that m1 is fixed, whereas m2 can
rotate freely in any direction. Demonstrate that the equilibrium configuration of the second
dipole is such that

tan θ1 = −2 tan θ2,

where θ1 and θ2 are the angles subtended by m1 and m2, respectively, with the radius vector
joining them.
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6 Magnetostatics in Magnetic Media

6.1 Magnetization

All matter is built up out of atoms, and every atom contains moving electrons. The currents asso-
ciated with these electrons are termed atomic currents. Each atomic current is a tiny closed circuit
of atomic dimensions, and may therefore be appropriately described as a magnetic dipole. If the
atomic currents of a given atom all flow in the same plane then the atomic dipole moment is di-
rected normal to the plane (in the sense given by the right-hand circulation rule), and its magnitude
is the product of the total circulating current and the area of the current loop. More generally, if
j(r) is the atomic current density at point r then the magnetic moment of the atom is [see Equa-
tion (5.63)]

m =
1
2

∫
r × j dV, (6.1)

where the integral is over the volume of the atom. If there are N such atoms or molecules per unit
volume then the magnetization, M, (i.e., the magnetic dipole moment per unit volume) is given by
M = N m. More generally,

M(r) =
∑

i

Ni 〈mi〉, (6.2)

where 〈mi〉 is the average magnetic dipole moment of the ith type of molecule in the vicinity of
point r, and Ni is the average number of such molecules per unit volume at r.

Consider a general medium that is made up of molecules that are polarizable, and possess a net
magnetic moment. It is easily demonstrated that any circulation in the magnetization field M(r)
gives rise to an effective current density jm in the medium. In fact,

jm = ∇ ×M. (6.3)

This current density is called the magnetization current density, and is usually distinguished from
the true current density, jt, which represents the convection of free charges in the medium. In fact,
there is a third type of current called a polarization current, which is due to the apparent convection
of bound charges. It is easily demonstrated that the polarization current density, jp, is given by

jp =
∂P
∂t
. (6.4)

Thus, the total current density, j, in the medium is given by

j = jt + ∇ ×M +
∂P
∂t
. (6.5)

It must be emphasized that all three terms on the right-hand side of the previous equation represent
real physical currents, although only the first term is due to the motion of charges over more than
atomic dimensions.
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The fourth Maxwell equation, (1.4), takes the form

∇ × B = µ0 j + µ0 ε0
∂E
∂t
, (6.6)

which can also be written
∇ × B = µ0 jt + µ0 ∇ ×M + µ0

∂D
∂t
, (6.7)

where use has been made of the definition D = ε0 E+P. The previous expression can be rearranged
to give

∇ ×H = jt +
∂D
∂t
, (6.8)

where
H =

B
µ0
−M (6.9)

is termed the magnetic intensity, and has the same dimensions as M (i.e., magnetic dipole moment
per unit volume). In a steady-state situation, the curl theorem tell us that∮

C
H · dr =

∫
S

jt · dS. (6.10)

In other words, the line integral of H around some closed loop is equal to the flux of true current
through any surface attached to that loop. Unlike the magnetic field B (which specifies the force
e v × B acting on a charge e moving with velocity v), or the magnetization M (which specifies
the magnetic dipole moment per unit volume), the magnetic intensity H has no clear physical
meaning. The only reason for introducing it is that it enables us to calculate magnetic fields in
the presence of magnetic materials without first having to know the distribution of magnetization
currents. However, this is only possible if we possess a constitutive relation connecting B and H.

6.2 Magnetic Susceptibility and Permeability

In a large class of materials, there exists an approximately linear relationship between M and H. If
the material is isotropic then

M = χm H, (6.11)

where the dimensionless quantity χm is known as the magnetic susceptibility. If χm is positive
then the material is called paramagnetic, and the magnetic field is strengthened by the presence
of the material. If χm is negative then the material is called diamagnetic, and the magnetic field
is weakened in the presence of the material. The magnetic susceptibilities of paramagnetic and
diamagnetic materials are generally extremely small. A few sample values are given in Table 6.1.

A linear relationship between M and H also implies a linear relationship between B and H. In
fact, from Equation (6.9), we can write

B = µH, (6.12)

where
µ = µ0 (1 + χm) (6.13)
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Material χm

Aluminium 2.3 × 10−5

Copper −0.98 × 10−5

Diamond −2.2 × 10−5

Tungsten 6.8 × 10−5

Hydrogen (1 atm) −0.21 × 10−8

Oxygen (1 atm) 209.0 × 10−8

Nitrogen (1 atm) −0.50 × 10−8

Table 6.1: Magnetic susceptibilities of some paramagnetic and diamagnetic materials at room
temperature. Data obtained from the Handbook of Chemistry and Physics, Chemical Rubber Company
Press, Baca Raton, FL.

is termed the magnetic permeability of the material in question. (Likewise, µ0 is termed the per-
meability of free space.) It is clear from Table 6.1 that the permeabilities of common diamagnetic
and paramagnetic materials do not differ substantially from that of free space. In fact, to all intents
and purposes, the magnetic properties of such materials can be safely neglected (i.e., µ = µ0).

6.3 Ferromagnetism

There is, however, a third class of magnetic materials called ferromagnetic materials. Such materi-
als are characterized by a possible permanent magnetization, and generally have a profound effect
on magnetic fields (i.e., µ/µ0 
 1). Unfortunately, ferromagnetic materials do not exhibit a linear
dependence between M and H, or between B and H, so that we cannot employ Equations (6.11)
and (6.12) with constant values of χm and µ. It is still expedient to use Equation (6.12) as the
definition of µ, with µ = µ(H). However, this practice leads to complications under certain circum-
stances. In fact, the permeability of a ferromagnetic material, as defined by Equation (6.12), can
vary through the entire range of possible values from zero to infinity, and may be either positive or
negative. The most sensible approach is to consider each problem involving ferromagnetic mate-
rials separately, try to determine which region of the B-H diagram is important for the particular
case in hand, and then make approximations appropriate to this region.

Let us, first, consider an unmagnetized sample of ferromagnetic material. If the magnetic
intensity, which is initially zero, is increased monotonically, then the B-H relationship traces out
a curve such as that shown in Figure 6.1. This is called a magnetization curve. It is evident that
the permeabilities µ derived from the curve (according to the rule µ = B/H) are always positive,
and show a wide range of values. The maximum permeability occurs at the “knee” of the curve.
In some materials this maximum permeability is as large as 105 µ0. The reason for the knee in the
curve is that the magnetization M reaches a maximum value in the material, so that

B = µ0 (H +M) (6.14)

continues to increase at large H only because of the µ0 H term. The maximum value of M is called
the saturation magnetization of the material.
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B
→

H →

Figure 6.1: Schematic magnetization curve of an initially unmagnetized ferromagnet.

Next, consider a ferromagnetic sample magnetized by the previously described procedure. If
the magnetic intensity H is decreased then the B-H relation does not follow back down the curve
of Figure 6.1, but instead moves along a new curve, shown in Figure 6.2, to the point R. The
magnetization, once established, does not disappear with the removal of H. In fact, it takes a
reversed magnetic intensity to reduce the magnetization to zero. If H continues to build up in the
reversed direction then M (and, hence, B) becomes increasingly negative. Finally, if H increases
again then the operating point follows the lower curve of Figure 6.2. Thus, the B-H curve for
increasing H is quite different to that for decreasing H. This phenomenon is known as hysteresis.

The loop shown in Figure 6.2 is called the hysteresis loop of the material in question. The
value of B at the point R is called the retentivity or remanence. The magnitude of H at the point
C is called the coercivity. It is evident that µ is negative in the second and fourth quadrants of the
loop, and positive in the first and third quadrants. The shape of the hysteresis loop depends not
only on the nature of the ferromagnetic material, but also on the maximum value of H to which
the material has been subjected. However, once this maximum value, Hmax, becomes sufficient
to produce saturation in the material, the hysteresis loop does not change shape with any further
increase in Hmax.

Ferromagnetic materials are used either to channel magnetic flux (e.g., around transformer
circuits), or as sources of magnetic field (e.g., permanent magnets). For use as a permanent magnet,
the material is first magnetized by placing it in a strong magnetic field. However, once the magnet
is removed from the external field, it is subject to a demagnetizing H. Thus, it is vitally important
that a permanent magnet should possess both a large remanence and a large coercivity. As will
become clear, later on, it is generally a good idea for the ferromagnetic materials used to channel
magnetic flux around transformer circuits to possess small remanences and small coercivities.
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C
H →

B
→

R

Figure 6.2: Typical hysteresis loop of a ferromagnetic material.

6.4 Boundary Conditions for B and H

Let us derive the matching conditions for B and H at the boundary between two magnetic media.
The governing equations for a steady-state situation are

∇ · B = 0, (6.15)

and
∇ ×H = jt. (6.16)

Integrating Equation (6.15) over a Gaussian pill-box enclosing part of the boundary surface be-
tween the two media gives

(B2 − B1) · n21 = 0, (6.17)

where n21 is the unit normal to this surface directed from medium 1 to medium 2. Integrating
Equation (6.16) around a small loop that straddles the boundary surface yields

(H2 −H1) × n21 = 0, (6.18)

assuming that there is no true current sheet flowing at the surface. In general, there is a magnetiza-
tion current sheet flowing at the boundary surface whose density is given by

Jm = n21 × (M2 −M1), (6.19)

where M1 is the magnetization in medium 1 at the boundary, et cetera. It is clear that the normal
component of the magnetic field, and the tangential component of the magnetic intensity, are both
continuous across any boundary between magnetic materials.
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6.5 Permanent Ferromagnets

Let us consider the magnetic field generated by a distribution of permanent ferromagnets. Suppose
that the magnets in question are sufficiently “hard” that their magnetization is essentially inde-
pendent of the applied field for moderate field-strengths. Such magnets can be treated as if they
contain a fixed magnetization M(r).

Let us assume that there are no true currents in the problem, so that jt = 0. Let us also assume
that we are dealing with a steady-state situation. Under these circumstances Equation (6.8) reduces
to

∇ ×H = 0. (6.20)

It follows that we can write
H = −∇φm, (6.21)

where φm is called the magnetic scalar potential. Now, we know that

∇ · B = µ0 ∇ · (H +M) = 0. (6.22)

Equations (6.21) and (6.22) combine to give

∇ 2φm = −ρm, (6.23)

where
ρm = −∇ ·M. (6.24)

Thus, the magnetostatic field, H, is determined by Poisson’s equation. We can think of ρm as an
effective magnetic charge density. Of course, this magnetic charge has no physical reality. We
have only introduced it in order to make the problem of the steady magnetic field generated by a
set of permanent magnets look formally the same as that of the steady electric field generated by a
distribution of charges.

The unique solution of Poisson’s equation, subject to sensible boundary conditions at infinity,
is well known (see Section 2.3):

φm(r) =
1

4π

∫
ρm(r′)
|r − r′| dV ′. (6.25)

This solution yields

φm(r) = − 1
4π

∫ ∇′ ·M(r′)
|r − r′| dV ′. (6.26)

If the magnetization field M(r) is well behaved and localized then we can integrate by parts to
obtain

φm(r) =
1

4π

∫
M(r′) · ∇′

(
1

|r − r′|
)

dV ′. (6.27)

Now,

∇′
(

1
|r − r′|

)
= −∇

(
1

|r − r′|
)
, (6.28)
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so our expression for the magnetic potential can be written

φm(r) = − 1
4π
∇ ·

∫
M(r′)
|r − r′| dV ′. (6.29)

Far from the region of non-vanishing magnetization, the potential reduces to

φm(r) � −∇
(

1
4π r

)
·
∫

M(r′) dV ′ � m · r
4π r 3 , (6.30)

where m =
∫

M dV is the total magnetic moment of the distribution. This is the scalar potential
of a dipole. (See Sections 3.6 and 5.5.) Thus, an arbitrary localized distribution of magnetization
asymptotically produces a dipole magnetic field whose strength is determined by the net magnetic
moment of the distribution.

It is often a good approximation to treat the magnetization field M(r) as a discontinuous quan-
tity. In other words, M(r) is specified throughout the “hard” ferromagnets in question, and sud-
denly falls to zero at the boundaries of these magnets. Integrating Equation (6.24) over a Gaussian
pill-box that straddles one of these boundaries leads to the conclusion that there is an effective
magnetic surface charge density,

σm = n ·M, (6.31)

on the surface of the ferromagnets, where M is the surface magnetization, and n is a unit outward
directed normal to the surface. Under these circumstances, Equation (6.26) yields

φm(r) = − 1
4π

∫
V

∇′ ·M(r′)
|r − r′| dV ′ +

1
4π

∫
S

M(r′) · dS′

|r − r′| , (6.32)

where V represents the volume occupied by the magnets and S is the bounding surface to V . Here,
dS is an outward directed element of S . It is clear that the right-hand side of Equation (6.32)
consists of a volume integral involving the volume magnetic charges ρm = −∇ ·M, and a surface
integral involving the surface magnetic charges σm = n · M. If the magnetization is uniform
throughout the volume V then the volume integral vanishes, and only the surface integral makes a
contribution.

We can also write B = ∇ × A in order to satisfy ∇ · B = 0 automatically. It follows from
Equations (6.8) and (6.9) that

∇ ×H = ∇ × (B/µ0 −M) = 0, (6.33)

which gives
∇ 2A = −µ0 jm, (6.34)

because jm = ∇ ×M. The unique solution to Equation (6.34), subject to sensible boundary condi-
tions at infinity, is well known:

A(r) =
µ0

4π

∫
jm(r′)
|r − r′| dV ′. (6.35)

Thus,

A(r) =
µ0

4π

∫ ∇′ ×M(r′)
|r − r′| dV ′. (6.36)
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If the magnetization field is discontinuous, it is necessary to add a surface integral to the previous
expression. It is straightforward to show that

A(r) =
µ0

4π

∫
V

∇′ ×M(r′)
|r − r′| dV ′ +

µ0

4π

∫
S

M(r′) × dS′

|r − r′| . (6.37)

It is clear that the previous expression consists of a volume integral involving the volume magne-
tization currents jm = ∇ ×M, and a surface integral involving the surface magnetization currents
Jm = M × n [see Equation (6.19)]. However, if the magnetization field is uniform throughout V
then only the surface integral makes a contribution.

6.6 Uniformly Magnetized Sphere

Consider a sphere of radius a, with a uniform permanent magnetization M = M0 ez, surrounded
by a vacuum region. The simplest way of solving this problem is in terms of the scalar magnetic
potential introduced in Equation (6.21). It follows from Equations (6.23) and (6.24) that φm satisfies
Laplace’s equation,

∇ 2φm = 0, (6.38)

because there is zero volume magnetic charge density in a vacuum, or a uniformly magnetized
magnetic medium. However, according to Equation (6.31), there is a magnetic surface charge
density,

σm = er ·M = M0 cos θ, (6.39)

on the surface of the sphere. Here, r and θ are spherical coordinates. One of the matching con-
ditions at the surface of the sphere is that the tangential component of H must be continuous. It
follows from Equation (6.21) that the scalar magnetic potential must be continuous at r = a, so
that

φm(r = a+, θ) = φm(r = a−, θ). (6.40)

Integrating Equation (6.23) over a Gaussian pill-box straddling the surface of the sphere yields[
∂φm

∂r

]r=a+

r=a−
= −σm = −M0 cos θ. (6.41)

In other words, the magnetic charge sheet on the surface of the sphere gives rise to a discontinuity
in the radial gradient of the magnetic scalar potential at r = a.

The most general axisymmetric solution to Equation (6.38) that satisfies physical boundary
conditions at r = a and r = ∞ is

φm(r, θ) =
∑

l=0,∞
Al r lPl(cos θ) (6.42)

for r < a, and
φm(r, θ) =

∑
l=0,∞

Bl r−(l+1)Pl(cos θ) (6.43)
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for r ≥ a. The boundary condition (6.40) yields

Bl = Al a 2 l+1 (6.44)

for all l. The boundary condition (6.41) gives

−(l + 1) Bl

a l+2 − l Al a l−1 = −M0 δl1 (6.45)

for all l, because Pl(cos θ) = cos θ. It follows that

Al = Bl = 0 (6.46)

for l � 1, and

A1 =
M0

3
, (6.47)

B1 =
M0 a 3

3
. (6.48)

Thus,

φm(r, θ) =
M0 a 2

3
r

a 2 cos θ (6.49)

for r < a, and

φm(r, θ) =
M0 a 2

3
a
r 2 cos θ (6.50)

for r ≥ a. Because there is a uniqueness theorem associated with Poisson’s equation (see Sec-
tion 2.3), we can be sure that this axisymmetric potential is the only solution to the problem that
satisfies physical boundary conditions at r = 0 and infinity.

In the vacuum region outside the sphere,

B = µ0 H = −µ0 ∇φm. (6.51)

It is easily demonstrated from Equation (6.50) that

B(r > a) =
µ0

4π

[
−m

r 3 +
3 (m · r) r

r 5

]
, (6.52)

where
m =

4
3
π a 3 M. (6.53)

This, of course, is the magnetic field of a magnetic dipole of moment m. [See Section 5.5.] Not
surprisingly, the net dipole moment of the sphere is equal to the integral of the magnetization M
(which is the dipole moment per unit volume) over the volume of the sphere.

Inside the sphere, we have H = −∇φm and B = µ0 (H +M), giving

H = −M
3
, (6.54)
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µ0Hc

B
→

BR

B = −2µ0H

operating point

← −µ0H

Figure 6.3: Schematic demagnetization curve for a permanent magnet.

and

B =
2
3
µ0 M. (6.55)

Thus, both the H and B fields are uniform inside the sphere. Note that the magnetic intensity is
oppositely directed to the magnetization. In other words, the H field acts to demagnetize the sphere.
How successful it is at achieving this depends on the shape of the hysteresis curve in the negative H
and positive B quadrant. This curve is sometimes called the demagnetization curve of the magnetic
material that makes up the sphere. Figure 6.3 shows a schematic demagnetization curve. The curve
is characterized by two quantities: the retentivity BR (i.e., the residual magnetic field strength at
zero magnetic intensity) and the coercivity µ0 Hc (i.e., the negative magnetic intensity required to
demagnetize the material. The latter quantity is conventionally multiplied by µ0 to give it the units
of magnetic field-strength). The operating point (i.e., the values of B and µ0 H inside the sphere)
is obtained from the intersection of the demagnetization curve and the curve B = µH. It is clear
from Equations (6.54) and (6.55) that

µ = −2 µ0 (6.56)

for a uniformly magnetized sphere in the absence of external fields. The magnetization inside the
sphere is easily calculated once the operating point has been determined. In fact, M0 = B − µ0 H.
It is clear from Figure 6.3 that for a magnetic material to be a good permanent magnet it must
possess both a large retentivity and a large coercivity. A material with a large retentivity but a
small coercivity is unable to retain a significant magnetization in the absence of a strong external
magnetizing field.
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6.7 Soft Iron Sphere in Uniform Magnetic Field

The opposite extreme to a “hard” ferromagnetic material, which can maintain a large remnant
magnetization in the absence of external fields, is a “soft” ferromagnetic material, for which the
remnant magnetization is relatively small. Let us consider a somewhat idealized situation in which
the remnant magnetization is negligible. In this situation, there is no hysteresis, so the B-H relation
for the material reduces to

B = µ(B) H, (6.57)

where µ(B) is a single valued function. The most commonly occurring “soft” ferromagnetic mate-
rial is soft iron (i.e., annealed, low impurity, iron).

Consider a sphere of soft iron placed in an initially uniform external field B0 = B0 ez. The µ0 H
and B fields inside the sphere are most easily obtained by taking the solutions (6.54) and (6.55)
(which are still valid), and superimposing on them the uniform field B0. We are justified in doing
this because the equations that govern magnetostatic problems are linear. Thus, inside the sphere
we have

µ0 H = B0 − 1
3
µ0 M, (6.58)

B = B0 +
2
3
µ0 M. (6.59)

Combining Equations (6.57), (6.58), and (6.59) yields

µ0 M = 3
(
µ − µ0

µ + 2 µ0

)
B0, (6.60)

with

B =
(

3 µ
µ + 2 µ0

)
B0, (6.61)

where, in general, µ = µ(B). Clearly, for a highly permeable material (i.e., µ/µ0 
 1, which is
certainly the case for soft iron) the magnetic field strength inside the sphere is approximately three
times that of the externally applied field. In other words, the magnetic field is amplified inside the
sphere.

The amplification of the magnetic field by a factor three in the high permeability limit is specific
to a sphere. It can be shown that for elongated objects (e.g., rods), aligned along the direction of
the external field, the amplification factor can be considerably larger than three.

It is important to realize that the magnetization inside a ferromagnetic material cannot increase
without limit. The maximum possible value of M is called the saturation magnetization, and
is usually denoted Ms. Most ferromagnetic materials saturate when they are placed in external
magnetic fields whose strengths are greater than, or of order, one tesla. Suppose that our soft
iron sphere first attains the saturation magnetization when the unperturbed external magnetic field
strength is Bs. It follows from Equations (6.59) and (6.60) (with µ 
 µ0) that

B = B0 + 2 Bs (6.62)



114 CLASSICAL ELECTROMAGNETISM

inside the sphere, for B0 > Bs. In this case, the field amplification factor is

B
B0
= 1 + 2

Bs

B0
. (6.63)

Thus, for B0 
 Bs the amplification factor approaches unity. We conclude that if a ferromagnetic
material is placed in an external field that greatly exceeds that required to cause saturation then the
material effectively loses its magnetic properties, so that µ � µ0. Clearly, it is very important to
avoid saturating the soft magnets used to channel magnetic flux around transformer circuits. This
sets an upper limit on the magnetic field-strengths that can occur in such circuits.

6.8 Magnetic Shielding

There are many situations, particularly in experimental physics, where it is desirable to shield
a certain region from magnetic fields. This goal can be achieved by surrounding the region in
question by a material of high permeability. It is vitally important that a material used as a magnetic
shield does not develop a permanent magnetization in the presence of external fields, otherwise
the material itself may become a source of magnetic fields. The most effective commercially
available magnetic shielding material is called mu-metal, and is an alloy of 5 percent copper, 2
percent chromium, 77 percent nickel, and 16 percent iron. The maximum permeability of mu-
metal is about 105 µ0. This material also possesses a particularly low retentivity and coercivity.
Unfortunately, mu-metal is extremely expensive. Let us investigate how much of this material is
actually required to shield a given region from an external magnetic field.

Consider a spherical shell of magnetic shielding, made up of material of permeability µ, placed
in a formerly uniform magnetic field B0 = B0 ez. Suppose that the inner radius of the shell is a, and
the outer radius is b. Because there are no free currents in the problem, we can write H = −∇φm.
Furthermore, because B = µH and ∇ · B = 0, it is clear that the magnetic scalar potential satisfies
Laplace’s equation, ∇ 2φm = 0, throughout all space. The boundary conditions are that the potential
must be well behaved at r = 0 and r → ∞, and also that the tangential and the normal components
of H and B, respectively, must be continuous at r = a and r = b. The boundary conditions on H
merely imply that the scalar potential φm must be continuous at r = a and r = b. The boundary
conditions on B yield

µ0
∂φm(r = a−, θ)

∂r
= µ

∂φm(r = a+, θ)
∂r

, (6.64)

µ0
∂φm(r = b+, θ)

∂r
= µ

∂φm(r = b−, θ)
∂r

. (6.65)

Let us try the following test solution for the magnetic potential:

φm = −B0

µ0
r cos θ +

α

r 2 cos θ (6.66)

for r > b,
φm =

(
β r +

γ

r 2

)
cos θ (6.67)
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for b ≥ r ≥ a, and
φm = δ r cos θ (6.68)

for r < a. This potential is certainly a solution of Laplace’s equation throughout space. It yields the
uniform magnetic field B0 as r → ∞, and satisfies physical boundary conditions at r = 0 and in-
finity. Because there is a uniqueness theorem associated with Poisson’s equation (see Section 2.3),
we can be certain that this potential is the correct solution to the problem provided that the arbitrary
constants α, β, et cetera, can be adjusted in such a manner that the boundary conditions at r = a
and r = b are also satisfied.

The continuity of φm at r = a and r = b requires that

β a +
γ

a 2 = δ a, (6.69)

and
β b +

γ

b 2 = −
B0

µ0
b +

α

b 2 . (6.70)

The boundary conditions (6.64) and (6.65) yield

µ0 δ = µ

(
β − 2 γ

a 3

)
, (6.71)

and

µ0

(
−B0

µ0
− 2α

b 3

)
= µ

(
β − 2 γ

b 3

)
. (6.72)

It follows that

µ0 α =

[
(2 µ + µ0) (µ − µ0)

(2 µ + µ0) (µ + 2 µ0) − 2 (a 3/b 3) (µ − µ0) 2

]
(b 3 − a 3) B0, (6.73)

µ0 β = −
[

3 (2 µ + µ0) µ0

(2 µ + µ0) (µ + 2 µ0) − 2 (a 3/b 3) (µ − µ0) 2

]
B0, (6.74)

µ0 γ = −
[

3 (µ − µ0) µ0

(2 µ + µ0) (µ + 2 µ0) − 2 (a 3/b 3) (µ − µ0) 2

]
a 3B0, (6.75)

µ0 δ = −
[

9 µ µ0

(2 µ + µ0) (µ + 2 µ0) − 2 (a 3/b 3) (µ − µ0) 2

]
B0. (6.76)

Consider the limit of a thin, high permeability shell for which b = a + d, d/a 	 1, and
µ/µ0 
 1. In this limit, the field inside the shell is given by

B � 3
2
µ0

µ

a
d

B0. (6.77)

Thus, given that µ � 105µ0 for mu-metal, we can reduce the magnetic field-strength inside the shell
by almost a factor of 1000 using a shell whose thickness is only 1/100 th of its radius. Note, how-
ever, that as the external field-strength, B0, is increased, the mu-metal shell eventually saturates,
and µ/µ0 gradually falls to unity. Thus, extremely strong magnetic fields (typically, B0 >∼ 1 tesla)
are hardly shielded at all by mu-metal, or similar magnetic materials.
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6.9 Magnetic Energy

Consider an electrical conductor. Suppose that a battery with an electromotive field E′ is feeding
energy into this conductor. The energy is either dissipated as heat, or is used to generate a magnetic
field. Ohm’s law inside the conductor gives

jt = σ (E + E′), (6.78)

where jt is the true current density, σ is the conductivity, and E is the inductive electric field.
Taking the scalar product with jt, we obtain

E′ · jt =
j 2
t

σ
− E · jt. (6.79)

The left-hand side of this equation represents the rate at which the battery does work on the con-
ductor. The first term on the right-hand side is the rate of Joule heating inside the conductor. We
tentatively identify the remaining term with the rate at which energy is fed into the magnetic field.
If all fields are quasi-stationary (i.e., slowly varying) then the displacement current can be ne-
glected, and Equation (6.8) reduces to ∇×H = jt. Substituting this expression into Equation (6.79)
and integrating over all space, we get∫

E′ · (∇ ×H) dV =
∫

(∇ ×H)2

σ
dV −

∫
E · (∇ ×H) dV. (6.80)

The last term can be integrated by parts using the identity

∇ · (E ×H) ≡ H · (∇ × E) − E · (∇ ×H). (6.81)

Making use of the divergence theorem, as well as Equation (1.3), we get∫
E · (∇ ×H) dV = −

∫
H · ∂B

∂t
dV −

∫
(E ×H) · dS. (6.82)

Because E ×H falls off at least as fast as 1/r 5 in electrostatic and quasi-stationary magnetic fields
(1/r 2 comes from electric monopole fields, and 1/r 3 from magnetic dipole fields), the surface
integral in the previous expression can be neglected. Of course, this is not the case for radiation
fields, for which E and H fall off like 1/r. (See Section 1.8.) Thus, the constraint of “quasi-
stationarity” effectively means that the fields vary sufficiently slowly that any radiation fields can
be neglected.

The total power expended by the battery can now be written∫
E′ · (∇ ×H) dV =

∫
(∇ ×H)2

σ
dV +

∫
H · ∂B

∂t
dV. (6.83)

The first term on the right-hand side has already been identified as the energy loss rate due to Joule
heating. The last term is obviously the rate at which energy is fed into the magnetic field. The
variation δU in the magnetic field energy can therefore be written

δU =
∫

H · δB dV. (6.84)
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In order to make Equation (6.84) integrable, we must assume a functional relationship between
H and B. For a medium that magnetizes linearly, the integration can be carried out, in much the
same manner as Equation (4.71), to give

U =
1
2

∫
H · B dV. (6.85)

Thus, the magnetostatic energy density inside a linear magnetic material is given by

W =
1
2

H · B. (6.86)

Unfortunately, most interesting magnetic materials, such as ferromagnets, exhibit a nonlinear re-
lationship between H and B. For such materials, Equation (6.84) can only be integrated between
definite states, and the result, in general, depends on the past history of the sample. For ferro-
magnets, the integral of Equation (6.84) has a finite, non-zero value when B is integrated around a
complete magnetization cycle. This cyclic energy loss is given by

∆U =
∫ ∮

H · dB dV. (6.87)

In other words, the energy expended per unit volume when a magnetic material is carried through
a magnetization cycle is equal to the area of its hysteresis loop as plotted in a graph of B against
H. Thus, it is particularly important to ensure that the magnetic used to form transformer cores
possess hysteresis loops with comparatively small areas, otherwise the transformers are likely to
be extremely inefficient.

6.10 Exercises

6.1 Given that the bound charge density associated with a polarization field P(r) is σb = −∇·P,
use charge conservation to deduce that the current density due to bound charges is

jp =
∂P
∂t
.

6.2 Given that ∇ ×H = 0 in the absence of true currents, and H = B/µ0 −M, demonstrate that
the current density due to magnetization currents is

jm = ∇ ×M.

6.3 A cylindrical hole of radius a is bored parallel to the axis of a cylindrical conductor of
radius b > a which carries a uniformly distributed current of density j running parallel to
its axis. The distance between the center of the conductor and the center of the hole is x0.
Find the B field in the hole.
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6.4 A sphere of radius a carries a uniform surface charge density σ. The sphere is rotated about
a diameter with constant angular velocity ω. Find the vector potential and the B field both
inside and outside the sphere.

6.5 Find the B and H fields inside and outside a spherical shell of inner radius a and outer
radius b which is magnetized permanently to a constant magnetization M.

6.6 A long hollow, right cylinder of inner radius a and outer radius b, and of relative perme-
ability µ, is placed in a region of initially uniform magnetic flux density B at right-angles
to the field. Find the flux density at all points in space. Neglect end effects.

6.7 A transformer consists of a thin uniform ring of ferromagnetic material of radius a, cross-
sectional area A, and magnetic permeability µ. The primary circuit is wrapped N1 times
around one side of the ring, and the secondary N2 times around the other side. Show that
the mutual inductance between the two circuits is

M =
µN1 N2 A

2π a
.

Suppose that a thin gap of thickness d 	 a is cut in a part of the ring in which there are no
windings. What is the new mutual inductance of the two circuits? Suppose that the gap is
filled with ferromagnetic material of permeability µ′. What, now, is the mutual inductance
of the circuits? You may neglect flux-leakage (i.e., you may assume that magnetic field-
lines do not leak out of the transformer core into the surrounding vacuum, except in the
gap).
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7 Wave Propagation in Uniform Dielectric Media

7.1 Introduction

As is easily demonstrated, the fields associated with an electromagnetic wave propagating through
a uniform dielectric medium of dielectric constant ε satisfy(

ε

c 2

∂ 2

∂t 2 − ∇ 2
)

E = 0, (7.1)

and
∇ × E = −∂B

∂t
. (7.2)

The plane wave solutions to these equations are well known:

E = E0 exp [ i (k · r − ω t)] , (7.3)

B = B0 exp [ i (k · r − ω t)] , (7.4)

where E0 and B0 are constant vectors,
ω 2

k 2 =
c 2

ε
, (7.5)

and
B0 =

k × E0

ω
. (7.6)

The phase velocity of the wave is given by

v =
ω

k
=

c
n
, (7.7)

where
n =
√
ε (7.8)

is the medium’s refractive index. Thus, in a conventional dielectric medium (i.e., ε real and greater
than unity), an electromagnetic wave propagates with a phase velocity that is slower than the
velocity of light in vacuum.

In some dielectric media, the dielectric constant, ε, is complex. According to Equation (7.5),
this leads to a complex wavevector, k (assuming that the angular frequency is real). Thus, for a
wave propagating in the x-direction, we obtain

E = E0 exp( i [Re(k) x − ω t]) exp[−Im(k) x]. (7.9)

In other words, a complex dielectric constant leads to the attenuation (or amplification) of the wave,
as it propagates through the medium.
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Up to now, we have tacitly assumed that ε is the same for waves of all frequencies. In prac-
tice, ε varies (in some cases, strongly) with the wave frequency. Consequently, waves of different
frequencies propagate through a dielectric medium at different phase velocities, leading to the
dispersion of wave pulses. Moreover, there may exist frequency bands in which the waves are
attenuated (i.e., absorbed). All of this makes the problem of determining the behavior of a wave
pulse as it propagates through a dielectric medium a far from straightforward task. Of course, the
solution to this problem for a wave pulse traveling through a vacuum is fairly trivial: that is, the
pulse propagates at the velocity c without changing shape. What is the equivalent result for the case
of a dielectric medium? This is a significant question, because most of our information regarding
the universe is obtained from the study of electromagnetic waves emitted by distant objects. All
of these waves have to propagate through dispersive media (e.g., the interstellar medium, the iono-
sphere, the atmosphere) before reaching us. It is, therefore, vitally important that we understand
which aspects of these wave signals are predominantly determined by the wave sources, and which
are strongly modified by the dispersive media through which the signals have propagated in order
to reach us.

7.2 Form of Dielectric Constant

Consider an electromagnetic wave propagating through a transparent, isotropic, dielectric medium.
The electric displacement inside the medium is given by

D = ε0 E + P, (7.10)

where P is the electric polarization. Because electrons are much lighter than ions (or atomic
nuclei), we would expect the former to displace further than the latter under the influence of an
electric field. Thus, to a first approximation, the polarization, P, is determined by the electron
response to the wave. Suppose that the electrons displace an average distance s from their rest
positions in the presence of the wave. It follows that

P = −N e s, (7.11)

where N is the number density of electrons, and −e the electron charge.
Let us assume that the electrons are bound “quasi-elastically” to their rest positions, so that

they seek to return to these positions when displaced from them by an electric field. It follows that
s satisfies a differential equation of the form

m s̈ + f s = −e E, (7.12)

where m is the electron mass, − f s is the restoring force, and ˙ denotes a partial derivative with
respect to time. The previous equation can also be written

s̈ + gω0 ṡ + ω 2
0 s = − e

m
E, (7.13)

where
ω 2

0 =
f
m

(7.14)
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is the characteristic oscillation frequency of the electrons. In almost all dielectric media, this fre-
quency lies in the far ultraviolet region of the electromagnetic spectrum. Note that we have added
a phenomenological damping term, gω0 ṡ, to Equation (7.13), in order to take into account the fact
that an electron excited by an impulsive electric field does not oscillate for ever. In fact, electrons in
dielectric media act like high-Q oscillators, which is another way of saying that the dimensionless
damping constant, g, is typically much less than unity. Thus, an electron in a dielectric medium
“rings” for a long time after being excited by an electromagnetic impulse.

Let us assume that the electrons oscillate in sympathy with the wave at the wave frequency, ω.
It follows from Equation (7.13) that

s = − (e/m) E
ω 2

0 − ω 2 − i gωω0
. (7.15)

Here, we have neglected the response of the electrons to the magnetic component of the wave. It is
easily demonstrated that this is a good approximation provided the electrons do not oscillate with
relativistic velocities (i.e., provided the amplitude of the wave is not too large—see Section 7.7).
Thus, Equation (7.11) yields

P =
(N e 2/m) E

ω 2
0 − ω 2 − i gωω0

. (7.16)

Because, by definition,
D = ε0 ε E = ε0 E + P, (7.17)

it follows that

ε(ω) ≡ n 2(ω) = 1 +
(N e 2/ε0 m)

ω 2
0 − ω 2 − i gωω0

. (7.18)

Thus, the index of refraction is indeed frequency dependent. Because ω0 typically lies in the
ultraviolet region of the spectrum (and g 	 1), it is clear that the denominator, ω 2

0 −ω 2− i gωω0 �
ω 2

0 −ω 2, is positive throughout the visible spectrum, and is larger at the red than at the blue end of
this spectrum. This implies that blue light is refracted more strongly than red light. This state of
affairs, in which higher frequency waves are refracted more strongly than lower frequency waves,
is termed normal dispersion. Incidentally, an expression, like the previous one, that (effectively)
specifies the phase velocity of waves propagating through a dielectric medium, as a function of
their frequency, is usually called a dispersion relation.

Let us now suppose that there are N molecules per unit volume, with Z electrons per molecule,
and that, instead of a single oscillation frequency for all electrons, there are fi electrons per
molecule with oscillation frequency ωi and damping constant gi. It is easily demonstrated that
Equation (7.18) generalizes to give

n 2(ω) = 1 +
N e 2

ε0 m

∑
i

fi

ω 2
i − ω 2 − i gi ωωi

, (7.19)

where the oscillator strengths, fi, satisfy the sum rule,∑
i

fi = Z. (7.20)
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A more exact quantum mechanical treatment of the response of an atom, or molecule, to a low
amplitude electromagnetic wave also leads to a dispersion relation of the previous form, except
that the quantities fi, ωi, and gi can, in principle, be calculated exactly. In practice, this is too
difficult, except in very simple cases.

Because the damping constants, gi, are generally small compared to unity, it follows from
Equation (7.19) that n(ω) is a predominately real quantity at most wave frequencies. The factor
(ω 2

i − ω 2)−1 is positive for ω < ωi, and negative for ω > ωi. Thus, at low frequencies (i.e., below
the smallest ωi) all of the terms appearing in the sum on the right-hand side of (7.19) are positive,
and n(ω) is consequently greater than unity. As ω is raised, such that it exceeds successive ωi

values, more and more negative terms occur in the sum, until eventually the whole sum is negative,
and n(ω) is less than unity. Hence, at very high frequencies, electromagnetic waves propagate
through dielectric media with phase velocities that exceed the velocity of light in a vacuum. For
ω � ωi, Equation (7.19) predicts strong variation of the refractive index with frequency. Let us
examine this phenomenon more closely.

7.3 Anomalous Dispersion and Resonant Absorption

When ω is approximately equal to ωi, the dispersion relation (7.19) reduces to

n 2 = n 2
i +

N e 2 fi/ε0 m
ω 2

i − ω 2 − i gi ωωi
, (7.21)

where ni is the average contribution in the vicinity of ω = ωi of all the other resonances (also
included in ni is the contribution 1 of the vacuum displacement current, which was previously
written separately). The refractive index is clearly complex. For a wave propagating in the x-
direction,

E = E0 exp[ i (ω/c) (Re(n) x − c t)] exp[−(ω/c) Im(n) x]. (7.22)

Thus, the phase velocity of the wave is determined by the real part of the refractive index via

v =
c

Re(n)
. (7.23)

Furthermore, a positive imaginary component of the refractive index leads to the attenuation of the
wave as it propagates.

Let

a 2 =
Ne 2 fi

ε0 mω 2
i

, (7.24)

x =
ω 2 − ω 2

i

ω 2
i

, (7.25)

y =
[Re(n)] 2 − [Im(n)] 2

a 2 , (7.26)

z =
2 Re(n) Im(n)

a 2 , (7.27)
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where a, x, y, z are all dimensionless quantities. It follows from Equation (7.21) that

y =
n 2

i

a 2 −
x

x 2 + g 2
i (1 + x)

, (7.28)

z =
gi
√

1 + x
x 2 + g 2

i (1 + x)
. (7.29)

Let us adopt the physical ordering gi 	 1. In this case, the extrema of the function y(x) occur at
x � ±gi. In fact, it is easily demonstrated that

ymin = y(x = gi) =
n 2

i

a 2 −
1

2 gi
, (7.30)

ymax = y(x = −gi) =
n 2

i

a 2 +
1

2 gi
. (7.31)

The maximum value of the function z(x) occurs at x = 0. In fact,

zmax =
1
gi
. (7.32)

Note also that
z(x = ±gi) =

1
2 gi

. (7.33)

Figure 7.1 shows a sketch of the functions y(x) and z(x). These curves are also indicative of
the variation of Re(n) and Im(n), respectively, with frequency, ω, in the vicinity of the resonant
frequency, ωi. Recall that normal dispersion is associated with an increase in Re(n) with increas-
ing ω. The reverse situation is termed anomalous dispersion. It is clear, from the figure, that
normal dispersion occurs everywhere, except at wave frequencies in the immediate neighborhood
of the resonant frequency, ωi. It is also clear that the imaginary part of the refractive index is
only appreciable in those regions of the electromagnetic spectrum where anomalous dispersion
takes place. A positive imaginary component of the refractive index implies that the wave is ab-
sorbed as it propagates through the medium. Consequently, the regions of the spectrum in which
Im(n) is appreciable are called regions of resonant absorption. Anomalous dispersion and resonant
absorption take place in the vicinity of the ith resonance when |ω − ωi|/ωi < O(gi). Because the
damping constants, gi, are, in practice, very small compared to unity, the regions of the spectrum in
which resonant absorption takes place are strongly localized in the vicinity of the various resonant
frequencies.

The dispersion relation (7.19) only takes electron resonances into account. Of course, there are
also resonances associated with displacements of the ions (or atomic nuclei). The off-resonance
contributions to the right-hand side of Equation (7.19) from the ions are typically smaller than
those from the electrons by a factor of order m/M (where M is a typical ion mass). Nevertheless,
the ion contributions are important, because they give rise to anomalous dispersion and resonant
absorption close to the ion resonant frequencies. The ion resonances associated with the stretching
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Figure 7.1: Sketch of the variation of the functions y and z with x. The solid and dashed curves
shows y/gi and z/gi, respectively.

and bending of molecular bonds usually lie in the infrared region of the electromagnetic spectrum.
Those resonances associated with molecular rotation (which only affect the dispersion relation if
the molecule is polar) occur in the microwave region of the spectrum. Both air and water exhibit
strong resonant absorption of electromagnetic waves in both the ultraviolet and infrared regions
of the spectrum. In the former case, this is due to electron resonances, and in the latter to ion
resonances. The visible region of the spectrum exists as a narrow window, lying between these
two regions, in which there is comparatively little attenuation of electromagnetic waves.

7.4 Wave Propagation in Conducting Media

In the limit ω → 0, there is a significant difference in the response of a dielectric medium to an
electromagnetic wave, depending on whether the lowest resonant frequency is zero or non-zero.
For insulators, the lowest resonant frequency is different from zero. In this case, the low frequency
refractive index is predominately real, and is also greater than unity. In a conducting medium, on
the other hand, some fraction, f0, of the electrons are “free,” in the sense of having ω0 = 0. In this
situation, the low frequency dielectric constant takes the form

ε(ω) ≡ n 2(ω) = n 2
0 + i

N e 2

ε0 m
f0

ω (γ0 − iω)
, (7.34)
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where n0 is the contribution to the refractive index from all of the other resonances, and γ0 =

limω0→0 g0 ω0. Consider the Ampère-Maxwell equation,

∇ × B = µ0

(
jt +

∂D
∂t

)
. (7.35)

Here, jt is the true current: that is, the current carried by free, as opposed to bound, charges. Let
us assume that the medium in question obeys Ohm’s law, jt = σE, and has a “normal” dielectric
constant n 2

0 . Here, σ is the conductivity. Assuming an exp(−iω t) time dependence of all field
quantities, the previous equation yields

∇ × B = −i ε0 µ0 ω

(
n 2

0 + i
σ

ε0 ω

)
E. (7.36)

Suppose, however, that we do not explicitly use Ohm’s law but, instead, attribute all of the prop-
erties of the medium to the dielectric constant. In this case, the effective dielectric constant of the
medium is equivalent to the term in round brackets on the right-hand side of the previous equation:
that is,

ε(ω) ≡ n 2(ω) = n 2
0 + i

σ

ε0 ω
. (7.37)

A comparison of this term with Equation (7.34) yields the following expression for the conductiv-
ity,

σ =
f0 N e 2

m (γ0 − iω)
. (7.38)

Thus, at low frequencies, conductors possess predominately real conductivities (i.e., the current
remains in phase with the electric field). However, at higher frequencies, the conductivity be-
comes complex. At such frequencies, there is little meaningful distinction between a conductor
and an insulator, because the “conductivity” contribution to ε(ω) appears as a resonant amplitude,
just like the other contributions. For a good conductor, such as copper, the conductivity remains
predominately real for all frequencies up to, and including, those in the microwave region of the
electromagnetic spectrum.

The conventional way in which to represent the complex refractive index of a conducting
medium (in the low frequency limit) is to write it in terms of a real “normal” dielectric constant,
ε = n 2

0 , and a real conductivity, σ. Thus, from Equation (7.37),

n 2(ω) = ε + i
σ

ε0 ω
. (7.39)

For a poor conductor (i.e., σ/ε ε0 ω 	 1), we find that

k = n
ω

c
� √ε ω

c
+ i

σ

2
√
ε ε0 c

. (7.40)

In this limit, Re(k) 
 Im(k), and the attenuation of the wave, which is governed by Im(k) [see
Equation (7.9)], is independent of the frequency. Thus, for a poor conductor, the wave acts like a
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wave propagating through a conventional dielectric of dielectric constant ε, except that it attenuates
gradually over a distance of very many wavelengths. For a good conductor (i.e., σ/ε ε0 ω 
 1),
we obtain

k � e i π/4√µ0 σω. (7.41)

It follows from Equation (7.5) that

c B0

E0
=

k c
ω
= e i π/4

√
σ

ε0 ω
. (7.42)

Thus, the phase of the magnetic field lags that of the electric field by π/4 radians. Moreover, the
magnitude of c B0 is much larger than that of E0 (becauseσ/ε0 ω
 ε > 1). It follows that the wave
energy is almost entirely magnetic in nature. Clearly, an electromagnetic wave propagating through
a good conductor has markedly different properties to a wave propagating through a conventional
dielectric. For a wave propagating in the x-direction, the amplitudes of the electric and magnetic
fields attenuate like exp(−x/d), where

d =

√
2

µ0 σω
(7.43)

is termed the skin depth. It is apparent that an electromagnetic wave incident on a conducting
medium will not penetrate more than a few skin depths into that medium.

7.5 High Frequency Limit

Consider the behavior of the dispersion relation (7.19) in the high frequency limit ω 
 ωi (for all
i). In this case, the relation simplifies considerably to give

n 2(ω) = 1 − ω
2
p

ω 2 , (7.44)

where the quantity

ωp =

√
N Z e 2

ε0 m
(7.45)

is called the plasma frequency. The wavenumber in the high frequency limit is given by

k = n
ω

c
=

(ω 2 − ω 2
p)1/2

c
. (7.46)

This expression is only valid in dielectrics when ω 
 ωp. Thus, the refractive index is real, and
slightly less than unity, giving waves that propagate without attenuation at a phase velocity slightly
larger than the velocity of light in vacuum. However, in certain ionized media (in particular,
in tenuous plasmas, such as occur in the ionosphere) the electrons are free, and the damping is
negligible. In this case, Equations (7.44) and (7.46) are valid even when ω < ωp. It follows
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that a wave can only propagate through a tenuous plasma when its frequency exceeds the plasma
frequency (in which case, it has a real wavenumber). If wave frequency is less than the plasma
frequency then, according to Equation (7.46), the wavenumber is purely imaginary, and the wave
is unable to propagate. This phenomenon accounts for the fact that long-wave and medium-wave
(terrestrial) radio signals can be received even when the transmitter lies over the horizon. The
frequency of these waves is less than the plasma frequency of the ionosphere, which reflects them
(see Chapter 8), so they become trapped between the ionosphere and the surface of the Earth
(which is also a good reflector of radio waves), and can, in certain cases, travel many times around
the Earth before being attenuated. Unfortunately, this scheme does not work very well for medium-
wave signals at night. The problem is that the plasma frequency of the ionosphere is proportional
to the square root of the number density of free ionospheric electrons. These free electrons are
generated through the ionization of neutral molecules by ultraviolet radiation from the Sun. Of
course, there is no radiation from the Sun at night, so the density of free electrons starts to drop as
the electrons gradually recombine with ions in the ionosphere. Eventually, the plasma frequency
of the ionosphere falls below the frequency of medium-wave radio signals, causing them to be
transmitted through the ionosphere into outer space. The ionosphere appears almost completely
transparent to high frequency signals such as TV and FM radio signals. Thus, this type of signal
is not reflected by the ionosphere. Consequently, to receive such signals it is necessary to be in the
line of sight of the relevant transmitter.

7.6 Polarization of Electromagnetic Waves

The electric component of an electromagnetic plane wave can oscillate in any direction normal
to the direction of wave propagation (which is parallel to the k-vector). Suppose that the wave
is propagating in the z-direction. It follows that the electric field can oscillate in any direction
that lies in the x-y plane. The actual direction of oscillation determines the polarization of the
wave. For instance, a vacuum electromagnetic wave of angular frequency ω that is polarized in the
x-direction has the associated electric field

E = E0 cos(ω t − k z) ex, (7.47)

where ω = k c. Likewise, a wave polarized in the y-direction has the electric field

E = E0 cos(ω t − k z) ey. (7.48)

These two waves are termed linearly polarized, because the electric field vector oscillates in a
straight-line. However, other types of polarization are possible. For instance, if we combine two
linearly polarized waves of equal amplitude, one polarized in the x-direction, and one in the y-
direction, that oscillate π/2 radians out of phase, then we obtain a circularly polarized wave:

E = E0 cos(ω t − k z) ex + E0 sin(ω t − k z) ey. (7.49)

This nomenclature arises from the fact that the tip of the electric field vector traces out a circle in
the plane normal to the direction of wave propagation. To be more exact, the previous wave is a
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right-hand circularly polarized wave, because if the thumb of the right hand points in the direction
of wave propagation then the electric field vector rotates in the same sense as the fingers of this
hand. Conversely, a left-hand circularly polarized wave takes the form

E = E0 cos(ω t − k z) ex − E0 sin(ω t − k z) ey. (7.50)

Finally, if the x- and y-components of the electric field in the previous two expressions have dif-
ferent (non-zero) amplitudes then we obtain right-hand and left-hand elliptically polarized waves,
respectively. This nomenclature arises from the fact that the tip of the electric field vector traces
out an ellipse in the plane normal to the direction of wave propagation.

7.7 Faraday Rotation

The electromagnetic force acting on an electron is given by

f = −e (E + v × B). (7.51)

If the E and B fields in question are due to an electromagnetic wave propagating through a dielectric
medium then

|B| = n
c
|E|, (7.52)

where n is the refractive index. It follows that the ratio of the magnetic to the electric forces acting
on the electron is n v/c. In other words, the magnetic force is completely negligible unless the
wave amplitude is sufficiently high that the electron moves relativistically in response to the wave.
This state of affairs is rare, but can occur when intense laser beams are made to propagate through
plasmas.

Suppose, however, that the dielectric medium contains an externally generated magnetic field,
B. This can easily be made much stronger than the optical magnetic field. In this case, it is possible
for a magnetic field to affect the propagation of low amplitude electromagnetic waves. The electron
equation of motion (7.12) generalizes to

m s̈ + f s = −e (E + ṡ × B), (7.53)

where any damping of the motion has been neglected. Let B be directed in the positive z-direction,
and let the wave propagate in the same direction. These assumptions imply that the E and s vectors
lie in the x-y plane. The previous equation reduces to

(ω 2
0 − ω 2) sx − iωΩ sy = − e

m
Ex, (7.54)

(ω 2
0 − ω 2) sy + iωΩ sx = − e

m
Ey, (7.55)

provided that all perturbed quantities have an exp(−iω t) time dependence. Here, ω0 =
√

f /m, and

Ω =
e B
m

(7.56)
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is the electron cyclotron frequency. Let

E± = Ex ± i Ey, (7.57)

and
s± = sx ± i sy. (7.58)

Note that

Ex =
1
2

(E+ + E−), (7.59)

Ey =
1
2 i

(E+ − E−). (7.60)

Equations (7.54) and (7.55) reduce to

(ω 2
0 − ω 2 − ωΩ) s+ = − e

m
E+, (7.61)

(ω 2
0 − ω 2 + ωΩ) s− = − e

m
E−. (7.62)

Defining P± = Px ± i Py, it follows from Equation (7.11) that

P± =
(N e 2/m) E±
ω 2

0 − ω 2 ∓ ωΩ. (7.63)

Finally, from Equation (7.17), we can write

ε± ≡ n 2
± = 1 +

P±
ε0 E±

, (7.64)

giving

n 2
±(ω) = 1 +

(N e 2/ε0 m)
ω 2

0 − ω 2 ∓ ωΩ. (7.65)

According to the dispersion relation (7.65), the refractive index of a magnetized dielectric
medium can take one of two possible values, which presumably correspond to two different types
of wave propagating parallel to the z-axis. The first wave has the refractive index n+, and an
associated electric field [see Equations (7.59) and (7.60)]

Ex = E0 cos[(ω/c) (n+z − c t)], (7.66)

Ey = E0 sin[(ω/c) (n+z − c t)]. (7.67)

This corresponds to a left-hand circularly polarized wave propagating in the z-direction at the phase
velocity c/n+. The second wave has the refractive index n−, and an associated electric field

Ex = E0 cos[(ω/c) (n−z − c t)], (7.68)

Ey = −E0 sin[(ω/c) (n−z − c t)]. (7.69)
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This corresponds to a right-hand circularly polarized wave propagating in the z-direction at the
phase velocity c/n−. It is clear from Equation (7.65) that n+ > n−. We conclude that, in the
presence of a z-directed magnetic field, a z-directed left-hand circularly polarized wave propagates
at a phase velocity that is slightly less than that of the corresponding right-hand wave. It should
be remarked that the refractive index is always real (in the absence of damping), so the magnetic
field gives rise to no net absorption of electromagnetic radiation. This is not surprising because
a magnetic field does no work on charged particles, and cannot therefore transfer energy from a
wave propagating through a dielectric medium to the medium’s constituent particles.

We have seen that right-hand and left-hand circularly polarized waves propagate through a
magnetized dielectric medium at slightly different phase velocities. What does this imply for
the propagation of a plane polarized wave? Let us add the left-hand wave whose electric field
is given by Equations (7.66) and (7.67) to the right-hand wave whose electric field is given by
Equations (7.68) and (7.69). In the absence of a magnetic field, n+ = n− = n, and we obtain

Ex = 2 E0 cos[(ω/c) (n z − c t)], (7.70)

Ey = 0. (7.71)

This, of course, corresponds to a plane wave (polarized along the x-direction) propagating along
the z-axis at the phase velocity c/n. In the presence of a magnetic field, we obtain

Ex = 2 E0 cos[(ω/c) (n z − c t)] cos[(ω/2 c) (n+ − n−) z], (7.72)

Ey = 2 E0 cos[(ω/c) (n z − c t)] sin[(ω/2 c) (n+ − n−) z], (7.73)

where
n =

1
2

(n+ + n−) (7.74)

is the mean index of refraction. Equations (7.72) and (7.73) describe a plane wave whose angle of
polarization with respect to the x-axis,

χ = tan−1(Ey/Ex), (7.75)

rotates as the wave propagates along the z-axis at the phase velocity c/n. In fact, the angle of
polarization is given by

χ =
ω

2 c
(n+ − n−) z, (7.76)

which clearly increases linearly with the distance traveled by the wave parallel to the magnetic
field. This rotation of the plane of polarization of a linearly polarized wave propagating through a
magnetized dielectric medium is known as Faraday rotation (because it was discovered by Michael
Faraday in 1845).

Assuming that the cyclotron frequency, Ω, is relatively small compared to the wave frequency,
ω, and also that ω does not lie close to the resonant frequency, ω0, it is easily demonstrated that

n � 1 +
(N e 2/ε0 m)
ω 2

0 − ω 2
, (7.77)
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and

n+ − n− � N e 2

ε0 m n
ωΩ

(ω 2
0 − ω 2) 2

. (7.78)

It follows that the rate at which the plane of polarization of an electromagnetic wave rotates as the
distance traveled by the wave increases is

dχ
dl
=
κ(ω) N B‖

n(ω)
, (7.79)

where B‖ is the component of the magnetic field along the direction of propagation of the wave,
and

κ(ω) =
e 3

2 ε0 m 2 c
ω 2

(ω 2
0 − ω 2) 2

. (7.80)

If the medium in question is a tenuous plasma then n � 1, and ω0 = 0. Thus,

dχ
dl
� e 3

2 ε0 m 2 c
N B‖
ω 2 . (7.81)

In this case, the rate at which the plane of polarization rotates is proportional to the product of the
electron number density and the parallel magnetic field-strength. Moreover, the plane of rotation
rotates faster for low frequency waves than for high frequency waves. The total angle by which the
plane of polarization is twisted after passing through a magnetized plasma is given by

∆χ � e 3

2 ε0 m 2 cω 2

∫
N(l) B‖(l) dl, (7.82)

assuming that N and B‖ vary on length-scales that are large compared to the wavelength of the
radiation. This formula is regularly employed in radio astronomy to infer the magnetic field-
strength in interstellar space.

7.8 Wave Propagation in Magnetized Plasmas

For a plasma (in which ω0 = 0), the dispersion relation (7.65) reduces to

n 2
±(ω) = 1 − ω 2

p

ω (ω ∓ Ω)
. (7.83)

The upper sign corresponds to a left-hand circularly polarized wave, and the lower sign to a right-
hand polarized wave. Of course, Equation (7.83) is only valid for wave propagation parallel to the
direction of the magnetic field. Wave propagation through the Earth’s ionosphere is well described
by the previous dispersion relation. There are wide frequency intervals where one of n 2

+ or n 2
−

is positive, and the other negative. At such frequencies, one state of circular polarization cannot
propagate through the plasma. Consequently, a wave of that polarization incident on the plasma is
totally reflected. (See Chapter 8). The other state of polarization is partially transmitted.
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The behavior of n 2
−(ω) at low frequencies is responsible for a strange phenomenon known to

radio hams as “whistlers.” As the wave frequency tends to zero, Equation (7.83) yields

n 2
− �

ω 2
p

ωΩ
. (7.84)

At such a frequency, n 2
+ is negative, so only right-hand polarized waves can propagate. The

wavenumber of these waves is given by

k− = n−
ω

c
� ωp

c

√
ω

Ω
. (7.85)

Now, energy propagates through a dispersive medium at the group velocity (see Section 7.13)

vg(ω) =
dω
dk−
� 2 c

√
ωΩ

ωp
. (7.86)

Thus, low frequency waves transmit energy at a slower rate than high frequency waves. A light-
ning strike in one hemisphere of the Earth generates a wide spectrum of radiation, some of which
propagates along the dipolar field-lines of the Earth’s magnetic field in a manner described approx-
imately by the dispersion relation (7.84). The high frequency components of the signal return to
the surface of the Earth before the low frequency components (because they travel faster along the
magnetic field). This gives rise to a radio signal that begins at a high frequency, and then “whistles”
down to lower frequencies.

7.9 Wave Propagation in Dispersive Media

Let us investigate the propagation of electromagnetic radiation through a general dispersive medium
by studying a simple one-dimensional problem. Suppose that our dispersive medium extends from
x = 0, where it interfaces with a vacuum, to x = ∞. Suppose, further, that an electromagnetic wave
is incident normally on the interface such that the field quantities at the interface only depend on x
and t. The wave is then specified as a given function of t at x = 0. Because we are not interested in
the reflected wave, let this function, f (t), say, specify the wave amplitude just inside the surface of
the dispersive medium. Suppose that the wave arrives at this surface at t = 0, and that

f (t) =
{

0 for t < 0,
sin(2π t/τ) for t ≥ 0.

(7.87)

How does the wave subsequently develop in the region x > 0? In order to answer this question, we
must first of all decompose f (t) into harmonic components of the form exp(−iω t) (i.e., Fourier
harmonics). Unfortunately, if we attempt this using only real frequencies, ω, then we encounter
convergence difficulties, because f (t) does not vanish at t = ∞. For the moment, we can circumvent
these difficulties by only considering finite (in time) wave-forms. In other words, we now imagine
that f (t) = 0 for t < 0 and t > T . Such a wave-form can be thought of as the superposition of two
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infinite (in time) wave-forms, the first beginning at t = 0, and the second at t = T with the opposite
phase, so that the two cancel for all time t > T .

According to standard Fourier transform theory,

f (t) =
1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
f (t′) e−iω (t−t′) dt′. (7.88)

Because f (t) is a real function of t that is zero for t < 0 and t > T , we can write

f (t) =
1

2π

∫ ∞

−∞
dω

∫ T

0
f (t′) cos[ω (t − t′)] dt′. (7.89)

Finally, it follows from symmetry (in ω) that

f (t) =
1
π

∫ ∞

0
dω

∫ T

0
f (t′) cos[ω (t − t′)] dt′. (7.90)

Equation (7.87) yields

f (t) =
1
π

∫ ∞

0
dω

∫ T

0
sin

(
2π t′

τ

)
cos[ω (t − t′)] dt′, (7.91)

or

f (t) =
1

2π

∫ ∞

0
dω

(
cos[2π t′/τ + ω (t − t′)]

ω − 2π/τ
− cos[2π t′/τ − ω (t − t′)]

ω + 2π/τ

)t′=T

t′=0
. (7.92)

Let us assume, for the sake of simplicity, that

T = N τ, (7.93)

where N is a positive integer. This ensures that f (t) is continuous at t = T . Equation (7.92) reduces
to

f (t) =
2
τ

∫ ∞

0

dω
ω 2 − (2π/τ) 2 (cos[ω (t − T )] − cos[ω t]) . (7.94)

This expression can be written

f (t) =
1
τ

∫ ∞

−∞

dω
ω 2 − (2π/τ) 2 (cos[ω (t − T ) ] − cos[ω t]) , (7.95)

or
f (t) =

1
2π

Re
∫ ∞

−∞

dω
ω − 2π/τ

[
e−iω (t−T ) − e−iω t

]
. (7.96)

It is not entirely obvious that Equation (7.96) is equivalent to Equation (7.95). However, we can
easily prove that this is the case by taking Equation (7.96), and then using the standard definition
of a real part (i.e., half the sum of the quantity in question and its complex conjugate) to give

f (t) =
1

4π

∫ ∞

−∞

dω
ω − 2π/τ

[
e−iω (t−T ) − e−iω t

]
+

1
4π

∫ ∞

−∞

dω
ω − 2π/τ

[
e+iω (t−T ) − e+iω t

]
. (7.97)
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ω-plane

ω = 2π/τ

C

Figure 7.2: Sketch of the integration contours used to evaluate Equations (7.96) and (7.99).

Replacing the dummy integration variable ω by −ω in the second integral, and then making use of
symmetry, it is easily seen that the previous expression reduces to Equation (7.95).

Equation (7.95) can be written

f (t) =
2
τ

∫ ∞

−∞
dω sin[ω (t − T/2)]

sin(ω T/2)
ω 2 − (2π/τ) 2 . (7.98)

Note that the integrand is finite atω = 2π/τ, because, at this point, the vanishing of the denominator
is compensated for by the simultaneous vanishing of the numerator. It follows that the integrand in
Equation (7.96) is also not infinite at ω = 2π/τ, as long as we do not separate the two exponentials.
Thus, we can replace the integration along the real axis through this point by a small semi-circle in
the upper half of the complex plane. Once this has been done, we can deform the path still further,
and can integrate the two exponentials in Equation (7.96) separately: that is,

f (t) =
1

2π
Re

∫
C

e−iω t dω
ω − 2π/τ

− 1
2π

Re
∫

C
e−iω (t−T ) dω

ω − 2π/τ
(7.99)

The contour C is sketched in Figure 7.2. Note that it runs from +∞ to −∞, which accounts for the
change of sign between Equations (7.96) and (7.99).

We have already mentioned that a finite wave-form that is zero for t < 0 and t > T can be
through of as the superposition of two out of phase infinite wave-forms, one starting at t = 0,
and the other at t = T . It is plausible, therefore, that the first term in the previous expression
corresponds to the infinite wave form starting at t = 0, and the second to the infinite wave form
starting at t = T . If this is the case then the wave-form (7.87), which starts at t = 0 and ends at
t = ∞, can be written

f (t) =
1

2π
Re

∫
C

e−iω t dω
ω − 2π/τ

. (7.100)
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Figure 7.3: Sketch of the integration contours used to evaluate Equation (7.99).

Let us test this proposition. In order to do this, we must replace the original path of integration, C,
by two equivalent paths.

First, consider t < 0. In this case, −iω t has a negative real part in the upper half-plane that
increases indefinitely with increasing distance from the axis. Thus, we can replace the original path
of integration by the path A. (See Figure 7.3.) If we let A approach infinity in the upper half-plane
then the integral clearly vanishes along this path. Consequently,

f (t) = 0 (7.101)

for t < 0.
Next, consider t > 0. Now −iω t has a negative real part in the lower half-plane, so the

exponential vanishes at infinity in this half-plane. If we attempt to deform C to infinity in the lower
half-plane then the path of integration “catches” on the singularity of the integrand at ω = 2π/τ.
(See Figure 7.3.) The path of integration B therefore consists of three parts: 1) the part at infinity,
B1, where the integral vanishes due to the exponential factor e−iω t; 2) B2, the two parts leading
to infinity, which cancel one another, and, thus, contribute nothing to the integral; 3) the path B3

around the singularity. This latter contribution can easily be evaluated using the Cauchy residue
theorem:

B3 =
1

2π
Re (2π i e−2π i t/τ) = sin

(
2π t
τ

)
. (7.102)

Thus, we have proved that expression (7.100) actually describes a wave-form, beginning at t = 0,
whose subsequent motion is specified by Equation (7.87).

Equation (7.100) can immediately be generalized to give the wave motion in the region x > 0:
that is,

f (x, t) =
1

2π
Re

∫
C

e i (k x−ω t) dω
ω − 2π/τ

. (7.103)
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This follows from standard wave theory, because we know that an unterminated wave motion at x =
0 of the form e−iω t takes the form e i (k x−ω t) after moving a distance x into the dispersive medium,
provided that k and ω are related by the appropriate dispersion relation. For a dielectric medium
consisting of a single resonant species, this dispersion relation is written [see Equation (7.18)]

k 2 =
ω 2

c 2

(
1 +

N e 2/ε0 m
ω 2

0 − ω 2 − i gωω0

)
. (7.104)

7.10 Wave-Front Propagation

It is helpful to define
s = t − x

c
. (7.105)

Let us consider the two cases s < 0 and s > 0 separately.
Suppose that s < 0. In this case, we distort the path C, used to evaluate the integral (7.103),

into the path A shown in Figure 7.4. This is only a sensible thing to do if the real part of i (k x−ω t)
is negative at infinity in the upper half-plane. Now, it is clear from the dispersion relation (7.104)
that k = ω/c in the limit |ω| → ∞. Thus,

i (k x − ω t) = −iω (t − x/c) = −iω s. (7.106)

It follows that i (k x − ω t) possesses a large negative real part along path A provided that s < 0.
Thus, Equation (7.103) yields

f (x, t) = 0 (7.107)

for s < 0. In other words, it is impossible for the wave-front to propagate through the dispersive
medium with a velocity greater than the velocity of light in a vacuum.

Suppose that s > 0. In this case, we distort the path C into the lower half-plane, because
i (k x − ω t) = −iω s has a negative real part at infinity in this region. In doing this, the path
becomes stuck not only at the singularity of the denominator at ω = 2π/τ, but also at the branch
points of the expression for k. After a little algebra, the dispersion relation (7.104) yields

k =
ω

c

√
ω1+ − ω
ω0+ − ω

√
ω1− − ω
ω0− − ω, (7.108)

where
ω0± = −i ρ ±

√
ω 2

0 − ρ 2, (7.109)

and
ω1± = −i ρ ±

√
ω 2

0 + ω
2
p − ρ 2. (7.110)

Here,

ωp =

√
N e 2

ε0 m
(7.111)
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Figure 7.4: Sketch of the integration contours used to evaluate Equation (7.103).

is the plasma frequency, and

ρ =
gω0

2
	 ω0 (7.112)

parameterizes the damping. In order to prevent multiple roots of Equation (7.108), it is necessary
to place branch cuts between ω0+ and ω1+, and also between ω0− and ω1−. (See Figure 7.4.)

The path of integration B is conveniently split into the parts B1 through B5. (See Figure 7.4.)
The contribution from B1 is negligible, because the exponential in Equation (7.103) is vanishingly
small on this part of the integration path. Likewise, the contribution from B2 is zero, because
its two sections always cancel one another. The contribution from B3 follows from the residue
theorem:

B3 =
1

2π
Re

(
2π i ei [kτ x−2π t/τ]

)
. (7.113)

Here, kτ denotes the value of k obtained from the dispersion relation (7.104) in the limitω→ 2π/τ.
Thus,

B3 = e−Im(kτ) x sin
[
2π

t
τ
− Re(kτ) x

]
. (7.114)

In general, the contributions from B4 and B5 cannot be simplified further. For the moment, we
denote them as

B4 =
1

2π
Re

∮
B4

e i (k x−ω t) dω
ω − 2π/τ

, (7.115)

and

B5 =
1

2π
Re

∮
B5

e i (k x−ω t) dω
ω − 2π/τ

, (7.116)
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where the paths of integration circle the appropriate branch cuts. Altogether, we have

f (x, t) = e−Im(kτ) x sin
[
2π

t
τ
− Re(kτ) x

]
+ B4 + B5 (7.117)

for s > 0.
Let us now look at the special case s = 0. For this value of s, we can change the original path

of integration to one at infinity in either the upper or the lower half plane, because the integrand
vanishes in each case, through no longer exponentially, but rather as 1/ω 2. We can see this from
Equation (7.100), which can be written in the form

f (t) =
1

4π

(∫
C

e−iω t dω
ω − 2π/τ

+

∫
C

e+iω t dω
ω − 2π/τ

)
. (7.118)

Substitution of ω for −ω in the second integral yields

f (t) =
1
τ

∫
C

e−iω t dω
ω 2 − (2π/τ) 2 . (7.119)

Now, applying dispersion theory, we obtain from the previous equation, just as we obtained Equa-
tion (7.103) from Equation (7.100),

f (x, t) =
1
τ

∫
C

e i (k x−ω t) dω
ω 2 − (2π/τ) 2 . (7.120)

Clearly, the integrand vanishes as e−iωs/ω 2 in the limit that |ω| becomes very large. Thus, it
vanishes as 1/ω 2 for s = 0. Because we can calculate f (x, t) using either path A or path B, we
conclude that

f (x, t) = e−Im(kτ) x sin
[
2π

t
τ
− Re(kτ) x

]
+ B4 + B5 = 0 (7.121)

for s = 0. Thus, there is continuity in the transition from the region s < 0 to the region s > 0.
We are now in a position to make some meaningful statements regarding the behavior of the

signal at depth x within the dispersive medium. Prior to the time t = x/c, there is no wave motion.
In other words, even if the phase velocity is superluminal, no electromagnetic signal can arrive
earlier than one propagating at the velocity of light in vacuum, c. The wave motion for t > x/c is
conveniently divided into two parts: free oscillations and forced oscillations. The former are given
by B4 + B5, and the latter by

e−Im(kτ) x sin
[
2π

t
τ
− Re(kτ) x

]
= e−Im(kτ) x sin

(
2π
τ

[
t − x

vp

])
, (7.122)

where
vp =

2π
τRe(kτ)

(7.123)

is termed the phase velocity. The forced oscillations have the same sine wave characteristics and
oscillation frequency as the incident wave. However, the wave amplitude is diminished by the
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damping coefficient, although, as we have seen, this is generally a negligible effect unless the
frequency of the incident wave closely matches one of the resonant frequencies of the dispersive
medium. The phase velocity vp determines the velocity at which a point of constant phase (e.g., a
peak or trough) of the forced oscillation signal propagates into the medium. However, the phase
velocity has no effect on the velocity at which the forced oscillation wave-front propagates into the
medium. This latter velocity is equivalent to the velocity of light in vacuum, c . The phase velocity
vp can be either greater or less than c, in which case peaks and troughs either catch up with or fall
further behind the wave-front. Of course, peaks can never overtake the wave-front.

It is clear from Equations (7.109), (7.110), (7.115), and (7.116) that the free oscillations oscil-
late with real frequencies that lie somewhere between the resonant frequency, ω0, and the plasma
frequency, ωp. Furthermore, the free oscillations are damped in time like exp(−ρ t). The free
oscillations, like the forced oscillations, begin at time t = x/c. At t = x/c, the free and forced
oscillations exactly cancel one another [see Equation (7.121)]. As t increases, both the free and
forced oscillations set in, but the former rapidly damp away, leaving only the forced oscillations.
Thus, the free oscillations can be regarded as some sort of transient response of the medium to the
incident wave, whereas the forced oscillations determine the time asymptotic response. The real
frequency of the forced oscillations is that imposed externally by the incident wave, whereas the
real frequency of the free oscillations is determined by the nature of the dispersive medium, quite
independently of the frequency of the incident wave.

One slightly surprising result of the previous analysis is the prediction that the signal wave-
front propagates into the dispersive medium at the velocity of light in vacuum, irrespective of the
dispersive properties of the medium. Actually, this is a fairly obvious result. As is well described
by Feynman in his famous Lectures on Physics, when an electromagnetic wave propagates through
a dispersive medium, the electrons and ions that make up that medium oscillate in sympathy with
the incident wave, and, in doing so, emit radiation. The radiation from the electrons and ions, as
well as the incident radiation, travels at the velocity c. However, when these two radiation signals
are superposed, the net effect is as if the incident signal propagates through the dispersive medium
at a phase velocity that is different from c. Consider the wave-front of the incident signal, which
clearly propagates into the medium with the velocity c. Prior to the arrival of this wave-front, the
electrons and ions are at rest, because no information regarding the arrival of the incident wave
at the surface of the medium can propagate faster than c. After the arrival of the wave-front, the
electrons and ions are set into motion, and emit radiation which affects the apparent phase velocity
of radiation that arrives somewhat later. But this radiation certainly cannot affect the propagation
velocity of the wave-front itself, which has already passed by the time the electrons and ions are
set into motion (because of their finite inertia).

7.11 Sommerfeld Precursor

Consider the situation immediately after the arrival of the signal: that is, when s is small and
positive. Let us start from Equation (7.120), which can be written in the form

f (x, t) =
1
τ

∫
C

e i ([k−ω/c] x−ω s) dω
ω 2 − (2π/τ) 2 . (7.124)
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Figure 7.5: Sketch of the integration contour used to evaluate Equation (7.124).

We can deform the original path of integration C into a large semi-circle of radius R in the upper
half-plane, plus two segments of the real axis, as shown in Figure 7.5. Because of the denominator
ω 2 − (2π/τ) 2, the integrand tends to zero as 1/ω 2 on the real axis. We can add the path in the
lower half-plane that is shown as a dotted line in the figure, because if the radius of the semi-
circular portion of this lower path is increased to infinity then the integrand vanishes exponentially
as s > 0. Therefore, we can replace our original path of integration by the entire circle S . Thus,

f (x, t) =
1
τ

∮
S

e i ([k−ω/c] x−ω s) dω
ω 2 − (2π/τ) 2 (7.125)

in the limit that the radius of the circle S tends to infinity.
The dispersion relation (7.104) yields

k − ω
c
� ω

c


√

1 − ω
2
p

ω 2 − 1

 � − ω 2
p

2 cω
(7.126)

in the limit |ω| → ∞. Using the abbreviation

ξ =
ω 2

p

2 c
x, (7.127)

and, henceforth, neglecting 2π/τ with respect to ω, we obtain

f (x, t) = f1(ξ, t) � 1
τ

∮
S

exp
[

i
(
− ξ
ω
− ω s

)] dω
ω 2 (7.128)
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from Equation (7.125). This expression can also be written

f1(ξ, t) =
1
τ

∮
S

exp

−i
√
ξ s

 1
ω

√
ξ

s
+ ω

√
s
ξ


 dω
ω 2 . (7.129)

Let

ω

√
s
ξ
= e i u. (7.130)

It follows that
dω
ω
= i du, (7.131)

giving
dω
ω 2 = i

√
s
ξ

e−i u du. (7.132)

Substituting the angular variable u for ω in Equation (7.129), we obtain

f1(ξ, t) =
i
τ

√
s
ξ

∫ 2π

0
exp

(
−2 i

√
ξs cos u

)
e−i u du. (7.133)

Here, we have taken
√
ξ/s as the radius of the circular integration path in the ω-plane. This is

indeed a large radius because s	 1. From symmetry, Equation (7.133) simplifies to give

f1(ξ, t) =
i
τ

√
s
ξ

∫ 2π

0
exp

(
−2 i

√
ξs cos u

)
cos u du. (7.134)

The following mathematical identity is fairly well known,1

Jn(z) =
1

2π i n

∫ 2π

0
e i z cos θ cos(n θ) dθ, (7.135)

where Jn(z) is Bessel function of order n. It follows from Equation (7.134) that

f1(ξ, t) =
2π
τ

√
s
ξ

J1(2
√
ξs). (7.136)

Here, we have made use of the fact that J1(−z) = −J1(z).
The properties of Bessel functions are described in many standard references on mathematical

functions (see, for instance, Abramowitz and Stegun). In the small argument limit, z 	 1, we find
that

J1(z) =
z
2
+ O(z 3). (7.137)

1M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions, (Dover, New York, 1965). Equa-
tion 9.1.21.
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Figure 7.6: The Bessel function J1(z).

On the other hand, in the large argument limit, z 
 1, we obtain

J1(z) =

√
2
π z

cos(z − 3π/4) + O(z−3/2). (7.138)

The behavior of J1(z) is further illustrated in Figure 7.6.
We are now in a position to make some quantitative statements regarding the signal that first

arrives at a depth x within the dispersive medium. This signal propagates at the velocity of light
in vacuum, and is called the Sommerfeld precursor. The first important point to note is that the
amplitude of the Sommerfeld precursor is very small compared to that of the incident wave (whose
amplitude is normalized to unity). We can easily see this because, in deriving Equation (7.136), we
assumed that |ω| = √

ξ/s 
 2π/τ on the circular integration path S . Because the magnitude of J1

is always less than, or of order, unity, it is clear that | f1| 	 1. This is a comforting result, because
in a naive treatment of wave propagation through a dielectric medium, the wave-front propagates
at the group velocity vg (which is less than c) and, therefore, no signal should reach a depth x
within the medium before time x/vg. We are finding that there is, in fact, a precursor that arrives at
t = x/c, but that this signal is fairly weak. Note from Equation (7.127) that ξ is proportional to x.
Consequently, the amplitude of the Sommerfeld precursor decreases as the inverse of the distance
traveled by the wave-front through the dispersive medium [because J1(2

√
ξ s) attains its maximum

value when s ∼ 1/ξ]. Thus, the Sommerfeld precursor is likely to become undetectable after the
wave has traveled a long distance through the medium.
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Figure 7.7: The Sommerfeld precursor.

Equation (7.136) can be written

f1(ξ, t) =
π

ξ τ
g(s/s0), (7.139)

where s0 = 1/(4 ξ), and
g(z) =

√
z J1(
√

z). (7.140)

The normalized Sommerfeld precursor g(z) is shown in Figure 7.7. It can be seen that both the
amplitude and the oscillation period of the precursor gradually increase. The roots of J1(z) [i.e.,
the solutions of J1(z) = 0] are spaced at distances of approximately π apart. Thus, the time interval
for the mth half period of the precursor is approximately given by

∆tm ∼ m π2

2 ξ
. (7.141)

Note that the initial period of oscillation,

∆t0 ∼ π2

2 ξ
, (7.142)

is extremely small compared to the incident period τ. Moreover, the initial period of oscillation
is completely independent of the frequency of the incident wave. In fact, ∆t0 depends only on the
propagation distance x, and the dispersive power of the medium. The period also decreases with
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increasing distance, x, traveled by the wave-front though the medium. So, when visible radiation
is incident on a dispersive medium, it is quite possible for the first signal detected well inside the
medium to lie in the X-ray region of the electromagnetic spectrum.

7.12 Method of Stationary Phase

Equation (7.120) can be written in the form

f (x, t) =
∫

C
e iφ(ω)F(ω) dω (7.143)

where
F(ω) =

1
τ

1
ω 2 − (2π/τ) 2 , (7.144)

and
φ(ω) = k(ω) x − ω t. (7.145)

Now, F(ω) is a relatively slowly varying function of ω (except in the immediate vicinity of the sin-
gular points, ω = ±2π/τ), whereas the phase φ(ω) is generally large and rapidly varying. The rapid
oscillations of exp( i φ) over most of the range of integration means that the integrand averages to
almost zero. Exceptions to this cancellation rule occur only at points where φ(ω) is stationary: that
is, where φ(ω) has an extremum. The integral can therefore be estimated by finding all the points
in the ω-plane where φ(ω) has a vanishing derivative, evaluating (approximately) the integral in the
neighborhood of each of these points, and summing the contributions. This procedure is known as
the method of stationary phase.

Suppose that φ(ω) has a vanishing first derivative at ω = ωs. In the neighborhood of this point,
φ(ω) can be expanded as a Taylor series,

φ(ω) = φs +
1
2
φ′′s (ω − ωs) 2 + · · · . (7.146)

Here, the subscript s is used to indicate φ, or its second derivative, evaluated at ω = ωs, whereas
′ denotes a derivative with respect to ω. Because F(ω) is slowly varying, the contribution to the

integral from this stationary phase point is approximately

fs � F(ωs) e i φs

∫ −∞

∞
exp

[
i
2
φ′s (ω − ωs) 2

]
dω. (7.147)

It is tacitly assumed that the stationary point lies on the real axis in ω-space, so that locally the
integral along the contour C is an integral along the real axis in the direction of decreasing ω. The
previous expression can be written in the form

fs � −F(ωs) e i φs

√
4π
φ′′s

∫ ∞

0

[
cos(π t 2/2) + i sin(π t 2/2)

]
dt, (7.148)
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where
π

2
t 2 =

1
2
φ′′s (ω − ωs) 2. (7.149)

The integrals in the previous expression are known as Fresnel integrals,2 and can be shown to take
the values ∫ ∞

0
cos(π t 2/2) dt =

∫ ∞

0
sin(π t 2/2) dt =

1
2
. (7.150)

It follows that

fs � −
√

2π i
φ′′s

F(ωs) e iφs . (7.151)

It is easily demonstrated that the arc-length (in theω-plane) of the section of the integration contour
that makes a significant contribution to fs is of order ∆ω/ωs ∼ 1/

√
k(ωs) x. Thus, the arc-length

is relatively short, provided that the wavelength of the signal is much less than the distance it has
propagated into the dispersive medium. If there is more than one point of stationary phase in the
range of integration then the integral is approximated as a sum of terms having the same form as
the previous one.

Integrals of the form (7.143) can be calculated exactly using the method of steepest decent.3

The stationary phase approximation (7.151) agrees with the leading term of the method of steepest
decent (which is far more difficult to implement than the method of stationary phase) provided that
φ(ω) is real (i.e., provided that the stationary point lies on the real axis). If φ is complex, however,
then the stationary phase method can yield erroneous results. This suggests that the stationary
phase method is likely to break down when the extremum point ω = ωs approaches any poles or
branch cuts in the ω-plane.

7.13 Group Velocity

The point of stationary phase, defined by ∂φ/∂ω = 0, satisfies the condition
c
vg
=

c t
x
, (7.152)

where
vg =

dω
dk

(7.153)

is conventionally termed the group velocity. Thus, the signal seen at position x and time t is
dominated by the frequency range whose group velocity vg is equal to x/t. In this respect, the
signal incident at the surface of the medium (x = 0) at time t = 0 can be said to propagate through
the medium at the group velocity vg(ω).

The simple one-resonance dielectric dispersion relation (7.104) yields

c
vg
� n(ω)

1 + ω 2

ω 2
0 − ω 2

+
ω 2

ω 2 − ω 2
0 − ω 2

p

 (7.154)

2M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions, (Dover, New York, 1965). Section 7.3.
3Léon Brillouin, Wave Propagation and Group Velocity, (Academic Press, New York, 1960).
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ω →

c t/x
n(ω)

c/vg

n(0)

1

ω0 ω1 ωs0

Figure 7.8: The typical variation of the functions c/vg(ω) and n(ω). Here, ω1 = (ω 2
0 + ω

2
p )1/2.

in the limit g→ 0, where

n(ω) =
c k
ω
=

√
ω 2

0 + ω
2
p − ω 2

ω 2
0 − ω 2

. (7.155)

The variation of c/vg, and the refractive index n, with frequency is sketched in Figure 7.8. With
g = 0, the group velocity is less than c for all ω, except for ω0 < ω < ω1 ≡ (ω 2

0 + ω
2
p )1/2, where

it is purely imaginary. Note that the refractive index is also complex in this frequency range. The
phase velocity vp = c/n is subluminal for ω < ω0, imaginary for ω0 ≤ ω ≤ ω1, and superluminal
for ω > ω1.

The frequency range that contributes to the amplitude at time t is determined graphically by
finding the intersection of a horizontal line with ordinate c t/x with the solid curve in Figure 7.8.
There is no crossing of the two curves for t < t0 ≡ x/c. Thus, no signal can arrive before this time.
For times immediately after t = t0, the point of stationary phase is seen to be at ω → ∞. In this
large-ω limit, the point of stationary phase satisfies

ωs � ωp

√
t0

2 (t − t0)
. (7.156)

Note that ω = −ωs is also a point of stationary phase. It is easily demonstrated that

φs � −2
√
ξ (t − t0), (7.157)
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and

φ′′s � −2
(t − t0) 3/2

ξ 1/2 , (7.158)

with
F(ωs) � t − t0

τ ξ
. (7.159)

Here, ξ is given by Equation (7.127). The stationary phase approximation (7.151) yields

fs �
√

π ξ 1/2

(t − t0) 3/2

t − t0

τ ξ
e−2 i
√
ξ (t−t0)+3π i/4 + c.c., (7.160)

where c.c. denotes the complex conjugate of the preceding term (this contribution comes from the
second point of stationary phase located at ω = −ωs). The previous expression reduces to

fs � 2
√
π

τ

(t − t0)1/4

ξ 3/4 cos
[
2
√
ξ (t − t0) − 3π/4

]
. (7.161)

It is readily shown that the previous formula is the same as expression (7.136) for the Sommerfeld
precursor in the large argument limit t − t0 
 1/ξ. Thus, the method of stationary phase yields
an expression for the Sommerfeld precursor that is accurate at all times except those immediately
following the first arrival of the signal.

7.14 Brillouin Precursor

As time progresses, the horizontal line c t/x in Figure 7.8 gradually rises, and the point of stationary
phase moves to ever lower frequencies. In general, however, the amplitude remains relatively
small. Only when the elapsed time reaches

t1 =
n(0) x

c
> t0 (7.162)

is there a qualitative change. This time marks the arrival of a second precursor known as the
Brillouin precursor. The reason for the qualitative change is evident from Figure 7.8. At t = t1,
the lower region of the c/vg curve is intersected for the first time, and ω = 0 becomes a point of
stationary phase. It follows that the oscillation frequency of the Brillouin precursor is far less than
that of the Sommerfeld precursor. Moreover, it is easily demonstrated that the second derivative
of k(ω) vanishes at ω = 0. This means that φ′′s = 0. The stationary phase result (7.151) gives an
infinite answer in such circumstances. Of course, the amplitude of the Brillouin precursor is not
infinite, but it is significantly larger than that of the Sommerfeld precursor.

In order to generalize the result (7.151) to deal with a stationary phase point at ω = 0, it is
necessary to expand φ(ω) about this point, keeping terms up to ω 3. Thus,

φ(ω) � ω (t1 − t) +
x
6

k′′′0 ω 3, (7.163)
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where

k′′′0 ≡
(

d 3k
dω 3

)
ω=0
=

3ω 2
p

c n(0)ω 4
0

(7.164)

for the simple dispersion relation (7.104). The amplitude (7.143) is therefore given approximately
by

f (x, t) � F(0)
∫ −∞

∞
exp

[
iω (t1 − t) + i

x
6

k′′′0 ω 3
]

dω. (7.165)

This expression reduces to

f (x, t) =
τ√
2 π 2

√
|t − t1|
x k′′′0

∫ ∞

0
cos

[
3
2

z
(
v 3

3
± v

)]
dv, (7.166)

where

v =

√
x k′′′0

2 |t − t1| ω, (7.167)

and

z =
2
√

2 |t − t1| 3/2
3
√

x k′′′0

. (7.168)

The positive (negative) sign in the integrand is taken for t < t1 (t > t1).
The integral in Equation (7.166) is known as an Airy integral. It can be expressed in terms of

Bessel functions of order 1/3, as follows:∫ ∞

0
cos

[
3
2

z
(
v 3

3
+ v

)]
dv =

1√
3

K1/3(z), (7.169)

and ∫ ∞

0
cos

[
3
2

z
(
v 3

3
− v

)]
dv =

π

3
[
J1/3(z) + J−1/3(z)

]
. (7.170)

From the well-known properties of Bessel functions, the precursor can be seen to have a growing
exponential character for times earlier than t = t1, and an oscillating character for t > t1. The
amplitude in the neighborhood of t = t1 is plotted in Figure 7.9.

The initial oscillation period of the Brillouin precursor is crudely estimated (by setting z ∼ 1)
as

∆t0 ∼ (x k′′′0 )1/3. (7.171)

The amplitude of the Brillouin precursor is approximately

| f | ∼ τ

(x k′′′0 )1/3 . (7.172)

Let us adopt the ordering
1/τ ∼ ω0 ∼ ωp 	 ξ, (7.173)
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t ->t
1

Figure 7.9: A sketch of the behavior of the Brillouin precursor as a function of time.

which corresponds to the majority of physical situations involving the propagation of electromag-
netic radiation through dielectric media. It follows, from the previous results, plus the results of
Section 7.11, that

(∆t0 ωp)brillouin ∼
(
ξ

ωp

)1/3


 1, (7.174)

and

(∆t0 ωp)sommerfeld ∼
(
ωp

ξ

)
	 1. (7.175)

Furthermore,

| f |brillouin ∼
(
ωp

ξ

)1/3

	 1, (7.176)

and

| f |sommerfeld ∼
(
ωp

ξ

)
	 | f |brillouin. (7.177)

Thus, it is clear that the Sommerfeld precursor is essentially a low amplitude, high frequency
signal, whereas the Brillouin precursor is a high amplitude, low frequency signal. Note that the
amplitude of the Brillouin precursor, despite being significantly higher than that of the Sommerfeld
precursor, is still much less than that of the incident wave.

7.15 Signal Arrival

Let us now try to establish at which time, t2, a signal first arrives at depth x inside the dielectric
medium whose amplitude is comparable with that of the wave incident at time t = 0 on the surface
of the medium (x = 0). Let us term this event the “arrival” of the signal. It is plausible, from
the discussion in Section 7.12 regarding the stationary phase approximation, that signal arrival
corresponds to the situation at which the point of stationary phase in ω-space corresponds to a
pole of the function F(ω). In other words, when ωs approaches the frequency 2π/τ of the incident
signal. It is certainly the case that the stationary phase approximation yields a particularly large
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amplitude signal when ωs → 2π/τ. Unfortunately, as has already been discussed, the method of
stationary phase becomes inaccurate under these circumstances. However, calculations involving
the more robust method of steepest decent 4 confirm that, in most cases, the signal amplitude first
becomes significant when ωs = 2π/τ. Thus, the signal arrival time is

t2 =
x

vg(2π/τ)
, (7.178)

where vg(2π/τ) is the group velocity calculated using the frequency of the incident signal. It is
clear from Figure 7.8 that

t0 < t1 < t2. (7.179)

Thus, the main signal arrives later than the Sommerfeld and Brillouin precursors.

7.16 Exercises

7.1 A general electromagnetic wave pulse propagating in the z-direction at velocity u is written

E = P(z − u t) ex + Q(z − u t) ey + R(z − u t) ez,

B =
S (z − u t)

u
ex +

T (z − u t)
u

ey +
U(z − u t)

u
ez,

where P, Q, R, S , T , and U are arbitrary functions. In order to exclude electrostatic and
magnetostatic fields, these functions are subject to the constraint that 〈P〉 = 〈Q〉 = 〈R〉 =
〈S 〉 = 〈T 〉 = 〈U〉 = 0, where

〈P〉 =
∫ ∞

−∞
P(x) dx.

Suppose that the pulse propagates through a uniform dielectric medium of dielectric con-
stant ε. Demonstrate from Maxwell’s equation that u = c/

√
ε, R = U = 0, S = −Q,

and T = P. Incidentally, this result implies that a general wave pulse is characterized by
two arbitrary functions, corresponding to the two possible independent polarizations of the
pulse.

7.2 Show that the mean energy flux due to an electromagnetic wave of angular frequency ω
propagating though a good conductor of conductivity σ can be written

〈I〉 = E 2

√
8 Z

,

where E is the peak electric field-strength, and Z = (ε0 ω/σ)1/2.

7.3 Consider an electromagnetic wave propagating in the positive z-direction through a good
conductor of conductivity σ. Suppose that the wave electric field is

Ex(z, t) = E0 e−z/d cos(ω t − z/d),
4Ibid.
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where d is the skin-depth. Demonstrate that the mean electromagnetic energy flux across
the plane z = 0 matches the mean rate at which electromagnetic energy is dissipated per
unit area due to Joule heating in the region z > 0.

7.4 A plane electromagnetic wave, linearly polarized in the x-direction, and propagating in
the z-direction through an electrical conducting medium of conductivity σ and relative
dielectric constant unity, is governed by

∂Hy

∂t
= − 1

µ0

∂Ex

∂z
,

∂Ex

∂t
= −σ

ε0
Ex − 1

ε0

∂Hy

∂z
,

where Ex(z, t) and Hy(z, t) are the electric and magnetic components of the wave. Derive an
energy conservation equation of the form

∂E
∂t
+
∂I
∂z
= −σ E 2

x ,

where E is the electromagnetic energy per unit volume, and I the electromagnetic energy
flux. Give expressions for E and I. What does the right-hand side of the previous equation
represent? Demonstrate that Ex obeys the wave-diffusion equation

∂ 2Ex

∂t 2 +
σ

ε0

∂Ex

∂t
= c 2 ∂

2Ex

∂z 2 ,

where c = 1/
√
ε0 µ0. Consider the high frequency, low conductivity, limitω
 σ/ε0. Show

that a wave propagating into the medium varies as

Ex(z, t) � E0 cos[k (c t − z)] e−z/δ,

Hy(z, t) � Z −1
0 E0 cos[k (c t − z) − 1/(k δ)] e−z/δ,

where k = ω/c, δ = 2/(Z0 σ), and Z0 =
√
µ0/ε0. Demonstrate that k δ 	 1: that is, the

wave penetrates many wavelengths into the medium.

7.5 Consider a uniform plasma of plasma frequency ωp containing a uniform magnetic field
B0 ez. Show that left-hand circularly polarized electromagnetic waves can only propagate
parallel to the magnetic field provided that ω > −Ω/2 +

√
Ω 2/4 + ω 2

p , where Ω = e B0/me

is the electron cyclotron frequency. Demonstrate that right-hand circularly polarized elec-
tromagnetic waves can only propagate parallel to the magnetic field provided that their
frequencies do not lie in the range Ω ≤ ω ≤ Ω/2 +

√
Ω 2/4 + ω 2

p .
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8 Wave Propagation in Inhomogeneous Dielectric Media

8.1 Introduction

In this chapter, we extend the analysis of the previous chapter to investigate electromagnetic wave
propagation through inhomogeneous dielectric media.

8.2 Laws of Geometric Optics

Suppose that the region z < 0 is occupied by a transparent dielectric medium of uniform refractive
index n1, whereas the region z > 0 is occupied by a second transparent dielectric medium of
uniform refractive index n2. (See Figure 8.1.) Let a plane light wave be launched toward positive
z from a light source of angular frequency ω located at large negative z. Furthermore, suppose
that this wave, which has the wavevector ki, is obliquely incident on the interface between the two
media. We would expect the incident plane wave to be partially reflected and partially refracted
(i.e., transmitted) by the interface. Let the reflected and refracted plane waves have the wavevectors
kr and kt, respectively. (See Figure 8.1.) Hence, we can write

ψ(x, y, z, t) = ψi cos(ω t − ki · r) + ψr cos(ω t − kr · r) (8.1)

in the region z < 0, and
ψ(x, y, z, t) = ψt cos(ω t − kt · r) (8.2)

in the region z > 0. Here, ψ(x, y, z, t) represents the magnetic component of the resultant light
wave, ψi the amplitude of the incident wave, ψr the amplitude of the reflected wave, and ψt the
amplitude of the refracted wave. All of the component waves have the same angular frequency, ω,
because this property is ultimately determined by the wave source. Furthermore, if the magnetic
component of an electromagnetic wave is specified then the electric component of the wave is fully
determined, and vice versa. (See Section 7.1.)

In general, the wavefunction, ψ, must be continuous at z = 0, because there cannot be a dis-
continuity in either the normal or the tangential component of a magnetic field across an interface
between two (non-magnetic) dielectric media. (The same is not true of an electric field, which can
have a normal discontinuity across an interface between two dielectric media.) This explains why
we have chosen ψ to represent the magnetic, rather than the electric, component of the wave. Thus,
the matching condition at z = 0 takes the form

ψi cos(ω t − ki x x − ki y y) + ψr cos(ω t − kr x x − kr y y) = ψt cos(ω t − kt x x − kt y y). (8.3)

This condition must be satisfied at all values of x, y, and t. This is only possible if

ki x = kr x = kt x, (8.4)
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n2n1

θr

kt

x = 0
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θi

θt

z = 0

x

z
ki

Figure 8.1: Reflection and refraction of a plane wave at a plane boundary.

and
ki y = kr y = kt y. (8.5)

Suppose that the direction of propagation of the incident wave lies in the x-z plane, so that
ki y = 0. It immediately follows, from Equation (8.5), that kr y = kt y = 0. In other words, the
directions of propagation of the reflected and the refracted waves also lie in the x-z plane, which
implies that ki, kr and kt are co-planar vectors. This constraint is implicit in the well-known laws
of geometric optics.

Assuming that the previously mentioned constraint is satisfied, let the incident, reflected, and
refracted wave normals subtend angles θi, θr, and θt with the z-axis, respectively. (See Figure 8.1.)
It follows that

ki = n1 k0 (sin θi, 0, cos θi), (8.6)

kr = n1 k0 (sin θr, 0,− cos θr), (8.7)

kt = n2 k0 (sin θt, 0, cos θt), (8.8)

where k0 = ω/c is the vacuum wavenumber, and c the velocity of light in vacuum. Here, we
have made use of the fact that wavenumber (i.e., the magnitude of the wavevector) of a light wave
propagating through a dielectric medium of refractive index n is n k0.

According to Equation (8.4), ki x = kr x, which yields

sin θi = sin θr, (8.9)
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and ki x = kt x, which reduces to
n1 sin θi = n2 sin θt. (8.10)

The first of these relations states that the angle of incidence, θi, is equal to the angle of reflection, θr.
This is the familiar law of reflection. Furthermore, the second relation corresponds to the equally
familiar law of refraction, otherwise known as Snell’s law.

Incidentally, the fact that a plane wave propagates through a uniform dielectric medium with a
constant wavevector, and, therefore, a constant direction of motion, is equivalent to the well-known
law of rectilinear propagation, which states that a light ray (i.e., the normal to a constant phase
surface) propagates through a uniform medium in a straight-line.

It follows, from the previous discussion, that the laws of geometric optics (i.e., the law of
rectilinear propagation, the law of reflection, and the law of refraction) are fully consistent with
the wave properties of light, despite the fact that they do not seem to explicitly depend on these
properties.

8.3 Fresnel Relations

The theory described in the previous section is sufficient to determine the directions of the reflected
and refracted waves, when a light wave is obliquely incident on a plane interface between two
dielectric media. However, it cannot determine the fractions of the incident energy that are reflected
and refracted, respectively. In order to calculate the coefficients of reflection and transmission, it
is necessary to take into account both the electric and the magnetic components of the various
different waves. It turns out that there are two independent wave polarizations that behave slightly
differently. The first of these is such that the magnetic components of the incident, reflected, and
refracted waves are all parallel to the interface. The second is such that the electric components of
these waves are all parallel to the interface.

Consider the first polarization. Let the interface correspond to the plane z = 0, let the region
z < 0 be occupied by material of refractive index n1, and let the region z > 0 be occupied by
material of refractive index n2. Suppose that the incident, reflected, and refracted waves are plane
waves, of angular frequency ω, whose wavevectors lie in the x-z plane. (See Figure 8.1.) The
equations governing the propagation of the wave are

∂Dx

∂t
= −∂Hy

∂z
, (8.11)

∂Dz

∂t
=
∂Hy

∂x
, (8.12)

∂Hy

∂t
= v 2

(
∂Dz

∂x
− ∂Dx

∂z

)
, (8.13)

where
D = ε ε0 E (8.14)
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is the electric displacement, v = c/n the characteristic wave speed, and n =
√
ε the refractive index.

Suppose that, as described in the previous section,

Hy(x, z, t) = ψi cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

+ ψr cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z) (8.15)

in the region z < 0, and

Hy(x, z, t) = ψt cos(ω t − n1 k0 sin θi x − n2 k0 cos θt z) (8.16)

in the region z > 0. Here, k0 = ω/c is the vacuum wavenumber, θi the angle of incidence, and θt

the angle of refraction. (See Figure 8.1.) In writing the above expressions, we have made use of
the law of reflection (i.e., θr = θi), as well as the law of refraction (i.e., n1 sin θi = n2 sin θt). The
two terms on the right-hand side of Equation (8.15) correspond to the incident and reflected waves,
respectively. The term on the right-hand side of Equation (8.16) corresponds to the refracted wave.
Substitution of Equations (8.15)–(8.16) into the governing differential equations, (8.11)–(8.13),
yields

Dx(x, z, t) =
ψi cos θi

v1
cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

− ψr cos θi

v1
cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z), (8.17)

Dz(x, z, t) = −ψi sin θi

v1
cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

− ψr sin θi

v1
cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z) (8.18)

in the region z < 0, and

Dx(x, z, t) =
ψt cos θt

v2
cos(ω t − n1 k0 sin θi x − n2 k0 cos θt z), (8.19)

Dz(x, z, t) = −ψt sin θi

v1
cos(ω t − n1 k0 sin θi x − n2 k0 cos θt z) (8.20)

in the region z > 0.
Now, both the normal and the tangential components of the magnetic intensity must be contin-

uous at the interface. This implies that

[Hy]
z=0+
z=0− = 0, (8.21)

which yields
ψi + ψr = ψt (8.22)

Furthermore, the normal component of the electric displacement, as well as the tangential compo-
nent of the electric field, must be continuous at the interface. In other words,

[Dz]z=0+
z=0− = 0, (8.23)



Wave Propagation in Inhomogeneous Dielectric Media 157

and
[Ex]z=0+

z=0− = [Dx/(ε ε0)]z=0+
z=0− = 0. (8.24)

The former of these conditions again gives Equation (8.22), whereas the latter yields

ψi − ψr =
α

β
ψt. (8.25)

Here,

α =
cos θt

cos θi
, (8.26)

β =
v1

v2
=

n2

n1
. (8.27)

It follows that

ψr =

(
β − α
β + α

)
ψi, (8.28)

ψt =

(
2 β
β + α

)
ψi. (8.29)

The electromagnetic energy flux in the z-direction (i.e., normal to the interface) is

Iz = Ex Hy. (8.30)

Thus, the mean energy fluxes associated with the incident, reflected, and refracted waves are

〈Iz〉i = ψ
2
i cos θi

2 ε0 c n1
, (8.31)

〈Iz〉r = −ψ
2
r cos θi

2 ε0 c n1
, (8.32)

〈Iz〉t = ψ
2
t cos θt

2 ε0 c n2
, (8.33)

respectively. The coefficients of reflection and transmission are defined

R =
−〈Iz〉r
〈Iz〉i , (8.34)

T =
〈Iz〉t
〈Iz〉i , (8.35)

respectively. Hence, it follows that

R =
(
β − α
β + α

)2

, (8.36)

T =
4α β

(β + α)2 = 1 − R. (8.37)
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These expressions are known as Fresnel relations.
Let us now consider the second polarization, in which the electric components of the incident,

reflected, and refracted waves are all parallel to the interface. In this case, the governing equations
are

∂Hx

∂t
= v 2 ∂Dy

∂z
, (8.38)

∂Hz

∂t
= −v 2 ∂Dy

∂x
, (8.39)

∂Dy

∂t
= −∂Hz

∂x
+
∂Hx

∂z
. (8.40)

If we make the transformations Hy → −v 2 Dy, Dx → Hx, Dz → Hz, ψi,r,t → −v ψi,r,t then we can
reuse the solutions that we derived for the other polarization. We find that

Dy(x, z, t) =
ψi

v1
cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

+
ψr

v1
cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z), (8.41)

Hx(x, z, t) = −ψi cos θi cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

+ ψr cos θi cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z), (8.42)

Hz(x, z, t) = ψi sin θi cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

+ ψr sin θi cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z) (8.43)

in the region z < 0, and

Dy(x, z, t) =
ψt

v2
cos(ω t − n1 k0 sin θi x − n2 k0 cos θt z), (8.44)

Hx(x, z, t) = −ψt cos θt cos(ω t − n1 k0 sin θi x − n2 k0 cos θt z), (8.45)

Hz(x, z, t) = ψt sin θt cos(ω t − n1 k0 sin θi x − n2 k0 cos θt z) (8.46)

in the region z > 0. The first two matching conditions at the interface are that the normal and
tangential components of the magnetic intensity are continuous. In other words,

[Hz]z=0−
z=0+
= 0, (8.47)

[Hx]z=0−
z=0+
= 0. (8.48)

The first of these conditions yields
ψi + ψr = β

−1 ψt, (8.49)

whereas the second gives
ψi − ψr = αψt. (8.50)
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The final matching condition at the interface is that the tangential component of the electric field
is continuous. In other words,

[Ey]z=0+
z=0− = [Dy/(ε ε0)]z=0+

z=0− = 0, (8.51)

which again yields Equation (8.49). It follows that

ψr =

(
1 − α β
1 + α β

)
ψi, (8.52)

ψt =

(
2 β

1 + α β

)
ψi. (8.53)

The electromagnetic energy flux in the z-direction is

Iz = −Ey Hx. (8.54)

Thus, the mean energy fluxes associated with the incident, reflected, and refracted waves are

〈Iz〉i = ψ
2
i cos θi

2 ε0 c n1
, (8.55)

〈Iz〉r = −ψ
2
r cos θi

2 ε0 c n1
, (8.56)

〈Iz〉t = ψ
2
t cos θt

2 ε0 c n2
, (8.57)

respectively. Hence, the coefficients of reflection and transmission are

R =
(
1 − α β
1 + α β

)2

, (8.58)

T =
4α β

(1 + α β)2 = 1 − R, (8.59)

respectively. These expressions are the Fresnel relations for the polarization in which the electric
field is parallel to the interface.

It can be seen that, at oblique incidence, the Fresnel relations (8.36) and (8.37) for the polar-
ization in which the magnetic field is parallel to the interface are different to the corresponding
relations (8.58) and (8.59) for the polarization in which the electric field is parallel to the interface.
This implies that the coefficients of reflection and transmission for these two polarizations are, in
general, different.

Figure 8.2 shows the coefficients of reflection and transmission for oblique incidence from air
(n1 = 1.0) to glass (n2 = 1.5). Roughly speaking, it can be seen that the coefficient of reflection
rises, and the coefficient of transmission falls, as the angle of incidence increases. However, for
the polarization in which the magnetic field is parallel to the interface, there is a particular angle of
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Figure 8.2: Coefficients of reflection (solid curves) and transmission (dashed curves) for oblique
incidence from air (n1 = 1.0) to glass (n2 = 1.5). The left-hand panel shows the wave polarization
for which the electric field is parallel to the boundary, whereas the right-hand panel shows the wave
polarization for which the magnetic field is parallel to the boundary. The Brewster angle is 56.3◦.

incidence, know as the Brewster angle, at which the reflected intensity is zero. There is no similar
behavior for the polarization in which the electric field is parallel to the interface.

It follows from Equation (8.36) that the Brewster angle corresponds to the condition

α = β, (8.60)

or

β 2 =
cos2 θt

cos2 θi
=

1 − sin2 θt

1 − sin2 θi
=

1 − sin2 θi/β
2

1 − sin2 θi
, (8.61)

where use has been made of Snell’s law. The previous expression reduces to

sin θi =
β√

1 + β 2
, (8.62)

or tan θi = β = n2/n1. Hence, the Brewster angle corresponds to θi = θB, where

θB = tan−1
(
n2

n1

)
. (8.63)

If unpolarized light is incident on an air/glass (say) interface at the Brewster angle then the reflected
light is 100 percent linearly polarized. (See Section 7.6.)

The fact that the coefficient of reflection for the polarization in which the electric field is parallel
to the interface is generally greater that that for the other polarization (see Figure 8.2) implies that
sunlight reflected from a horizontal water or snow surface is partially linearly polarized, with the
horizontal polarization predominating over the vertical one. Such reflected light may be so intense
as to cause glare. Polaroid sunglasses help reduce this glare by blocking horizontally polarized
light.
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8.4 Total Internal Reflection

According to Equation (8.10), when light is obliquely incident at an interface between two dielec-
tric media, the angle of refraction θt is related to the angle of incidence θi according to

sin θt =
n1

n2
sin θi. (8.64)

This formula presents no problems when n1 < n2. However, if n1 > n2 then the formula predicts
that sin θt is greater than unity when the angle of incidence exceeds some critical angle given by

θc = sin−1(n2/n1). (8.65)

In this situation, the analysis of the previous section requires modification.
Consider the polarization in which the magnetic field is parallel to the interface. We can write

Hy(x, z, t) = ψi cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

+ ψr cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z + φr), (8.66)

Dx(x, z, t) =
ψi cos θi

v1
cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

− ψr cos θi

v1
cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z + φr), (8.67)

Dz(x, z, t) = −ψi sin θi

v1
cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

− ψr sin θi

v1
cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z + φr) (8.68)

in the region z < 0, and

Hy(x, z, t) = ψt e−n2 k0 sinh θt z cos(ω t − n1 k0 sin θi x + φt), (8.69)

Dx(x, z, t) =
ψt sinh θt

v2
e−n2 k0 sinh θt z sin(ω t − n1 k0 sin θi x + φt), (8.70)

Dz(x, z, t) = −ψt sin θi

v1
e−n2 k0 sinh θt z cos(ω t − n1 k0 sin θi x + φt) (8.71)

in the region z > 0. Here,
cosh θt = sin θt =

n1

n2
sin θi. (8.72)

The matching conditions (8.21) and (8.23) both yield

ψi + cos φr ψr = cos φt ψt, (8.73)

sinφr ψr = sinφt ψt, (8.74)
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whereas the matching condition (8.24) gives

ψi − cos φr ψr =
α̂

β
sinφt ψt, (8.75)

sinφr ψr =
α̂

β
cosφt ψt. (8.76)

Here,

α̂ =
sinh θt

cos θi
. (8.77)

It follows that

tan φr =
2 α̂ β
β 2 − α̂ 2 , (8.78)

tanφt =
α̂

β
, (8.79)

ψi = ψt, (8.80)

ψt =
2 β

(β 2 + α̂ 2)1/2 ψi. (8.81)

Moreover,

〈Iz〉i = −〈Iz〉r = ψ
2
i cos θi

2 ε0 c n1
, (8.82)

and
〈Iz〉t = 0. (8.83)

The last result follows because Hy and Dx for the transmitted wave oscillate π/2 radians out of
phase. Hence, when the angle of incidence exceeds the critical angle, the coefficient of reflection
is unity, and the coefficient of transmission zero.

Consider the polarization in which the electric field is parallel to the interface. We can write

Dy(x, z, t) =
ψi

v1
cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

+
ψr

v1
cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z + φr), (8.84)

Hx(x, z, t) = −ψi cos θi cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

+ ψr cos θi cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z + φr), (8.85)

Hz(x, z, t) = ψi sin θi cos(ω t − n1 k0 sin θi x − n1 k0 cos θi z)

+ ψr sin θi cos(ω t − n1 k0 sin θi x + n1 k0 cos θi z + φr) (8.86)
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Figure 8.3: Coefficients of reflection (solid curves) and transmission (dashed curves) for oblique
incidence from water (n1 = 1.33) to air (n2 = 1.0). The left-hand panel shows the wave polarization
for which the electric field is parallel to the interface, whereas the right-hand panel shows the wave
polarization for which the magnetic field is parallel to the interface. The critical angle is 48.8◦.

in the region z < 0, and

Dy(x, z, t) =
ψt

v2
e−n2 k0 sinh θt z cos(ω t − n1 k0 sin θi x + φt), (8.87)

Hx(x, z, t) = −ψt sinh θt e−n2 k0 sinh θt z sin(ω t − n1 k0 sin θi x + φt), (8.88)

Hz(x, z, t) = ψt cosh θt e−n2 k0 sinh θt z cos(ω t − n1 k0 sin θi x + φt) (8.89)

in the region z > 0. The matching conditions (8.47) and (8.51) both yield

ψi + cos φr ψr = β
−1 cosφt ψt (8.90)

sinφr ψr = β
−1 sinφt ψt, (8.91)

whereas the matching condition (8.48) gives

ψi − cos φr ψr = α̂ sinφt ψt, (8.92)

sinφr ψr = α̂ cosφt ψt. (8.93)
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Figure 8.4: Frustrated total internal reflection.

It follows that

tanφr =
2 α̂ β

1 − α̂ 2 β 2 , (8.94)

tanφt = α̂ β, (8.95)

ψi = ψt, (8.96)

ψt =
2 β

(1 + α̂ 2 β 2)1/2 ψi. (8.97)

As before, if the angle of incidence exceeds the critical angle, the coefficient of reflection is unity,
and the coefficient of transmission zero.

According to the above analysis, when light is incident on an interface separating a medium of
high refractive index from a medium of low refractive index, and the angle of incidence exceeds
the critical angle, θc, the transmitted ray becomes evanescent (i.e., its amplitude decays exponen-
tially), and all of the incident energy is reflected. This process is known as total internal reflection.
Figure 8.3 shows the coefficients of reflection and transmission for oblique incidence from water
(n1 = 1.33) to air (n2 = 1.0). In this case, the critical angle is θc = 48.8◦.

When total internal reflection takes place, the evanescent transmitted wave penetrates a few
wavelengths into the lower refractive index medium. The existence of the evanescent wave can be
demonstrated using the apparatus pictured in Figure 8.4. This shows two right-angled glass prisms
separated by a small air gap of width d. Light incident on the internal surface of the first prism
is internally reflected (assuming that θc < 45◦). However, if the spacing d is not too much larger
than the wavelength of the light (in air) then the evanescent wave in the air gap still has a finite
amplitude when it reaches the second prism. In this case, a detectable transmitted wave is excited
in the second prism. The amplitude of this wave has an inverse exponential dependance on the
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Figure 8.5: Phase advance introduced between the two different wave polarizations by total internal
reflection at an interface between glass (n1 = 1.52) and air (n2 = 1.0).

width of the gap. This effect is called frustrated total internal reflection, and is analogous to the
tunneling of wavefunctions through potential barriers in quantum mechanics.

According to Equations (8.78) and (8.94), total internal reflection produces a phase shift, φr,
between the reflected and the incident waves. Moreover, this phase shift is different for the two
possible wave polarizations. Hence, if unpolarized light is subject to total internal reflection then a
phase advance, ∆φr, is introduced between the different polarizations. (The phase of the polariza-
tion in which the magnetic field is parallel to the interface is advanced with respect to that of the
other polarization.) Figure 8.5 shows the phase advance due to total internal reflection at a glass/air
interface, as a function of the angle of incidence. Here, the refractive indices of the glass and air
are taken to be n1 = 1.52 and n2 = 1.0, respectively. It can be seen that there are two special values
of the angle of incidence (i.e., 47.6◦ and 55.5◦) at which the phase advance is π/4 radians.

The aforementioned phase advance on total internal reflection is exploited in the so-called
Fresnel rhomb to convert linearly polarized light into circular polarized light. A Fresnel rhomb
is a prism-like device (usually in the form of a right-parallelepiped) that is shaped such that light
entering one of the small faces is internally reflected twice (once from each of the two sloped faces)
before exiting through the other small face. (See Figure 8.6.) The angle of internal reflection is
the same in each case, and is designed to produces a π/4 phase difference between the two wave
polarizations. For the case of a prism made up of glass of refractive index 1.52, this is achieved by
ensuring that the reflection angle is either 47.6◦ or 55.5◦. The net result of sending light though the
device is thus to introduce a π/2 phase difference between the two polarizations. If the incoming
light is linearly polarized at 45◦ to the plane of the incident and reflected waves then the amplitudes
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Figure 8.6: Path of light ray through Fresnel romb (schematic).

of the two wave polarizations are the same. This ensures that the π/2 phase difference introduced
by the rhomb produces circularly (rather than elliptically) polarized light. (See Section 7.6.)

8.5 Reflection by Conducting Surfaces

Suppose that the region z < 0 is a vacuum, and the region z > 0 is occupied by a good conductor of
conductivity σ. Consider a linearly polarized plane wave normally incident on the interface. Let
the wave electric and magnetic fields in the vacuum region take the form

Ex(z, t) = Ei cos[k0 (c t − z)] + Er cos[k0 (c t + z) + φr], (8.98)

Hy(z, t) = Ei Z −1
0 cos[k0 (c t − z)] − Er Z −1

0 cos[k0 (c t + z) + φr], (8.99)

where k0 = ω/c is the vacuum wavenumber. Here, Ei and Er are the amplitudes of the incident and
reflected waves, respectively, whereas Z0 =

√
µ0/ε0. The wave electric and magnetic fields in the

conductor are written

Ex(z, t) = Et e−z/d cos(ω t − z/d + φt), (8.100)

Hy(z, t) = Et Z −1
0 α−1 e−z/d cos(ω t − z/d − π/4 + φt), (8.101)

where Et is the amplitude of the evanescent wave that penetrates into the conductor, φt is the phase
of this wave with respect to the incident wave, and

α =
(
ε0 ω

σ

)1/2
	 1. (8.102)
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The appropriate matching conditions are the continuity of Ex and Hy at the vacuum/conductor
interface (z = 0). In other words,

Ei cos(ω t) + Er cos(ω t + φr) = Et cos(ω t + φt), (8.103)

α
[
Ei cos(ω t) − Er cos(ω t + φr)

]
= Et cos(ω t − π/4 + φt). (8.104)

Equations (8.103) and (8.104), which must be satisfied at all times, can be solved, in the limit
α 	 1, to give

Er � −
(
1 − √2α

)
Ei, (8.105)

φr � −
√

2α, (8.106)

Et � 2α Ei, (8.107)

φt � π4 −
α√
2
. (8.108)

Hence, the coefficient of reflection becomes

R �
(

Er

Ei

)2

� 1 − 2
√

2α = 1 −
(
8 ε0 ω

σ

)1/2

. (8.109)

According to the previous analysis, a good conductor reflects a normally incident electromag-
netic wave with a phase shift of almost π radians (i.e., Er � −Ei). The coefficient of reflection is
just less than unity, indicating that, while most of the incident energy is reflected by the conductor,
a small fraction of it is absorbed.

High quality metallic mirrors are generally coated in silver, whose conductivity is 6.3×107 (Ωm)−1.
It follows, from Equation (8.109), that at optical frequencies (ω = 4 × 1015 rad. s−1) the coefficient
of reflection of a silvered mirror is R � 93.3 percent. This implies that about 7 percent of the light
incident on the mirror is absorbed, rather than being reflected. This rather severe light loss can be
problematic in instruments, such as astronomical telescopes, that are used to view faint objects.

8.6 Ionospheric Radio Wave Propagation

Let us investigate the propagation of an electromagnetic wave though a spatially non-uniform
dielectric medium. As a specific example, consider the propagation of radio waves through the
Earth’s ionosphere. The refractive index of the ionosphere can be written [see Equation (7.34)]

n 2 = 1 − ω 2
p

ω (ω + i ν)
, (8.110)

where ν is a real positive constant that parameterizes the damping of electron motion (in fact, ν is
the collision frequency of free electrons with other particles in the ionosphere), and

ωp =

√
N e2

ε0 m
(8.111)
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is the plasma frequency. In the previous formula, N is the density of free electrons in the iono-
sphere, and m is the electron mass. We shall assume that the ionosphere is horizontally stratified,
so that N = N(z), where the coordinate z measures height above the Earth’s surface (the curvature
of the Earth’s surface is neglected in the following analysis). The ionosphere actually consists of
two main layers; the E-layer, and the F-layer. We shall concentrate on the lower E-layer, which
lies about 100 km above the surface of the Earth, and is about 50 km thick. The typical day-time
number density of free electrons in the E-layer is N ∼ 3 × 1011 m−3. At night-time, the density
of free electrons falls to about half this number. The typical day-time plasma frequency of the
E-layer is, therefore, about 5 MHz. The typical collision frequency of free electrons in the E-layer
is about 0.05 MHz. According to simplistic theory, any radio wave whose frequency lies below
the day-time plasma frequency, 5 MHz, (i.e., any wave whose wavelength exceeds about 60 m)
is reflected by the ionosphere during the day. Let us investigate in more detail how this process
takes place. Note, incidentally, that ν 	 ω for mega-Hertz frequency radio waves, so it follows
from Equation (8.110) that n 2 is predominately real (i.e., under normal circumstances, electron
collisions can be neglected).

The problem of radio wave propagation through the ionosphere was of great practical im-
portance during the first half of the 20th century, because, during that period, long-wave radio
waves were the principal means of military communication. Nowadays, the military have far more
reliable methods of communication. Nevertheless, this subject area is still worth studying, be-
cause the principal tool used to deal with the problem of wave propagation through a non-uniform
medium—the so-called WKB approximation—is of great theoretical importance. In particular, the
WKB approximation is very widely used in quantum mechanics (in fact, there is a great similarity
between the problem of wave propagation through a non-uniform medium, and the problem of
solving Schrödinger’s equation in the presence of a non-uniform potential).

Maxwell’s equations for a wave propagating through a non-uniform, unmagnetized, dielectric
medium are

∇ · E = 0, (8.112)

∇ · c B = 0, (8.113)

∇ × E = i k c B, (8.114)

∇ × c B = −i k n 2 E, (8.115)

where n is the non-uniform refractive index of the medium. It is assumed that all field quantities
vary in time like e−iω t, where ω = k c. Note that, in the following, k is the wavenumber in free
space, rather than the wavenumber in the dielectric medium.

8.7 WKB Approximation

Consider a radio wave that is vertically incident, from below, on a horizontally stratified iono-
sphere. Because the wave normal is initially aligned along the z-axis, and as n = n(z), we expect
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all field components to be functions of z only, so that

∂

∂x
=

∂

∂y
= 0. (8.116)

In this situation, Equations (8.112)–(8.115) reduce to Ez = c Bz = 0, with

−∂Ey

∂z
= i k c Bx, (8.117)

∂ c Bx

∂z
= −i k n 2 Ey, (8.118)

and

∂Ex

∂z
= i k c By, (8.119)

−∂ c By

∂z
= −i k n 2 Ex. (8.120)

Note that Equations (8.117)–(8.118) and (8.119)–(8.120) are isomorphic and completely indepen-
dent of one another. It follows that, without loss of generality, we can assume that the wave is
linearly polarized with its electric vector parallel to the y-axis. In other words, we need only
consider the solution of Equations (8.117)–(8.118). The solution of Equations (8.119)–(8.120) is
of exactly the same form, except that it describes a linear polarized wave with its electric vector
parallel to the x-axis.

Equations (8.117)–(8.118) can be combined to give

d 2Ey

dz 2 + k 2 n 2 Ey = 0. (8.121)

Incidentally, because Ey is a function of z only, we now use the total derivative sign d/dz, instead
of the partial derivative sign ∂/∂z. The solution of the previous equation for the case of a uniform
medium, where n is constant, is straightforward:

Ey(z) = A e iφ(z), (8.122)

where A is a constant, and
φ(z) = ±k n z. (8.123)

Note that the e−iω t time dependence of all wave quantities is taken as read during this investigation.
The solution (8.122) represents a wave of constant amplitude A and phase φ(z). According to
Equation (8.123), there are, in fact, two independent waves that can propagate through the medium
in question. The upper sign corresponds to a wave that propagates vertically upwards, whereas the
lower sign corresponds to a wave that propagates vertically downwards. Both waves propagate at
the constant phase velocity c/n.

In general, if n = n(z) then the solution to Equation (8.121) does not remotely resemble the
wave-like solution (8.122). However, in the limit that n(z) is a “slowly varying” function of z
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(exactly how slowly varying is something that will be established later), we expect to recover
wave-like solutions. Let us suppose that n(z) is indeed a slowly varying function, and let us try
substituting the wave solution (8.122) into Equation (8.121). We obtain(

dφ
dz

)2

= k 2 n 2 + i
d 2φ

dz 2 . (8.124)

which is a non-linear differential equation that, in general, is very difficult to solve. However, if
n is a constant then d 2φ/dz 2 = 0. It is, therefore, reasonable to suppose that if n(z) is a slowly
varying function then the last term on the right-hand side of the previous equation can be regarded
as small. Thus, to a first approximation, Equation (8.124) yields

dφ
dz
� ±k n, (8.125)

and
d 2φ

dz 2 � ±k
dn
dz
. (8.126)

It is clear from a comparison between Equations (8.124) and (8.126) that n(z) can be regarded as a
slowly varying function of z as long as its variation length-scale is far longer than the wavelength
of the wave. In other words, provided (dn/dz)/(k n 2) 	 1.

The second approximation to the solution is obtained by substituting Equation (8.126) into the
right-hand side of Equation (8.124):

dφ
dz
� ±

(
k 2n 2 ± i k

dn
dz

)1/2

. (8.127)

This gives
dφ
dz
� ±k n

(
1 ± i

k n 2

dn
dz

)1/2

� ±k n +
i

2 n
dn
dz
, (8.128)

where use has been made of the binomial expansion. The previous expression can be integrated to
give

φ(z) � ±k
∫ z

n(z′) dz′ + i log(n 1/2). (8.129)

Substitution of Equation (8.129) into Equation (8.122) yields the final result

Ey(z) � A n−1/2(z) exp
(
±i k

∫ z

n(z′) dz′
)
. (8.130)

It follows from Equation (4.183) that

c Bx(z) � ∓A n 1/2(z) exp
(
±i k

∫ z

n(z′) dz′
)
− i A

2 k n 3/2(z)
dn
dz

exp
(
±i k

∫ z

n(z′) dz′
)
. (8.131)

Note that the second term on the right-hand side of the previous expression is small compared to
the first, and can usually be neglected.
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Let us test to what extent the expression (8.130) is a good solution of Equation (8.121) by
substituting the former into the left-hand side of the latter. The result is

A
n 1/2

3
4

(
1
n

dn
dz

)2

− 1
2 n

d 2n
dz 2

 exp
(
±i k

∫ z

n(z′) dz′
)
, (8.132)

which must be small compared with either term on the left-hand side of (8.121). Hence, the
condition for expression (8.130) to be a good solution of Equation (8.121) becomes

1
k 2

∣∣∣∣∣∣∣34
(

1
n 2

dn
dz

)2

− 1
2 n 3

d 2n
dz 2

∣∣∣∣∣∣∣ 	 1. (8.133)

The solution

Ey(z) � A n−1/2(z) exp
(
±i k

∫ z

n(z′) dz′
)
, (8.134)

c Bx(z) � ∓A n 1/2(z) exp
(
±i k

∫ z

n(z′) dz′
)
, (8.135)

to the non-uniform wave equations (8.117)–(8.118) is usually called the WKB solution, in honor
of G. Wentzel, H.A. Kramers, and L. Brillouin, who are credited with independently discovering
it (in a quantum mechanical context) in 1926. Actually, H. Jeffries wrote a paper on this solution
(in a wave propagation context) in 1923. Hence, some people call it the WKBJ solution (or even
the JWKB solution). In fact, this solution was first discussed by Liouville and Green in 1837, and
again by Rayleigh in 1912. In the following, we refer to (8.134)–(8.135) as the WKB solution,
because this is what it is generally called. However, it should be understand that, in doing so, we
are not making any statement as to the credit due to various scientists in discovering this solution.

As is well known, if a propagating electromagnetic wave is normally incident on an interface
where the refractive index suddenly changes (for instance, when a light wave propagating in the
air is normally incident on a glass slab) then there is generally significant reflection of the wave.
However, according to the WKB solution, (8.134)–(8.135), if a propagating wave is normally inci-
dent on a medium in which the refractive index changes slowly along the direction of propagation
of the wave then the wave is not reflected at all. This is true even if the refractive index varies very
substantially along the path of the wave, as long as it varies slowly. The WKB solution implies that
as the wave propagates through the medium its wavelength gradually changes. In fact, the wave-
length at position z is approximately λ(z) = 2π/k n(z). Equations (8.134)–(8.135) also imply that
the amplitude of the wave gradually changes as it propagates. In fact, the amplitude of the elec-
tric field component is inversely proportional to n 1/2, whereas the amplitude of the magnetic field
component is directly proportional to n 1/2. Note, however, that the energy flux in the z-direction,
which is given by the the Poynting vector −(Ey B ∗x + E ∗y Bx)/(4 µ0), remains constant (assuming
that n is predominately real).

Of course, the WKB solution, (8.134)–(8.135), is only approximate. In reality, a wave propa-
gating into a medium in which the refractive index is a slowly varying function of position is subject
to a small amount of reflection. However, it is easily demonstrated that the ratio of the reflected
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amplitude to the incident amplitude is of order (dn/dz)/(k n 2). Thus, as long as the refractive in-
dex varies on a much longer length-scale than the wavelength of the radiation, the reflected wave
is negligibly small. This conclusion remains valid as long as the inequality (8.133) is satisfied.
There are two main reasons why this inequality might fail to be satisfied. First of all, if there is a
localized region in the dielectric medium where the refractive index suddenly changes (i.e., if there
is an interface) then (8.133) is likely to break down in this region, allowing strong reflection of
the incident wave. Secondly, the inequality obviously breaks down in the vicinity of a point where
n = 0. We would, therefore, expect strong reflection of the incident wave from such a point.

8.8 Reflection Coefficient

Consider an ionosphere in which the refractive index is a slowly varying function of height z above
the surface of the Earth. Let n 2 be positive for z < z0, and negative for z > z0. Suppose that an
upgoing radio wave of amplitude E0 is generated at ground level (z = 0). The complex amplitude
of the wave in the region 0 < z < z0 is given by the upgoing WKB solution

Ey(z) = E0 n−1/2(z) exp
(

i k
∫ z

0
n(z′) dz′

)
, (8.136)

c Bx(z) = −E0 n 1/2(z) exp
(

i k
∫ z

0
n(z′) dz′

)
. (8.137)

The upgoing energy flux is given by −(Ey B ∗x + E ∗y Bx)/(4 µ0) = (ε0/µ0)1/2 |E0| 2/2. In the region
z > z0, the WKB solution takes the form

Ey(z) = A e i π/4 |n(z)|−1/2 exp
(
±k

∫ z

|n(z′)| dz′
)
, (8.138)

c Bx(z) = ±A e−i π/4 |n(z)|1/2 exp
(
±k

∫ z

|n(z′)| dz′
)
, (8.139)

where A is a constant. These solutions correspond to exponentially growing or decaying waves.
Note that the magnetic components of the waves are in phase quadrature with the electric compo-
nents. This implies that the Poynting fluxes of the waves are zero: in other words,, the waves do
not transmit energy. Thus, there is a non-zero incident energy flux in the region z < z0, and zero
energy flux in the region z > z0. Clearly, the incident wave is either absorbed or reflected in the
vicinity of the plane z = z0 (where n = 0). In fact, as we shall prove later, the wave is reflected.
The complex amplitude of the reflected wave in the region 0 < z < z0 is given by the downgoing
WKB solution

Ey(z) = E0 R n−1/2(z) exp
(
−i k

∫ z

0
n(z′) dz′

)
, (8.140)

c Bx(z) = E0 R n 1/2(z) exp
(
−i k

∫ z

0
n(z′) dz′

)
, (8.141)
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where R is the coefficient of reflection. Suppose, for the sake of argument, that the plane z = z0

acts like a perfect conductor, so that Ey(z0) = 0. It follows that

R = − exp
(
2 i k

∫ z0

0
n(z′) dz′

)
. (8.142)

In fact, as we shall prove later, the correct answer is

R = −i exp
(
2 i k

∫ z0

0
n(z′) dz′

)
. (8.143)

Thus, there is only a −π/2 phase shift at the reflection point, instead of the −π phase shift that
would be obtained if the plane z = z0 acted like a perfect conductor.

8.9 Extension to Oblique Incidence

We have discussed the WKB solution for radio waves propagating vertically through an ionosphere
whose refractive index varies slowly with height. Let us now generalize this solution to take into
account radio waves that propagate at an angle to the vertical axis.

The refractive index of the ionosphere is assumed to vary continuously with height, z. However,
let us, for the sake of clarity, imagine that the ionosphere is replaced by a number of thin, discrete,
homogeneous, horizontal strata. A continuous ionosphere corresponds to the limit in which the
strata become innumerable and infinitely thin. Suppose that a plane wave is incident from below
on the ionosphere. Let the wave normal lie in the x-z plane, and subtend an angle θI with the
vertical axis. At the lower boundary of the first stratum, the wave is partially reflected and partially
transmitted. The transmitted wave is then partially reflected and partially transmitted at the lower
boundary of the second stratum, and so on. However, in the limit of many strata, in which the
difference in refractive indices between neighboring strata is very small, the amount of reflection
at the boundaries (which is proportional to the square of this difference) becomes negligible. In
the nth stratum, let nn be the refractive index, and let θn be the angle subtended between the wave
normal and the vertical axis. According to Snell’s law,

nn−1 sin θn−1 = nn sin θn. (8.144)

Below the ionosphere n = 1, and so

nn sin θn = sin θI. (8.145)

For an electromagnetic wave in the nth stratum, a general field quantity depends on z and x via
factors of the form

A exp [ i k nn(±z cos θn + x sin θn)] , (8.146)

where A is a constant. The ± signs denote upgoing and downgoing waves, respectively. When the
operator ∂/∂x acts on the previous expression, it is equivalent to multiplication by i k nn sin θn =
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i k sin θI, which is independent of x and z. It is convenient to use the notation S = sin θI. Hence,
we may write symbolically

∂

∂x
≡ i k S , (8.147)

∂

∂y
≡ 0. (8.148)

These results are true no matter how thin the strata are, so they must also hold for a continuous
ionosphere. Note that, according to Snell’s law, if the wave normal is initially parallel to the x-
z plane then it will remain parallel to this plane as the wave propagates through the ionosphere.
Equations (8.112)–8.115) and (8.147)–(8.148) can be combined to give

−∂Ey

∂z
= i k c Bx, (8.149)

i k S Ey = i k c Bz, (8.150)

∂ c Bx

∂z
− i k S c Bz = −i k n 2 Ey, (8.151)

and

∂Ex

∂z
− i k S Ez = i k c By, (8.152)

−∂ c By

∂z
= −i k n 2 Ex, (8.153)

i k S c By = −i k n 2 Ez. (8.154)

As before, Maxwell’s equations can be split into two independent groups, corresponding to two
different polarizations of radio waves propagating through the ionosphere. For the first group of
equations, the electric field is always parallel to the y-axis. The corresponding waves are, therefore,
said to be horizontally polarized. For the second group of equations, the electric field always lies
in the x-z plane. The corresponding waves are, therefore, said to be vertically polarized. (However,
the term “vertically polarized” does not necessarily imply that the electric field is parallel to the
vertical axis.) Note that the equations governing horizontally polarized waves are not isomorphic
to those governing vertically polarized waves. Consequently, both types of waves must be dealt
with separately.

For the case of horizontally polarized waves, Equations (8.150) and (8.151) yield

∂ c Bx

∂z
= −i k q 2 Ey, (8.155)

where
q 2 = n 2 − S 2. (8.156)
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The previous equation can be combined with Equation (8.149) to give

∂ 2Ey

∂z 2 + k 2q 2 Ey = 0. (8.157)

Equations (8.155) and (8.157) have exactly the same form as Equations (8.118) and (8.121), except
that n 2 is replaced by q 2. Hence, the analysis of Section 7.16 can be reused to find the appropriate
WKB solution, which take the form

Ey(z) = A q−1/2(z) exp
(
±i k

∫ z

q(z′) dz′
)
, (8.158)

c Bx(z) = ∓A q 1/2(z) exp
(
±i k

∫ z

q(z′) dz′
)
, (8.159)

where A is a constant. Of course, both expressions should also contain a multiplicative factor
e i (k S x−ω t), but this is usually omitted for the sake of clarity. By analogy with Equation (8.133), the
previous WKB solution is valid as long as

1
k 2

∣∣∣∣∣∣∣34
(

1
q 2

dq
dz

) 2

− 1
2 q 3

d 2q
dz 2

∣∣∣∣∣∣∣ 	 1. (8.160)

This inequality clearly fails in the vicinity of q = 0, no matter how slowly q varies with z. Hence,
q = 0, which is equivalent to n 2 = S 2, specifies the height at which reflection takes place. By
analogy with Equation (8.143), the reflection coefficient at ground level (z = 0) is given by

R = −i exp
(
2 i k

∫ z0

0
q(z′) dz′

)
, (8.161)

where z0 is the height at which q = 0.
For the case of vertical polarization, Equations (8.152) and (8.154) yield

∂Ex

∂z
= i k

q 2

n 2 c By. (8.162)

This equation can be combined with Equation (8.153) to give

∂ 2By

∂z 2 −
1
n 2

dn 2

dz
∂By

∂z
+ k 2 q 2 By = 0. (8.163)

Clearly, the differential equation that governs the propagation of vertically polarized waves is con-
siderably more complicated than the corresponding equation for horizontally polarized waves.

The WKB solution for vertically polarized waves is obtained by substituting the wave-like
solution

c By = A e i φ(z), (8.164)
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where A is a constant, and φ(z) is the generalized phase, into Equation (8.163). The differential
equation thereby obtained for the phase is

i
d 2φ

dz 2 −
(
dφ
dz

)2

− i
n 2

dn 2

dz
dφ
dz
+ k 2q 2 φ = 0. (8.165)

Because the refractive index is assumed to be slowly varying, the first and third term in the previous
equation are small, and so, to a first approximation,

dφ
dz
= ±k q, (8.166)

d 2φ

dz 2 = ±k
dq
dz
. (8.167)

These expressions can be substituted into the first and third terms of Equation (8.165) to give the
second approximation,

dφ
dz
= ±

[
k 2q 2 ± i k

(
dq
dz
− 2 q

n
dn
dz

)]1/2

. (8.168)

The final two terms on the right-hand side of the previous equation are small, so expansion of the
right-hand side by means of the binomial theorem yields

dφ
dz
= ±k q +

i
2 q

dq
dz
− i

n
dn
dz
. (8.169)

This expression can be integrated, and the result substituted into Equation (8.164), to give the
WKB solution

c By(z) = A n(z) q−1/2(z) exp
(
±i k

∫ z

q(z′) dz′
)
. (8.170)

The corresponding WKB solution for Ex is obtained from Equation (8.162):

Ex(z) = ±A n−1(z) q 1/2(z) exp
(
±i k

∫ z

q(z′) dz′
)
. (8.171)

Here, any terms involving derivatives of n and q have been neglected.
Substituting Equation (8.170) into the differential equation (8.163), and demanding that the

remainder be small compared to the original terms in the equation, yields the following condition
for the validity of the previous WKB solution:

1
k 2

∣∣∣∣∣∣∣34
(

1
q 2

dq
dz

)2

− 1
2 q 3

d 2q
dz 2 +

1
q 2

1
n

d 2n
dz 2 − 2

(
1
n

dn
dz

)2
∣∣∣∣∣∣∣	 1. (8.172)

This criterion fails close to q = 0, no matter how slowly n and q vary with z. Hence, q = 0 gives
the height at which reflection takes place. The condition also fails close to n = 0, which does not
correspond to the reflection level. If, as is usually the case, the electron density in the ionosphere
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increases monotonically with height then the level at which n = 0 lies above the reflection level
(where q = 0). If the two levels are well separated then the reflection process is unaffected by
the failure of the previous inequality at the level n = 0, and the reflection coefficient is given by
Equation (8.161), just as is the case for the horizontal polarization. If, however, the level n = 0
lies close to the level q = 0 then the reflection coefficient may be affected, and a more accurate
treatment of the differential equation (8.163) is required in order to obtain the true value of the
reflection coefficient.

8.10 Ionospheric Pulse Propagation

Consider a radio wave generator that launches radio pulses vertically upwards into the ionosphere.
For the sake of argument, we shall assume that these pulses are linearly polarized such that the
electric field vector lies parallel to the y-axis. The pulse structure can be represented as

Ey(t) =
∫ ∞

−∞
F(ω) e−iω t dω, (8.173)

where Ey(t) is the electric field produced by the generator (i.e., the field at z = 0). Suppose that
the pulse is a signal of roughly constant (angular) frequency ω0 that lasts a time T , where T is
long compared to 1/ω0. It follows that F(ω) possesses narrow maxima around ω = ±ω0. In other
words, only those frequencies that lie very close to the central frequency, ω0, play a significant role
in the propagation of the pulse.

Each component frequency of the pulse yields a wave that travels independently up into the
ionosphere, in a manner specified by the appropriate WKB solution [see Equations (8.158)–(8.159)].
Thus, if Equation (8.173) specifies the signal at ground level (z = 0) then the signal at height z is
given by

Ey(z, t) =
∫ ∞

−∞

F(ω)
n 1/2(ω, z)

e i φ(ω,z,t) dω, (8.174)

where
φ(ω, z, t) =

ω

c

∫ z

0
n(ω, z′) dz′ − ω t. (8.175)

Here, we have made use of the definition k = ω/c.
Equation (8.174) can be regarded as a contour integral in ω-space. The quantity F/n 1/2 is a

relatively slowly varying function of ω, whereas the phase φ is a large and rapidly varying function.
As described in Section 7.12, the rapid oscillations of exp( i φ) over most of the path of integration
ensure that the integrand averages almost to zero. However, this cancellation argument does not
apply to those points on the integration path where the phase is stationary: that is, where ∂φ/∂ω =
0. It follows that the left-hand side of Equation (8.174) averages to a very small value, expect for
those special values of z and t at which one of the points of stationary phase in ω-space coincides
with one of the peaks of F(ω). The locus of these special values of z and t can be regarded as
the equation of motion of the pulse as it propagates through the ionosphere. Thus, the equation of
motion is specified by (

∂φ

∂ω

)
ω=ω0

= 0, (8.176)
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which yields

t =
1
c

∫ z

0

[
∂(ω n)
∂ω

]
ω=ω0

dz′. (8.177)

Suppose that the z-velocity of a pulse of central frequency ω0 at height z is given by uz(ω0, z).
The differential equation of motion of the pulse is then dt = dz/uz. This can be integrated, using
the boundary condition z = 0 at t = 0, to give the full equation of motion:

t =
∫ z

0

dz′

uz
. (8.178)

A comparison between Equations (8.177) and (8.178) yields

uz(ω0, z) = c
/{
∂[ω n(ω, z)]

∂ω

}
ω=ω0

. (8.179)

The velocity uz corresponds to the group velocity of the pulse. (See Section 7.13.)
The dispersion relation (8.110) yields

n(ω, z) =
1 − ω 2

p(z)

ω 2

1/2

, (8.180)

in the limit that electron collisions are negligible. The phase velocity of radio waves of frequency
ω propagating vertically through the ionosphere is given by

vz(ω, z) =
c

n(ω, z)
= c

1 − ω 2
p (z)

ω 2

−1/2

. (8.181)

According to Equations (8.179) and (8.180), the corresponding group velocity is

uz(ω, z) = c
1 − ω 2

p(z)

ω 2

1/2

. (8.182)

It follows that
vz uz = c 2. (8.183)

Note that as the reflection point z = z0 [defined as the root of ω = ωp(z0)] is approached from
below, the phase velocity tends to infinity, whereas the group velocity tends to zero.

Let τ be the time taken for the pulse to travel from the ground to the reflection level, and then
back to the ground again. The product c τ/2 is termed the equivalent height of reflection, and is
denoted h(ω), because it is a function of the pulse frequency, ω. The equivalent height is the height
at which an equivalent pulse traveling at the velocity c would have to be reflected in order to have
the same travel time as the actual pulse. Because we know that a pulse of dominant frequency
ω propagates at height z with the z-velocity uz(ω, z) (this is true for both upgoing and downgoing
pulses), and also that the pulse is reflected at the height z0(ω), where ω = ωp(z0), it follows that

τ = 2
∫ z0(ω)

0

dz
uz(ω, z)

. (8.184)
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Hence,

h(ω) =
∫ z0(ω)

0

c
uz(ω, z)

dz. (8.185)

The equivalent height of reflection, h(ω), is always greater than the actual height of reflection,
z0(ω), because the group velocity uz is always less than the velocity of light. The previous equation
can be combined with Equation (8.182) to give

h(ω) =
∫ z0(ω)

0

1 − ω 2
p(z)

ω2

−1/2

dz. (8.186)

Note that, despite the fact that the integrand diverges as the reflection point is approached, the
integral itself remains finite.

8.11 Measurement of Ionospheric Electron Density Profile

The equivalent height of the ionosphere can be measured in a fairly straightforward manner, by tim-
ing how long it takes a radio pulse fired vertically upwards to return to ground level again. We can,
therefore, determine the function h(ω) experimentally by performing this procedure many times
with pulses of different central frequencies. But, is it possible to use this information to determine
the number density of free electrons in the ionosphere as a function of height? In mathematical
terms, the problem is as follows. Does a knowledge of the function

h(ω) =
∫ z0(ω)

0

ω

[ω 2 − ω 2
p(z)]1/2 dz, (8.187)

where ω 2
p(z0) = ω 2, necessarily imply a knowledge of the function ω 2

p (z)? Recall that ω 2
p(z) ∝

N(z).
Let ω 2 = v and ω 2

p(z) = u(z). Equation (8.187) then becomes

v−1/2 h(v 1/2) =
∫ z0(v 1/2)

0

dz
[v − u(z)]1/2 , (8.188)

where u(z0) = v, and u(z) < v for 0 < z < z0. Let us multiply both sides of the previous equation
by (w − v)−1/2/π and integrate from v = 0 to w. We obtain

1
π

∫ w

0
v−1/2 (w − v)−1/2 h(v 1/2) dv =

1
π

∫ w

0

∫ z0(v 1/2)

0

dz
(w − v)1/2 (v − u)1/2

 dv. (8.189)

Consider the double integral on the right-hand side of the previous equation. The region of v-z
space over which this integral is performed is sketched in Figure 7.15. It can be seen that, as long
as z0(v 1/2) is a monotonically increasing function of v, we can swap the order of integration to give

1
π

∫ z0(w 1/2)

0

[∫ w

u(z)

dv
(w − v)1/2 (v − u)1/2

]
dz. (8.190)
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Here, we have used the fact that the curve z = z0(v 1/2) is identical with the curve v = u(z). Note
that if z0(v 1/2) is not a monotonically increasing function of v then we can still swap the order of
integration, but the limits of integration are, in general, far more complicated than those indicated
previously. The integral over v in the previous expression can be evaluated using standard methods
(by making the substitution v = w cos2 θ + u sin2 θ): the result is simply π. Thus, expression
(8.190) reduces to z0(w1/2). It follows from Equation (8.189) that

z0(w 1/2) =
1
π

∫ w

0
v−1/2 (w − v)−1/2 h(v 1/2) dv. (8.191)

Making the substitutions v = w sin2 α and w 1/2 = ω, we obtain

z0(ω) =
2
π

∫ π/2

0
h(ω sinα) dα. (8.192)

By definition, ω = ωp at the reflection level z = z0. Hence, the previous equation reduces to

z(ωp) =
2
π

∫ π/2

0
h(ωp sinα) dα. (8.193)

Thus, we can obtain z as a function of ωp (and, hence, ωp as a function of z) by simply taking the
appropriate integral of the experimentally determined function h(ω). Because ωp(z) ∝ [N(z)]1/2,
this means that we can determine the electron number density profile in the ionosphere provided
that we know the variation of the equivalent height with pulse frequency. The constraint that z0(ω)
must be a monotonically increasing function of ω translates to the constraint that N(z) must be
a monotonically increasing function of z. Note that we can still determine N(z) from h(ω) for
the case where the former function is non-monotonic, it is just a far more complicated procedure
than that outlined previously. Incidentally, the mathematical technique by which we have inverted
Equation (8.187), which specifies h(ω) as some integral over ωp(z), to give ωp(z) as some integral
over h(ω), is known as Abel inversion.

8.12 Ionospheric Ray Tracing

Suppose that we possess a radio antenna that is capable of launching radio waves of constant
frequency ω into the ionosphere at an angle to the vertical. Let us consider the paths traced out
by these waves in the x-z plane. For the sake of simplicity, we shall assume that the waves are
horizontally polarized, so that the electric field vector always lies parallel to the y-axis. The signal
emitted by the antenna (located at z = 0) can be represented as

Ey(x) =
∫ 1

0
F(S ) e i k S x dS , (8.194)

where k = ω/c. Here, the e−iω t time dependence of the signal has been neglected for the sake of
clarity. Suppose that the signal emitted by the antenna is mostly concentrated in a direction making
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0 w

z
→

v →
v = u(z)

0

z = z0(v
1/2)

Figure 8.7: A sketch of the region of v-z space over which the integral on the right-hand side of
Equation (8.187) is evaluated.

an angle θI with the vertical. It follows that F(S ) possesses a narrow maximum around S = S 0,
where S 0 = sin θI.

If Equation (8.194) represents the signal at ground level then the signal at height z in the iono-
sphere is easily obtained by making use of the WKB solution for horizontally polarized waves
described in Section 8.9. We obtain

Ey(x, z) =
∫ 1

0

F(S )
q 1/2(z, S )

e i φ(x,z,S ) dS , (8.195)

where

φ(x, z, S ) = k
∫ z

0
q(z, S ) dz + k S x. (8.196)

Equation (8.195) is essentially a contour integral in S -space. The quantity F/q 1/2 is a relatively
slowly varying function of S , whereas the phase φ is a large and rapidly varying function of S . As
described in Section 7.12, the rapid oscillations of exp( i φ) over most of the path of integration en-
sure that the integrand averages almost to zero. In fact, only those points on the path of integration
where the phase is stationary (i.e., where ∂φ/∂S = 0) make a significant contribution to the inte-
gral. It follows that the left-hand side of Equation (8.195) averages to a very small value, except for
those special values of x and z at which one of the points of stationary phase in S -space coincides
with the peak of F(S ). The locus of these special values of x and z can clearly be regarded as the
trajectory of the radio signal emitted by the antenna as it passes through the ionosphere. Thus, the
signal trajectory is specified by (

∂φ

∂S

)
S=S 0

= 0, (8.197)
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which yields

x = −
∫ z

0

(
∂q
∂S

)
S=S 0

dz. (8.198)

We can think of this equation as tracing the path of a ray of radio frequency radiation, emitted
by the antenna at an angle θI to the vertical (where S 0 = sin θI), as it propagates through the
ionosphere.

Now
q 2 = n 2 − S 2, (8.199)

so the ray tracing equation becomes

x = S
∫ z

0

dz′√
n 2(z) − S 2

, (8.200)

where S is the sine of the initial (i.e., at the antenna) angle of incidence of the ray with respect to
the vertical axis. Of course, Equation (8.200) only holds for upgoing rays. For downgoing rays, a
simple variant of the previous analysis using the downgoing WKB solutions yields

x = S
∫ z0(S )

0

dz√
n 2(z) − S 2

+ S
∫ z0(S )

z

dz√
n 2(z) − S 2

, (8.201)

where n(z0) = S . Thus, the ray ascends into the ionosphere after being launched from the antenna,
reaches a maximum height z0 above the surface of the Earth, and then starts to descend. The ray
eventually intersects the Earth’s surface again a horizontal distance

x0 = 2 S
∫ z0(S )

0

dz√
n 2(z) − S 2

(8.202)

away from the antenna.
The angle ξ which the ray makes with the vertical is given by tan ξ = dx/dz. It follows from

Equations (8.200) and (8.201) that

tan ξ = ± S√
n 2(z) − S 2

(8.203)

where the upper and lower signs correspond to the upgoing and downgoing parts of the ray tra-
jectory, respectively. Note that ξ = π/2 at the reflection point, where n = S . Thus, the ray is
horizontal at the reflection point.

Let us investigate the reflection process in more detail. In particular, we wish to demonstrate
that radio waves are reflected at the q = 0 surface, rather than being absorbed. We would also
like to understand the origin of the −π/2 phase shift of radio waves at reflection which is evident
in Equation (8.161). In order to achieve these goals, we shall need to review the mathematics of
asymptotic series.
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8.13 Asymptotic Series

It is often convenient to expand a function of the complex variable f (z) as a series in inverse powers
of z. For example,

f (z) = φ(z)
(
A0 +

A1

z
+

A2

z 2 + · · ·
)
, (8.204)

where φ(z) is a function whose behavior for large values of z is known. If f (z)/φ(z) is singular as
|z| → ∞ then the previous series clearly diverges. Nevertheless, under certain circumstances, the
series may still be useful. In fact, this is the case if the difference between f (z)/φ(z) and the first
n + 1 terms is of order 1/z n+1, so that for sufficiently large z this difference becomes vanishingly
small. More precisely, the series is said to represent f (z)/φ(z) asymptotically, that is

f (z) � φ(z)
∑

p=0,∞

Ap

z p
, (8.205)

provided that

lim
|z|→∞

z n

 f (z)
φ(z)
−

∑
p=0,n

Ap

z p


→ 0. (8.206)

In other words, for a given value of n, the sum of the first n + 1 terms of the series may be made as
close as desired to the ratio f (z)/φ(z) by making z sufficiently large. For each value of z and n there
is an error in the series representation of f (z)/φ(z) which is of order 1/z n+1. Because the series
actually diverges, there is an optimum number of terms in the series used to represent f (z)/φ(z) for
a given value of z. Associated with this is an unavoidable error. As z increases, the optimal number
of terms increases, and the error decreases.

Consider a simple example. The exponential integral is defined

E1(x) =
∫ ∞

x

e−t

t
dt. (8.207)

The asymptotic series for this function can be generated via a series of partial integrations. For
example,

E1(x) =
e−x

x
−

∫ ∞

x

e−t

t 2 dt. (8.208)

A continuation of this procedure yields

E1(x) =
e−x

x

[
1 − 1

x
+

2!
x 2 −

3!
x 3 + · · · +

(−1)n n!
x n

]
+ (−1)n+1(n + 1)!

∫ ∞

x

e−t

t n+2 dt. (8.209)

The infinite series obtained by taking the limit n → ∞ diverges, because the Cauchy convergence
test yields

lim
n→∞

∣∣∣∣∣un+1

un

∣∣∣∣∣ = lim
n→∞

(n
x

)
→ ∞. (8.210)



184 CLASSICAL ELECTROMAGNETISM

Note that two successive terms in the series become equal in magnitude for n = x, indicating that
the optimum number of terms for a given x is roughly the nearest integer to x. To prove that the
series is asymptotic, we need to show that

lim
x→0

x n+1 e x (−1)n+1 (n + 1)!
∫ ∞

x

e−t

t n+2 dt = 0. (8.211)

This immediately follows, because∫ ∞

x

e−t

t n+2 dt <
1

x n+2

∫ ∞

x
e−t dt =

e−x

x n+2 . (8.212)

Thus, the error involved in using the first n terms in the series is less than (n + 1)! e−x/x n+2, which
is the magnitude of the next term in the series. We can see that, as n increases, this estimate of the
error first decreases, and then increases without limit. In order to visualize this phenomenon more
exactly, let f (x) = x exp(x) E(x), and let

fn(x) =
∑
p=0,n

(−1)p p!
x p

(8.213)

be the asymptotic series representation of this function that contains n+ 1 terms. Figure 8.8 shows
the relative error in the asymptotic series | fn(x)− f (x)|/ f (x) plotted as a function of the approximate
number of terms in the series, n, for x = 10. It can be seen that as n increases the error initially
falls, reaches a minimum value at about n = 10, and then increases rapidly. Clearly, the optimum
number of terms in the asymptotic series used to represent f (10) is about 10.

Asymptotic series are fundamentally different to conventional power law expansions, such as

sin z = z − z 3

3!
+

z 5

5!
− z 7

7!
+ · · · . (8.214)

This series representation of sin z converges absolutely for all finite values of z. Thus, at any z, the
error associated with the series can be made as small as is desired by including a sufficiently large
number of terms. In other words, unlike an asymptotic series, there is no intrinsic, or unavoidable,
error associated with a convergent series. It follows that a convergent power law series represen-
tation of a function is unique within the domain of convergence of the series. On the other hand,
an asymptotic series representation of a function is not unique. It is perfectly possible to have two
different asymptotic series representations of the same function, as long as the difference between
the two series is less than the intrinsic error associated with each series. Furthermore, it is often the
case that different asymptotic series are used to represent the same single-valued analytic function
in different regions of the complex plane.

For example, consider the asymptotic expansion of the confluent hypergeometric function
F(a, c, z). This function is the solution of the differential equation

z F′′ + (c − z) F′ − a F = 0 (8.215)
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Figure 8.8: The relative error in a typical asymptotic series plotted as a function of the number of
terms in the series.

which is analytic at z = 0 [in fact, F(a, c, 0) = 1]. Here, ′ denotes d/dz. The asymptotic expansion
of F(a, c, z) takes the form:

Γ(a)Γ(c − a)
Γ(c)

F(a, c, z) � Γ(c − a) z a−c e z
[
1 + O

(
1
z

)]
+ Γ(a) z−a e−i π a

[
1 + O

(
1
z

)]
(8.216)

for −π < arg(z) < 0, and

Γ(a)Γ(c − a)
Γ(c)

F(a, c, z) � Γ(c − a) z a−c e z

[
1 + O

(
1
z

)]
+ Γ(a) z−a e i π a

[
1 + O

(
1
z

)]
(8.217)

for 0 < arg(z) < π, and

Γ(a)Γ(c − a)
Γ(c)

F(a, c, z) � Γ(c − a) z a−c e−i 2π (a−c) e z
[
1 + O

(
1
z

)]
+ Γ(a) z−a e i π a

[
1 + O

(
1
z

)]
(8.218)

for π < arg(z) < 2π, et cetera. Here,

Γ(z) =
∫ ∞

0
t z−1 e−t dt (8.219)
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is a so-called Gamma function. This function has the property that Γ(n + 1) = n!, where n is a
non-negative integer. It can be seen that the expansion consists of a linear combination of two
asymptotic series (only the first term in each series is shown). For |z| 
 1, the first series is
exponentially larger than the second whenever Re(z) > 0. The first series is said to be dominant
in this region, whereas the second series is said to be subdominant. Likewise, the first series is
exponentially smaller than the second whenever Re(z) < 0. Hence, the first series is subdominant,
and the second series dominant, in this region.

Consider a region in which one or other of the series is dominant. Strictly speaking, it is not
mathematically consistent to include the subdominant series in the asymptotic expansion, because
its contribution is actually less than the intrinsic error associated with the dominant series [this
error is O(1/z) times the dominant series, because we are only including the first term in this
series]. Thus, at a general point in the complex plane, the asymptotic expansion simply consists of
the dominant series. However, this is not the case in the immediate vicinity of the lines Re(z) = 0,
which are called anti-Stokes lines. When an anti-Stokes line is crossed, a dominant series becomes
subdominant, and vice versa. Thus, in the immediate vicinity of an anti-Stokes line neither series
is dominant, so it is mathematically consistent to include both series in the asymptotic expansion.

The hypergeometric function F(a, c, z) is a perfectly well-behaved, single-valued, analytic
function in the complex plane. However, our two asymptotic series are, in general, multi-valued
functions in the complex plane [see Equation (8.216)]. Can a single-valued function be repre-
sented asymptotically by a multi-valued function? The short answer is no. We have to employ
different combinations of the two series in different regions of the complex plane in order to en-
sure that F(a, c, z) remains single-valued. Equations (8.216)–(8.218) show how this is achieved.
Basically, the coefficient in front of the subdominant series changes discontinuously at certain val-
ues of arg(z). This is perfectly consistent with F(a, c, z) being an analytic function because the
subdominant series is “invisible”: in other words, the contribution of the subdominant series to
the asymptotic solution falls below the intrinsic error associated with the dominant series, so that
it does not really matter if the coefficient in front of the former series changes discontinuously.
Imagine tracing a large circle, centered on the origin, in the complex plane. Close to an anti-Stokes
line, neither series is dominant, so we must include both series in the asymptotic expansion. As we
move away from the anti-Stokes line, one series becomes dominant, which means that the other se-
ries becomes subdominant, and, therefore, drops out of our asymptotic expansion. Eventually, we
approach a second anti-Stokes line, and the subdominant series reappears in our asymptotic expan-
sion. However, the coefficient in front of the subdominant series, when it reappears, is different to
that when the series disappeared. This new coefficient is carried across the second anti-Stokes line
into the region where the subdominant series becomes dominant. In this new region, the dominant
series becomes subdominant, and disappears from our asymptotic expansion. Eventually, a third
anti-Stokes line is approached, and the series reappears, but, again, with a different coefficient in
front. The jumps in the coefficients of the subdominant series are chosen in such a manner that if
we perform a complete circuit in the complex plane then the value of the asymptotic expansion is
the same at the beginning and the end points. In other words, the asymptotic expansion is single-
valued, despite the fact that it is built up out of two asymptotic series that are not single-valued. The
jumps in the coefficient of the subdominant series, which are needed to keep the asymptotic ex-
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Figure 8.9: The location of the Stokes lines (dashed), the anti-Stokes lines (solid), and the branch
cut (wavy) in the complex plane for the asymptotic expansion of the hypergeometric function.

pansion single-valued, are called Stokes phenomena, after the celebrated nineteenth century British
mathematician Sir George Gabriel Stokes, who first drew attention to this effect.

Where exactly does the jump in the coefficient of the subdominant series occur? All we can
really say is “somewhere in the region between two anti-Stokes lines where the series in question
is subdominant.” The problem is that we only retained the first term in each asymptotic series.
Consequently, the intrinsic error in the dominant series is relatively large, and we lose track of the
subdominant series very quickly after moving away from an anti-Stokes line. However, we could
include more terms in each asymptotic series. This would enable us to reduce the intrinsic error
in the dominant series, and, thereby, expand the region of the complex plane in the vicinity of the
anti-Stokes lines where we can see both the dominant and subdominant series. If we were to keep
adding terms to our asymptotic series, so as to minimize the error in the dominant solution, we
would eventually be forced to conclude that a jump in the coefficient of the subdominant series
can only take place on those lines in the complex plane on which Im(z) = 0: these are called
Stokes lines. This result was first proved by Stokes in 1857.1 On a Stokes line, the magnitude of
the dominant series achieves its maximum value with respect to that of the subdominant series.
Once we know that a jump in the coefficient of the subdominant series can only take place at a
Stokes line, we can retain the subdominant series in our asymptotic expansion in all regions of the
complex plane. What we are basically saying is that, although, in practice, we cannot actually see
the subdominant series very far away from an anti-Stokes line, because we are only retaining the
first term in each asymptotic series, we could, in principle, see the subdominant series at all values
of arg(z) provided that we retained a sufficient number of terms in our asymptotic series.

Figure 7.17 shows the location in the complex plane of the Stokes and anti-Stokes lines for

1G.G. Stokes, Trans. Camb. Phil. Soc. 10, 106–128 (1857).
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the asymptotic expansion of the hypergeometric function. Also shown is a branch cut, which is
needed to make z single-valued. The branch cut is chosen such that arg(z) = 0 on the positive real
axis. Every time we cross an anti-Stokes line, the dominant series becomes subdominant, and vice
versa. Every time we cross a Stokes line, the coefficient in front of the dominant series stays the
same, but that in front of the subdominant series jumps discontinuously [see Equations (8.216)–
(8.218)]. Finally, the jumps in the coefficient of the subdominant series are such as to ensure that
the asymptotic expansion is single-valued.

8.14 WKB Solution as Asymptotic Series

We have seen that the WKB solution

Ey(z) = n−1/2(z) exp
(
±i k

∫ z

n(z′) dz′
)

(8.220)

is an approximate solution of the differential equation

d 2Ey

dz 2 + k 2n 2(z) Ey = 0 (8.221)

in the limit that the typical wavelength, 2π/n k, is much smaller than the typical variation length-
scale of the refractive index. But, what sort of approximation is involved in writing this solution?

It is convenient to define the scaled variable

ẑ =
z
L
, (8.222)

where L is the typical variation length-scale of the refractive index, n(z). Equation (8.221) can then
be written

w′′ + h 2 qw = 0, (8.223)

where w(ẑ, h) ≡ Ey(L ẑ), q(ẑ) ≡ n 2(L ẑ), ′ ≡ d/dẑ, and h = k L. Note that, in general, q(ẑ),
q′(ẑ), q′′(ẑ), et cetera, are O(1) quantities. The non-dimensional constant h is of order the ratio of
the variation length-scale of the refractive index to the wavelength. Let us seek the solutions to
Equation (8.223) in the limit h 
 1.

We can write
w(ẑ, h) = exp

[
i h φ(ẑ, h)

]
. (8.224)

Equation (8.223) transforms to
i
h
φ′′ − (φ′) 2 + q = 0. (8.225)

Expanding in powers of 1/h, we obtain

φ′(ẑ, h) = ±q1/2(ẑ) +
i

4 h
q′(ẑ)
q(ẑ)

+ O
(

1
h 2

)
, (8.226)
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which yields

w(ẑ, h) = q−1/4(ẑ) exp
(
±i h

∫ ẑ

q(ẑ′) dẑ′
) [

1 + O
(
1
h

)]
. (8.227)

Of course, we immediately recognize this expression as a WKB solution.
Suppose that we keep expanding in powers of 1/h in Equation (8.226). The appropriate gener-

alization of Equation (8.227) is a series solution of the form

w(ẑ, h) = q−1/4(ẑ) exp
(
±i h

∫ ẑ

q(ẑ) dẑ′
) 1 + ∑

p=1,∞

Ap(ẑ)
h p

 . (8.228)

This is, in fact, an asymptotic series in h. We can now appreciate that a WKB solution is just a
highly truncated asymptotic series in h, in which only the first term in the series is retained.

But, why is it so important that we recognize that WKB solutions are highly truncated asymp-
totic series? The point is that the WKB method was initially rather controversial after it was popu-
larized in the 1920s. Many scientists thought that the method was not mathematically rigorous. Let
us try to understand the origin of the problem. Suppose that we have never heard of an asymptotic
series. Looking at Equation (8.228), we would imagine that the expression in square brackets is a
power law expansion in 1/h. The WKB approximation involves neglecting all terms in this expan-
sion except the first. This sounds fine, as long as h is much greater than unity. But, surely, to be
mathematically rigorous, we have to check that the sum of all of the terms in the expansion that we
are neglecting is small compared to the first term? However, if we attempt this then we discover,
much to our consternation, that the expansion is divergent. In other words, the sum of all of the
neglected terms is infinite! Thus, if we interpret Equation (8.228) as a conventional power law
expansion in 1/h then the WKB method is clearly nonsense: in fact, the WKB solution would be
the first approximation to infinity. However, once we appreciate that Equation (8.228) is actually
an asymptotic series in h, the fact that the series diverges becomes irrelevant. If we retain the first
n terms in the series then the series approximates the exact solution of Equation (8.223) with an
intrinsic (fractional) error which is of order 1/h n (i.e., the first neglected term in the series). The
error is minimized at a particular value of h. As the number of terms in the series is increased, the
intrinsic error decreases, and the value of h at which the error is minimized increases. In particular,
we can see that there is an intrinsic error associated with a WKB solution that is of order 1/h times
the solution.

It is amusing to note that if Equation (8.228) were not a divergent series then it would be
impossible to obtain total reflection of the WKB solutions at the point q = 0. As we shall discover,
such reflection is directly associated with the fact that the expansion (8.228) exhibits a Stokes
phenomenon. It is, of course, impossible for a convergent power series expansion to exhibit a
Stokes phenomenon.

8.15 Stokes Constants

We have seen that the differential equation

w′′ + h2 q(ẑ)w = 0, (8.229)
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where ′ ≡ d/dẑ, possesses approximate WKB solutions of the form

(a, ẑ) = q−1/4(ẑ) exp
(

i h
∫ ẑ

a
q 1/2(ẑ) dẑ′

) [
1 + O

(
1
h

)]
, (8.230)

(ẑ, a) = q−1/4(ẑ) exp
(
−i h

∫ ẑ

a
q 1/2(ẑ) dẑ′

) [
1 + O

(
1
h

)]
. (8.231)

Here, we have adopted an arbitrary phase reference level ẑ = a. The convenient notation (a, ẑ) is
fairly self explanatory: a and ẑ refer to the lower and upper bounds of integration, respectively,
inside the exponential. It follows that the other WKB solution can be written (ẑ, a) (because we
can reverse the limits of integration inside the exponential to obtain minus the integral in ẑ from
ẑ = a to ẑ = ẑ).

Up to now, we have thought of ẑ as a real variable representing scaled height in the ionosphere.
Let us now generalize our analysis somewhat, and think of ẑ as a complex variable. There is noth-
ing in our derivation of the WKB solutions that depends crucially on ẑ being a real variable, so we
expect these solutions to remain valid when ẑ is reinterpreted as a complex variable. Incidentally,
we must now interpret q(ẑ) as some well-behaved function of the complex variable. An approxi-
mate general solution of the differential equation (8.229) in the complex ẑ-plane can be written as
as a linear superposition of the two WKB solutions (8.230)–(8.231).

The parameter h is assumed to be much larger than unity. It is clear from Equations (8.230)–
(8.231) that in some regions of the complex plane one of the WKB solutions is going to be ex-
ponentially larger than the other. In such regions, it is not mathematically consistent to retain the
smaller WKB solution in the expression for the general solution, because the contribution of the
smaller WKB solution is less than the intrinsic error associated with the larger solution. Adopting
the terminology introduced in Section 8.13, the larger WKB solution is said to be dominant, and
the smaller solution is said to be subdominant. Let us denote the WKB solution (8.230) as (a, ẑ)d in
regions of the complex plane where it is dominant, and as (a, ẑ)s in regions where it is subdominant.
An analogous notation is adopted for the second WKB solution (8.231).

Suppose that q(ẑ) possesses a simple zero at the point ẑ = ẑ0 (chosen to be the origin, for the
sake of convenience). It follows that in the immediate neighborhood of the origin we can write

q(ẑ) = a1 ẑ + a2 ẑ 2 + · · · , (8.232)

where a1 � 0. It is convenient to adopt the origin as the phase reference point (i.e., a = 0), so
the two WKB solutions become (0, ẑ) and (ẑ, 0). We can define anti-Stokes lines in the complex ẑ
plane (see Section 8.13). These are lines that satisfy

Re
(
i
∫ ẑ

0
q1/2(ẑ′) dẑ′

)
= 0. (8.233)

As we cross an anti-Stokes line, a dominant WKB solution becomes subdominant, and vice versa.
Thus, (0, ẑ)d ↔ (0, ẑ)s and (ẑ, 0)d ↔ (ẑ, 0)s. In the immediate vicinity of an anti-Stokes line the two
WKB solutions have about the same magnitude, so it is mathematically consistent to include the
contributions from both solutions in the expression for the general solution. In such a region, we
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can drop the subscripts d and s, because the WKB solutions are neither dominant nor subdominant,
and write the WKB solutions simply as (0, ẑ) and (ẑ, 0).

It is clear from Equations (8.230)–(8.231) that the WKB solutions are not single-valued func-
tions of ẑ, because they depend on q1/2(ẑ), which is a double-valued function. Thus, if we wish to
write an approximate analytic solution to the differential equation (8.229) then we cannot express
this solution as the same linear combination of WKB solutions in all regions of the complex ẑ-
plane. This implies that there must exist certain lines in the complex ẑ-plane across which the mix
of WKB solutions in our expression for the general solution changes discontinuously. These lines
are called Stokes lines (see Section 8.13), and satisfy

Im
(
i
∫ ẑ

0
q1/2(ẑ′) dẑ′

)
= 0. (8.234)

As we cross a Stokes line, the coefficient of the dominant WKB solution in our expression for the
general solution must remain unchanged, but the coefficient of the subdominant solution is allowed
to change discontinuously. Incidentally, this is perfectly consistent with the fact that the general
solution is analytic: the jump in our expression for the general solution due to the jump in the
coefficient of the subdominant WKB solution is less than the intrinsic error in this expression due
to the intrinsic error in the dominant WKB solution. Once we appreciate that the coefficient of the
subdominant solution can only change at a Stokes line, we can retain both WKB solutions in our
expression for the general solution throughout the complex ẑ-plane. In practice, we can only see a
subdominant solution in the immediate vicinity of an anti-Stokes line, but if we were to evaluate
the WKB solutions to higher accuracy [i.e., by retaining more terms in the asymptotic series in
Equations (8.230)–(8.231)] then we could, in principle, follow a subdominant solution all the way
to a neighboring Stokes line.

In the immediate vicinity of the origin∫ ẑ

0
q 1/2(ẑ) dẑ′ � 2

√
a1

3
ẑ 3/2. (8.235)

It follows from Equations (8.233) and (8.234) that three Stokes lines and three anti-Stokes lines
radiate from a zero of q(ẑ). The general arrangement of Stokes and anti-Stokes lines in the vicinity
of a q = 0 point is sketched in Figure 8.10. Note that a branch cut must also radiate from the q = 0
point in order to uniquely specify the function q 1/2(ẑ). Thus, in general, seven lines radiate from a
zero of q(ẑ), dividing the complex ẑ plane into seven domains (numbered 1 through 7).

Let us write our general solution as

w(ẑ, h) = A (0, ẑ) + B (ẑ, 0) (8.236)

on the anti-Stokes line between domains 1 and 7, where A and B are arbitrary constants. Suppose
that the WKB solution (0, ẑ) is dominant in domain 7. Thus, in domain 7 the general solution takes
the form

w(7) = A (0, ẑ)d + B (ẑ, 0)s. (8.237)
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Figure 8.10: The arrangement of Stokes lines (dashed) and anti-Stokes lines (solid) around a simple
zero of q(ẑ). Also shown is the branch cut (wavy line). All of the lines radiate from the point q = 0.

Let us move into domain 1. In doing so, we cross an anti-Stokes line, so the dominant solution
becomes subdominant, and vice versa. Thus, in domain 1, the general solution takes the form

w(1) = A (0, ẑ)s + B (ẑ, 0)d. (8.238)

Let us now move into domain 2. In doing so, we cross a Stokes line, so the coefficient of the
dominant solution, B, must remain constant, but the coefficient of the subdominant solution, A, is
allowed to change. Suppose that the coefficient of the subdominant solution jumps by t times the
coefficient of the dominant solution, where t is an undetermined constant. It follows that in domain
2 the general solution takes the form

w(2) = (A + t B) (0, ẑ)s + B (ẑ, 0)d. (8.239)

Let us now move into domain 3. In doing so, we cross an anti-Stokes line, so the the dominant
solution becomes subdominant, and vice versa. Thus, in domain 3, the general solution takes the
form

w(3) = (A + t B) (0, ẑ)d + B (ẑ, 0)s. (8.240)

Let us now move into domain 4. In doing so, we cross a Stokes line, so the coefficient of the
dominant solution must remain constant, but the coefficient of the subdominant solution is allowed
to change. Suppose that the coefficient of the subdominant solution jumps by u times the coefficient
of the dominant solution, where u is an undetermined constant. It follows that in domain 4 the
general solution takes the form

w(4) = (A + t B) (0, ẑ)d + (B + u [A + t B]) (ẑ, 0)s. (8.241)



Wave Propagation in Inhomogeneous Dielectric Media 193

Let us now move into domain 5. In doing so, we cross an anti-Stokes line, so the the dominant
solution becomes subdominant, and vice versa. Thus, in domain 5 the general solution takes the
form

w(5) = (A + t B) (0, ẑ)s + (B + u [A + t B]) (ẑ, 0)d. (8.242)

Let us now move into domain 6. In doing so, we cross the branch cut in an anti-clockwise direction.
Thus, the argument of ẑ decreases by 2π. It follows from Equation (8.232) that q 1/2 → −q 1/2

and q 1/4 → −i q 1/4. The following rules for tracing the WKB solutions across the branch cut
(in an anti-clockwise direction) ensure that the general solution is continuous across the cut [see
Equations (8.230)–(8.231)]:

(0, ẑ)→ −i (ẑ, 0), (8.243)

(ẑ, 0)→ −i (0, ẑ). (8.244)

Note that the properties of dominancy and subdominancy are preserved when the branch cut is
crossed. It follows that in domain 6 the general solution takes the form

w(6) = −i (A + t B) (ẑ, 0)s − i (B + u [A + t B]) (0, ẑ)d. (8.245)

Let us, finally, move into domain 7. In doing so, we cross a Stokes line, so the coefficient of
the dominant solution must remain constant, but the coefficient of the subdominant solution is
allowed to change. Suppose that the coefficient of the subdominant solution jumps by v times the
coefficient of the dominant solution, where v is an undetermined constant. It follows that in domain
7 the general solution takes the form

w(7) = −i (A + t B + v {B + u [A + t B]}) (ẑ, 0)s − i (B + u [A + t B]) (0, ẑ)d. (8.246)

Now, we expect our general solution to be an analytic function, so it follows that the solutions
(8.237) and (8.246) must be identical. Thus, we can compare the coefficients of the two WKB
solutions, (ẑ, 0)s and (0, ẑ)d. Because A and B are arbitrary, we can also compare the coefficients of
A and B. Comparing the coefficients of A (0, ẑ)d, we find

1 = −i u. (8.247)

Comparing the coefficients of B (0, ẑ)d yields

0 = 1 + u t. (8.248)

Comparing the coefficients of A (ẑ, 0)s gives

0 = 1 + v u. (8.249)

Finally, comparing the coefficients of B (ẑ, 0)s yields

1 = −i (t + v + v u t). (8.250)
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Figure 8.11: The arrangement of Stokes lines (dashed) and anti-Stokes lines (solid) in the complex
ẑ plane. Also shown is the branch cut (wavy line).

Equations (8.247)–(8.250) imply that
t = u = v = i. (8.251)

In other words, if we adopt the simple rule that every time we cross a Stokes line in an anti-
clockwise direction the coefficient of the subdominant solution jumps by i times the coefficient
of the dominant solution then this ensures that our expression for the general solution, (8.236),
behaves as an analytic function. Here, the constant i is usually called a Stokes constant. Note that
if we cross a Stokes line in a clockwise direction then the coefficient of the subdominant solution
has to jump by −i times the coefficient of the dominant solution in order to ensure that our general
solution behaves as an analytic function.

8.16 WKB Reflection Coefficient

Let us write ẑ = x + i y, where x and y are real variables. Consider the solution of the differential
equation

w′′ + h 2 q(x)w = 0, (8.252)

where q(x) is a real function, h is a large number, q > 0 for x < 0, and q < 0 for x > 0. It is clear
that ẑ = 0 represents a simple zero of q(ẑ). Here, we assume, as seems eminently reasonable, that
we can find a well-behaved function of the complex variable q(ẑ) such that q(ẑ) = q(x) along the
real axis. The arrangement of Stokes and anti-Stokes lines in the immediate vicinity of the point
ẑ = 0 is sketched in Figure 8.11. The argument of q(ẑ) on the positive x-axis is chosen to be −π.
Thus, the argument of q(ẑ) on the negative x-axis is 0.



Wave Propagation in Inhomogeneous Dielectric Media 195

On OB, the two WKB solutions (8.230)–(8.231) can be written

(0, x) = q−1/4(x) exp
(

i h
∫ x

0
q 1/2(x′) dx′

)
, (8.253)

(x, 0) = q−1/4(x) exp
(
−i h

∫ x

0
q 1/2(x′) dx′

)
. (8.254)

Here, we can interpret (0, x) as a wave propagating to the right along the x-axis, and (x, 0) as a
wave propagating to the left. On OA, the WKB solutions take the form

(0, x)d = e i π/4 |q(x)|−1/4 exp
(
+h

∫ x

0
|q(x′)| 1/2 dx′

)
, (8.255)

(x, 0)s = e i π/4 |q(x)|−1/4 exp
(
−h

∫ x

0
|q(x′)| 1/2 dx′

)
. (8.256)

Clearly, (x, 0)s represents an evanescent wave that decays to the right along the x-axis, whereas
(0, x)d represents an evanescent wave that decays to the left. If we adopt the boundary condition
that there is no incident wave from the region x → +∞, the most general asymptotic solution to
Equation (8.252) on OA is written

w(x, h) = A (x, 0)s, (8.257)

where A is an arbitrary constant.
Let us assume that we can find an analytic solution, w(ẑ, h), to the differential equation

w′′ + h 2 q(ẑ)w = 0, (8.258)

which satisfies w(ẑ, h) = w(x, h) along the real axis, where w(x, h) is the physical solution. From a
mathematical point of view, this seems eminently reasonable. In the domains 1 and 2, the solution
(8.257) becomes

w(1) = A (ẑ, 0)s, (8.259)

and
w(2) = A (ẑ, 0)s, (8.260)

respectively. Note that the solution is continuous across the Stokes line OA, because the coefficient
of the dominant solution (0, ẑ) is zero: thus, the jump in the coefficient of the subdominant solution
is zero times the Stokes constant, i. In other words, it is zero. Let us move into domain 3. In doing
so, we cross an anti-Stokes line, so the solution becomes

w(3) = A (ẑ, 0)d. (8.261)

Let us now move into domain 4. In doing so, we cross a Stokes line. Applying the general rule
derived in the preceding section, the solution becomes

w(4) = A (ẑ, 0)d + i A (0, ẑ)s. (8.262)
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Finally, on OB the solution becomes

w(x, h) = A (x, 0) + i A (0, x). (8.263)

Suppose that there is a point a on the negative x-axis where q(x) = 1. It follows from Equa-
tions (8.255) and (8.263) that we can write the asymptotic solution to Equation (8.252) as

w(x, h) = q−1/4(x) exp
(

i h
∫ x

a
q 1/2(x′) dx′

)
(8.264)

− i exp
(
2 i h

∫ 0

a
q1/2(x′) dx′

)
q−1/4(x) exp

(
−i h

∫ x

a
q 1/2(x′) dx′

)
,

in the region x < 0, and

w(x, h) = exp
(

i h
∫ 0

a
q 1/2(x′) dx′

)
e−i π/4 |q(x)|−1/4 exp

(
−h

∫ x

0
|q(x′)| 1/2 dx′

)
(8.265)

in the region x > 0. Here, we have chosen

A = −i exp
(

i h
∫ 0

a
q 1/2(x′) dx′

)
. (8.266)

If we interpret x as a normalized altitude in the ionosphere, q(x) as the square of the refractive
index in the ionosphere, the point a as ground level, and w as the electric field strength of a radio
wave propagating vertically upwards into the ionosphere, then Equation (8.264) tells us that a unit
amplitude wave fired vertically upwards from ground level into the ionosphere is reflected at the
level where the refractive index is zero. The first term in Equation (8.264) is the incident wave,
and the second term is the reflected wave. The reflection coefficient (i.e., the ratio of the reflected
to the incident wave at ground level) is given by

R = −i exp
(
2 i h

∫ 0

a
q 1/2(x′) dx′

)
. (8.267)

Note that |R| = 1, so the amplitude of the reflected wave equals that of the incident wave. In other
words, there is no absorption of the wave at the level of reflection. The phase shift of the reflected
wave at ground level, with respect to that of the incident wave, is that associated with the wave
propagating from ground level to the reflection level and back to ground level again, plus a −π/2
phase shift at reflection. According to Equation (8.265), the wave attenuates fairly rapidly (in the
space of a few wavelengths) above the reflection level. Of course, Equation (8.267) is completely
equivalent to Equation (8.143).

Note that the reflection of the incident wave at the point where the refractive index is zero
is directly associated with the Stokes phenomenon. Without the jump in the coefficient of the
subdominant solution, as we go from domain 3 to domain 4, there is no reflected wave on the OB
axis. Note, also, that the WKB solutions (8.264) and (8.265) break down in the immediate vicinity
of q = 0 (i.e., at the reflection point). Thus, it is possible to demonstrate that the incident wave is
totally reflected at the point q = 0, with a −π/2 phase shift, without having to solve for the wave
structure in the immediate vicinity of the reflection point. This demonstrates that the reflection of
the incident wave at q = 0 is an intrinsic property of the WKB solutions, and does not depend on
the detailed behavior of the wave in the region where the WKB solutions break down.
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Figure 8.12: The arrangement of Stokes lines (dashed) and anti-Stokes lines (solid) in the complex
ẑ plane. Also shown is the branch cut (wavy line).

8.17 Jeffries Connection Formula

In the preceding section, there is a tacit assumption that the square of the refractive index, q(x) ≡
n 2(x), is a real function. However, as is apparent from Equation (8.110), this is only the case in
the ionosphere as long as electron collisions are negligible. Let us generalize our analysis to take
electron collisions into account. In fact, the main effect of electron collisions is to move the zero
of q(ẑ) a short distance off the real axis (the distance is relatively short provided that we adopt the
physical ordering ν 	 ω). The arrangement of Stokes and anti-Stokes lines around the new zero
point, located at ẑ = ẑ0, is sketched in Figure 8.12. Note that electron collisions only significantly
modify the form of q(ẑ) in the immediate vicinity of the zero point. Thus, sufficiently far away
from ẑ = ẑ0 in the complex ẑ-plane, the WKB solutions, as well as the locations of the Stokes and
anti-Stokes lines, are exactly the same as in the preceding section.

The WKB solutions (8.253) and (8.254) are valid all the way along the real axis, except for
a small region close to the origin where electron collisions significantly modify the form of q(ẑ).
Thus, we can still adopt the physically reasonable decaying solution (8.255) on the positive real
axis. Let us trace this solution in the complex ẑ-plane until we reach the negative real axis. We can
achieve this by moving in a semi-circle in the upper half-plane. Because we never move out of the
region in which the WKB solutions (8.253) and (8.254) are valid, we conclude, by analogy with
the preceding section, that the solution on the negative real axis is given by Equation (8.263). Of
course, in all of the WKB solutions the point ẑ = 0 must be replaced by the new zero point ẑ = ẑ0.
The new formula for the reflection coefficient, which is just a straightforward generalization of
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Equation (8.267), is

R = −i exp
(
2 i h

∫ ẑ0

a
q 1/2(ẑ′) dẑ′

)
. (8.268)

This is called the Jeffries connection formula, after H. Jeffries, who discovered it in 1923. Thus,
the general expression for the reflection coefficient is incredibly simple. We just integrate the WKB
solution in the complex ẑ-plane from the phase reference level ẑ = a to the zero point, square the
result, and multiply by −i. Note that the path of integration between ẑ = a and ẑ = ẑ0 does not
matter, because of Cauchy’s theorem. Note, also, that because q 1/2 is, in general, complex along
the path of integration, we no longer have |R| = 1. In fact, it is easily demonstrated that |R| ≤ 1.
Thus, when electron collisions are included in the analysis, we no longer obtain perfect reflection
of radio waves from the ionosphere. Instead, some (small) fraction of the radio energy is absorbed
at each reflection event. This energy is ultimately transferred to the particles in the ionosphere with
which the electrons collide.

8.18 Exercises

8.1 Consider an electromagnetic wave propagating through a nonuniform dielectric medium
whose dielectric constant ε is a function of r. Demonstrate that the associated wave equa-
tions take the form

∇ 2E − ε

c 2

∂ 2E
∂t 2 = −∇

(∇ε · E
ε

)
,

∇ 2B − ε

c 2

∂ 2B
∂t 2 = −

∇ε × (∇ × B)
ε

.

8.2 Suppose that a light-ray is incident on the front (air/glass) interface of a uniform pane of
glass of refractive index n at the Brewster angle. Demonstrate that the refracted ray is also
incident on the rear (glass/air) interface of the pane at the Brewster angle.

8.3 Consider an electromagnetic wave obliquely incident on a plane boundary between two
transparent magnetic media of permeabilities µ1 and µ2. Find the coefficients of reflection
and transmission as functions of the angle of incidence for the wave polarizations in which
all electric fields are parallel to the boundary and all magnetic fields are parallel to the
boundary. Is there a Brewster angle? If so, what is it? Is it possible to obtain total reflection?
If so, what is the critical angle of incidence required to obtain total reflection?

8.4 A medium is such that the product of the phase and group velocities of electromagnetic
waves is equal to c 2 at all wave frequencies. Demonstrate that the dispersion relation for
electromagnetic waves takes the form

ω 2 = k 2 c 2 + ω 2
0 ,

where ω0 is a constant.
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8.5 Demonstrate that if the equivalent height of reflection in the ionosphere varies with the
angular frequency of the wave as

h(ω) = h0 + δ

(
ω

ω0

)p

,

where h0, δ, and ω0 are positive constants, then ωp(z) = 0 for z < h0, and

ωp(z) =
[

πΓ(1 + p)
Γ(1/2 + p/2)Γ(1/2 + p/2)

]1/p
ω0

2

(
z − h0

δ

)1/p

for z ≥ h0. Here, Γ(z) is a Gamma function.

8.6 Suppose that the refractive index, n(z), of the ionosphere is given by n2 = 1 − α (z − h0)
for z ≥ h0, and n2 = 1 for z < h0, where α and h0 are positive constants, and the Earth’s
magnetic field and curvature are both neglected. Here, z measures altitude above the Earth’s
surface.

(a) A point transmitter sends up a wave packet at an angle θ to the vertical. Show that the
packet returns to Earth a distance

x0 = 2 h0 tan θ +
2
α

sin 2θ

from the transmitter. Demonstrate that if α h0 < 1/4 then for some values of x0 the
previous equation is satisfied by three different values of θ. In other words, wave
packets can travel from the transmitter to the receiver via one of three different paths.
Show that the critical case α h0 = 1/4 corresponds to θ = π/3 and x0 = 6

√
3 h0.

(b) A point radio transmitter emits a pulse of radio waves uniformly in all directions.
Show that the pulse first returns to the Earth a distance 4 h0 (2/α h0 − 1)1/2 from the
transmitter, provided that α h0 < 2.
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9 Radiation and Scattering

9.1 Introduction

Let us briefly investigate the emission and reception of electromagnetic radiation by antenna sys-
tems, as well as the scattering of such radiation by charged particles.

9.2 Basic Antenna Theory

It possible to solve exactly for the radiation pattern emitted by a linear antenna fed with a sinu-
soidal current pattern. Assuming that all fields and currents vary in time like e−iω t, and adopting
the Lorenz gauge, it is easily demonstrated that the vector potential obeys the inhomogeneous
Helmholtz equation,

(∇ 2 + k 2) A = −µ0 j, (9.1)

where k = ω/c. The Green’s function for this equation, subject to the Sommerfeld radiation
condition (which ensures that sources radiate waves instead of absorbing them), is

G(r, r′) = − e i k |r−r′ |

4π |r − r′| . (9.2)

(See Chapter 1.) Thus, we can invert Equation (9.1) to obtain

A(r) =
µ0

4π

∫
j(r′) e i k |r−r′ |

|r − r′| dV ′. (9.3)

The electric field in the source-free region,

E =
i
k
∇ × c B, (9.4)

follows from the Ampère-Maxwell equation, as well as the definition B = ∇ × A,
Now,

|r − r′| = r
[
1 − 2 n · r′

r
+

r′ 2

r 2

]1/2

, (9.5)

where n = r/r. Assuming that r′ 	 r, this expression can be expanded binomially to give

|r − r′| = r
1 − n · r′

r
+

r′ 2

2 r 2 −
1
8

(
2 n · r′

r

)2

+ · · ·
 , (9.6)

where we have retained all terms up to order (r′/r)2. The above expansion, which appears in
the complex exponential of Equation (9.3), determines the phase of the radiation emitted by each
element of the antenna. The quadratic terms in the expansion can be neglected provided they can be
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shown to contribute a phase change that is significantly less than 2π. Thus, because the maximum
possible value of r′ is d/2, for a linear antenna that extends along the z-axis from z = −d/2 to
z = d/2, the phase shift associated with the quadratic terms is insignificant as long as

r 
 k d 2

16π
=

d 2

8 λ
, (9.7)

where λ = 2π/k is the wavelength of the radiation. This constraint is known as the Fraunhofer
limit.

In the Fraunhofer limit, we can approximate the phase variation of the complex exponential in
Equation (9.3) as a linear function of r′:

|r − r′| � r − n · r′. (9.8)

The denominator |r − r′| in the integrand of Equation (9.3) can be approximated as r provided that
the distance from the antenna is much greater than its length: that is,

r 
 d. (9.9)

Thus, Equation (9.3) reduces to

A(r) � µ0

4π
e i k r

r

∫
j(r′) e−i k n·r′ dV ′ (9.10)

when the constraints (9.7) and (9.9) are satisfied. If the additional constraint

k r 
 1 (9.11)

is also satisfied then the electromagnetic fields associated with Equation (9.10) take the form

B(r) � i k n × A = i k
µ0

4π
e i k r

r

∫
n × j(r′) e−i k n·r′ dV ′, (9.12)

E(r) � c B × n = i c k (n × A) × n. (9.13)

These are clearly radiation fields, because they are mutually orthogonal, transverse to the radius
vector, n, and satisfy E = c B ∝ r−1. (See Section 1.8.) The three constraints (9.7), (9.9), and
(9.11), can be summed up in the single inequality

d 	 √λ r 	 r. (9.14)

The current density associated with a linear, sinusoidal, centre-fed antenna, aligned along the
z-axis, is

j(r) = I sin(k d/2 − k |z|) δ(x) δ(y) ez (9.15)

for |z| < d/2, with j(r) = 0 for |z| ≥ d/2. In this case, Equation (9.10) yields

A(r) =
µ0 I
4π

e i k r

r

∫ d/2

−d/2
sin(k d/2 − k |z|) e−i k z cos θ dz ez, (9.16)
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where cos θ = n · ez. The result of this straightforward integration is

A(r) =
µ0 I
4π

2 e i k r

k r

[
cos(k d cos θ/2) − cos(k d/2)

sin2 θ

]
ez. (9.17)

According to Equations (9.12) and (9.13), the electric component of the emitted radiation lies in
the plane containing the antenna and the radius vector connecting the antenna to the observation
point. The time-averaged power radiated by the antenna per unit solid angle is

dP
dΩ
=

Re (n · E × B ∗) r 2

2 µ0
=

c k 2 sin2 θ |A| 2 r 2

2 µ0
, (9.18)

or
dP
dΩ
=
µ0 c I 2

8π2

∣∣∣∣∣cos(k d cos θ/2) − cos(k d/2)
sin θ

∣∣∣∣∣ 2

. (9.19)

The angular distribution of power depends on the value of k d. In the long wavelength limit,
k d 	 1, the distribution reduces to

dP
dΩ
=
µ0 c I 2

0

128π2 (k d) 2 sin2 θ, (9.20)

where I0 = I k d/2 is the peak current in the antenna. It is easily shown, from Equation (9.15), that
the associated current distribution in the antenna is linear: that is,

I(z) = I0 (1 − 2 |z|/d) (9.21)

for |z| < d/2. This type of antenna corresponds to a short (compared to the wavelength) oscillating
electric dipole, and is generally known as a Hertzian dipole. The total power radiated is

P =
µ0 c I 2

0 (k d)2

48π
. (9.22)

In order to maintain the radiation, power must be supplied continuously to the dipole from some
generator. By analogy with the heating power produced in a resistor,

〈P〉heat = 〈I 2〉R = I 2
0 R
2
, (9.23)

we can define the factor which multiplies I 2
0 /2 in Equation (9.22) as the radiation resistance of the

dipole antenna. Hence,

Rrad =

√
µ0

ε0

(k d) 2

24π
= 197

(
d
λ

) 2

ohms. (9.24)

Because we have assumed that λ 
 d, this radiation resistance is necessarily small. Typically, in a
Herztian dipole, the radiated power is swamped by ohmic losses that appear as heat. Thus, a “short”
antenna is a very inefficient radiator. Practical antennas have dimensions that are comparable with
the wavelength of the emitted radiation.
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Probably the two most common practical antennas are the half-wave antenna (k d = π) and the
full-wave antenna (k d = 2π). In the former case, Equation (9.19) reduces to

dP
dΩ
=
µ0 c I 2

8π2

cos2(π cos θ/2)
sin2 θ

. (9.25)

In the latter case, Equation (9.19) yields

dP
dΩ
=
µ0 c I 2

2π2

cos4(π cos θ/2)
sin2 θ

. (9.26)

The half-wave antenna radiation pattern is very similar to the characteristic sin2 θ pattern of a
Hertzian dipole. However, the full-wave antenna radiation pattern is considerably sharper (i.e., it
is more concentrated in the transverse directions θ = ±π/2).

The total power radiated by a half-wave antenna is

P =
µ0 c I 2

4π

∫ π

0

cos2(π cos θ/2)
sin θ

dθ. (9.27)

The integral can be evaluated numerically to give 1.2188. Thus,

P = 1.2188
µ0 c I 2

4π
. (9.28)

Note, from Equation (9.15), that I is equivalent to the peak current flowing in the antenna. Thus,
the radiation resistance of a half-wave antenna is given by P/(I 2/2), or

Rrad =
0.6094
π

√
µ0

ε0
= 73 ohms. (9.29)

This resistance is substantially larger than that of a Hertzian dipole [see Equation (9.24)]. In
other words, a half-wave antenna is a far more efficient emitter of electromagnetic radiation than a
Hertzian dipole. According to standard transmission line theory, if a transmission line is terminated
by a resistor whose resistance matches the characteristic impedance of the line then all of the
power transmitted down the line is dissipated in the resistor. On the other hand, if the resistance
does not match the impedance of the line then some of the power is reflected and returned to
the generator. We can think of a half-wave antenna, centre-fed by a transmission line, as a 73
ohm resistor terminating the line. The only difference is that the power absorbed from the line is
radiated rather than dissipated as heat. Thus, in order to avoid problems with reflected power, the
impedance of a transmission line feeding a half-wave antenna must be 73 ohms. Not surprisingly,
73 ohm impedance is one of the standard ratings for the co-axial cables used in amateur radio.

9.3 Antenna Directivity and Effective Area

We have seen that standard antennas emit more radiation in some directions than in others. Indeed,
it is topologically impossible for an antenna to emit transverse waves uniformly in all directions
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(for the same reason that it is impossible to comb the hair on a sphere in such a manner that there
is no parting). One of the aims of antenna engineering is to design antennas that transmit most of
their radiation in a particular direction. By a reciprocity argument, such an antenna, when used as
a receiver, is preferentially sensitive to radiation incident from the same direction.

The directivity or gain of an antenna is defined as the ratio of the maximum value of the power
radiated per unit solid angle to the average power radiated per unit solid angle: that is,

G =
(dP/dΩ)max

P/4π
. (9.30)

Thus, the directivity measures how much more intensely the antenna radiates in its preferred direc-
tion than a mythical “isotropic radiator” would when fed with the same total power. For a Hertzian
dipole, the gain is 3/2. For a half-wave antenna, the gain is 1.64. To achieve a directivity that is
significantly greater than unity, the antenna size needs to be much larger than the wavelength. This
is usually achieved using a phased array of half-wave, or full-wave, antennas.

Antennas can be used to receive, as well as emit, electromagnetic radiation. The incoming
wave induces a voltage that can be detected in an electrical circuit connected to the antenna. In
fact, this process is equivalent to the emission of electromagnetic waves by the antenna viewed in
reverse. In the theory of electrical circuits, a receiving antenna is represented as an emf connected
in series with a resistor. The emf, V0 cos(ω t), represents the voltage induced in the antenna by the
incoming wave. The resistor, Rrad, represents the power re-radiated by the antenna (here, the real
resistance of the antenna is neglected). Let us represent the detector circuit as a single load resistor
Rload connected in series with the antenna. How can we choose Rload such that the maximum power
is extracted from the incoming wave and transmitted to the load resistor? According to Ohm’s law,

V0 cos(ω t) = I0 cos(ω t) (Rrad + Rload), (9.31)

where I = I0 cos(ω t) is the current induced in the circuit. The power input to the circuit is

Pin = 〈V I〉 = V 2
0

2 (Rrad + Rload)
. (9.32)

The power transferred to the load is

Pload = 〈I 2 Rload〉 =
Rload V 2

0

2 (Rrad + Rload) 2 . (9.33)

Finally, the power re-radiated by the antenna is

Prad = 〈I 2 Rrad〉 =
Rrad V 2

0

2 (Rrad + Rload) 2 . (9.34)

Note that Pin = Pload + Prad. The maximum power transfer to the load occurs when

∂Pload

∂Rload
=

V 2
0

2

[
Rload − Rrad

(Rrad + Rload) 3

]
= 0. (9.35)
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Thus, the maximum transfer rate corresponds to

Rload = Rres. (9.36)

In other words, the resistance of the load circuit must match the radiation resistance of the antenna.
For this optimum case,

Pload = Prad =
V 2

0

8 Rrad
=

Pin

2
. (9.37)

So, even in the optimum case, half of the power absorbed by the antenna is immediately re-radiated.
If Rload � Rres then more than half of the absorbed power is re-radiated. Clearly, an antenna that
is receiving electromagnetic radiation is also emitting it. This is how the BBC (allegedly) catch
people who do not pay their television license fee in the UK. They have vans that can detect
the radiation emitted by a TV aerial while it is in use (they can even tell which channel you are
watching!).

For a Hertzian dipole antenna interacting with an incoming wave whose electric field has an
amplitude E0, we expect

V0 = E0 d/2. (9.38)

Here, we have used the fact that the wavelength of the radiation is much longer than the length
of the antenna, and that the relevant emf develops between the two ends and the centre of the
antenna. We have also assumed that the antenna is properly aligned (i.e., the radiation is incident
perpendicular to the axis of the antenna). The Poynting flux of the incoming wave is

〈uin〉 =
ε0 c E 2

0

2
, (9.39)

whereas the power transferred to a properly matched detector circuit is

Pload =
E 2

0 d 2

32 Rrad
. (9.40)

Consider an idealized antenna in which all incoming radiation incident on some area Aeff is ab-
sorbed, and then magically transferred to the detector circuit with no re-radiation. Suppose that
the power absorbed from the idealized antenna matches that absorbed from the real antenna. This
implies that

Pload = 〈uin〉 Aeff . (9.41)

The quantity Aeff , which is called the effective area of an antenna, is the area of the idealized an-
tenna that absorbs as much net power from the incoming wave as the actual antenna. Alternatively,
Aeff is the area of the incoming wavefront that is captured by the receiving antenna and fed to its
load circuit. Thus,

Pload =
E 2

0 d 2

32 Rrad
=
ε0 c E 2

0

2
Aeff , (9.42)

giving

Aeff =
d 2

16 ε0 c Rrad
=

3
8π

λ 2. (9.43)
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It is clear that the effective area of a Hertzian dipole antenna is of order the wavelength squared of
the incoming radiation.

We can generalize from this analysis of a special case. The directivity of a Hertzian dipole
is 3/2. Thus, the effective area of the isotropic radiator (the mythical reference antenna against
which directivities are measured) is

A0 =
2
3

Ahd =
λ 2

4π
, (9.44)

or
A0 = π� 2, (9.45)

where � = λ/2π. Here, we have used the formal definition of the effective area of an antenna:
Aeff is that area which, when multiplied by the time-averaged Poynting flux of the incoming wave,
equals the maximum power received by the antenna (when its orientation is optimal). Clearly, the
effective area of an isotropic radiator is the same as the area of a circle whose radius is the reduced
wavelength, �.

We can take yet one more step, and conclude that the effective area of any antenna of directivity
G is

Aeff = G π � 2. (9.46)

Of course, to realize this full capture area, the antenna must be orientated properly.
Let us calculated the coupling, or insertion loss, of an antenna-to-antenna communications

link. Suppose that a generator delivers the power Pin to a transmitting antenna, which is aimed
at a receiving antenna a distance r away. The (properly aligned) receiving antenna then captures
and delivers the power Pout to its load circuit. From the definition of directivity, the transmitting
antenna produces the time-averaged Poynting flux

〈u〉 = Gt
Pin

4π r2 (9.47)

at the receiving antenna. The received power is

Pout = 〈u〉Gr A0. (9.48)

Here, Gt is the gain of the transmitting antenna, and Gr is the gain of the receiving antenna. Thus,

Pout

Pin
= Gt Gr

(
λ

4π r

)2

=
At Ar

λ 2 r2 , (9.49)

where At and Ar are the effective areas of the transmitting and receiving antennas, respectively.
This result is known as the Friis transmission formula. Note that the insertion loss depends on the
product of the gains of the two antennas. Thus, a properly aligned communications link has the
same insertion loss operating in either direction.

A thin wire linear antenna might appear to be essentially one-dimensional. However, the con-
cept of an effective area shows that it possesses a second dimension determined by the wavelength.
For instance, for a half-wave antenna, the gain of which is 1.64, the effective area is

Aeff = 1.64 A0 =
λ

2
(0.26 λ). (9.50)
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Thus, we can visualize the capture area as a rectangle that is the physical length of the antenna in
one direction, and approximately one quarter of the wavelength in the other.

9.4 Antenna Arrays

Consider a linear array of N half-wave antennas arranged along the x-axis with a uniform spacing
∆. Suppose that each antenna is aligned along the z-axis, and also that all antennas are driven in
phase. Let one end of the array coincide with the origin. The field produced in the radiation zone
by the end-most antenna is given by [see Equation (9.17)]

A(r) =
µ0 I
4π

2
k r

cos(π cos θ/2)
sin2 θ

e i (k r−ω t) ez, (9.51)

where I is the peak current flowing in each antenna. The fields produced at a given point in the
radiation zone by successive elements of the array differ in phase by an amount α = k ∆ sin θ cosϕ.
Here, r, θ, ϕ are conventional spherical polar coordinates. Thus, the total field is given by

A(r) =
µ0 I
4π

2
k r

cos(π cos θ/2)
sin2 θ

[
1 + e iα + e 2i α + · · · + e (N−1) iα

]
e i (k r−ω t) ez. (9.52)

The series in square brackets is a geometric progression in β = exp( iα), the sum of which takes
the value

1 + β + β 2 + · · ·β N−1 =
β N − 1
β − 1

. (9.53)

Thus, the term in square brackets becomes

e i N α − 1
e iα − 1

= e i (N−1)α/2 sin(N α/2)
sin(α/2)

. (9.54)

It follows from Equation (9.18) that the radiation pattern due to the array takes the form

dP
dΩ
=

[
µ0 c I 2

8π2

cos2(π cos θ/2)
sin2 θ

] [
sin2(N α/2)
sin2(α/2)

]
. (9.55)

We can think of this formula as the product of the two factors in large parentheses. The first is just
the standard radiation pattern of a half-wave antenna. The second arises from the arrangement of
the array. If we retained the same array, but replaced the elements by something other than half-
wave antennas, then the first factor would change, but not the second. If we changed the array, but
not the elements, then the second factor would change, but the first would remain the same. Thus,
the radiation pattern as the product of two independent factors, the element function, and the array
function. This independence follows from the Fraunhofer approximation, (9.7), which justifies the
linear phase shifts of Equation (9.8).

The array function in the present case is

f (α) =
sin2(N α/2)
sin2(α/2)

, (9.56)
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where
α = k ∆ sin θ cos ϕ. (9.57)

The function f (α) has nulls whenever the numerator vanishes: that is, whenever

±α = 2π
N
,

4π
N
, · · · (N − 1) 2π

N
,

(N + 1) 2π
N

· · · . (9.58)

However, when ±α = 0, 2π, · · · , the denominator also vanishes, and the l’Hôpital limit is easily
seen to be f (0, 2π, · · · ) → N 2. These limits are known as the principal maxima of the function.
Secondary maxima occur approximately at the maxima of the numerator: that is, at

±α = 3π
N
,

5π
N
, · · · (2 N − 3) 2π

N
,

(2 N + 3) 2π
N

· · · . (9.59)

There are (N − 2) secondary maxima between successive principal maxima.
Now, the maximum possible value of α is k ∆ = 2π ∆/λ. Thus, when the element spacing ∆ is

less than the wavelength there is only one principal maximum (at α = 0), directed perpendicular to
the array (i.e., at ϕ = ±π/2). Such a system is called a broadside array. The secondary maxima of
the radiation pattern are called side lobes. In the direction perpendicular to the array, all elements
contribute in phase, and the intensity is proportional to the square of the sum of the individual
amplitudes. Thus, the peak intensity for an N element array is N 2 times the intensity of a single
antenna. The angular half-width of the principle maximum (in ϕ) is approximately ∆ϕ � λ/N∆.
Although the principal lobe clearly gets narrower in the azimuthal angle ϕ as N increases, the lobe
width in the polar angle θ is mainly controlled by the element function, and is thus little affected by
the number of elements. A radiation pattern which is narrow in one angular dimension, but broad
in the other, is called a fan beam.

Arranging a set of antennas in a regular array has the effect of taking the azimuthally symmetric
radiation pattern of an individual antenna and concentrating it into some narrow region of azimuthal
angle of extent ∆ϕ � λ/N ∆. The net result is that the gain of the array is larger than that of an
individual antenna by a factor of order

2πN ∆

λ
. (9.60)

It is clear that the boost factor is of order the linear extent of the array divided by the wavelength
of the emitted radiation. Thus, it is possible to construct a very high gain antenna by arranging a
large number of low gain antennas in a regular pattern, and driving them in phase. The optimum
spacing between successive elements of the array is of order the wavelength of the radiation.

A linear array of antenna elements that are spaced ∆ = λ/2 apart, and driven with alternating
phases, has its principal radiation maximum along ϕ = 0 and π, because the field amplitudes now
add in phase in the plane of the array. Such a system is called an end-fire array. The direction of
the principal maximum can be changed at will by introducing the appropriate phase shift between
successive elements of the array. In fact, it is possible to produce a radar beam that sweeps around
the horizon, without any mechanical motion of the array, by varying the phase difference between
successive elements of the array electronically.
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9.5 Thomson Scattering

When an electromagnetic wave is incident on a charged particle, the electric and magnetic com-
ponents of the wave exert a Lorentz force on the particle, setting it into motion. Because the wave
is periodic in time, so is the motion of the particle. Thus, the particle is accelerated and, conse-
quently, emits radiation. More exactly, energy is absorbed from the incident wave by the particle,
and re-emitted as electromagnetic radiation. Such a process is clearly equivalent to the scattering
of the electromagnetic wave by the particle.

Consider a linearly polarized, monochromatic, plane wave incident on a particle of charge q.
The electric component of the wave can be written

E = e E0 e i (k·r−ω t), (9.61)

where E0 is the peak amplitude of the electric field, e is the polarization vector, and k is the wave
vector (of course, e · k = 0). The particle is assumed to undergo small amplitude oscillations about
an equilibrium position that coincides with the origin of the coordinate system. Furthermore, the
particle’s velocity is assumed to remain sub-relativistic, which enables us to neglect the magnetic
component of the Lorentz force. The equation of motion of the charged particle is approximately

f = q E = m s̈, (9.62)

where m is the mass of the particle, s is its displacement from the origin, and ˙ denotes ∂/∂t.
By analogy with Equation (9.20), the time-averaged power radiated per unit solid angle by an
accelerating, non-relativistic, charged particle is given by

dP
dΩ
=

q2 〈s̈ 2〉
16π2 ε0 c3 sin2 θ, (9.63)

where 〈· · · 〉 denotes a time average. Here, we are effectively treating the oscillating particle as a
short antenna. However,

〈s̈ 2〉 = q 2

m 2 〈E 2〉 = q 2 E 2
0

2 m 2 . (9.64)

Hence, the scattered power per unit solid angle becomes

dP
dΩ
=

(
q 2

4π ε0 m c 2

)2 ε0 c E 2
0

2
sin2 θ. (9.65)

The time-averaged Poynting flux of the incident wave is

〈u〉 = ε0 c E 2
0

2
. (9.66)

It is convenient to define the scattering cross-section as the equivalent area of the incident wave-
front that delivers the same power as that re-radiated by the particle: that is,

σ =
total re-radiated power

〈u〉 . (9.67)
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By analogy, the differential scattering cross-section is defined

dσ
dΩ
=

dP/dΩ
〈u〉 . (9.68)

It follows from Equations (9.65) and (9.66) that

dσ
dΩ
=

(
q 2

4π ε0 m c 2

)2

sin2 θ. (9.69)

The total scattering cross-section is then

σ =

∫ π

0

dσ
dΩ

2π sin θ dθ =
8π
3

(
q 2

4πε0 m c 2

)2

. (9.70)

The quantity θ, appearing in Equation (9.69), is the angle subtended between the direction of
acceleration of the particle, and the direction of the outgoing radiation (which is parallel to the unit
vector n). In the present case, the acceleration is due to the electric field, so it is parallel to the
polarization vector e. Thus, cos θ = e · n.

Up to now, we have only considered the scattering of linearly polarized radiation by a charged
particle. Let us now calculate the angular distribution of scattered radiation for the commonly
occurring case of randomly polarized incident radiation. It is helpful to set up a right-handed
coordinate system based on the three mutually orthogonal unit vectors e, e × k̂, and k̂, where
k̂ = k/k. In terms of these unit vectors, we can write

n = sinϕ cosψ e + sinϕ sinψ e × k̂ + cosϕ k̂, (9.71)

where ϕ is the angle subtended between the direction of the incident radiation and that of the
scattered radiation, and ψ is an angle that specifies the orientation of the polarization vector in the
plane perpendicular to k (assuming that n is known). It is easily seen that

cos θ = e · n = cosψ sinϕ, (9.72)

so
sin2 θ = 1 − cos2 ψ sin2 ϕ. (9.73)

Averaging this result over all possible polarizations of the incident wave (i.e., over all possible
values of the polarization angle ψ), we obtain

sin2 θ = 1 − cos2 ψ sin2 ϕ = 1 − (sin2 ϕ)/2 =
1 + cos2 ϕ

2
. (9.74)

Thus, the differential scattering cross-section for unpolarized incident radiation [obtained by sub-
stituting sin2 θ for sin2 θ in Eq. (9.69)] is given by(

dσ
dΩ

)
unpolarized

=

(
q 2

4π ε0 m c 2

)2 (
1 + cos2 ϕ

2

)
. (9.75)
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It is clear that the differential scattering cross-section is independent of the frequency of the inci-
dent wave, and is also symmetric with respect to forward and backward scattering. Moreover, the
frequency of the scattered radiation is the same as that of the incident radiation. The total scatter-
ing cross-section is obtained by integrating over the entire solid angle of the polar angle ϕ and the
azimuthal angle ψ. Not surprisingly, the result is exactly the same as Equation (9.70).

The classical scattering cross-section (9.75) is modified by quantum effects when the energy of
the incident photons, �ω, becomes comparable with the rest mass of the scattering particle, m c 2.
The scattering of a photon by a charged particle is called Compton scattering, and the quantum
mechanical version of the Compton scattering cross-section is known as the Klein-Nishina cross-
section. As the photon energy increases, and eventually becomes comparable with the rest mass
energy of the particle, the Klein-Nishina formula predicts that forward scattering of photons be-
comes increasingly favored with respect to backward scattering. The Klein-Nishina cross-section
does, in general, depend on the frequency of the incident photons. Furthermore, energy and mo-
mentum conservation demand a shift in the frequency of scattered photons with respect to that of
the incident photons.

If the charged particle in question is an electron then Equation (9.70) reduces to the well-known
Thomson scattering cross-section

σThomson =
8π
3

(
e 2

4π ε0 me c 2

)2

= 6.65 × 10−29 m2. (9.76)

The quantity e 2/(4π ε0 me c 2) = 2.8×10−15 m is called the classical electron radius (it is the radius
of spherical shell of total charge e whose electrostatic energy equals the rest mass energy of the
electron). Thus, when scattering radiation, the electron acts rather like a solid sphere whose radius
is of order the classical electron radius.

9.6 Rayleigh Scattering

Let us now consider the scattering of electromagnetic radiation by a harmonically bound electron:
for instance, an electron orbiting an atomic nucleus. We have seen in Section 7.3 that such an
electron satisfies an equation of motion of the form

s̈ + γ0 ṡ + ω 2
0 s = − e

me
E, (9.77)

where ω0 is the characteristic oscillation frequency of the electron, and γ0 	 ω0 is the damping
rate of such oscillations. Assuming an e−iω t time dependence of both s and E, we find that

s̈ =
ω 2

ω 2
0 − ω 2 − i γ0 ω

e
me

E. (9.78)

It follows, by analogy with the analysis in the previous section, that the total scattering cross-
section is given by

σ = σThomson
ω 4

(ω 2
0 − ω 2) 2 + (γ0 ω) 2

. (9.79)
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The angular distribution of the radiation is the same as that in the case of a free electron.
The maximum value of the cross-section (9.79) is obtained when ω � ω0: that is, for resonant

scattering. In this case, the scattering cross-section can become very large. In fact,

σ � σThomson

(
ω0

γ0

) 2

, (9.80)

which is generally far greater than the Thomson scattering cross-section.
For the case of strong binding, ω 	 ω0, and Equation (9.79) reduces to

σ � σThomson

(
ω

ω0

) 4

, (9.81)

giving a scattering cross-section that depends on the inverse fourth power of the wavelength of the
incident radiation. The cross-section (9.81) is known as the Rayleigh scattering cross-section, and
is appropriate to the scattering of visible radiation by gas molecules. This is the basis of Rayleigh’s
famous explanation of the blue sky. The air molecules of the atmosphere preferentially scatter
the shorter wavelength blue components out of “white” sunlight which grazes the atmosphere.
Conversely, sunlight viewed directly through the long atmospheric path at sunset appears reddened.
The Rayleigh scattering cross-section is much less than the Thompson scattering cross-section (for
ω 	 ω0). However, this effect is offset to some extent by the fact that the density of neutral
molecules in a gas (e.g., the atmosphere) is much larger than the density of free electrons typically
encountered in a plasma.

9.7 Exercises

9.1 Consider an electromagnetic wave propagating through a non-dielectric, non-magnetic
medium containing free charge density ρ and free current density j. Demonstrate from
Maxwell’s equations that the associated wave equations take the form

∇ 2E − 1
c 2

∂ 2E
∂t 2 =

∇ρ
ε0
+ µ0

∂j
∂t
,

∇ 2B − 1
c 2

∂ 2B
∂t 2 = −µ0 ∇ × j.

9.2 A spherically symmetric charge distribution undergoes purely radial oscillations. Show
that no electromagnetic waves are emitted. [Hint: Show that there is no magnetic field.]
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10 Resonant Cavities and Waveguides

10.1 Introduction

Let us briefly investigate the solution of the homogeneous wave equation in bounded regions;
particularly in regions bounded by conductors. This type of boundary value problem is of great
theoretical significance, and also has many practical applications.

10.2 Boundary Conditions

The general boundary conditions on the field vectors at an interface between medium 1 and
medium 2 (say) are

n · (D1 − D2) = τ, (10.1)

n × (E1 − E2) = 0, (10.2)

n · (B1 − B2) = 0, (10.3)

n × (H1 −H2) = K, (10.4)

where τ is used for the interfacial surface change density (to avoid confusion with the conductivity),
and K is the surface current density. Here, n is a unit vector normal to the interface, directed from
medium 2 to medium 1. We saw in Section 7.4 that, at normal incidence, the amplitude of an
electromagnetic wave falls off very rapidly with distance inside the surface of a good conductor.
In the limit of perfect conductivity (i.e., σ → ∞), the wave does not penetrate into the conductor
at all, in which case the internal tangential electric and magnetic fields vanish. This implies, from
Equations (10.2) and (10.4), that the tangential component of E vanishes just outside the surface
of a good conductor, whereas the tangential component of H may remain finite. Let us examine
the behavior of the normal field components.

Let medium 1 be a conductor, of conductivityσ and dielectric constant ε1, for whichσ/ε1 ε0 ω 

1, and let medium 2 be a perfect insulator of dielectric constant ε2. The change density that forms
at the interface between the two media is related to the currents flowing inside the conductor. In
fact, the conservation of charge requires that

n · j = ∂τ
∂t
= −iωτ. (10.5)

However, n · j = n · σE1, so it follows from Equation (10.1) that(
1 +

iω ε0 ε1

σ

)
n · E1 =

iω ε0 ε2

σ
n · E2. (10.6)

Thus, it is clear that the normal component of E within the conductor also becomes vanishingly
small as the conductivity approaches infinity.
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If E vanishes inside a perfect conductor then the curl of E also vanishes, and the time rate of
change of B is correspondingly zero. This implies that there are no oscillatory fields whatever
inside such a conductor, and that the fields just outside satisfy

n · D = −τ, (10.7)

n × E = 0, (10.8)

n · B = 0, (10.9)

n ×H = −K. (10.10)

Here, n is a unit normal at the surface of the conductor pointing into the conductor. Thus, the
electric field is normal, and the magnetic field tangential, at the surface of a perfect conductor.
For good conductors, these boundary conditions yield excellent representations of the geometrical
configurations of the external fields, but they lead to the neglect of some important features of real
fields, such as losses in cavities and signal attenuation in waveguides.

In order to estimate such losses, it is helpful to examine how the tangential and normal fields
compare when σ is large but finite. Equations (7.6) and (7.41) imply that

H = e i π/4
√

σ

µ0 ω
n × E (10.11)

at the surface of a good conductor (provided that the wave propagates into the conductor). Let
us assume, without obtaining a complete solution, that a wave with H very nearly tangential and
E very nearly normal propagates parallel to the surface of a good conductor. According to the
Faraday-Maxwell equation,

|H‖| � k
µ0 ω

|E⊥| (10.12)

just outside the surface, where k is the component of the wavevector parallel to the surface. How-
ever, Equation (10.11) implies that a tangential component of H is accompanied by a small tan-
gential component of E. By comparing the previous two expressions, we obtain

|E‖|
|E⊥| � k

√
2

µ0 ωσ
=

d
�
, (10.13)

where d is the skin depth [see Equation (7.43)] and � ≡ 1/k. It is clear that the ratio of the tangential
to the normal component of E is of order the skin depth divided by the wavelength. It is readily
demonstrated that the ratio of the normal to the tangential component of H is of the same order
of magnitude. Thus, we deduce that, in the limit of high conductivity, which implies vanishing
skin depth, no fields penetrate into the conductor, and the boundary conditions are those given
by Equations (10.7)–(10.10). Let us investigate the solution of the homogeneous wave equation
subject to such constraints.
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10.3 Cavities with Rectangular Boundaries

Consider a rectangular vacuum region totally enclosed by conducting walls. In this case, all of the
field components satisfy the wave equation

∇ 2ψ − 1
c 2

∂ 2ψ

∂t 2 = 0, (10.14)

where ψ represents any component of E or H. The boundary conditions (10.7)–(10.10) require that
the electric field at the boundary be normal to the conducting walls, whereas the magnetic field be
tangential. If a, b, and c are the dimensions of the cavity, in the x, y, and z directions, respectively,
then it is readily verified that the electric field components are

Ex(x, y, z, t) = E1 cos(k1 x) sin(k2 y) sin(k3 z) e−iω t, (10.15)

Ey(x, y, z, t) = E2 sin(k1 x) cos(k2 y) sin(k3 z) e−iω t, (10.16)

Ez(x, y, z, t) = E3 sin(k1 x) sin(k2 y) cos(k3 z) e−iω t, (10.17)

where

k1 =
l π
a
, (10.18)

k2 =
m π

b
, (10.19)

k3 =
n π
c
. (10.20)

Here, l, m, n are non-negative integers. The allowed frequencies are given by

ω 2

c 2 = k 2
1 + k 2

2 + k 2
3 = π

2
(

l 2

a 2 +
m 2

b 2 +
n 2

c 2

)
. (10.21)

It is clear from Equations (10.15)–(10.17) that at least two of the integers l, m, n must be different
from zero in order to have non-vanishing fields. The magnetic fields, obtained by solving ∇ × E =
iωB, automatically satisfy the appropriate boundary conditions, and are in phase quadrature with
the corresponding electric fields. Thus, the sum of the total electric and magnetic energies within
the cavity is constant, although the two terms oscillate separately.

The amplitudes of the electric field components are not independent, but are related by the
divergence condition ∇ · E = 0, which yields

k1 E1 + k2 E2 + k3 E3 = 0. (10.22)

There are, in general, two linearly independent vectors E that satisfy this condition, corresponding
to two different polarizations. (The exception is when one of the integers l, m, n is zero, in which
case E is fixed in direction.) Each electric field vector is accompanied by a perpendicular magnetic
field vector. The fields corresponding to a given set of integers l, m, and n constitute a particular
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mode of oscillation of the cavity. It is evident from standard Fourier theory that the different modes
are orthogonal (i.e., they are normal modes), and that they form a complete set. In other words,
any general electric and magnetic fields that satisfy the boundary conditions (10.7)–(10.10) can
be unambiguously decomposed into some linear combination of all of the various possible normal
modes of the cavity. Because each normal mode oscillates at a specific frequency, it is clear that
if we are given the electric and magnetic fields inside the cavity at time t = 0 then the subsequent
behavior of the fields is uniquely determined for all time.

The conducting walls gradually absorb energy from the cavity, due to their finite resistivity, at
a rate that can easily be calculated. For finite σ, the small tangential component of E at the walls
can be estimated using Equation (10.11):

E‖ = e−i π/4

√
µ0 ω

σ
H‖ × n. (10.23)

Now, the tangential component of H at the walls is slightly different from that given by the ideal
solution. However, this is a small effect, and can be neglected to leading order in σ−1. The time
averaged energy flux into the walls is then given by

N =
1
2

Re (E‖ ×H‖) =
1
2

√
µ0 ω

2σ
H 2
‖ 0 n =

H 2
‖ 0

2σ d
n, (10.24)

where H‖ 0 is the peak value of the tangential magnetic field at the walls that is predicted by the
ideal solution. According to the boundary condition (10.10), H‖ 0 is equal to the peak value of the
surface current density K0. It is helpful to define a surface resistance,

N = K 2 Rs n =
1
2

K 2
0 Rs n, (10.25)

where

Rs =
1
σ d

. (10.26)

This approach makes it clear that the dissipation of energy in a resonant cavity is due to ohmic
heating in a thin layer, whose thickness is of order the skin depth, covering the surface of the
conducting walls.

10.4 Quality Factor of a Resonant Cavity

The quality factor Q of a resonant cavity is defined

Q = 2π
energy stored in cavity

energy lost per cycle to walls
. (10.27)

For a specific normal mode of the cavity, this quantity is independent of the mode amplitude. By
conservation of energy, the power dissipated via ohmic losses is minus the rate of change of the
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stored energy, U. We can thus write a differential equation for the variation of U as a function of
time:

dU
dt
= −ω0

Q
U, (10.28)

where ω0 is the oscillation frequency of the normal mode in question. The solution to the above
equation is

U(t) = U(0) e−ω0 t/Q. (10.29)

This time dependence of the stored energy suggests that the oscillations of the electromagnetic
fields inside the cavity are damped as follows:

E(t) = E0 e−ω0 t/2 Q e−i (ω0+∆ω) t, (10.30)

where we have allowed for a shift ∆ω of the resonant frequency, as well as for the damping. A
damped oscillation such as that specified above does not consist of a pure frequency. Instead, it is
made up of a superposition of frequencies centered on ω = ω0 + ∆ω. Standard Fourier analysis
yields

E(t) =
1√
2π

∫ ∞

−∞
E(ω) e−iω t dω, (10.31)

where
E(ω) =

1√
2π

∫ ∞

0
E0 e−ω0 t/2 Q e i (ω−ω0−∆ω) t dt. (10.32)

It follows that
|E(ω)| 2 ∝ 1

(ω − ω0 − ∆ω) 2 + (ω0/2 Q) 2 . (10.33)

The above resonance curve has a full width at half-maximum equal to ω0/Q. For a constant input
voltage, the energy of oscillation within the cavity as a function of frequency follows this curve in
the neighborhood of a particular resonant frequency. It can be seen that the ohmic losses, which
determine Q for a particular mode, also determine the maximum amplitude of the oscillation when
the resonance condition is exactly satisfied, as well as the width of the resonance (i.e., how far off
the resonant frequency the system can be driven, and still yield a significant oscillation amplitude).

10.5 Axially Symmetric Cavities

The rectangular cavity that we have just discussed has many features in common with axially
symmetric cavities of arbitrary cross-section. In every axially symmetric cavity, the allowed values
of the wave vector, k, and thus the allowed frequencies, are determined by the cavity geometry. We
have seen that for each set of mode numbers, k1, k2, k3, in a rectangular cavity, there are, in general,
two linearly independent modes: that is, the polarization remains arbitrary. We can take advantage
of this fact to classify modes into two types, according to the orientation of the field vectors. Let
us choose one type of mode such that the electric field vector lies in the cross-sectional plane, and
the other such that the magnetic field vector lies in this plane. This classification into transverse
electric (TE) and transverse magnetic (TM) modes turns out to be possible for all axially symmetric
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cavities, although the rectangular cavity is unique in having one mode of each kind corresponding
to each allowed frequency.

Suppose that the direction of symmetry is along the z-axis, and that the length of the cavity in
this direction is L. The boundary conditions at z = 0 and z = L demand that the z dependence
of wave quantities be either sin(k3 z) or cos(k3 z), where k3 = n π/L. In other words, all wave
quantities satisfy (

∂ 2

∂z 2 + k 2
3

)
ψ = 0, (10.34)

as well as
(∇ 2 + k 2)ψ = 0, (10.35)

where ψ stands for any component of E or H. The field equations

∇ × E = iωµ0 H, (10.36)

∇ ×H = −iω ε0 E (10.37)

must also be satisfied.
Let us write each vector and each operator in the above equations as the sum of a transverse

part, designated by the subscript s, and a component along z. We find that for the transverse fields

iωµ0 Hs = ∇s × Ez + ∇z × Es, (10.38)

−iω ε0 Es = ∇s ×Hz + ∇z ×Hs. (10.39)

When one of Equations (10.38)–(10.39) is used to substitute for the transverse field on the right-
hand side of the other, and use is made of Equation (10.34), we obtain

Es =
∇s(∂Ez/∂z)

k 2 − k 2
3

+
iωµ0

k 2 − k 2
3

∇s ×Hz, (10.40)

Hs =
∇s(∂Hz/∂z)

k 2 − k 2
3

− iω ε0

k 2 − k 2
3

∇s × Ez. (10.41)

Thus, all transverse fields can be expressed in terms of the z components of the fields, each of
which satisfies the differential equation[

∇ 2
s + (k 2 − k 2

3 )
]

Az = 0, (10.42)

where Az stands for either Ez or Hz, and ∇ 2
s is the two-dimensional Laplacian operator in the

transverse plane.
The conditions on Ez and Hz at the boundary (in the transverse plane) are quite different: Ez

must vanish on the boundary, whereas the normal derivative of Hz must vanish to ensure that Hs

in Equation (10.41) satisfies the appropriate boundary condition. If the cross-section is a rectangle
then these two conditions lead to the same eigenvalues of (k 2 − k 2

3 ) = k 2
s = k 2

1 + k 2
2 , as we have

seen. Otherwise, they correspond to two different sets of eigenvalues, one for which Ez is permitted
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but Hz = 0, and the other where the opposite is true. In every case, it is possible to classify the
modes as transverse magnetic or transverse electric. Thus, the field components Ez and Hz play the
role of independent potentials, from which the other field components of the TE and TM modes,
respectively, can be derived using Equations (10.40)–(10.41).

The mode frequencies are determined by the eigenvalues of Equations (10.34) and (10.42). If
we denote the functional dependence of Ez or Hz on the plane cross-section coordinates by f (x, y)
then we can write Equation (10.42) as

∇ 2
s f = −k 2

s f . (10.43)

Let us first show that k 2
s > 0, and, hence, that k > k3. Now,

f ∇ 2
s f = ∇s · ( f ∇s f ) − (∇s f ) 2. (10.44)

It follows that
−k 2

s

∫
V

f 2 dV +
∫

V
(∇s f ) 2 dV =

∫
S

f ∇ f · dS, (10.45)

where the integration is over the transverse cross-section, V . If either f or its normal derivative is
to vanish on the conducting surface, S , then

k 2
s =

∫
V

(∇s f ) 2 dV∫
V

f 2 dV
> 0. (10.46)

We have already seen that k3 = n π/L. The allowed values of ks depend both on the geometry of
the cross-section, and the nature of the mode.

For TM modes, Hz = 0, and the z dependence of Ez is given by cos(n π z/L). Equation (10.43)
must be solved subject to the condition that f vanish on the boundaries of the plane cross-section,
thus completing the determination of Ez and k. The transverse fields are then given by special cases
of Equations (10.40)–(10.41):

Es =
1
k 2

s
∇s
∂Ez

∂z
, (10.47)

H =
iω ε0

k 2
s

ez × ∇sEz. (10.48)

For TE modes, in which Ez = 0, the condition that Hz vanish at the ends of the cylinder demands
a sin(n π z/L) dependence on z, and a ks which is such that the normal derivative of Hz is zero at
the walls. Equations (10.40)–(10.41), for the transverse fields, then become

Hs =
1
k 2

s
∇s
∂Hz

∂z
, (10.49)

E = − iωµ0

k 2
s

ez × ∇sHz, (10.50)

and the mode determination is complete.
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10.6 Cylindrical Cavities

Let us apply the methods of the previous section to the TM modes of a right circular cylinder of
radius a. We can write

Ez(r, ϕ, z, t) = A f (r, ϕ) cos(k3 z) e−iω t, (10.51)

where f (r, ϕ) satisfies the equation

1
r
∂

∂r

(
r
∂ f
∂r

)
+

1
r 2

∂ 2 f
∂ϕ 2 + k 2

s f = 0, (10.52)

and r, ϕ, z are cylindrical coordinates. Let

f (r, ϕ) = g(r) e i mϕ. (10.53)

It follows that
1
r

d
dr

(
r

dg
dr

)
+

(
k 2

s −
m 2

r 2

)
g = 0, (10.54)

or

z 2 d 2g

dz 2 + z
dg
dz
+ (z 2 − m 2) g = 0, (10.55)

where z = ks r. The above equation can be recognized as Bessel’s equation. The independent
solutions of this equation are denoted Jm(z) and Ym(z). The Jm(z) are regular at z = 0, whereas the
Ym(z) are singular. Moreover, both solutions are regular at large |z|.

Because the axis (r = 0) lies within the cavity, the radial eigenfunction must be regular at r = 0.
This immediately rules out the Ym(ks r) solutions. Thus, the most general solution for a TM mode
is

Ez(r, ϕ, z, t) = A Jm(kl r) e i mϕ cos(k3 z) e−iω t. (10.56)

The kl are the eigenvalues of ks, and are determined by the solution of

Jm(kl a) = 0. (10.57)

The above constraint ensures that the tangential electric field is zero on the conducting walls sur-
rounding the cavity (r = a).

The most general solution for a TE mode is

Hz(r, ϕ, z, t) = A Jm(kl r) e i mϕ sin(k3 z) e−iω t. (10.58)

In this case, the kl are determined by the solution of

J′m(kl a) = 0, (10.59)

where ′ denotes differentiation with respect to argument. The above constraint ensures that the
normal magnetic field is zero on the conducting walls surrounding the cavity. The oscillation
frequencies of both TM and TE modes are given by

ω 2

c 2 = k 2 = k 2
l +

n 2 π2

L2 . (10.60)
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l j0l j′0l j1l j′1l

1 2.4048 0.0000 3.8317 1.8412
2 5.5201 3.8317 7.0156 5.3314
3 8.6537 7.0156 10.173 8.5363
4 11.792 10.173 13.324 11.706

Table 10.1: The first few values of j0l, j′0l, j1l and j′1l.

If l is the ordinal number of a zero of a particular Bessel function of order m (defined such that l
increases with increasing values of the argument) then each mode is characterized by three integers,
l, m, n, as in the rectangular case. The lth zero of Jm(z) is conventionally denoted jml [so, Jm( jml) =
0]. Likewise, the lth zero of J′m(z) is denoted j′ml. Table 10.1 shows the first few zeros of J0(z),
J′0(z), J1(z), and J′1(z). It is clear that, for fixed n and m, the lowest frequency mode (i.e., the mode
with the lowest value of kl) is a TE mode. The mode with the next highest frequency is a TM mode.
The next highest frequency mode is a TE mode, and so on.

10.7 Waveguides

Let us consider the transmission of electromagnetic waves along the axis of a waveguide, which is
simply a long, axially symmetric, hollow conductor with open ends. In order to represent a wave
propagating along the z-direction, we express the dependence of field quantities on the spatial
coordinates and time in the form

f (x, y) e i (kg z−ω t). (10.61)

The guide propagation constant, kg, is just the k3 of previous sections, except that it is no longer
restricted by the boundary conditions to take discrete values. The general considerations of Sec-
tion 10.5 still apply, so that we can treat TM and TE modes separately. The solutions for f (x, y) are
identical to those for axially symmetric cavities already discussed. Although kg is not restricted in
magnitude, we note that for every eigenvalue of the transverse wave equation, ks, there is a lowest
value of k, namely k = ks (often designated kc for waveguides), for which kg =

√
k 2 − k 2

s is real.
This corresponds to the cutoff frequency, below which waves are not transmitted by the mode in
question, and the fields fall off exponentially with increasing z. In fact, the waveguide dispersion
relation for a particular mode can easily be shown to take the form

kg =

√
ω 2 − ω 2

c

c
, (10.62)

where
ωc = kc c ≡ ks c (10.63)

is the cutoff frequency. There is an absolute cutoff frequency associated with the mode of lowest
frequency: that is, the mode with the lowest value of kc.



224 CLASSICAL ELECTROMAGNETISM

For real kg (i.e., ω > ωc), it is clear from Equation (10.62) that the wave propagates along the
guide at the phase velocity

up =
ω

kg
=

c√
1 − ω 2

c /ω
2
. (10.64)

It is evident that this velocity is greater than that of electromagnetic waves in free space. The
velocity is not constant, however, but depends on the frequency. The waveguide thus behaves as a
dispersive medium. The group velocity of a wave pulse propagated along the guide is given by

ug =
dω
dkg
= c

√
1 − ω 2

c /ω
2. (10.65)

It can be seen that ug is always smaller than c, and also that

up ug = c 2. (10.66)

For a TM mode (Hz = 0), Equations (10.47)–(10.48) yield

Es =
i kg
k 2

s
∇sEz, (10.67)

Hs =
ω ε0

kg
ez × Es, (10.68)

where use has been made of ∂/∂z = i kg. For TE modes (Ez = 0), Equations (10.49)–(10.50) give

Hs =
i kg
k 2

s
∇sHz, (10.69)

Es = −ωµ0

kg
ez ×Hs. (10.70)

The time-average z component of the Poynting vector, N, is given by

Nz =
1
2
|Es ×H ∗s |. (10.71)

It follows that

Nz =

√
µ0

ε0

1√
1 − ω 2

c /ω
2

H 2
s 0

2
(10.72)

for TE modes, and

Nz =

√
µ0

ε0

√
1 − ω 2

c /ω
2

H 2
s 0

2
(10.73)

for TM modes. The subscript 0 denotes the peak value of a wave quantity.
For a given mode, waveguide losses can be estimated by integrating Equation (10.24) over the

wall of the guide. The energy flow of a propagating wave attenuates as e−K z, where

K =
power loss per unit length of guide

power transmitted through guide
. (10.74)
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Thus,

K =
1

2σ d

∫ (
H 2

s + H 2
z

)
dS

/∫
Nz dS , (10.75)

where the numerator is integrated over unit length of the wall, and the denominator is integrated
over the transverse cross-section of the guide. It is customary to define the guide impedance, Zg,
by writing ∫

Nz dS =
Zg
2

∫
H 2

s 0 dS . (10.76)

Here, both integrals are over the transverse cross-section of the guide. It follows from Equa-
tions (10.71) and (10.72) that

Zg =
√
µ0

ε0

1√
1 − ω 2

c /ω
2

(10.77)

for TE modes, and

Zg =
√
µ0

ε0

√
1 − ω 2

c /ω
2 (10.78)

for TM modes. For both types of mode, Hs = (1/Zg) ez × Es.

10.8 Dielectric Waveguides

We have seen that it is possible to propagate electromagnetic waves down a hollow conductor.
However, other types of guiding structures are also possible. The general requirement for a guide
of electromagnetic waves is that there be a flow of energy along the axis of the guiding structure,
but not perpendicular to the axis. This implies that the electromagnetic fields are appreciable only
in the immediate neighborhood of the guiding structure.

Consider a uniform cylinder of arbitrary cross-section made of some dielectric material, and
surrounded by a vacuum. This structure can serve as a waveguide provided the dielectric constant
of the material is sufficiently large. Note, however, that the boundary conditions satisfied by the
electromagnetic fields are significantly different to those of a conventional waveguide. The trans-
verse fields are governed by two equations: one for the region inside the dielectric, and the other
for the vacuum region. Inside the dielectric, we have[

∇ 2
s +

(
ε1
ω 2

c 2 − k 2
g

)]
ψ = 0. (10.79)

In the vacuum region, we have [
∇ 2

s +

(
ω 2

c 2 − k 2
g

)]
ψ = 0. (10.80)

Here, ψ(x, y) e i kg z stands for either Ez or Hz, ε1 is the relative permittivity of the dielectric material,
and kg is the guide propagation constant. The propagation constant must be the same both inside
and outside the dielectric in order to allow the electromagnetic boundary conditions to be satisfied
at all points on the surface of the cylinder.
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Inside the dielectric, the transverse Laplacian must be negative, so that the constant

k 2
s = ε1

ω 2

c 2 − k 2
g (10.81)

is positive. Outside the cylinder the requirement of no transverse flow of energy can only be
satisfied if the fields fall off exponentially (instead of oscillating). Thus,

k 2
t = k 2

g −
ω 2

c 2 (10.82)

must be positive.
The oscillatory solutions (inside) must be matched to the exponentiating solutions (outside).

The boundary conditions are the continuity of normal B and D and tangential E and H on the
surface of the tube. These boundary conditions are far more complicated than those in a conven-
tional waveguide. For this reason, the normal modes cannot usually be classified as either pure
TE or pure TM modes. In general, the normal modes possess both electric and magnetic field
components in the transverse plane. However, for the special case of a dielectric cylinder tube of
circular cross-section, the normal modes can have either pure TE or pure TM characteristics. Let
us examine this case in detail.

Consider a dielectric cylinder of dielectric constant ε1 whose transverse cross-section is a circle
of radius a. For the sake of simplicity, let us only search for normal modes whose electromagnetic
fields have no azimuthal variation. Equations (10.79) and (10.81) yield(

r 2 d2

dr2 + r
d
dr
+ r 2 k 2

s

)
ψ = 0 (10.83)

for r < a. The general solution to this equation is some linear combination of the Bessel functions
J0(ks r) and Y0(ks r). However, because Y0(ks r) is badly behaved at the origin (r = 0), the physical
solution is ψ(r) ∝ J0(ks r).

Equations (10.80) and (10.82) yield(
r 2 d 2

dr 2 + r
d
dr
− r 2 k 2

t

)
ψ = 0. (10.84)

which can be rewritten (
z 2 d 2

dz 2 + z
d
dz
− z 2

)
ψ = 0, (10.85)

where z = kt r. The above can be recognized as a type of modified Bessel equation, whose most
general form is [

z 2 d2

dz2 + z
d
dz
− (z 2 + m 2)

]
ψ = 0. (10.86)

The two linearly independent solutions of the previous equation are denoted Im(z) and Km(z). More-
over, Im(z) → ∞ as |z| → ∞, whereas Km(z) → 0. Thus, it is clear that the physical solution to
Equation (10.84) (i.e., the one that decays as |r| → ∞) is ψ(r) ∝ K0(kt r).
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The physical solution is then
ψ(r) = J0(ks r) (10.87)

for r ≤ a, and
ψ(r) = A K0(kt r) (10.88)

for r > a. Here, A is an arbitrary constant, and ψ(r) e i kg z stands for either Ez or Hz. It follows from
Equations (10.40)–(10.41) (using ∂/∂θ = 0) that

Hr = i
kg
k 2

s

∂Hz

∂r
, (10.89)

Eθ = −ωµ0

kg
Hr, (10.90)

Hθ = i
ω ε0 ε1

k 2
s

∂Ez

∂r
, (10.91)

Er =
kg

ω ε0 ε1
Hθ (10.92)

for r ≤ a. There are an analogous set of relations for r > a. The fact that the field components form
two groups—that is, (Hr, Eθ), which depend on Hz, and (Hθ, Er), which depend on Ez—implies
that the normal modes take the form of either pure TE modes or pure TM modes.

For a TE mode (Ez = 0) we find that

Hz(r) = J0(ks r), (10.93)

Hr(r) = −i
kg
ks

J1(ks r), (10.94)

Eθ(r) = i
ωµ0

ks
J1(ks r) (10.95)

for r ≤ a, and

Hz(r) = A K0(kt r), (10.96)

Hr(r) = i A
kg
kt

K1(kt r), (10.97)

Eθ(r) = −i A
ωµ0

kt
K1(kt r) (10.98)

for r > a. Here we have used the identities

J′0(z) ≡ −J1(z), (10.99)

K′0(z) ≡ −K1(z), (10.100)
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A

B

k 2
s a

2 →

(ε1 − 1)ω 2 a 2/c 2

Figure 10.1: Graphical solution of the dispersion relation (10.103). The curve A represents
−J1(ks/a)/ks J0(ks a). The curve B represents K1(kt a)/kt K0(kt a).

where ′ denotes differentiation with respect to z. The boundary conditions require Hz(r), Hr(r), and
Eθ(r) to be continuous across r = a. Thus, it follows that

A K0(kt a) = J0(ks a), (10.101)

−A
K1(kt r)

kt
=

J1(ks a)
ks

. (10.102)

Eliminating the arbitrary constant A between the above two equations yields the dispersion relation

J1(ks a)
ks J0(ks a)

+
K1(kt a)

kt K0(kt a)
= 0, (10.103)

where

k 2
t + k 2

s = (ε1 − 1)
ω 2

c 2 . (10.104)

Figure 10.1 shows a graphical solution of the above dispersion relation. The roots correspond
to the crossing points of the two curves; −J1(ks a)/ks J0(ks a) and K1(kt a)/kt K0(kt a). The vertical
asymptotes of the first curve are given by the roots of J0(ks a) = 0. The vertical asymptote of
the second curve occurs when kt = 0: that is, when k 2

s a 2 = (ε1 − 1)ω 2 a 2/c 2. Note, from
Equation (10.104), that kt decreases as ks increases. In Figure 10.1, there are two crossing points,
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corresponding to two distinct propagating modes of the system. It is evident that if the point kt = 0
corresponds to a value of ks a that is less than the first root of J0(ks a) = 0 then there is no crossing
of the two curves, and, hence, there are no propagating modes. Because the first root of J0(z) = 0
occurs at z = 2.4048 (see Table 10.1), the condition for the existence of propagating modes can be
written

ω > ω01 =
2.4048 c√
ε1 − 1 a

. (10.105)

In other words, the mode frequency must lie above the cutoff frequency ω01 for the TE01 mode
[here, the 0 corresponds to the number of nodes in the azimuthal direction, and the 1 refers to the
first root of J0(z) = 0]. It is also evident that, as the mode frequency is gradually increased, the
point kt = 0 eventually crosses the second vertical asymptote of −J1(ks/a)/ks J0(ks a), at which
point the TE 02 mode can propagate. As ω is further increased, more and more TE modes can
propagate. The cutoff frequency for the TE0l mode is given by

ω0l =
j0l c√
ε1 − 1 a

, (10.106)

where j0l is lth root of J0(z) = 0 (in order of increasing z).
At the cutoff frequency for a particular mode, kt = 0, which implies from Equation (10.82) that

kg = ω/c. In other words, the mode propagates along the guide at the velocity of light in vacuum.
At frequencies below this cutoff frequency, the system no longer acts as a guide, but rather as an
antenna, with energy being radiated radially. For frequencies well above the cutoff, kt and kg are
of the same order of magnitude, and are large compared to ks. This implies that the fields do not
extend appreciably outside the dielectric cylinder.

For a TM mode (Hz = 0) we find that

Ez(r) = J0(ksr), (10.107)

Hθ(r) = −i
ω ε0 ε1

ks
J1(ks r), (10.108)

Er(r) = −i
kg
ks

J1(ks r) (10.109)

for r ≤ a, and

Ez(r) = A K0(kt r), (10.110)

Hθ(r) = i A
ω ε0

kt
K1(kt r), (10.111)

Er(r) = i A
kg
kt

K1(kt r) (10.112)

for r > a. The boundary conditions require Ez(r), Hθ(r), and Dr(r) to be continuous across r = a.
Thus, it follows that

A K0(kt a) = J0(ks a), (10.113)

−A
K1(kt r)

kt
= ε1

J1(ks a)
ks

. (10.114)
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Eliminating the arbitrary constant A between the above two equations yields the dispersion relation

ε1 J1(ks a)
ks J0(ks a)

+
K1(kt a)

kt K0(kt a)
= 0. (10.115)

It is clear, from this dispersion relation, that the cutoff frequency for the TM 0l mode is exactly the
same as that for the TE 0l mode. It is also clear that, in the limit ε1 
 1, the propagation constants
are determined by the roots of J1(ks a) � 0. However, this is exactly the same as the determining
equation for TE modes in a metallic waveguide of circular cross-section (filled with dielectric of
relative permittivity ε1).

Modes with azimuthal dependence (i.e., m > 0) have longitudinal components of both E and
H. This makes the mathematics somewhat more complicated. However, the basic results are the
same as for m = 0 modes: that is, for frequencies well above the cutoff frequency the modes are
localized in the immediate vicinity of the cylinder.

10.9 Exercises

10.1 Demonstrate that the electric and magnetic fields inside a waveguide are mutually orthog-
onal.

10.2 Consider a TEmn mode in a rectangular waveguide of dimensions a and b. Calculate the
mean electromagnetic energy per unit length, as well as the mean electromagnetic energy
flux down the waveguide. Demonstrate that the ratio of the mean energy flux to the mean
energy per unit length is equal to the group-velocity of the mode.
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11 Multipole Expansion

11.1 Introduction

A study of the emission and scattering of electromagnetic radiation necessarily involves solving
the vector wave equation. It turns out that the solutions of this equation in free space can be conve-
niently expressed as an expansion in orthogonal spherical waves. Let us examine this expansion,
which is known as the multipole expansion.

11.2 Multipole Expansion of Scalar Wave Equation

Before considering the vector wave equation, let us consider the somewhat simpler scalar wave
equation. A scalar field ψ(r, t) satisfying the homogeneous wave equation,

∇ 2ψ − 1
c 2

∂ 2ψ

∂t 2 = 0, (11.1)

can be Fourier analyzed in time,

ψ(r, t) =
∫ ∞

−∞
ψ(r, ω) e−iω t dω, (11.2)

with each Fourier harmonic satisfying the homogeneous Helmholtz wave equation,

(∇ 2 + k 2)ψ(r, ω) = 0, (11.3)

where k 2 = ω 2/c 2. We can write the Helmholtz equation in terms of spherical coordinates r, θ, ϕ:(
1
r 2

∂

∂r
r 2 ∂

∂r
+

1
r 2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r 2 sin2 θ

∂ 2

∂ϕ 2 + k 2
)
ψ = 0. (11.4)

As is well known, it is possible to solve this equation via separation of variables to give

ψ(r, ω) =
∑

l=0,∞

∑
m=−l,+l

flm(r) Ylm(θ, ϕ). (11.5)

Here, we restrict our attention to physical solutions that are well-behaved in the angular variables
θ and ϕ. The spherical harmonics Ylm(θ, ϕ) satisfy the following equations:

−∂
2Ylm

∂ϕ 2 = m 2 Ylm, (11.6)

−
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂ 2

∂ϕ 2

)
Ylm = l (l + 1) Ylm, (11.7)
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where l is a non-negative integer, and m is an integer that satisfies the inequality |m| ≤ l. The radial
functions flm(r) satisfy [

d 2

dr 2 +
2
r

d
dr
+ k 2 − l (l + 1)

r 2

]
flm(r) = 0. (11.8)

With the substitution
flm(r) =

ulm(r)
r 1/2 , (11.9)

Equation (11.8) is transformed into[
d 2

dr 2 +
1
r

d
dr
+ k 2 − (l + 1/2) 2

r 2

]
ulm(r) = 0, (11.10)

which is a type of Bessel equation of half-integer order, l + 1/2. Thus, we can write the solution
for flm(r) as

flm(r) =
Alm

r 1/2 Jl+1/2(k r) +
Blm

r 1/2 Yl+1/2(k r), (11.11)

where Alm and Blm are arbitrary constants. The half-integer order Bessel functions Jl+1/2(z) and
Yl+1/2(z) have analogous properties to the integer order Bessel functions Jm(z) and Ym(z). In partic-
ular, the Jl+1/2(z) are well behaved in the limit |z| → 0, whereas the Yl+1/2(z) are badly behaved.

It is convenient to define the spherical Bessel functions, jl(r) and yl(r), where

jl(z) =
(
π

2 z

)1/2
Jl+1/2(z), (11.12)

yl(z) =
(
π

2 z

)1/2
Yl+1/2(z). (11.13)

It is also convenient to define the spherical Hankel functions, h(1)
l (r) and h(2)

l (r), where

h(1)
l (z) = jl(z) + i yl(z), (11.14)

h(2)
l (z) = jl(z) − i yl(z). (11.15)

Assuming that z is real, h(2)
l (z) is the complex conjugate of h(1)

l (z). It turns out that the spherical
Bessel functions can be expressed in the closed form

jl(z) = (−z) l
(
1
z

d
dz

)l (sin z
z

)
, (11.16)

yl(z) = −(−z) l
(
1
z

d
dz

)l (cos z
z

)
. (11.17)

In the limit of small argument,

jl(z)→ z l

(2 l + 1)!!

[
1 + O(z2)

]
, (11.18)

yl(z)→ −(2 l − 1)!!
z l+1

[
1 + O(z2)

]
, (11.19)



Multipole Expansion 233

where (2l + 1)!! = (2l + 1) (2l − 1) (2l − 3) · · · 5 · 3 · 1. In the limit of large argument,

jl(z)→ sin(z − l π/2)
z

, (11.20)

yl(z)→ −cos(z − l π/2)
z

, (11.21)

which implies that

h(1)
l (z)→ (−i) l+1 e+i z

z
, (11.22)

h(2)
l (z)→ (+i) l+1 e−i z

z
. (11.23)

It follows, from the above discussion, that the radial functions flm(r), specified in Equation
(11.11), can also be written

flm(r) = Alm h(1)
l (k r) + Blm h(2)

l (k r). (11.24)

Hence, the general solution of the homogeneous Helmholtz equation, (11.3), takes the form

ψ(r, ω) =
∑

l=0,∞

∑
m=−l,+l

[
Alm h(1)

l (k r) + Blm h(2)
l (k r)

]
Ylm(θ, ϕ). (11.25)

Moreover, it is clear from Equations (11.2) and (11.22)–(11.23) that, at large r, the terms involving
the h(1)

l (k r) Hankel functions correspond to outgoing radial waves, whereas those involving the
h(2)

l (k r) functions correspond to incoming radial waves.

11.3 Angular Momentum Operators

It is well known from quantum mechanics that Equation (11.7) can be written in the form

L2 Ylm = l (l + 1) Ylm. (11.26)

Here, the differential operator L2 is given by

L2 = L 2
x + L 2

y + L 2
z , (11.27)

where
L = −i r × ∇ (11.28)

is 1/� times the orbital angular momentum operator of wave mechanics.
The components of L are conveniently written in the combinations

L+ = Lx + i Ly = e i ϕ
(
∂

∂θ
+ i cot θ

∂

∂ϕ

)
, (11.29)

L− = Lx − i Ly = e−i ϕ
(
− ∂
∂θ
+ i cot θ

∂

∂ϕ

)
, (11.30)

Lz = −i
∂

∂ϕ
. (11.31)
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Note that L only operates on angular variables, and is independent of r. It is evident from the
definition (11.28) that

r · L = 0. (11.32)

It is easily demonstrated from Equations (11.29)–(11.31) that

L2 = − 1
sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂ 2

∂ϕ 2 . (11.33)

The following results are well known in quantum mechanics:

L+ Ylm =
√

(l − m) (l + m + 1) Yl,m+1, (11.34)

L− Ylm =
√

(l + m) (l − m + 1) Yl,m−1, (11.35)

Lz Ylm = m Ylm. (11.36)

In addition,

L2 L = L L2, (11.37)

L × L = i L, (11.38)

Lj ∇ 2 = ∇ 2Lj, (11.39)

where

∇ 2 =
1
r 2

∂

∂r
r 2 ∂

∂r
− L2

r 2 . (11.40)

11.4 Multipole Expansion of Vector Wave Equation

Maxwell’s equations in free space reduce to

∇ · E = 0, (11.41)

∇ · c B = 0, (11.42)

∇ × E = i k c B, (11.43)

∇ × c B = −i k E, (11.44)

assuming an e−iω t time dependence of all field quantities. Here, k = ω/c. Eliminating E between
Equations (11.43) and (11.44), we obtain

(∇ 2 + k 2) B = 0, (11.45)

∇ · B = 0, (11.46)

with E given by

E =
i
k
∇ × c B. (11.47)
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Alternatively, B can be eliminated to give

(∇ 2 + k 2) E = 0, (11.48)

∇ · E = 0, (11.49)

with B given by

c B = − i
k
∇ × E. (11.50)

It is clear that each Cartesian component of B and E satisfies the homogeneous Helmholtz
wave equation, (11.3). Hence, according to the analysis of Section 11.2, these components can be
written as a general expansion of the form

ψ(r) =
∑
l,m

[
A(1)

lm h(1)
l (k r) + A(2)

lm h(2)
l (k r)

]
Ylm(θ, ϕ), (11.51)

where ψ stands for any Cartesian component of E or B. Note, however, that the three Cartesian
components of E or B are not entirely independent, because they must also satisfy the constraints
∇ · E = 0 and ∇ · B = 0. Let us examine how these constraints can be satisfied with the minimum
of effort.

Consider the scalar r · A, where A is a well-behaved vector field. It is easily verified that

∇ 2(r · A) = r · (∇ 2A) + 2∇ · A. (11.52)

It follows from Equations (11.45)–(11.46) and (11.48)–(11.49) that the scalars r · E and r · B both
satisfy the homogeneous Helmholtz wave equation: that is,

(∇ 2 + k 2) (r · E) = 0, (11.53)

(∇ 2 + k 2) (r · B) = 0. (11.54)

Thus, the general solutions for r · E and r · B can be written in the form (11.51).
Let us define a magnetic multipole field of order l,m as the solution of

r · c B(M)
lm =

l (l + 1)
k

gl(k r) Ylm(θ, ϕ), (11.55)

r · E(M)
lm = 0, (11.56)

where
gl(k r) = A(1)

l h(1)
l (k r) + A(2)

l h(2)
l (k r). (11.57)

The presence of the factor l (l+ 1)/k in Equation (11.55) is for later convenience. Equation (11.50)
yields

k r · c B = −i r · (∇ × E) = −i (r × ∇) · E = L · E, (11.58)

where L is given by Equation (11.28). Thus, with r · c B taking the form (11.55), the electric field
associated with a magnetic multipole must satisfy

L · E(M)
lm (r, θ, ϕ) = l (l + 1) gl(k r) Ylm(θ, ϕ), (11.59)
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as well as r·E(M)
lm = 0. Recall that the operator L acts on the angular variables θ, ϕ only. This implies

that the radial dependence of E(M)
lm is given by gl(k r). It is easily seen from Equations (11.26) and

(11.32) that the solution to Equations (11.56) and (11.59) can be written in the form

E(M)
lm = gl(k r) L Ylm(θ, ϕ). (11.60)

It follows from the analysis Section 11.3 that the angular dependence of E(M)
lm consists of a linear

combination of Yl,m−1(θ, ϕ), Ylm(θ, ϕ), and Yl,m+1(θ, ϕ) functions. Equation (11.60), together with

c B(M)
lm = −

i
k
∇ × E(M)

lm , (11.61)

specifies the electromagnetic fields of a magnetic multipole of order l,m. According to Equa-
tion (11.32), the electric field (11.60) is transverse to the radius vector. Thus, magnetic multipole
fields are sometimes termed transverse electric (TE) multipole fields.

The fields of an electric, or transverse magnetic (TM), multipole of order l,m satisfy

r · E(E)
lm = −

l (l + 1)
k

fl(k r) Ylm(θ, ϕ), (11.62)

r · B(E)
lm = 0. (11.63)

It follows that the fields of an electric multipole are

c B(E)
lm = fl(k r) L Ylm(θ, ϕ), (11.64)

E(E)
lm =

i
k
∇ × c B(E)

lm . (11.65)

Here, the radial function fl(k r) is an expression of the form (11.57).
The two sets of multipole fields, (11.60)–(11.61), and (11.64)–(11.65), form a complete set

of vector solutions to Maxwell’s equations in free space. Because the vector spherical harmonic
L Ylm plays an important role in the theory of multipole fields, it is convenient to introduce the
normalized form

Xlm(θ, ϕ) =
1√

l (l + 1)
L Ylm(θ, ϕ). (11.66)

It can be demonstrated that these forms possess the orthogonality properties∮
X ∗l′m′ · Xlm dΩ = δll′ δmm′ , (11.67)∮

X ∗l′m′ · (r × Xlm) dΩ = 0, (11.68)

for all l, l′, m, and m′.
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By combining the two types of multipole fields, we can write the general solution to Maxwell’s
equations in free space as

c B =
∑
l,m

[
aE(l,m) fl(k r) Xlm − i

k
aM(l,m)∇ × gl(k r) Xlm

]
, (11.69)

E =
∑
l,m

[
i
k

aE(l,m)∇ × fl(k r) Xlm + aM(l,m) gl(k r) Xlm

]
, (11.70)

where the coefficients aE(l,m) and aM(l,m) specify the amounts of electric l,m and magnetic l,m
multipole fields. The radial functions fl(k r) and gl(k r) are both of the form (11.57). The coeffi-
cients aE(l,m) and aM(l,m), as well as the relative proportions of the two types of Hankel functions
in the radial functions fl(k r) and gl(k r), are determined by the sources and the boundary condi-
tions.

Equations (11.69) and (11.70) yield

r · c B =
1
k

∑
l,m

aM(l,m) gl(k r) L Xlm =
1
k

∑
l,m

aM(l,m) gl(k r)
√

l (l + 1) Ylm, (11.71)

and

r · E = −1
k

∑
l,m

aE(l,m) fl(k r) L Xlm = −1
k

∑
l,m

aE(l,m) fl(k r)
√

l (l + 1) Ylm, (11.72)

where use has been made of Equations (11.26), (11.28), (11.32), and (11.66). It follows from the
well-known orthogonality property of the spherical harmonics that

aM(l,m) gl(k r) =
k√

l (l + 1)

∮
Y ∗lm r · c B dΩ, (11.73)

aE(l,m) fl(k r) = − k√
l (l + 1)

∮
Y ∗lm r · E dΩ. (11.74)

Thus, knowledge of r · B and r · E at two different radii in a source-free region permits a complete
specification of the fields, including the relative proportions of the Hankel functions h(1)

l (k r) and
h(2)

l (k r) present in the radial functions fl(k r) and gl(k r).

11.5 Properties of Multipole Fields

Let us examine some of the properties of the multipole fields (11.60)–(11.61) and (11.64)–(11.65).
Consider, first of all, the so-called near zone, in which k r 	 1. In this region, fl(k r) is dominated
by yl(k r), which blows up as k r → 0, and which has the asymptotic expansion (11.19), unless the
coefficient of yl(k r) vanishes identically. Excluding this possibility, the limiting behavior of the
magnetic field for an electric l,m multipole is

c B(E)
lm → −

k
l

L
Ylm

r l+1 , (11.75)



238 CLASSICAL ELECTROMAGNETISM

where the proportionality constant is chosen for later convenience. To find the corresponding
electric field, we must take the curl of the right-hand side of the above equation. The following
operator identity is useful

i∇ × L ≡ r∇ 2 − ∇
(
1 + r

∂

∂r

)
. (11.76)

The electric field (11.65) can be written

E(E)
lm →

−i
l
∇ × L

( Ylm

r l+1

)
. (11.77)

Because Ylm/r l+1 is a solution of Laplace’s equation, it is annihilated by the first term on the right-
hand side of (11.76). Consequently, for an electric l,m multipole, the electric field in the near zone
becomes

E(E)
lm → −∇

( Ylm

r l+1

)
. (11.78)

This, of course, is an electrostatic multipole field. Such a field can be obtained in a more straight-
forward manner by observing that E→ −∇φ, where ∇ 2φ = 0, in the near zone. Solving Laplace’s
equation by separation of variables in spherical coordinates, and demanding that φ be well behaved
as |r| → ∞, yields

φ(r, θ, ϕ) =
∑
l,m

Ylm(θ, ϕ)
r l+1 . (11.79)

Note that (c times) the magnetic field (11.75) is smaller than the electric field (11.78) by a factor of
order k r. Thus, in the near zone, (c times) the magnetic field associated with an electric multipole
is much smaller than the corresponding electric field. For magnetic multipole fields, it is evident
from Equations (11.60)–(11.61) and (11.64)–(11.65) that the roles of E and c B are interchanged
according to the transformation

E(E) → −c B(M), (11.80)

c B(E) → E(M). (11.81)

In the so-called far zone, or radiation zone, in which k r 
 1, the multipole fields depend on
the boundary conditions imposed at infinity. For definiteness, let us consider the case of outgoing
waves at infinity, which is appropriate to radiation by a localized source. For this case, the radial
function fl(k r) contains only the spherical Hankel function h(1)

l (k r). From the asymptotic form
(11.22), it is clear that in the radiation zone the magnetic field of an electric l,m multipole varies
as

c B(E)
lm → (−i) l+1 e i k r

k r
L Ylm. (11.82)

Using Equation (11.65), the corresponding electric field can be written

E(E)
lm =

(−i) l

k 2

[
∇

(
e i k r

r

)
× L Ylm +

e i k r

r
∇ × L Ylm

]
. (11.83)
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Neglecting terms that fall off faster than 1/r, the above expression reduces to

E(E)
lm = −(−i) l+1 e i k r

k r

[
n × L Ylm − 1

k
(r∇ 2 − ∇)Ylm

]
, (11.84)

where use has been made of the identity (11.76), and n = r/r is a unit vector pointing in the radial
direction. The second term in square brackets is smaller than the first term by a factor of order
1/(k r), and can, therefore, be neglected in the limit k r 
 1. Thus, we find that the electric field in
the radiation zone takes the form

E(E)
lm = c B(E)

lm × n, (11.85)

where c B(E)
lm is given by Equation (11.82). These fields are typical radiation fields: that is, they

are transverse to the radius vector, mutually orthogonal, fall off like 1/r, and are such that |E| =
c |B|. To obtain expansions for magnetic multipoles, we merely make the transformation (11.80)–
(11.81).

Consider a linear superposition of electric l,m multipoles with different m values that all pos-
sess a common l value. Suppose that all multipoles correspond to outgoing waves at infinity. It
follows from Equations (11.64)–(11.66) that

c Bl =
∑

l

aE(l,m) h(1)
l (k r) e−iω t Xlm, (11.86)

El =
i
k
∇ × c Bl. (11.87)

For harmonically varying fields, the time-averaged energy density is given by

u =
ε0

4
(E · E ∗ + c B · c B ∗). (11.88)

In the radiation zone, the two terms on the right-hand side of the above equation are equal. It
follows that the energy contained in a spherical shell lying between radii r and r + dr is

dU =
ε0 dr
2 k 2

∑
m,m′

a∗E(l,m′) aE(l,m)
∮

X∗lm′ · Xlm dΩ, (11.89)

where use has been made of the asymptotic form (11.22) of the spherical Hankel function h(1)
l (z).

The orthogonality relation (11.67) leads to

dU
dr
=

ε0

2 k 2

∑
m

|aE(l,m)| 2, (11.90)

which is clearly independent of the radius. For a general superposition of electric and magnetic
multipoles, the sum over m becomes a sum over l and m, whereas |aE | 2 becomes |aE | 2 + |aM | 2.
Thus, the net energy in a spherical shell situated in the radiation zone is an incoherent sum over all
multipoles.
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The time-averaged angular momentum density of harmonically varying electromagnetic fields
is given by

m =
ε0

2
Re [r × (E × B ∗)]. (11.91)

For a superposition of electric multipoles, the triple product can be expanded, and the electric field
(11.87) substituted, to give

m =
ε0 c
2 k

Re [B ∗(L · B)]. (11.92)

Thus, the net angular momentum contained in a spherical shell lying between radii r and r + dr (in
the radiation zone) is

dM =
ε0 c dr
2 k 3 Re

∑
m,m′

a∗E(l,m′) aE(l,m)
∮

(L · Xlm′) ∗ Xlm dΩ. (11.93)

It follows from Equations (11.26) and (11.66) that

dM
dr
=
ε0 c
2 k 3 Re

∑
m,m′

a∗E(l,m′) aE(l,m)
∮

Y ∗lm′ L Ylm dΩ. (11.94)

According to Equations (11.29)–(11.31), the Cartesian components of dM/dr can be written:

dMx

dr
=
ε0 c
4 k 3 Re

∑
m

[ √
(l − m) (l + m + 1) a ∗E(l,m + 1)

+
√

(l + m) (l − m + 1) a ∗E(l,m − 1)
]

aE(l,m), (11.95)

dMy

dr
=
ε0 c
4 k 3 Im

∑
m

[ √
(l − m) (l + m + 1) a ∗E(l,m + 1)

−√
(l + m) (l − m + 1) a ∗E(l,m − 1)

]
aE(l,m), (11.96)

dMz

dr
=
ε0 c
2 k 3

∑
m

m |aE(l,m)| 2. (11.97)

Thus, for a general lth order electric multipole that consists of a superposition of different m values,
only the z component of the angular momentum takes a relatively simple form.

11.6 Solution of Inhomogeneous Helmholtz Equation

The inhomogeneous Helmholtz wave equation is conveniently solved by means of a Green’s func-
tion, Gω(r, r′), that satisfies

(∇ 2 + k 2) Gω(r, r′) = −δ(r − r′). (11.98)

The solution of this equation, subject to the Sommerfeld radiation condition, which ensures that
sources radiate waves instead of absorbing them, is written

Gω(r, r′) =
e i k |r−r′ |

4π |r − r′| . (11.99)



Multipole Expansion 241

(See Chapter 1.)
As is well known, the spherical harmonics satisfy the completeness relation∑

l=0,∞

∑
m=−l,+l

Y ∗lm(θ′, ϕ′) Ylm(θ, ϕ) = δ(ϕ − ϕ′) δ(cos θ − cos θ′). (11.100)

Now, the three-dimensional delta function can be written

δ(r − r′) =
δ(r − r′)

r 2 δ(ϕ − ϕ′) δ(cos θ − cos θ′). (11.101)

It follows that

δ(r − r′) =
δ(r − r′)

r 2

∑
l=0,∞

∑
m=−l,+l

Y ∗lm(θ′, ϕ′) Ylm(θ, ϕ). (11.102)

Let us expand the Green’s function in the form

Gω(r, r′) =
∑
l,m

gl(r, r′) Y ∗lm(θ′, ϕ′) Ylm(θ, ϕ). (11.103)

Substitution of this expression into Equation (11.98) yields[
d 2

dr 2 +
2
r

d
dr
+ k 2 − l (l + 1)

r 2

]
gl = −δ(r − r′)

r 2 . (11.104)

The appropriate boundary conditions are that gl(r) be finite at the origin, and correspond to an
outgoing wave at infinity (i.e., g ∝ e i k r in the limit r → ∞). The solution of the above equation
that satisfies these boundary conditions is

gl(r, r′) = A jl(k r<) h(1)
l (k r>), (11.105)

where r< and r> are the greater and the lesser of r and r′, respectively. The appropriate discontinuity
in slope at r = r′ is assured if A = i k, because

dh(1)
l (z)
dz

jl(z) − h(1)
l (z)

d jl(z)
dz
=

i
z 2 . (11.106)

Thus, the expansion of the Green’s function becomes

e i k |r−r′ |

4π |r − r′| = i k
∑

l=0,∞
jl(k r<) h(1)

l (k r>)
∑

m=−l,+l

Y ∗lm(θ′, ϕ′) Ylm(θ, ϕ). (11.107)

This is a particularly useful result, as we shall discover, because it easily allows us to express the
general solution of the inhomogeneous wave equation as a multipole expansion.
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11.7 Sources of Multipole Radiation

Let us now examine the connection between multipole fields and their sources. Suppose that
there exist localized distributions of electric change, ρ(r, t), true current, j(r, t), and magnetization,
M(r, t). We assume that any time dependence can be analyzed into its Fourier components, and we
therefore only consider harmonically varying sources, ρ(r) e−iω t, j(r) e−iω t, and M(r) e−iω t, where
it is understood that we take the real parts of complex quantities.

Maxwell’s equations can be written

∇ · E = ρ

ε0
, (11.108)

∇ · B = 0, (11.109)

∇ × E − i k c B = 0, (11.110)

∇ × c B + i k E = µ0 c (j + ∇ ×M), (11.111)

whereas the charge continuity equation takes the form

iωρ = ∇ · j. (11.112)

It is convenient to deal only with divergence-free fields. Thus, we use as our field variables, B and

E′ = E +
i

ε0 ω
j. (11.113)

In the region external to the sources, E′ reduces to E. When expressed in terms of these fields,
Maxwell’s equations become

∇ · E′ = 0, (11.114)

∇ · B = 0, (11.115)

∇ × E′ − i k c B =
i

ε0 ω
∇ × j, (11.116)

∇ × c B + i k E′ = µ0 c∇ ×M. (11.117)

The curl equations can be combined to give two inhomogeneous Helmholtz wave equations:

(∇ 2 + k 2) c B = −µ0 c∇ × (j + ∇ ×M), (11.118)

and

(∇ 2 + k 2) E′ = −i k µ0 c∇ ×
(
M +

∇ × j
k 2

)
. (11.119)

These equations, together with ∇ · B = 0, and ∇ · E′ = 0, as well as the curl equations giving E′ in
terms of B, and vice versa, are the generalizations of Equations (11.45)–(11.50) when sources are
present.
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Because the multipole coefficients in Equations (11.69)–(11.70) are determined, via Equa-
tions (11.73)–(11.74), from the scalars r · c B and r · E′, it is sufficient to consider wave equations
for these quantities, rather than the vector fields B and E′. From Equations (11.52), (11.118),
(11.119), and the identity

r · (∇ × A) = (r × ∇) · A = i L · A, (11.120)

which holds for any vector field A, we obtain the inhomogeneous wave equations

(∇ 2 + k 2) r · c B = −i µ0 c L · (j + ∇ ×M), (11.121)

(∇ 2 + k 2) r · E′ = k µ0 c L ·
(
M +

∇ × j
k 2

)
. (11.122)

Now, the Green’s function for the inhomogeneous Helmholtz equation, subject to the bound-
ary condition of outgoing waves at infinity, is given by Equation (11.99). It follows that Equa-
tions (11.121)–(11.122) can be inverted to give

r · c B(r) =
i µ0 c
4π

∫
e i k |r−r′ |

|r − r′| L
′ · [j(r′) + ∇′ ×M(r′)

]
dV ′, (11.123)

r · E′(r) = −k µ0 c
4π

∫
e i k |r−r′ |

|r − r′| L
′ ·

[
M(r′) +

∇′ × j(r′)
k2

]
dV ′. (11.124)

In order to evaluate the multipole coefficients by means of Equations (11.73)–(11.74), we first ob-
serve that the requirement of outgoing waves at infinity implies that A(2)

l = 0 in Equation (11.57).
Thus, in Equations (11.69)–(11.70), we choose fl(k r) = gl(k r) = h(1)

l (k r) as the radial eigenfunc-
tions of E and B in the source-free region. Next, let us consider the expansion (11.107) of the
Green’s function for the inhomogeneous Helmholtz equation. We assume that the point r lies out-
side some spherical shell that completely encloses the sources. It follows that r< = r′ and r> = r
in all of the integrations. Making use of the orthogonality property of the spherical harmonics, it
follows from Equation (11.107) that∮

Y ∗lm(θ, ϕ)
e i k |r−r′ |

4π |r − r′| dΩ = i k h(1)
l (k r) jl(k r′) Y ∗lm(θ′, ϕ′). (11.125)

Finally, Equations (11.73)–(11.74), and (11.123)–(11.125) yield

aE(l,m) =
µ0 c i k 3

√
l (l + 1)

∫
jl(k r) Y ∗lm L ·

(
M +

∇ × j
k 2

)
dV, (11.126)

aM(l,m) = − µ0 c k 2

√
l (l + 1)

∫
jl(k r) Y ∗lm L · (j + ∇ ×M) dV. (11.127)

The previous two equations allow us to calculate the strengths of the various multipole fields,
external to the source region, in terms of integrals over the source densities, j and M. These
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equations can be transformed into more useful forms by means of the following arguments. The
results

L · A = i∇·(r × A), (11.128)

L · (∇ × A) = i∇ 2(r · A) − i
1
r
∂(r 2 ∇ · A)

∂r
(11.129)

follow from the definition of L [see (11.28)], and simple vector identities. Substituting into Equa-
tion (11.126), we obtain

aE(l,m) = − µ0 c k 3

√
l (l + 1)

∫
jl(k r) Y ∗lm

[
∇ · (r ×M) +

∇ 2(r · j)
k 2 − i

c
k r

∂(r 2ρ)
∂r

]
dV, (11.130)

where use has been made of Equation (11.112). Use of Green’s theorem on the second term
in square brackets allows us to replace ∇ 2 by −k 2 (because we can neglect surface terms, and
jl(k r) Y ∗lm is a solution of the Helmholtz equation). A radial integration by parts on the third
term (again neglecting surface terms) cause the radial derivate to operate on the spherical Bessel
function. The resulting expression for the electric multipole coefficient is

aE(l,m) =
µ0 c k 2

i
√

l (l + 1)

∫
Y ∗lm

[
c ρ

d[r jl(k r)]
dr

+ i k (r · j) jl(k r) − i k∇ · (r ×M) jl(k r)
]

dV.

(11.131)
Similarly, Equation (11.127) leads to the following expression for the magnetic multipole coeffi-
cient:

aM(l,m) =
µ0 c k 2

i
√

l (l + 1)

∫
Y ∗lm

[
∇ · (r × j) jl(k r) + ∇ ·M d[r jl(k r)]

dr
− k2 (r ·M) jl(k r)

]
dV.

(11.132)
Both of the previous results are exact, and are valid for arbitrary wavelength and source size.

In the limit in which the source dimensions are small compared to a wavelength (i.e., k r 	 1),
the above expressions for the multipole coefficients can be considerably simplified. Using the
asymptotic form (11.18), and retaining only lowest powers in k r for terms involving ρ, j, and M,
we obtain the approximate electric multipole coefficient

aE(l,m) � µ0 c k l+2

i (2 l + 1)!!

(
l + 1

l

)1/2

(Qlm + Q′lm), (11.133)

where the multipole moments are

Qlm =

∫
r l Y ∗lm c ρ dV, (11.134)

Q′lm =
−i k
l + 1

∫
r l Y∗lm ∇ · (r ×M) dV. (11.135)

The moment Qlm has the same form as a conventional electrostatic multipole moment. The moment
Q′lm is an induced electric multipole moment due to the magnetization. The latter moment is
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generally a factor k r smaller than the former. For the magnetic multipole coefficient aM(l,m), the
corresponding long wavelength approximation is

aM(l,m) � µ0 c i k l+2

(2 l + 1)!!

(
l + 1

l

)1/2

(Mlm +M′
lm), (11.136)

where the magnetic multipole moments are

Mlm = − 1
l + 1

∫
r l Y ∗lm ∇ · (r × j) dV, (11.137)

M′
lm = −

∫
r l Y ∗lm ∇ ·M dV. (11.138)

Note that for a system with intrinsic magnetization, the magnetic moments Mlm and M′
lm are

generally of the same order of magnitude. We conclude that, in the long wavelength limit, the
electric multipole fields are determined by the charge density, ρ, whereas the magnetic multipole
fields are determined by the magnetic moment densities, r × j and M.

11.8 Radiation from Linear Centre-Fed Antenna

As an illustration of the use of a multipole expansion for a source whose dimensions are compa-
rable to a wavelength, consider the radiation from a linear centre-fed antenna. We assume that the
antenna runs along the z-axis, and extends from z = −d/2 to z = d/2. The current flowing along
the antenna vanishes at the end points, and is an even function of z. Thus, we can write

I(z, t) = I(|z|) e−iω t, (11.139)

where I(d/2) = 0. Because the current flows radially, r × j = 0. Furthermore, there is no intrinsic
magnetization. Thus, according to Equations (11.137)–(11.138), all of the magnetic multipole
coefficients, aM(l,m), vanish. In order to calculate the electric multipole coefficients, aE(l,m), we
need expressions for the charge and current densities. In spherical polar coordinates, the current
density j can be written in the form

j(r) =
I(r)

2π r 2 [δ(cos θ − 1) − δ(cos θ + 1)] er, (11.140)

for r < d/2, where the delta functions cause the current to flow only upwards and downwards
along the z-axis. From the continuity equation (11.112), the charge density is given by

ρ(r) =
1

iω
dI(r)

dr

[
δ(cos θ − 1) − δ(cos θ + 1)

2π r 2

]
, (11.141)

for r < d/2.
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The above expressions for j and ρ can be substituted into Equation (11.133) to give

aE(l,m) =
µ0 c k 2

2π
√

l (l + 1)

∫ d/2

0

{
kr jl(k r) I(r) − 1

k
dI(r)

dr
d[r jl(k r)]

dr

}
dr∮

Y ∗lm [δ(cos θ − 1) − δ(cos θ + 1)] dΩ. (11.142)

The angular integral has the value∮
Y ∗lm [δ(cos θ − 1) − δ(cos θ + 1)] dΩ = 2π δm0 [Yl0(0) − Yl0(π)] , (11.143)

showing that only m = 0 multipoles are generated. This is hardly surprising, given the cylindrical
symmetry of the antenna. The m = 0 spherical harmonics are even (odd) about θ = π/2 for l even
(odd). Hence, the only nonvanishing multipoles have l odd, and the angular integral reduces to∮

Y ∗lm [δ(cos θ − 1) − δ(cos θ + 1)] dΩ =
√

4π (2 l + 1). (11.144)

After some slight rearrangement, Equation (11.142) can be written

aE(l, 0) =
µ0 c k

2π

[
4π (2 l + 1)

l (l + 1)

]1/2 ∫ d/2

0

{
− d

dr

[
r jl(k r)

dI
dr

]
+ r jl(k r)

(
d 2I
dr 2 + k 2 I

)}
dr. (11.145)

In order to evaluate the above integral, we need to specify the current I(z) along the antenna.
In the absence of radiation, the sinusoidal time variation at frequency ω implies a sinusoidal space
variation with wavenumber k = ω/c. However, the emission of radiation generally modifies the
current distribution. The correct current I(z) can only be found be solving a complicated boundary
value problem. For the sake of simplicity, we assume that I(z) is a known function: specifically,

I(z) = I sin(k d/2 − k |z|), (11.146)

for z < d/2, where I is the peak current. With a sinusoidal current, the second term in curly
brackets in Equation (11.145) vanishes. The first term is a perfect differential. Consequently,
Equations (11.145) and (11.146) yield

aE(l, 0) =
µ0 c I
π d

[
4π (2 l + 1)

l (l + 1)

]1/2 (
k d
2

)2

jl(k d/2), (11.147)

for l odd.
Let us consider the special cases of a half-wave antenna (i.e., k d = π, so that the length of

the antenna is half a wavelength) and a full-wave antenna (i.e., k d = 2π). For these two values
of k d, the l = 1 electric multipole coefficient is tabulated in Table 11.1, along with the relative
values for l = 3 and 5. It is clear, from the table, that the coefficients decrease rapidly in magnitude
as l increases, and that higher l coefficients are more important the larger the source dimensions.
However, even for a full-wave antenna, it is generally sufficient to retain only the l = 1 and l = 3
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k d aE(1, 0) aE(3, 0)/aE(1, 0) aE(5, 0)/aE(1, 0)

π 4
√

6π (µ0 c I/4π d) 4.95 × 10−2 1.02 × 10−3

2π 4π
√

6π (µ0 c I/4π d) 3.25 × 10−1 3.09 × 10−2

Table 11.1: The first few electric multipole coefficients for a half-wave and a full-wave antenna.

coefficients when calculating the angular distribution of the radiation. It is certainly adequate to
keep only these two harmonics when calculating the total radiated power (which depends on the
sum of the squares of the coefficients).

In the radiation zone, the multipole fields (11.69)–(11.70) reduce to

c B � e i (k r−ω t)

k r

∑
l,m

(−i) l+1 [aE(l,m) Xlm + aM(l,m) n × Xlm] , (11.148)

E � c B × n, (11.149)

where use has been made of the asymptotic form (11.22). The time-averaged power radiated per
unit solid angle is given by

dP
dΩ
=

Re (n · E × B ∗) r 2

2 µ0
, (11.150)

or
dP
dΩ
=

1
2 µ0 c k 2

∣∣∣∣∣∣∣∑l,m (−i) l+1 [aE(l,m) Xlm + aM(l,m) n × Xlm]

∣∣∣∣∣∣∣
2

. (11.151)

Retaining only the l = 1 and l = 3 electric multipole coefficients, the angular distribution of the
radiation from the antenna takes the form

dP
dΩ
=
|aE(l, 0)| 2
4 µ0 c k 2

∣∣∣∣∣∣LY1,0 − aE(3, 0)√
6 aE(1, 0)

LY3,0

∣∣∣∣∣∣ 2

, (11.152)

where use has been made of Equation (11.66). The various factors in the absolute square are

|LY1,0| 2 = 3
4π

sin2 θ, (11.153)

|LY3,0| 2 = 63
16π

sin2 θ (5 cos2 θ − 1)2, (11.154)

(LY1,0) ∗ · (LY3,0) =
3
√

21
8π

sin2 θ (5 cos2 θ − 1). (11.155)

With these angular factors, Equation (11.151) becomes

dP
dΩ
= λ

3 µ0 c I 2

π3

3 sin2 θ

8π

∣∣∣∣∣∣∣1 −
√

7
8

aE(3, 0)
aE(1, 0)

(5 cos2 θ − 1)

∣∣∣∣∣∣∣
2

, (11.156)
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where λ equals 1 for a half-wave antenna, and π2/4 for a full-wave antenna. The coefficient in
front of (5 cos2 θ − 1) is 0.0463 and 0.304 for the half-wave and full-wave antenna, respectively.
It turns out that the radiation pattern obtained from the two-term multipole expansion specified in
the previous equation is almost indistinguishable from the exact result for the case of a half-wave
antenna. For the case of a full-wave antenna, the two-term expansion yields a radiation pattern that
differs from the exact result by less than 5 percent.

The total power radiated by the antenna is

P =
1

2 µ0 c k 2

∑
l odd

|aE(l, 0)| 2, (11.157)

where use has been made of Equation (11.90). It is evident from Table 11.1 that a two-term
multipole expansion gives an accurate expression for the power radiated by both a half-wave and
a full-wave antenna. In fact, a one-term multipole expansion gives a fairly accurate result for the
case of a half-wave antenna.

It is clear, from the previous analysis, that the multipole expansion converges rapidly when
the source dimensions are of order the wavelength of the radiation. It is also clear that if the
source dimensions are much less than the wavelength then the multipole expansion is likely to be
completely dominated by the term corresponding to the lowest value of l.

11.9 Spherical Wave Expansion of Vector Plane Wave

In discussing the scattering or absorption of electromagnetic radiation by localized systems, it is
useful to be able to express a plane electromagnetic wave as a superposition of spherical waves.

Consider, first of all, the expansion of a scalar plane wave as a set of scalar spherical waves.
This expansion is conveniently obtained from the expansion (11.107) for the Green’s function of
the scalar Helmholtz equation. Let us take the limit |r′| → ∞ of this equation. We can make the
substitution |r−r′| � r′−n ·r on the left-hand-side, where n is a unit vector pointing in the direction
of r′. On the right-hand side, r< = r and r> = r′. Furthermore, we can use the asymptotic form
(11.22) for h(1)

l (k r). Thus, we obtain

e i k r′

4π r′
e−i k n·r = i k

e i k r′

k r′
∑
l,m

(−i)l+1 jl(k r) Y ∗lm(θ′, ϕ′) Ylm(θ, ϕ). (11.158)

Canceling the factor e i k r′/r′ on either side of the above equation, and taking the complex conjugate,
we get the following expansion for a scalar plane wave,

e i k·r = 4π
∑

l=0,∞
il jl(k r)

∑
m=−l,+l

Y ∗lm(θ, ϕ) Ylm(θ′, ϕ′), (11.159)

where k is a wavevector with the spherical coordinates k, θ′, ϕ′. The well-known addition theorem
for the spherical harmonics states that

Pl(cos γ) =
4π

2 l + 1

∑
m=−l,+l

Y ∗lm(θ, ϕ) Ylm(θ′, ϕ′), (11.160)
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where γ is the angle subtended between the vectors r and r′. Consequently,

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′). (11.161)

It follows from Equations (11.159) and (11.160) that

e i k·r =
∑

l=0,∞
il (2 l + 1) jl(k r) Pl(cos γ), (11.162)

or
e i k·r =

∑
l=0,∞

il
√

4π (2 l + 1) jl(k r) Yl0(γ), (11.163)

because

Yl0(θ) =

√
2 l + 1

4π
Pl(cos θ). (11.164)

Let us now make an equivalent expansion for a circularly polarized plane wave incident along
the z-axis:

E(r) = (ex ± i ey) e i k z, (11.165)

c B(r) = ez × E = ∓ i E. (11.166)

Because the plane wave is finite everywhere (including the origin), its multipole expansion (11.69)–
(11.70) can only involve the well-behaved radial eigenfunctions jl(k r). Thus,

E =
∑
l,m

[
a±(l,m) jl(k r) Xlm +

i
k

b±(l,m)∇ × jl(k r)Xlm

]
, (11.167)

c B =
∑
l,m

[−i
k

a±(l,m)∇ × jl(k r) Xlm + b±(l,m) jl(k r) Xlm

]
. (11.168)

To determine the coefficients a±(l,m) and b±(l,m), we make use of a slight generalization of the
standard orthogonality properties (11.67)–(11.68) of the vector spherical harmonics:∮

[ fl(r) Xl′m′] ∗ · [gl(r) Xlm] dΩ = f ∗l gl δll′ δmm′ , (11.169)∮
[ fl(r) Xl′m′] ∗ · [∇ × gl(r) Xlm] dΩ = 0. (11.170)

The first of these follows directly from Equation (11.67). The second follows from Equations (11.32),
(11.68), (11.76), and the identity

∇ ≡ r
r
∂

∂r
− i

r 2 r × L. (11.171)

The coefficients a±(l,m) and b±(l,m) are obtained by taking the scalar product of Equations (11.167)–
(11.168) with X ∗lm and integrating over all solid angle, making use of the orthogonality relations
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(11.169)–(11.170). This yields

a±(l,m) jl(k r) =
∮

X ∗lm · E dΩ, (11.172)

b±(l,m) jl(k r) =
∮

X ∗lm · B̧ dΩ. (11.173)

Substitution of Equations (11.66) and (11.167) into Equation (11.172) gives

a±(l,m) jl(k r) =
∮

(L∓ Ylm) ∗√
l (l + 1)

e i k z dΩ, (11.174)

where the operators L± are defined in Equations (11.29)–(11.30). Making use of Equations (11.34)–
(11.36), the above expression reduces to

a±(l,m) jl(k r) =
√

(l ± m) (l ∓ m + 1)√
l (l + 1)

∮
Y ∗l,m∓1 e i k z dΩ. (11.175)

If the expansion (11.163) is substituted for e i k z, and use is made of the orthogonality properties of
the spherical harmonics, then we obtain the result

a±(l,m) = i l
√

4π (2 l + 1) δm,±1. (11.176)

It is clear from Equations (11.166) and (11.173) that

b±(l,m) = ∓ i a±(l,m). (11.177)

Thus, the general expansion of a circularly polarized plane wave takes the form

E(r) =
∑

l=1,∞
i l
√

4π (2 l + 1)
[

jl(k r) Xl,±1 ± 1
k
∇ × jl(k r) Xl,±1

]
, (11.178)

B(r) =
∑

l=1,∞
i l
√

4π (2 l + 1)
[−i

k
∇ × jl(k r) Xl,±1 ∓ i jl(k r) Xl,±1

]
. (11.179)

The expansion for a linearly polarized plane wave is easily obtained by taking the appropriate
linear combination of the above two expansions.

11.10 Mie Scattering

Consider a plane electromagnetic wave incident on a spherical obstacle. In general, the wave is
scattered, to some extent, by the obstacle. Thus, far away from the sphere, the electromagnetic
fields can be expressed as the sum of a plane wave and a set of outgoing spherical waves. There
may be absorption by the obstacle, as well as scattering. In this case, the energy flow away from
the obstacle is less than the total energy flow towards it—the difference representing the absorbed
energy.
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The fields outside the sphere can be written as the sum of incident and scattered waves:

E(r) = Einc + Esc, (11.180)

B(r) = Binc + Bsc, (11.181)

where Einc and Binc are given by (11.178)–(11.179). Because the scattered fields are outgoing
waves at infinity, their expansions must be of the form

Esc =
1
2

∑
l=1,∞

i l
√

4π (2 l + 1)
[
α±(l) h(1)

l (k r) Xl,±1 ± β±(l)k
∇ × h(1)

l (k r) Xl,±1

]
, (11.182)

c Bsc =
1
2

∑
l=1,∞

i l
√

4π (2 l + 1)
[−iα±(l)

k
∇ × h(1)

l (k r) Xl,±1 ∓ i β±(l) h(1)
l (k r) Xl,±1

]
. (11.183)

The coefficients α±(l) and β±(l) are determined by the boundary conditions on the surface of the
sphere. In general, it is necessary to sum over all m harmonics in the above expressions. However,
for the restricted class of spherically symmetric scatterers, only the m = ±1 harmonics need be
retained (because only these harmonics occur in the spherical wave expansion of the incident plane
wave [see Equations (11.178)–(11.179)], and a spherically symmetric scatterer does not couple
different m harmonics).

The angular distribution of the scattered power can be written in terms of the coefficients α(l)
and β(l) using the scattered electromagnetic fields evaluated on the surface of a sphere of radius a
surrounding the scatterer. In fact, it is easily demonstrated that

dPsc

dΩ
=

a 2

2 µ0
Re [n · Esc × B ∗sc]r=a = − a 2

2 µ0
Re [Esc · (n × B∗sc)]r=a, (11.184)

where n is a radially directed outward normal. The differential scattering cross-section is defined
as the ratio of dPsc/dΩ to the incident flux 1/(µ0 c). Hence,

dσsc

dΩ
= −a 2

2
Re [Esc · (n × c B ∗sc)]r=a. (11.185)

We need to evaluate this expression using the electromagnetic fields specified in Equations (11.178)–
(11.183). The following identity, which can be established with the aid of Equations (11.28),
(11.66), and (11.76), is helpful in this regard:

∇ × f (r) Xlm =
i
√

l (l + 1)
r

f (r) Ylm n +
1
r

d[r f (r)]
dr

n × Xlm. (11.186)

For instance, using this result, we can write n × c Bsc in the form

n × c Bsc =
1
2

∑
l=1,∞

i l
√

4π (2 l + 1)

 iα±(l)
k

1
r

d[r h(1)
l (k r)]
dr

Xl,±1 ∓ i β±(l) h(1)
l (k r) n × Xl,±1

 . (11.187)
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It can be demonstrated, after considerable algebra, that

dσsc

dΩ
=

π

2 k 2

∣∣∣∣∣∣∣∑l

√
2 l + 1

[
α±(l) Xl,±1 ± i β±(l) n × Xl,±1

]∣∣∣∣∣∣∣
2

. (11.188)

In obtaining this formula, use has been made of the standard result

d fl(z)
dz

f ∗l′ (z) − d f ∗l′ (z)
dz

fl(z) =
2 i
z 2 , (11.189)

where fl(z) = i l h(1)
l (z). The total scattering cross-section is obtained by integrating Equation (11.188)

over all solid angle, making use of the following orthogonality relations for the vector spherical
harmonics [see Equations (11.67)–(11.68)]:∮

X ∗l′m′ · Xlm dΩ = δll′ δmm′ , (11.190)∮
X ∗l′m′ · (n × Xlm) dΩ = 0, (11.191)∮

(n × X ∗l′m′) · (n × Xlm) dΩ = δll′ δmm′ . (11.192)

Thus,
σsc =

π

2 k 2

∑
l

(2 l + 1)
[
|α±(l)| 2 + |β±(l)| 2

]
. (11.193)

According to Equations (11.188) and (11.193), the total scattering cross-section is independent of
the polarization of the incident radiation (i.e., it is the same for both the ± signs). However, the
differential scattering cross-section in any particular direction is, in general, different for different
circular polarizations of the incident radiation. This implies that if the incident radiation is lin-
early polarized then the scattered radiation is elliptically polarized. Furthermore, if the incident
radiation is unpolarized then the scattered radiation exhibits partial polarization, with the degree of
polarization depending on the angle of observation.

The total power absorbed by the sphere is given by

Pabs = − a 2

2 µ0
Re

∫
[n · E × B ∗]r=a dΩ =

a 2

2 µ0
Re

∫
[E · (n × B ∗)]r=a dΩ.

A similar calculation to that outlined above yields the following expression for the absorption
cross-section,

σabs =
π

2 k 2

∑
l

(2 l + 1)
[
2 − |α±(l) + 1| 2 − |β±(l) + 1| 2

]
. (11.194)

The total, or extinction, cross-section is the sum of σsc and σabs:

σt = − πk 2

∑
l

(2 l + 1) Re [α±(l) + β±(l)]. (11.195)
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Not surprisingly, the above expressions for the various cross-sections closely resemble those ob-
tained in quantum mechanics from partial wave expansions.

Let us now consider the boundary conditions at the surface of the sphere (whose radius is a,
say). For the sake of simplicity, let us suppose that the sphere is a perfect conductor. In this case,
the appropriate boundary condition is that the tangential electric field is zero at r = a. According
to Equations (11.178), (11.180), and (11.186), the tangential electric field is given by

Etan =
∑

l

i l
√

4π (2 l + 1)
{[

jl +
α±(l)

2
h(1)

l

]
Xl,±1 ± 1

x
d

dx

[
x
(

jl +
β±(l)

2
h(1)

l

)]
n × Xl,±1

}
, (11.196)

where x = k a, and all of the spherical Bessel functions have the argument x. Thus, the boundary
condition yields

α±(l) + 1 = −h(2)
l (k a)

h(1)
l (k a)

, (11.197)

β±(l) + 1 = −
[x h(2)

l (x)]′

[x h(1)
l (x)]′


x=k a

, (11.198)

where ′ denotes d/dx. Note that α±(l) + 1 and β±(l) + 1 are both numbers of modulus unity. This
implies, from Equation (11.194), that there is no absorption for the case of a perfectly conducting
sphere (in general, there is some absorption if the sphere has a finite conductivity). We can write
α±(l) and β±(l) in the form

α±(l) = e 2 i δl − 1, (11.199)

β±(l) = e 2 i δ′l − 1, (11.200)

where the phase angles δl and δ′l are called scattering phase shifts. It follows from Equations (11.197)–
(11.198) that

tan δl =
jl(k a)
yl(k a)

, (11.201)

tan δ′l =
(

[x jl(x)]′

[x yl(x)]′

)
x=k a

. (11.202)

Let us specialize to the limit k a	 1, in which the wavelength of the radiation is much greater
than the radius of the sphere. The asymptotic expansions (11.18)–(11.19) yield

α±(l) � − 2 i (k a)2 l+1

(2 l + 1) [(2 l − 1)!!] 2 ,

β±(l) � −(l + 1)
l

α±(l), (11.203)
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for l ≥ 1. It is clear that the scattering coefficients α±(l) and β±(l) become small very rapidly as l
increases. Thus, in the very long wavelength limit, only the l = 1 coefficients need be retained. It
is easily seen that

α±(1) = −β±(1)
2
� −2 i

3
(k a)3. (11.204)

In this limit, the differential scattering cross-section (11.188) reduces to
dσsc

dΩ
� 2π

3
a 2(k a)4

∣∣∣X1,±1 ∓ 2 i n × X1,±1

∣∣∣ 2
. (11.205)

It can be demonstrated that

|n × X1,±1| 2 = |X1,±1| 2 = 3
16π

(1 + cos2 θ), (11.206)

and
[±i (n × X ∗1,±1) · X1,±1] = −3π

8
cos θ. (11.207)

Thus, in long wavelength limit, the differential scattering cross-section reduces to

dσsc

dΩ
� a 2(k a)4

[
5
8

(1 + cos2 θ) − cos θ
]
. (11.208)

The scattering is predominately backwards, and is independent of the state of polarization of the
incident radiation. The total scattering cross-section is given by

σsc =
10π

3
a 2 (k a)4. (11.209)

This well-known result was first obtained by Mie and Debye. Note that the cross-section scales as
the inverse fourth power of the wavelength of the incident radiation. This scaling is generic to all
scatterers whose dimensions are much smaller than the wavelength. In fact, it was first derived by
Rayleigh using dimensional analysis.

11.11 Exercises

11.1 An almost spherical surface defined by

R(θ) = R0
[
1 + β P2(cos θ)

]
has inside it a uniform volume distribution of charge totaling Q. The small parameter β
varies harmonically in time at the angular frequencyω. This corresponds to a surface waves
on a sphere. Keeping only the lowest-order terms in β, and making the long-wavelength
approximation, calculate the nonvanishing multipole moments, the angular distribution of
radiation, and the total radiated power.

11.2 The uniform charge density of the previous exercise is replaced by a uniform magnetization
parallel to the z-axis and having a total magnetic moment M. With the same approximations
as in the previous exercise, calculate the nonvanishing multipole moments, the angular
distribution of radiation, and the total radiated power.
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12 Relativity and Electromagnetism

12.1 Introduction

In this chapter, we shall discuss Maxwell’s equations in the light of Einstein’s special theory of
relativity.

12.2 Relativity Principle

Physical phenomena are conventionally described relative to some frame of reference that allows
us to define fundamental quantities such as position and time. Of course, there are very many
different ways of choosing a reference frame, but it is generally convenient to restrict our choice
to the set of rigid inertial frames. A classical rigid reference frame is the imagined extension of a
rigid body. For instance, the Earth determines a rigid frame throughout all space, consisting of all
those points that remain rigidly at rest relative to the Earth, and to one another. We can associate an
orthogonal Cartesian coordinate system S with such a frame by choosing three mutually orthogonal
planes within it, and measuring x, y, and z as perpendicular distances from these planes. A time
coordinate must also be defined, in order that the system can be used to specify events. A rigid
frame, endowed with such properties, is called a Cartesian frame. The description given previously
presupposes that the underlying geometry of space is Euclidian, which is reasonable provided that
gravitational effects are negligible (as we shall assume to be the case). An inertial frame is a
Cartesian frame in which free particles move without acceleration, in accordance with Newton’s
first law of motion. There are an infinite number of different inertial frames, moving with some
constant velocity with respect to one another.

The key to understanding special relativity is Einstein’s Relativity Principle, which states that:

All inertial frames are totally equivalent for the performance of all physical experi-
ments.

In other words, it is impossible to perform a physical experiment that differentiates in any funda-
mental sense between different inertial frames. By definition, Newton’s laws of motion take the
same form in all inertial frames. Einstein generalized this result in his special theory of relativity
by asserting that all laws of physics take the same form in all inertial frames.

Consider a wave-like disturbance. In general, such a disturbance propagates at a fixed speed
with respect to the medium in which the disturbance takes place. For instance, sound waves (at
STP) propagate at 343 meters per second with respect to air. So, in the inertial frame in which air
is stationary, sound waves appear to propagate at 343 meters per second. Sound waves appear to
propagate at a different speed in any inertial frame that is moving with respect to the air. However,
this does not violate the relativity principle, because if the air were stationary in the second frame
then sound waves would appear to propagate at 343 meters per second in that frame as well. In
other words, exactly the same experiment (e.g., the determination of the speed of sound relative
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to stationary air) performed in two different inertial frames of reference yields exactly the same
result, in accordance with the relativity principle.

Consider, now, a wave-like disturbance that is self-regenerating, and does not require a medium
through which to propagate. The most well-known example of such a disturbance is a light wave.
Another example is a gravity wave. According to electromagnetic theory, the speed of propagation
of a light wave through a vacuum is

c =
1√
ε0 µ0

= 2.99729 × 108 meters per second, (12.1)

where ε0 and µ0 are physical constants that can be evaluated by performing two simple experiments
which involve measuring the forces of attraction between two fixed changes and two fixed parallel
current carrying wires. According to the relativity principle, these experiments must yield the
same values for ε0 and µ0 in all inertial frames. Thus, the speed of light must be the same in all
inertial frames. In fact, any disturbance that does not require a medium to propagate through must
appear to travel at the same speed in all inertial frames, otherwise we could differentiate inertial
frames using the apparent propagation speed of the disturbance, which would violate the relativity
principle.

12.3 Lorentz Transformation

Consider two Cartesian frames S (x, y, z, t) and S ′(x′, y′, z′, t′) in the standard configuration, in
which S ′ moves in the x-direction of S with uniform velocity v, and the corresponding axes of
S and S ′ remain parallel throughout the motion, having coincided at t = t′ = 0. It is assumed that
the same units of distance and time are adopted in both frames. Suppose that an event (e.g., the
flashing of a light-bulb, or the collision of two point particles) has coordinates (x, y, z, t) relative
to S , and (x′, y′, z′, t′) relative to S ′. The “common sense” relationship between these two sets of
coordinates is given by the Galilean transformation:

x′ = x − v t, (12.2)

y′ = y, (12.3)

z′ = z, (12.4)

t′ = t. (12.5)

This transformation is tried and tested, and provides a very accurate description of our everyday
experience. Nevertheless, it must be wrong. Consider a light wave that propagates along the x-axis
in S with velocity c. According to the Galilean transformation, the apparent speed of propagation
in S ′ is c − v, which violates the relativity principle. Can we construct a new transformation
that makes the velocity of light invariant between different inertial frames, in accordance with the
relativity principle, but reduces to the Galilean transformation at low velocities, in accordance with
our everyday experience?

Consider an event P, and a neighboring event Q, whose coordinates differ by dx, dy, dz, dt in
S , and by dx′, dy′, dz′, dt′ in S ′. Suppose that at the event P a flash of light is emitted, and that Q
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is an event in which some particle in space is illuminated by the flash. In accordance with the laws
of light propagation, and the invariance of the velocity of light between different inertial frames,
an observer in S will find that

dx 2 + dy 2 + dz 2 − c 2 dt 2 = 0 (12.6)

for dt > 0, and an observer in S ′ will find that

dx′ 2 + dy′2 + dz′ 2 − c 2 dt′2 = 0 (12.7)

for dt′ > 0. Any event near P whose coordinates satisfy either (12.6) or (12.7) is illuminated
by the flash from P, and, therefore, its coordinates must satisfy both (12.6) and (12.7). Now,
no matter what form the transformation between coordinates in the two inertial frames takes, the
transformation between differentials at any fixed event P is linear and homogeneous. In other
words, if

x′ = F(x, y, z, t), (12.8)

where F is a general function, then

dx′ =
∂F
∂x

dx +
∂F
∂y

dy +
∂F
∂z

dz +
∂F
∂t

dt. (12.9)

It follows that

dx′ 2 + dy′2 + dz′2 − c 2 dt′2 = a dx 2 + b dy 2 + c dz 2 + d dt 2

+ g dx dt + h dy dt + k dz dt

+ l dy dz + m dx dz + n dx dy, (12.10)

where a, b, c, et cetera, are functions of x, y, z, and t. We know that the right-hand side of the
previous expression vanishes for all real values of the differentials that satisfy Equation (12.6). It
follows that the right-hand side is a multiple of the quadratic in Equation (12.6): that is,

dx′ 2 + dy′2 + dz′2 − c 2 dt′2 = K
(
dx 2 + dy 2 + dz 2 − c 2 dt 2

)
, (12.11)

where K is a function of x, y, z, and t. [We can prove this by substituting into Equation (12.10) the
following obvious zeros of the quadratic in Equation (12.6): (±1, 0, 0, 1), (0,±1, 0, 1), (0, 0,±1, 1),
(0, 1/

√
2, 1/

√
2, 1), (1/

√
2, 0, 1/

√
2, 1), (1/

√
2, 1/

√
2, 0, 1): and solving the resulting conditions

on the coefficients.] Note that K at P is also independent of the choice of standard coordinates in
S and S ′. Because the frames are Euclidian, the values of dx 2 + dy 2 + dz 2 and dx′ 2 + dy′2 + dz′ 2

relevant to P and Q are independent of the choice of axes. Furthermore, the values of dt 2 and dt′2

are independent of the choice of the origins of time. Thus, without affecting the value of K at P,
we can choose coordinates such that P = (0, 0, 0, 0) in both S and S ′. Because the orientations of
the axes in S and S ′ are, at present, arbitrary, and because inertial frames are isotropic, the relation
of S and S ′ relative to each other, to the event P, and to the locus of possible events Q, is now
completely symmetric. Thus, we can write

dx 2 + dy 2 + dz 2 − c 2 dt 2 = K
(
dx′ 2 + dy′2 + dz′ 2 − c 2 dt′2

)
, (12.12)
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in addition to Equation (12.11). It follows that K = ±1. K = −1 can be dismissed immediately,
because the intervals dx 2+dy 2+dz 2−c 2 dt 2 and dx′ 2+dy′2+dz′2−c 2 dt′2 must coincide exactly
when there is no motion of S ′ relative to S . Thus,

dx′ 2 + dy′2 + dz′ 2 − c 2 dt′2 = dx 2 + dy 2 + dz 2 − c 2 dt 2. (12.13)

Equation (12.13) implies that the transformation equations between primed and unprimed coordi-
nates must be linear. The proof of this statement is postponed until Section 12.7.

The linearity of the transformation allows the coordinate axes in the two frames to be orientated
so as to give the standard configuration mentioned previously. Consider a fixed plane in S with the
equation l x+m y+n z+ p = 0. In S ′, this becomes (say) l (a1 x′+b1 y

′+c1 z′+d1 t′+e1)+m (a2 x′+
· · · ) + n (a3 x′ + · · · ) + p = 0, which represents a moving plane unless l d1 + m d2 + n d3 = 0. That
is, unless the normal vector to the plane in S , (l,m, n), is perpendicular to the vector (d1, d2, d3).
All such planes intersect in lines that are fixed in both S and S ′, and that are parallel to the vector
(d1, d2, d3) in S . These lines must correspond to the direction of relative motion of the frames. By
symmetry, two such planes which are orthogonal in S must also be orthogonal in S ′. This allows
the choice of two common coordinate planes.

Under a linear transformation, the finite coordinate differences satisfy the same transformation
equations as the differentials. It follows from Equation (12.13), assuming that the events (0, 0, 0, 0)
coincide in both frames, that for any event with coordinates (x, y, z, t) in S and (x′, y′, z′, t′) in S ′,
the following relation holds:

x 2 + y 2 + z 2 − c 2 t 2 = x′ 2 + y′ 2 + z′ 2 − c 2 t′ 2. (12.14)

By hypothesis, the coordinate planes y = 0 and y′ = 0 coincide permanently. Thus, y = 0 must
imply y′ = 0, which suggests that

y′ = A y, (12.15)

where A is a constant. We can reverse the directions of the x- and z-axes in S and S ′, which has the
effect of interchanging the roles of these frames. This procedure does not affect Equation (12.15),
but by symmetry we also have

y = A y′. (12.16)

It is clear that A = ±1. The negative sign can again be dismissed, because y = y′ when there is no
motion between S and S ′. The argument for z is similar. Thus, we have

y′ = y, (12.17)

z′ = z, (12.18)

as in the Galilean transformation.
Equations (12.14), (12.17) and (12.18) yield

x 2 − c 2 t 2 = x′ 2 − c 2 t′2. (12.19)

Because x′ = 0 must imply x = v t, we can write

x′ = B (x − v t), (12.20)
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where B is a constant (possibly depending on v). It follows from the previous two equations that

t′ = C x + D t, (12.21)

where C and D are constants (possibly depending on v). Substituting Equations (12.20) and (12.21)
into Equation (12.19), and comparing the coefficients of x 2, x t, and t 2, we obtain

B = D =
1

±(1 − v 2/c 2)1/2 , (12.22)

C =
−v/c2

±(1 − v 2/c 2)1/2 . (12.23)

We must choose the positive sign in order to ensure that x′ → x as v/c → 0. Thus, collecting our
results, the transformation between coordinates in S and S ′ is given by

x′ =
x − v t

(1 − v 2/c 2)1/2 , (12.24)

y′ = y, (12.25)

z′ = z, (12.26)

t′ =
t − v x/c 2

(1 − v 2/c 2)1/2 . (12.27)

This is the famous Lorentz transformation. It ensures that the velocity of light is invariant between
different inertial frames, and also reduces to the more familiar Galilean transform in the limit
v 	 c. We can solve Equations (12.24)–(12.27) for x, y, z, and t, to obtain the inverse Lorentz
transformation:

x =
x′ + v t′

(1 − v 2/c 2)1/2 , (12.28)

y = y′, (12.29)

z = z′, (12.30)

t =
t′ + v x′/c 2

(1 − v 2/c 2)1/2 . (12.31)

Not surprisingly, the inverse transformation is equivalent to a Lorentz transformation in which the
velocity of the moving frame is −v along the x-axis, instead of +v.
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12.4 Transformation of Velocities

Consider two frames, S and S ′, in the standard configuration. Let u be the velocity of a particle in
S . What is the particle’s velocity in S ′? The components of u are

u1 =
dx
dt
, (12.32)

u2 =
dy
dt
, (12.33)

u3 =
dz
dt
. (12.34)

Similarly, the components of u′ are

u′1 =
dx′

dt′
, (12.35)

u′2 =
dy′

dt′
, (12.36)

u′3 =
dz′

dt′
. (12.37)

Now, we can write Equations (12.24)–(12.27) in the form dx′ = γ (dx − v dt), dy′ = dy, dz′ = dz,
and dt′ = γ (dt − v dx/c 2), where

γ = (1 − v 2/c 2)−1/2 (12.38)

is the well-known Lorentz factor. If we substitute these differentials into Equations (12.32)–
(12.34), and make use of Equations (12.35)–(12.37), we obtain the transformation rules

u′1 =
u1 − v

1 − u1 v/c 2 , (12.39)

u′2 =
u2

γ (1 − u1 v/c 2)
, (12.40)

u′3 =
u3

γ (1 − u1 v/c 2)
. (12.41)

As in the transformation of coordinates, we can obtain the inverse transform by interchanging
primed and unprimed symbols, and replacing +v with −v. Thus,

u1 =
u′1 + v

1 + u′1 v/c 2 , (12.42)

u2 =
u′2

γ (1 + u′1 v/c
2)
, (12.43)

u3 =
u′3

γ (1 + u′1 v/c 2)
. (12.44)
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Equations (12.42)–(12.44) can be regarded as giving the resultant, u = (u1, u2, u3), of two
velocities, v = (v, 0, 0) and u′ = (u′1, u

′
2, u
′
3), and are therefore usually referred to as the relativistic

velocity addition formulae. The following relation between the magnitudes u = (u 2
1 + u 2

2 + u 2
3 )1/2

and u′ = (u′1
2 + u′2

2 + u′3
2)1/2 of the velocities is easily demonstrated:

c 2 − u 2 =
c 2 (c 2 − u′ 2) (c 2 − v 2)

(c 2 + u′1 v)2 . (12.45)

If u′ < c and v < c then the right-hand side is positive, implying that u < c. In other words, the
resultant of two subluminal velocities is another subluminal velocity. It is evident that a particle can
never attain the velocity of light relative to a given inertial frame, no matter how many subluminal
velocity increments it is given. It follows that no inertial frame can ever appear to propagate with a
superluminal velocity with respect to any other inertial frame (because we can track a given inertial
frame using a particle which remains at rest at the origin of that frame).

According to Equation (12.45), if u′ = c then u = c, no matter what value v takes: that is,
the speed of light is invariant between different inertial frames. Note that the Lorentz transform
only allows one such invariant speed [i.e., the speed c that appears in Equations (12.24)–(12.27)].
Einstein’s relativity principle tells us that any disturbance that propagates through a vacuum must
appear to propagate at the same speed in all inertial frames. It is now evident that all such distur-
bances must propagate at the speed c. It follows immediately that all electromagnetic waves must
propagate through the vacuum with this speed, irrespective of their wavelength. In other words,
it is impossible for there to be any dispersion of electromagnetic waves propagating through a
vacuum. Furthermore, gravity waves must also propagate at the speed c.

The Lorentz transformation implies that the propagation speeds of all physical effects are lim-
ited by c in deterministic physics. Consider a general process by which an event P causes an event
Q at a velocity U > c in some frame S . In other words, information about the event P appears
to propagate to the event Q with a superluminal velocity. Let us choose coordinates such that
these two events occur on the x-axis with (finite) time and distance separations ∆t > 0 and ∆x > 0,
respectively. The time separation in some other inertial frame S ′ is given by [see Equation (12.27)]

∆t′ = γ (∆t − v ∆x/c 2) = γ ∆t (1 − vU/c2). (12.46)

Thus, for sufficiently large v < c we obtain ∆t′ < 0: that is, there exist inertial frames in which
cause and effect appear to be reversed. Of course, this is impossible in deterministic physics. It
follows, therefore, that information can never appear to propagate with a superluminal velocity in
any inertial frame, otherwise causality would be violated.

12.5 Tensors

It is now convenient to briefly review the mathematics of tensors. Tensors are of primary im-
portance in connection with coordinate transforms. They serve to isolate intrinsic geometric and
physical properties from those that merely depend on coordinates.

A tensor of rank r in an n-dimensional space possesses nr components which are, in general,
functions of position in that space. A tensor of rank zero has one component, A, and is called a
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scalar. A tensor of rank one has n components, (A1, A2, · · · , An), and is called a vector. A tensor of
rank two has n2 components, which can be exhibited in matrix format. Unfortunately, there is no
convenient way of exhibiting a higher rank tensor. Consequently, tensors are usually represented
by a typical component: for instance, the tensor Ai jk (rank 3), or the tensor Ai jkl (rank 4), et cetera.
The suffixes i, j, k, · · · are always understood to range from 1 to n.

For reasons that will become apparent later on, we shall represent tensor components using
both superscripts and subscripts. Thus, a typical tensor might look like Ai j (rank 2), or Bi

j (rank
2), et cetera. It is convenient to adopt the Einstein summation convention. Namely, if any suffix
appears twice in a given term, once as a subscript and once as a superscript, a summation over that
suffix (from 1 to n) is implied.

To distinguish between various different coordinate systems, we shall use primed and multiply
primed suffixes. A first system of coordinates (x 1, x 2, · · · , x n) can then be denoted by x i, a second
system (x 1′ , x 2′ , · · · , x n′) by x i′ , et cetera. Similarly, the general components of a tensor in various
coordinate systems are distinguished by their suffixes. Thus, the components of some third rank
tensor are denoted Ai jk in the x i system, by Ai′ j′k′ in the x i′ system, et cetera.

When making a coordinate transformation from one set of coordinates, x i, to another, x i′ , it is
assumed that the transformation is non-singular. In other words, the equations that express the x i′

in terms of the x i can be inverted to express the x i in terms of the x i′ . It is also assumed that the
functions specifying a transformation are differentiable. It is convenient to write

∂x i′

∂x i
= p i′

i , (12.47)

∂x i

∂x i′ = p i
i′ . (12.48)

Note that
p i

i′ p i′
j = δ

i
j, (12.49)

by the chain rule, where δ i
j (the Kronecker delta ) equals 1 or 0 when i = j or i � j, respectively.

The formal definition of a tensor is as follows:

1. An entity having components Ai j···k in the x i system and Ai′ j′···k′ in the x i′ system is said to
behave as a covariant tensor under the transformation xi → xi′ if

A i′ j′···k′ = Ai j···k p i
i′ p j

j′ · · · p k
k′ . (12.50)

2. Similarly, Ai j···k is said to behave as a contravariant tensor under x i → x i′ if

Ai′ j′···k′ = Ai j···k p i′
i p j′

j · · · p k′
k . (12.51)

3. Finally, Ai··· j
k···l is said to behave as a mixed tensor (contravariant in i · · · j and covariant in

k · · · l) under x i → x i′ if
Ai′··· j′

k′···l′ = Ai··· j
k···l p i′

i · · · p j′
j p k

k′ · · · p l
l′ . (12.52)
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When an entity is described as a tensor it is generally understood that it behaves as a tensor
under all non-singular differentiable transformations of the relevant coordinates. An entity that
only behaves as a tensor under a certain subgroup of non-singular differentiable coordinate trans-
formations is called a qualified tensor, because its name is conventionally qualified by an adjective
recalling the subgroup in question. For instance, an entity that only exhibits tensor behavior under
Lorentz transformations is called a Lorentz tensor, or, more commonly, a 4-tensor.

When applied to a tensor of rank zero (a scalar), the previous definitions imply that A′ = A.
Thus, a scalar is a function of position only, and is independent of the coordinate system. A scalar
is often termed an invariant.

The main theorem of tensor calculus is as follows:

If two tensors of the same type are equal in one coordinate system then they are
equal in all coordinate systems.

The simplest example of a contravariant vector (tensor of rank one) is provided by the differ-
entials of the coordinates, dx i, because

dx i′ =
∂x i′

∂x i dx i = dx i p i′
i . (12.53)

The coordinates themselves do not behave as tensors under all coordinate transformations. How-
ever, because they transform like their differentials under linear homogeneous coordinate transfor-
mations, they do behave as tensors under such transformations.

The simplest example of a covariant vector is provided by the gradient of a function of position
φ = φ(x 1, · · · , x n), because if we write

φi =
∂φ

∂x i
, (12.54)

then we have

φi′ =
∂φ

∂x i′ =
∂φ

∂x i

∂x i

∂x i′ = φi p i
i′ . (12.55)

An important example of a mixed second-rank tensor is provided by the Kronecker delta intro-
duced previously, because

δ i
j p i′

i p j
j′ = p i′

j p j
j′ = δ

i′
j′ . (12.56)

Tensors of the same type can be added or subtracted to form new tensors. Thus, if Ai j and Bi j

are tensors, then Ci j = Ai j±Bi j is a tensor of the same type. Note that the sum of tensors at different
points in space is not a tensor if the p’s are position dependent. However, under linear coordinate
transformations the p’s are constant, so the sum of tensors at different points behaves as a tensor
under this particular type of coordinate transformation.

If Ai j and Bi jk are tensors, then C i j
klm = Ai j Bklm is a tensor of the type indicated by the suffixes.

The process illustrated by this example is called outer multiplication of tensors.
Tensors can also be combined by inner multiplication, which implies at least one dummy suffix

link. Thus, C j
kl = Ai j Bikl and Ck = Ai j Bi jk are tensors of the type indicated by the suffixes.

Finally, tensors can be formed by contraction from tensors of higher rank. Thus, if Ai j
klm is a

tensor then C j
kl = Ai j

ikl and Ck = Ai j
ki j are tensors of the type indicated by the suffixes. The most
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important type of contraction occurs when no free suffixes remain: the result is a scalar. Thus, Ai
i

is a scalar provided that Aj
i is a tensor.

Although we cannot usefully divide tensors, one by another, an entity like C i j in the equation
Aj = C i j Bi, where Ai and Bi are tensors, can be formally regarded as the quotient of Ai and Bi.
This gives the name to a particularly useful rule for recognizing tensors, the quotient rule. This
rule states that if a set of components, when combined by a given type of multiplication with all
tensors of a given type yields a tensor, then the set is itself a tensor. In other words, if the product
Ai = C i j B j transforms like a tensor for all tensors Bi then it follows that Ci j is a tensor.

Let
∂Ai··· j

k···l
∂x m = Ai··· j

k···l,m. (12.57)

Then if Ai··· j
k···l is a tensor, differentiation of the general tensor transformation (12.52) yields

Ai′ ··· j′
k′ ···l′,m′ = Ai··· j

k···l,m p i′
i · · · p j′

j p k
k′ · · · p l

l′ p m
m′ + P1 + P2 + · · · , (12.58)

where P1, P2,, et cetera, are terms involving derivatives of the p’s. Clearly, Ai··· j
k···l is not a tensor

under a general coordinate transformation. However, under a linear coordinate transformation (p’s
constant) Ai′··· j′

k′···l′,m′ behaves as a tensor of the type indicated by the suffixes, because the P1, P2,, et
cetera, all vanish. Similarly, all higher partial derivatives,

Ai··· j
k···l,mn =

∂Ai··· j
k···l

∂x m∂x n (12.59)

et cetera, also behave as tensors under linear transformations. Each partial differentiation has the
effect of adding a new covariant suffix.

So far, the space to which the coordinates x i refer has been without structure. We can impose
a structure on it by defining the distance between all pairs of neighboring points by means of a
metric,

ds 2 = gi j dx i dx j, (12.60)

where the gi j are functions of position. We can assume that gi j = g ji without loss of generality.
The previous metric is analogous to, but more general than, the metric of Euclidian n-space, ds 2 =

(dx 1)2+(dx 2)2+ · · ·+(dx n)2. A space whose structure is determined by a metric of the type (12.60)
is called Riemannian. Because ds 2 is invariant, it follows from a simple extension of the quotient
rule that gi j must be a tensor. It is called the metric tensor.

The elements of the inverse of the matrix gi j are denoted by g i j. These elements are uniquely
defined by the equations

g i jg jk = δ
i
k. (12.61)

It is easily seen that the g i j constitute the elements of a contravariant tensor. This tensor is said to
be conjugate to gi j. The conjugate metric tensor is symmetric (i.e., g i j = g ji) just like the metric
tensor itself.

The tensors gi j and g i j allow us to introduce the important operations of raising and lowering
suffixes. These operations consist of forming inner products of a given tensor with gi j or g i j. For
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example, given a contravariant vector Ai, we define its covariant components Ai by the equation

Ai = gi j A j. (12.62)

Conversely, given a covariant vector Bi, we can define its contravariant components B i by the
equation

B i = g i j B j. (12.63)

More generally, we can raise or lower any or all of the free suffixes of any given tensor. Thus, if
Ai j is a tensor we define Ai

j by the equation

Ai
j = g

ipAp j. (12.64)

Note that once the operations of raising and lowering suffixes has been defined, the order of raised
suffixes relative to lowered suffixes becomes significant.

By analogy with Euclidian space, we define the squared magnitude (A)2 of a vector Ai with
respect to the metric gi j dx i dx j by the equation

(A)2 = gi j Ai A j = Ai Ai. (12.65)

A vector Ai termed a null vector if (A)2 = 0. Two vectors Ai and Bi are said to be orthogonal if
their inner product vanishes: that is, if

gi j Ai B j = Ai B i = Ai Bi = 0. (12.66)

Finally, let us consider differentiation with respect to an invariant distance, s. The vector dx i/ds
is a contravariant tensor, because

dx i′

ds
=
∂xi′

∂x i

dx i

ds
=

dx i

ds
p i′

i . (12.67)

The derivative d(Ai··· j
k···l)/ds of some tensor with respect to s is not, in general, a tensor, because

d(Ai··· j
k···l)

ds
= Ai··· j

k···l,m
dx m

ds
, (12.68)

and, as we have seen, the first factor on the right-hand side is not generally a tensor. However,
under linear transformations it behaves as a tensor, so under linear transformations the derivative
of a tensor with respect to an invariant distance behaves as a tensor of the same type.

12.6 Physical Significance of Tensors

In this chapter, we shall only concern ourselves with coordinate transformations that transform an
inertial frame into another inertial frame. This limits us to four classes of transformations: dis-
placements of the coordinate axes, rotations of the coordinate axes, parity reversals (i.e., x, y, z →
−x,−y,−z), and Lorentz transformations.
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One of the central tenets of physics is that experiments should be reproducible. In other words,
if somebody performs a physical experiment today, and obtains a certain result, then somebody else
performing the same experiment next week ought to obtain the same result, within the experimental
errors. Presumably, in performing these hypothetical experiments, both experimentalists find it
necessary to set up a coordinate frame. Usually, these two frames do not coincide. After all,
the experiments are, in general, performed in different places and at different times. Also, the
two experimentalists are likely to orientate their coordinate axes differently. Nevertheless, we still
expect both experiments to yield the same result. What exactly do we mean by this statement?
We do not mean that both experimentalists will obtain the same numbers when they measure
something. For instance, the numbers used to denote the position of a point (i.e., the coordinates
of the point) are, in general, different in different coordinate frames. What we do expect is that any
physically significant interrelation between physical quantities (i.e., position, velocity, etc.) which
appears to hold in the coordinate system of the first experimentalist will also appear to hold in the
coordinate system of the second experimentalist. We usually refer to such interrelationships as
laws of physics. So, what we are really saying is that the laws of physics do not depend on our
choice of coordinate system. In particular, if a law of physics is true in one coordinate system then
it is automatically true in every other coordinate system, subject to the proviso that both coordinate
systems are inertial.

Recall that tensors are geometric objects that possess the property that if a certain interrela-
tionship holds between various tensors in one particular coordinate system then the same interre-
lationship holds in any other coordinate system that is related to the first system by a certain class
of transformations. It follows that the laws of physics are expressible as interrelationships between
tensors. In special relativity, the laws of physics are only required to exhibit tensor behavior under
transformations between different inertial frames: that is, under translations, rotations, and Lorentz
transformations. Parity inversion is a special type of transformation, and will be dealt with sep-
arately later on. In general relativity, the laws of physics are required to exhibit tensor behavior
under all non-singular coordinate transformations.

12.7 Space-Time

In special relativity, we are only allowed to use inertial frames to assign coordinates to events.
There are many different types of inertial frames. However, it is convenient to adhere to those with
standard coordinates. That is, spatial coordinates that are right-handed rectilinear Cartesians based
on a standard unit of length, and time-scales based on a standard unit of time. We shall continue
to assume that we are employing standard coordinates. However, from now on, we shall make no
assumptions about the relative configuration of the two sets of spatial axes, and the origins of time,
when dealing with two inertial frames. Thus, the most general transformation between two inertial
frames consists of a Lorentz transformation in the standard configuration plus a translation (this
includes a translation in time) and a rotation of the coordinate axes. The resulting transformation
is called a general Lorentz transformation, as opposed to a Lorentz transformation in the standard
configuration, which will henceforth be termed a standard Lorentz transformation.

In Section 12.3, we proved quite generally that corresponding differentials in two inertial
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frames S and S ′ satisfy the relation

dx 2 + dy 2 + dz 2 − c 2 dt 2 = dx′ 2
+ dy′ 2 + dz′ 2 − c 2 dt′ 2. (12.69)

Thus, we expect this relation to remain invariant under a general Lorentz transformation. Because
such a transformation is linear, it follows that

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 − c2 (t2 − t1)2 =

(x′2 − x′1)2 + (y′2 − y′1)2 + (z′2 − z′1)2 − c2 (t′2 − t′1)2, (12.70)

where (x1, y1, z1, t1) and (x2, y2, z2, t2) are the coordinates of any two events in S , and the primed
symbols denote the corresponding coordinates in S ′. It is convenient to write

−dx 2 − dy 2 − dz 2 + c 2 dt 2 = ds 2, (12.71)

and
−(x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2 + c 2 (t2 − t1)2 = s 2. (12.72)

The differential ds, or the finite length s, defined by these equations is called the interval between
the corresponding events. Equations (12.71) and (12.72) express the fact that the interval between
two events is invariant, in the sense that it has the same value in all inertial frames. In other words,
the interval between two events is invariant under a general Lorentz transformation.

Let us consider entities defined in terms of four variables,

x 1 = x, x 2 = y, x 3 = z, x 4 = c t, (12.73)

and which transform as tensors under a general Lorentz transformation. From now on, such entities
will be referred to as 4-tensors.

Tensor analysis cannot proceed very far without the introduction of a non-singular tensor gi j,
the so-called fundamental tensor, which is used to define the operations of raising and lowering
suffixes. The fundamental tensor is usually introduced using a metric ds 2 = gi j dx i dx j, where ds 2

is a differential invariant. We have already come across such an invariant, namely

ds 2 = −dx 2 − dy 2 − dz 2 + c 2 dt 2

= −(dx1)2 − (dx2)2 − (dx3)2 + (dx4)2

= gµν dx µ dx ν, (12.74)

where µ, ν run from 1 to 4. Note that the use of Greek suffixes is conventional in 4-tensor theory.
Roman suffixes are reserved for tensors in three-dimensional Euclidian space—so-called 3-tensors.
The 4-tensor gµν has the components g11 = g22 = g33 = −1, g44 = 1, and gµν = 0 when µ � ν, in all
permissible coordinate frames. From now on, gµν, as just defined, is adopted as the fundamental
tensor for 4-tensors. gµν can be thought of as the metric tensor of the space whose points are the
events (x1, x2, x3, x4). This space is usually referred to as space-time, for obvious reasons. Note
that space-time cannot be regarded as a straightforward generalization of Euclidian 3-space to four
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dimensions, with time as the fourth dimension. The distribution of signs in the metric ensures that
the time coordinate x 4 is not on the same footing as the three space coordinates. Thus, space-time
has a non-isotropic nature which is quite unlike Euclidian space, with its positive definite metric.
According to the relativity principle, all physical laws are expressible as interrelationships between
4-tensors in space-time.

A tensor of rank one is called a 4-vector. We shall also have occasion to use ordinary vectors
in three-dimensional Euclidian space. Such vectors are called 3-vectors, and are conventionally
represented by boldface symbols. We shall use the Latin suffixes i, j, k, et cetera, to denote the
components of a 3-vector: these suffixes are understood to range from 1 to 3. Thus, u = u i = dx i/dt
denotes a velocity vector. For 3-vectors, we shall use the notation u i = ui interchangeably: that is,
the level of the suffix has no physical significance.

When tensor transformations from one frame to another actually have to be computed, we shall
usually find it possible to choose coordinates in the standard configuration, so that the standard
Lorentz transform applies. Under such a transformation, any contravariant 4-vector, T µ, transforms
according to the same scheme as the difference in coordinates x µ2 − x µ1 between two points in space-
time. It follows that

T 1′ = γ (T 1 − β T 4), (12.75)

T 2′ = T 2, (12.76)

T 3′ = T 3, (12.77)

T 4′ = γ (T 4 − β T 1), (12.78)

where β = v/c. Higher rank 4-tensors transform according to the rules (12.50)–(12.52). The
transformation coefficients take the form

p µ′
µ =


+γ 0 0 −γ β
0 1 0 0
0 0 1 0
−γ β 0 0 +γ

 , (12.79)

p µ
µ′ =


+γ 0 0 +γ β
0 1 0 0
0 0 1 0
+γ β 0 0 +γ

 . (12.80)

Often the first three components of a 4-vector coincide with the components of a 3-vector.
For example, the x 1, x 2, x 3 in R µ = (x 1, x 2, x 3, x 4) are the components of r, the position 3-
vector of the point at which the event occurs. In such cases, we adopt the notation exemplified by
R µ = (r, c t). The covariant form of such a vector is simply Rµ = (−r, c t). The squared magnitude
of the vector is (R)2 = Rµ R µ = −r 2 + c 2 t 2. The inner product gµν R µ Q ν = Rµ Q µ of R µ with a
similar vector Q µ = (q, k) is given by Rµ Q µ = −r · q + c t k. The vectors R µ and Q µ are said to be
orthogonal if Rµ Q µ = 0.
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Because a general Lorentz transformation is a linear transformation, the partial derivative of a
4-tensor is also a 4-tensor:

∂Aνσ

∂x µ
= Aνσ

,µ. (12.81)

Clearly, a general 4-tensor acquires an extra covariant index after partial differentiation with respect
to the contravariant coordinate x µ. It is helpful to define a covariant derivative operator

∂µ ≡ ∂

∂x µ
=

(
∇, 1

c
∂

∂t

)
, (12.82)

where
∂µ Aνσ ≡ Aνσ

,µ. (12.83)

There is a corresponding contravariant derivative operator

∂µ ≡ ∂

∂xµ
=

(
−∇, 1

c
∂

∂t

)
, (12.84)

where
∂µAνσ ≡ gµτAνσ

,τ. (12.85)

The 4-divergence of a 4-vector, Aµ = (A, A0), is the invariant

∂µAµ = ∂µ Aµ = ∇ · A + 1
c
∂A0

∂t
. (12.86)

The four-dimensional Laplacian operator, or d’Alembertian, is equivalent to the invariant contrac-
tion

� ≡ ∂µ ∂µ = −∇ 2 +
1
c 2

∂ 2

∂t 2 . (12.87)

Recall that we still need to prove (from Section 12.3) that the invariance of the differential
metric,

ds 2 = dx′ 2
+ dy′ 2

+ dz′ 2 − c 2 dt′ 2 = dx 2 + dy 2 + dz 2 − c 2 dt 2, (12.88)

between two general inertial frames implies that the coordinate transformation between such frames
is necessarily linear. To put it another way, we need to demonstrate that a transformation that trans-
forms a metric gµν dx µ dx ν with constant coefficients into a metric gµ′ν′ dx µ

′
dx ν

′ with constant
coefficients must be linear. Now,

gµν = gµ′ν′ p µ′
µ p ν′

ν . (12.89)

Differentiating with respect to xσ, we get

gµ′ν′ p µ′
µσ p ν′

ν + gµ′ν′ p µ′
µ p ν′

νσ = 0, (12.90)

where

p µ′
µσ =

∂p µ′
µ

∂xσ
=

∂ 2x µ
′

∂x µ∂xσ
= p µ′

σµ, (12.91)
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et cetera. Interchanging the indices µ and σ yields

gµ′ν′ p µ′
µσ p ν′

ν + gµ′ν′ p µ′
σ p ν′

νµ = 0. (12.92)

Interchanging the indices ν and σ gives

gµ′ν′ p µ′
σ p ν′

νµ + gµ′ν′ p µ′
µ p ν′

νσ = 0, (12.93)

where the indices µ′ and ν′ have been interchanged in the first term. It follows from Equa-
tions (12.90), (12.92), and (12.93) that

gµ′ν′ p µ′
µσp ν′

ν = 0. (12.94)

Multiplication by p ν
σ′ yields

gµ′ν′ p µ′
µσ p ν′

ν p ν
σ′ = gµ′σ′ p µ′

µσ = 0. (12.95)

Finally, multiplication by gν
′σ′ gives

gµ′σ′ g
ν′σ′ p µ′

µσ = p ν′
µσ = 0. (12.96)

This proves that the coefficients p ν′
µ are constants, and, hence, that the transformation is linear.

12.8 Proper Time

It is often helpful to write the invariant differential interval ds 2 in the form

ds 2 = c 2 dτ 2. (12.97)

The quantity dτ is called the proper time. It follows that

dτ 2 = −dx 2 + dy 2 + dz 2

c 2 + dt 2. (12.98)

Consider a series of events on the world-line of some material particle. If the particle has speed
u then

dτ 2 = dt 2
(
−dx 2 + dy 2 + dz 2

c 2 dt 2 + 1
)
= dt 2

(
1 − u 2

c 2

)
, (12.99)

implying that
dt
dτ
= γ(u). (12.100)

It is clear that dt = dτ in the particle’s rest frame. Thus, dτ corresponds to the time difference
between two neighboring events on the particle’s world-line, as measured by a clock attached to
the particle (hence, the name “proper time”). According to Equation (12.100), the particle’s clock
appears to run slow, by a factor γ(u), in an inertial frame in which the particle is moving with
velocity u. This is the celebrated time dilation effect.
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Let us consider how a small 4-dimensional volume element in space-time transforms under a
general Lorentz transformation. We have

d 4x′ = J d 4x, (12.101)

where

J = ∂(x 1′ , x 2′ , x 3′ , x 4′)
∂(x 1, x 2, x 3, x 4)

(12.102)

is the Jacobian of the transformation: that is, the determinant of the transformation matrix p µ′
µ . A

general Lorentz transformation is made up of a standard Lorentz transformation plus a displace-
ment and a rotation. Thus, the transformation matrix is the product of that for a standard Lorentz
transformation, a translation, and a rotation. It follows that the Jacobian of a general Lorentz trans-
formation is the product of that for a standard Lorentz transformation, a translation, and a rotation.
It is well known that the Jacobians of the latter two transformations are unity, because they are
both volume preserving transformations that do not affect time. Likewise, it is easily seen [e.g.,
by taking the determinant of the transformation matrix (12.79)] that the Jacobian of a standard
Lorentz transformation is also unity. It follows that

d 4x′ = d 4x (12.103)

for a general Lorentz transformation. In other words, a general Lorentz transformation preserves
the volume of space-time. Because time is dilated by a factor γ in a moving frame, the volume of
space-time can only be preserved if the volume of ordinary 3-space is reduced by the same factor.
As is well-known, this is achieved by length contraction along the direction of motion by a factor
γ.

12.9 4-Velocity and 4-Acceleration

We have seen that the quantity dx µ/ds transforms as a 4-vector under a general Lorentz transfor-
mation [see Equation (12.67)]. Because ds ∝ dτ it follows that

U µ =
dx µ

dτ
(12.104)

also transforms as a 4-vector. This quantity is known as the 4-velocity. Likewise, the quantity

A µ =
d 2x µ

dτ 2 =
dU µ

dτ
(12.105)

is a 4-vector, and is called the 4-acceleration.
For events along the world-line of a particle traveling with 3-velocity u, we have

U µ =
dx µ

dτ
=

dx µ

dt
dt
dτ
= γ(u) (u, c), (12.106)
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where use has been made of Equation (12.100). This gives the relationship between a particle’s
3-velocity and its 4-velocity. The relationship between the 3-acceleration and the 4-acceleration is
less straightforward. We have

A µ =
dU µ

dτ
= γ

dU µ

dt
= γ

d
dt

(γ u, γ c) = γ
(
dγ
dt

u + γ a, c
dγ
dt

)
, (12.107)

where a = du/dt is the 3-acceleration. In the rest frame of the particle, U µ = (0, c) and A µ =

(a, 0). It follows that
Uµ A µ = 0 (12.108)

(note that Uµ A µ is an invariant quantity). In other words, the 4-acceleration of a particle is always
orthogonal to its 4-velocity.

12.10 Current Density 4-Vector

Let us now consider the laws of electromagnetism. We wish to demonstrate that these laws are
compatible with the relativity principle. In order to achieve this, it is necessary for us to make an
assumption about the transformation properties of electric charge. The assumption that we shall
make, which is well substantiated experimentally, is that charge, unlike mass, is invariant. That is,
the charge carried by a given particle has the same measure in all inertial frames. In particular, the
charge carried by a particle does not vary with the particle’s velocity.

Let us suppose, following Lorentz, that all charge is made up of elementary particles, each
carrying the invariant amount e. Suppose that n is the number density of such charges at some
given point and time, moving with velocity u, as observed in a frame S . Let n0 be the number
density of charges in the frame S 0 in which the charges are momentarily at rest. As is well known,
a volume of measure V in S has measure γ(u) V in S 0 (because of length contraction). Because
observers in both frames must agree on how many particles are contained in the volume, and,
hence, on how much charge it contains, it follows that n = γ(u) n0. If ρ = e n and ρ0 = e n0 are the
charge densities in S and S 0, respectively, then

ρ = γ(u) ρ0. (12.109)

The quantity ρ0 is called the proper density, and is obviously Lorentz invariant.
Suppose that x µ are the coordinates of the moving charge in S . The current density 4-vector is

constructed as follows:

J µ = ρ0
dx µ

dτ
= ρ0 U µ. (12.110)

Thus,
J µ = ρ0 γ(u) (u, c) = (j, ρ c), (12.111)

where j = ρ u is the current density 3-vector. Clearly, charge density and current density transform
as the time-like and space-like components of the same 4-vector.
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Consider the invariant 4-divergence of J µ:

∂µJ µ = ∇ · j + ∂ρ
∂t
. (12.112)

We know that one of the caveats of Maxwell’s equations is the charge conservation law

∂ρ

∂t
+ ∇ · j = 0. (12.113)

It is clear that this expression can be rewritten in the manifestly Lorentz invariant form

∂µJ µ = 0. (12.114)

This equation tells us that there are no net sources or sinks of electric charge in nature: that is,
electric charge is neither created nor destroyed.

12.11 Potential 4-Vector

There are many ways of writing the laws of electromagnetism. However, the most obviously
Lorentz invariant way is to write them in terms of the vector and scalar potentials. When written
in this fashion, Maxwell’s equations reduce to(

−∇ 2 +
1
c 2

∂ 2

∂t 2

)
φ =

ρ

ε0
, (12.115)(

−∇ 2 +
1
c 2

∂ 2

∂t 2

)
A = µ0 j, (12.116)

where φ is the scalar potential, and A the vector potential. Note that the differential operator
appearing in these equations is the Lorentz invariant d’Alembertian, defined in Equation (12.87).
Thus, the previous pair of equations can be rewritten in the form

� φ =
ρ c
c ε0

, (12.117)

� c A =
j

c ε0
. (12.118)

Maxwell’s equations can be written in Lorentz invariant form provided that the entity

Φµ = (c A, φ) (12.119)

transforms as a contravariant 4-vector. This entity is known as the potential 4-vector. It follows
from Equations (12.111), (12.115), and (12.116) that

�Φµ =
J µ

c ε0
. (12.120)

Thus, the field equations that govern classical electromagnetism can all be summed up in a single
4-vector equation.
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12.12 Gauge Invariance

The electric and magnetic fields are obtained from the vector and scalar potentials according to the
prescription

E = −∇φ − ∂A
∂t
, (12.121)

B = ∇ × A. (12.122)

These fields are important because they determine the electromagnetic forces exerted on charged
particles. Note that the previous prescription does not uniquely determine the two potentials. It is
possible to make the following transformation, known as a gauge transformation, that leaves the
fields unaltered:

φ→ φ +
∂ψ

∂t
, (12.123)

A→ A − ∇ψ, (12.124)

where ψ(r, t) is a general scalar field. It is necessary to adopt some form of convention, generally
known as a gauge condition, to fully specify the two potentials. In fact, there is only one gauge
condition that is consistent with Equations (12.114). This is the Lorenz gauge condition,

1
c 2

∂φ

∂t
+ ∇ · A = 0. (12.125)

Note that this condition can be written in the Lorentz invariant form

∂µΦ
µ = 0. (12.126)

This implies that if the Lorenz gauge holds in one particular inertial frame then it automatically
holds in all other inertial frames. A general gauge transformation can be written

Φµ → Φµ + c ∂µψ. (12.127)

Note that, even after the Lorentz gauge has been adopted, the potentials are undetermined to a
gauge transformation using a scalar field, ψ, that satisfies the sourceless wave equation

�ψ = 0. (12.128)

However, if we adopt sensible boundary conditions in both space and time then the only solution
to the previous equation is ψ = 0.

12.13 Retarded Potentials

The solutions to Equations (12.117) and (12.118) take the form:

φ(r, t) =
1

4π ε0

∫
[ρ(r′)]
|r − r′| dV ′, (12.129)

A(r, t) =
µ0

4π

∫
[j(r′)]
|r − r′| dV ′. (12.130)



Relativity and Electromagnetism 275

The previous equations can be combined to form the solution of the 4-vector wave equation
(12.120),

Φµ =
1

4π ε0 c

∫
[J µ]

r
dV. (12.131)

Here, the components of the 4-potential are evaluated at some event P in space-time, r is the
distance of the volume element dV from P, and the square brackets indicate that the 4-current is to
be evaluated at the retarded time: that is, at a time r/c before P.

But, does the right-hand side of Equation (12.131) really transform as a contravariant 4-vector?
This is not a trivial question, because volume integrals in 3-space are not, in general, Lorentz
invariant due to the length contraction effect. However, the integral in Equation (12.131) is not a
straightforward volume integral, because the integrand is evaluated at the retarded time. In fact, the
integral is best regarded as an integral over events in space-time. The events that enter the integral
are those which intersect a spherical light wave launched from the event P and evolved backwards
in time. In other words, the events occur before the event P, and have zero interval with respect
to P. It is clear that observers in all inertial frames will, at least, agree on which events are to be
included in the integral, because both the interval between events, and the absolute order in which
events occur, are invariant under a general Lorentz transformation.

We shall now demonstrate that all observers obtain the same value of dV/r for each elemen-
tary contribution to the integral. Suppose that S and S ′ are two inertial frames in the standard
configuration. Let unprimed and primed symbols denote corresponding quantities in S and S ′,
respectively. Let us assign coordinates (0, 0, 0, 0) to P, and (x, y, z, c t) to the retarded event Q
for which r and dV are evaluated. Using the standard Lorentz transformation, (12.24)–(12.27), the
fact that the interval between events P and Q is zero, and the fact that both t and t′ are negative, we
obtain

r′ = −c t′ = −c γ
(
t − v x

c 2

)
, (12.132)

where v is the relative velocity between frames S ′ and S , γ is the Lorentz factor, and r 2 = x 2 +

y 2 + z 2, et cetera. It follows that

r′ = r γ
(
−c t

r
+
v x
c r

)
= r γ

(
1 +

v

c
cos θ

)
, (12.133)

where θ is the angle (in 3-space) subtended between the line PQ and the x-axis.
We now know the transformation for r. What about the transformation for dV? We might

be tempted to set dV ′ = γ dV , according to the usual length contraction rule. However, this is
incorrect. The contraction by a factor γ only applies if the whole of the volume is measured at
the same time, which is not the case in the present problem. Now, the dimensions of dV along
the y- and z-axes are the same in both S and S ′, according to Equations (12.24)–(12.27). For the
x-dimension these equations give dx′ = γ (dx − v dt). The extremities of dx are measured at times
differing by dt, where

dt = −dr
c
= −dx

c
cos θ. (12.134)

Thus,
dx′ = γ

(
1 +

v

c
cos θ

)
dx, (12.135)
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giving

dV ′ = γ
(
1 +

v

c
cos θ

)
dV. (12.136)

It follows from Equations (12.133) and (12.136) that dV ′/r′ = dV/r. This result clearly remains
valid even when S and S ′ are not in the standard configuration.

Thus, dV/r is an invariant and, therefore, [J µ] dV/r is a contravariant 4-vector. For linear
transformations, such as a general Lorentz transformation, the result of adding 4-tensors evaluated
at different 4-points is itself a 4-tensor. It follows that the right-hand side of Equation (12.131)
is indeed a contravariant 4-vector. Thus, this 4-vector equation can be properly regarded as the
solution to the 4-vector wave equation (12.120).

12.14 Tensors and Pseudo-Tensors

The totally antisymmetric fourth rank tensor is defined

ε αβγδ =


+1 for α, β, γ, δ any even permutation of 1, 2, 3, 4
−1 for α, β, γ, δ any odd permutation of 1, 2, 3, 4

0 otherwise
. (12.137)

The components of this tensor are invariant under a general Lorentz transformation, because

ε αβγδ pα′
α p β′

β p γ′
γ p δ′

δ = ε
α′β′γ′δ′ |p µ′

µ | = ε α′β′γ′δ′ , (12.138)

where |p µ′
µ | denotes the determinant of the transformation matrix, or the Jacobian of the transforma-

tion, which we have already established is unity for a general Lorentz transformation. We can also
define a totally antisymmetric third rank tensor ε i jk which stands in the same relation to 3-space
as ε αβγδ does to space-time. It is easily demonstrated that the elements of ε i jk are invariant under a
general translation or rotation of the coordinate axes. The totally antisymmetric third rank tensor
is used to define the cross product of two 3-vectors,

(a × b)i = ε i jk a j bk, (12.139)

and the curl of a 3-vector field,

(∇ × A)i = ε i jk ∂Ak

∂x j
. (12.140)

The following two rules are often useful in deriving vector identities

ε i jk εiab = δ
j

a δ
k
b − δ j

b δ
k
a , (12.141)

ε i jk εi jb = 2 δ k
b . (12.142)

Up to now, we have restricted ourselves to three basic types of coordinate transformation:
namely, translations, rotations, and standard Lorentz transformations. An arbitrary combination
of these three transformations constitutes a general Lorentz transformation. Let us now extend



Relativity and Electromagnetism 277

our investigations to include a fourth type of transformation known as a parity inversion: that
is, x, y, z,→ −x, −y, −z. A reflection is a combination of a parity inversion and a rotation. As
is easily demonstrated, the Jacobian of a parity inversion is −1, unlike a translation, rotation, or
standard Lorentz transformation, which all possess Jacobians of +1.

The prototype of all 3-vectors is the difference in coordinates between two points in space,
r. Likewise, the prototype of all 4-vectors is the difference in coordinates between two events in
space-time, R µ = (r, c t). It is not difficult to appreciate that both of these objects are invariant un-
der a parity transformation (in the sense that they correspond to the same geometric object before
and after the transformation). It follows that any 3- or 4-tensor which is directly related to r and R µ,
respectively, is also invariant under a parity inversion. Such tensors include the distance between
two points in 3-space, the interval between two points in space-time, 3-velocity, 3-acceleration,
4-velocity, 4-acceleration, and the metric tensor. Tensors that exhibit tensor behavior under trans-
lations, rotations, special Lorentz transformations, and are invariant under parity inversions, are
termed proper tensors, or sometimes polar tensors. Because electric charge is clearly invariant
under such transformations (i.e., it is a proper scalar), it follows that 3-current and 4-current are
proper vectors. It is also clear from Equation (12.120) that the scalar potential, the vector potential,
and the potential 4-vector, are proper tensors.

It follows from Equation (12.137) that ε αβγδ → −ε αβγδ under a parity inversion. Tensors such
as this, which exhibit tensor behavior under translations, rotations, and special Lorentz transfor-
mations, but are not invariant under parity inversions (in the sense that they correspond to different
geometric objects before and after the transformation), are called pseudo-tensors, or sometimes
axial tensors. Equations (12.139) and (12.140) imply that the cross product of two proper vectors
is a pseudo-vector, and the curl of a proper vector field is a pseudo-vector field.

One particularly simple way of performing a parity transformation is to exchange positive and
negative numbers on the three Cartesian axes. A proper vector is unaffected by such a procedure
(i.e., its magnitude and direction are the same before and after). On the other hand, a pseudo-vector
ends up pointing in the opposite direction after the axes are renumbered.

What is the fundamental difference between proper tensors and pseudo-tensors? The answer
is that all pseudo-tensors are defined according to a handedness convention. For instance, the
cross product between two vectors is conventionally defined according to a right-hand rule. The
only reason for this is that the majority of human beings are right-handed. Presumably, if the
opposite were true then cross products, et cetera, would be defined according to a left-hand rule,
and would, therefore, take minus their conventional values. The totally antisymmetric tensor is the
prototype pseudo-tensor, and is, of course, conventionally defined with respect to a right-handed
spatial coordinate system. A parity inversion converts left into right, and vice versa, and, thereby,
effectively swaps left- and right-handed conventions.

The use of conventions in physics is perfectly acceptable provided that we recognize that they
are conventions, and are consistent in our use of them. It follows that laws of physics cannot contain
mixtures of tensors and pseudo-tensors, otherwise they would depend our choice of handedness
convention.1

1Here, we are assuming that the laws of physics do not possess an intrinsic handedness. This is certainly the case
for mechanics and electromagnetism. However, the weak interaction does possess an intrinsic handedness: that is, it
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Let us now consider electric and magnetic fields. We know that

E = −∇φ − ∂A
∂t
, (12.143)

B = ∇ × A. (12.144)

We have already seen that the scalar and the vector potential are proper scalars and vectors, respec-
tively. It follows that E is a proper vector, but that B is a pseudo-vector (because it is the curl of a
proper vector). In order to fully appreciate the difference between electric and magnetic fields, let
us consider a thought experiment first proposed by Richard Feynman. Suppose that we are in radio
contact with a race of aliens, and are trying to explain to them our system of physics. Suppose,
further, that the aliens live sufficiently far away from us that there are no common objects that we
can both see. The question is this: could we unambiguously explain to these aliens our concepts of
electric and magnetic fields? We could certainly explain electric and magnetic lines of force. The
former are the paths of charged particles (assuming that the particles are subject only to electric
fields), and the latter can be mapped out using small test magnets. We could also explain how
we put arrows on electric lines of force to convert them into electric field-lines: the arrows run
from positive charges (i.e., charges with the same sign as atomic nuclei) to negative charges. This
explanation is unambiguous provided that our aliens live in a matter (rather than an anti-matter)
dominated part of the universe. But, could we explain how we put arrows on magnetic lines of
force in order to convert them into magnetic field-lines? The answer is no. By definition, magnetic
field-lines emerge from the north poles of permanent magnets and converge on the corresponding
south poles. The definition of the north pole of a magnet is simply that it possesses the same mag-
netic polarity as the south (geographic) pole of the Earth. This is obviously a convention. In fact,
we could redefine magnetic field-lines to run from the south poles to the north poles of magnets
without significantly altering our laws of physics (we would just have to replace B by −B in all our
equations). In a parity inverted universe, a north pole becomes a south pole, and vice versa, so it is
hardly surprising that B→ −B.

12.15 Electromagnetic Field Tensor

Let us now investigate whether we can write the components of the electric and magnetic fields as
the components of some proper 4-tensor. There is an obvious problem here. How can we identify
the components of the magnetic field, which is a pseudo-vector, with any of the components of
a proper-4-tensor? The former components transform differently under parity inversion than the
latter components. Consider a proper-3-tensor whose covariant components are written Bik, and
which is antisymmetric:

Bi j = −Bji. (12.145)

This immediately implies that all of the diagonal components of the tensor are zero. In fact, there
are only three independent non-zero components of such a tensor. Could we, perhaps, use these

is fundamentally different in a parity inverted universe. So, the equations governing the weak interaction do actually
contain mixtures of tensors and pseudo-tensors.
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components to represent the components of a pseudo-3-vector? Let us write

Bi =
1
2
ε i jk B jk. (12.146)

It is clear that Bi transforms as a contravariant pseudo-3-vector. It is easily seen that

Bi j = Bi j =


0 Bz −By

−Bz 0 Bx

By −Bx 0

 , (12.147)

where B 1 = B1 ≡ Bx, et cetera. In this manner, we can actually write the components of a pseudo-
3-vector as the components of an antisymmetric proper-3-tensor. In particular, we can write the
components of the magnetic field B in terms of an antisymmetric proper magnetic field 3-tensor
which we shall denote Bi j.

Let us now examine Equations (12.143) and (12.144) more carefully. Recall thatΦµ = (−c A, φ)
and ∂µ = (∇, c−1∂/∂t). It follows that we can write Equation (12.143) in the form

Ei = −∂iΦ4 + ∂4Φi. (12.148)

Likewise, Equation (12.144) can be written

c B i =
1
2
ε i jk c B jk = −ε i jk ∂ jΦk. (12.149)

Let us multiply this expression by ε iab, making use of the identity

εiab ε
i jk = δ j

a δ
k
b − δ j

b δ
k
a . (12.150)

We obtain c
2

(Bab − Bba) = −∂aΦb + ∂bΦa, (12.151)

or
c Bi j = −∂iΦ j + ∂ jΦi, (12.152)

because Bi j = −Bji.
Let us define a proper-4-tensor whose covariant components are given by

Fµν = ∂µΦν − ∂νΦµ. (12.153)

It is clear that this tensor is antisymmetric:

Fµν = −Fνµ. (12.154)

This implies that the tensor only possesses six independent non-zero components. Maybe it can be
used to specify the components of E and B?
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Equations (12.148) and (12.153) yield

F4i = ∂4Φi − ∂iΦ4 = Ei. (12.155)

Likewise, Equations (12.152) and (12.153) imply that

Fi j = ∂iΦ j − ∂ jΦi = −c Bi j. (12.156)

Thus,

Fi4 = −F4i = −Ei, (12.157)

Fi j = −F ji = −c Bi j. (12.158)

In other words, the completely space-like components of the tensor specify the components of the
magnetic field, whereas the hybrid space and time-like components specify the components of the
electric field. The covariant components of the tensor can be written

Fµν =


0 −c Bz +c By −Ex

+c Bz 0 −c Bx −Ey

−c By +c Bx 0 −Ez

+Ex +Ey +Ez 0

 . (12.159)

Not surprisingly, Fµν is usually called the electromagnetic field tensor. The previous expression,
which appears in all standard textbooks, is very misleading. Taken at face value, it is simply
wrong. We cannot form a proper-4-tensor from the components of a proper-3-vector and a pseudo-
3-vector. The expression only makes sense if we interpret Bx (say) as representing the component
B23 of the proper magnetic field 3-tensor Bi j

The contravariant components of the electromagnetic field tensor are given by

F i4 = −F 4i = +E i, (12.160)

F i j = −F ji = −c B i j, (12.161)

or

Fµν =


0 −c Bz +c By +Ex

+c Bz 0 −c Bx +Ey

−c By +c Bx 0 +Ez

−Ex −Ey −Ez 0

 . (12.162)

Let us now consider two of Maxwell’s equations:

∇ · E = ρ

ε0
, (12.163)

∇ × B = µ0

(
j + ε0

∂E
∂t

)
. (12.164)
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Recall that the 4-current is defined J µ = (j, ρ c). The first of these equations can be written

∂iE i = ∂iF i4 + ∂4F 44 =
J 4

c ε0
. (12.165)

because F 44 = 0. The second of these equations takes the form

ε i jk ∂ j(c Bk) − ∂4E i = ε i jk ∂ j(1/2 εkab c B ab) + ∂4F 4i =
J i

c ε0
. (12.166)

Making use of Equation (12.150), the previous expression reduces to

1
2
∂ j(c B i j − c B ji) + ∂4F 4i = ∂ jF ji + ∂4F 4i =

J i

c ε0
. (12.167)

Equations (12.165) and (12.167) can be combined to give

∂µF µν =
J ν

c ε0
. (12.168)

This equation is consistent with the equation of charge continuity, ∂µJ µ = 0, because of the anti-
symmetry of the electromagnetic field tensor.

12.16 Dual Electromagnetic Field Tensor

We have seen that it is possible to write the components of the electric and magnetic fields as the
components of a proper-4-tensor. Is it also possible to write the components of these fields as the
components of some pseudo-4-tensor? It is obvious that we cannot identify the components of the
proper-3-vector E with any of the components of a pseudo-tensor. However, we can represent the
components of E in terms of those of an antisymmetric pseudo-3-tensor Ei j by writing

E i =
1
2
ε i jk E jk. (12.169)

It is easily demonstrated that

E i j = Ei j =


0 Ez −Ey

−Ez 0 Ex

Ey −Ex 0

 , (12.170)

in a right-handed coordinate system.
Consider the dual electromagnetic field tensor, G µν, which is defined

G µν =
1
2
ε µναβ Fαβ. (12.171)
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This tensor is clearly an antisymmetric pseudo-4-tensor. We have

G 4i =
1
2
ε 4i jk F jk = −1

2
ε i jk4 F jk =

1
2
ε i jk c B jk = c B i, (12.172)

plus

G i j =
1
2

(ε i jk4 Fk4 + ε
i j4k F4k) = ε i jk Fk4, (12.173)

where use has been made of Fµν = −Fνµ. The previous expression yields

G i j = −ε i jk Ek = −1
2
ε i jkεkab E ab = −E i j. (12.174)

It follows that

Gi4 = −G4i = −c Bi, (12.175)

Gi j = −G ji = −Ei j, (12.176)

or

Gµν =


0 −Ez +Ey −c Bx

+Ez 0 −Ex −c By

−Ey +Ex 0 −c Bz

+c Bx +c By +c Bz 0

 . (12.177)

The previous expression is, again, slightly misleading, because Ex stands for the component E 23 of
the pseudo-3-tensor E i j, and not for an element of the proper-3-vector E. Of course, in this case,
Bx really does represent the first element of the pseudo-3-vector B. Note that the elements of G µν

are obtained from those of F µν by making the transformation c B i j → E i j and E i → −c B i.
The covariant elements of the dual electromagnetic field tensor are given by

Gi4 = −G4i = +cBi, (12.178)

Gi j = −G ji = −Ei j, (12.179)

or

Gµν =


0 −Ez +Ey +c Bx

+Ez 0 −Ex +c By

−Ey +Ex 0 +c Bz

−c Bx −c By −c Bz 0

 . (12.180)

The elements of Gµν are obtained from those of Fµν by making the transformation c Bi j → Ei j and
Ei → −c Bi.

Let us now consider the two Maxwell equations

∇ · B = 0, (12.181)

∇ × E = −∂B
∂t
. (12.182)
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The first of these equations can be written

−∂i (c B i) = ∂iG i4 + ∂4G 44 = 0, (12.183)

because G 44 = 0. The second equation takes the form

ε i jk∂ jEk = ε
i jk∂ j(1/2 εkabE ab) = ∂ jE i j = −∂4 (c B i), (12.184)

or
∂ jG ji + ∂4G 4i = 0. (12.185)

Equations (12.183) and (12.185) can be combined to give

∂µG µν = 0. (12.186)

Thus, we conclude that Maxwell’s equations for the electromagnetic fields are equivalent to the
following pair of 4-tensor equations:

∂µF µν =
J ν

c ε0
, (12.187)

∂µG µν = 0. (12.188)

It is obvious from the form of these equations that the laws of electromagnetism are invariant under
translations, rotations, special Lorentz transformations, parity inversions, or any combination of
these transformations.

12.17 Transformation of Fields

The electromagnetic field tensor transforms according to the standard rule

F µ′ν′ = F µν p µ′
µ p ν′

ν . (12.189)

This easily yields the celebrated rules for transforming electromagnetic fields:

E′‖ = E‖, (12.190)

B′‖ = B‖, (12.191)

E′⊥ = γ (E⊥ + v × B), (12.192)

B′⊥ = γ (B⊥ − v × E/c2), (12.193)

where v is the relative velocity between the primed and unprimed frames, and the perpendicular
and parallel directions are, respectively, perpendicular and parallel to v.

At this stage, we may conveniently note two important invariants of the electromagnetic field.
They are

1
2

Fµν F µν = c 2 B 2 − E 2, (12.194)

and
1
4

Gµν F µν = c E · B. (12.195)

The first of these quantities is a proper-scalar, and the second a pseudo-scalar.
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12.18 Potential Due to a Moving Charge

Suppose that a particle carrying a charge e moves with uniform velocity u through a frame S . Let
us evaluate the vector potential, A, and the scalar potential, φ, due to this charge at a given event P
in S .

Let us choose coordinates in S so that P = (0, 0, 0, 0) and u = (u, 0, 0). Let S ′ be that frame
in the standard configuration with respect to S in which the charge is (permanently) at rest at (say)
the point (x′, y′, z′). In S ′, the potential at P is the usual potential due to a stationary charge,

A′ = 0, (12.196)

φ′ =
e

4π ε0 r′
, (12.197)

where r′ =
√

x′ 2 + y′ 2 + z′ 2. Let us now transform these equations directly into the frame S .
Because A µ = (c A, φ) is a contravariant 4-vector, its components transform according to the
standard rules (12.75)–(12.78). Thus,

c A1 = γ
(
c A′1 +

u
c
φ′

)
=

γ u e
4π ε0 c r′

, (12.198)

c A2 = c A′2 = 0, (12.199)

c A3 = c A′3 = 0, (12.200)

φ = γ
(
φ′ +

u
c

c A′1
)
=

γ e
4π ε0 r′

, (12.201)

because β = −u/c in this case. It remains to express the quantity r′ in terms of quantities measured
in S . The most physically meaningful way of doing this is to express r′ in terms of retarded values
in S . Consider the retarded event at the charge for which, by definition, r′ = −c t′ and r = −c t.
Using the standard Lorentz transformation, (12.24)–(12.27), we find that

r′ = −c t′ = −c γ (t − u x/c 2) = r γ (1 + ur/c), (12.202)

where ur = u x/r = r · u/r denotes the radial velocity of the change in S . We can now rewrite
Equations (12.198)–(12.201) in the form

A =
µ0 e
4π

[u]
[r + r · u/c]

, (12.203)

φ =
e

4π ε0

1
[r + r · u/c]

, (12.204)

where the square brackets, as usual, indicate that the enclosed quantities must be retarded. For a
uniformly moving charge, the retardation of u is, of course, superfluous. However, because

Φµ =
1

4π ε0 c

∫
[J µ]

r
dV, (12.205)

it is clear that the potentials depend only on the (retarded) velocity of the charge, and not on its
acceleration. Consequently, the expressions (12.203) and (12.204) give the correct potentials for
an arbitrarily moving charge. They are known as the Liénard-Wiechert potentials.
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12.19 Field Due to a Moving Charge

Although the fields generated by a uniformly moving charge can be calculated from the expressions
(12.203) and (12.204) for the potentials, it is simpler to calculate them from first principles.

Let a charge e, whose position vector at time t = 0 is r, move with uniform velocity u in a
frame S whose x-axis has been chosen in the direction of u. We require to find the field strengths
E and B at the event P = (0, 0, 0, 0). Let S ′ be that frame in standard configuration with S in
which the charge is permanently at rest. In S ′, the field is given by

B′ = 0, (12.206)

E′ = − e
4π ε0

r′

r′ 3 . (12.207)

This field must now be transformed into the frame S . The direct method, using Equations (12.190)–
(12.193), is somewhat simpler here, but we shall use a somewhat indirect method because of its
intrinsic interest.

In order to express Equations (12.206) and (12.207) in tensor form, we need the electromag-
netic field tensor F µν on the left-hand side, and the position 4-vector R µ = (r, c t) and the scalar
e/(4π ε0 r′ 3) on the right-hand side. (We regard r′ as an invariant for all observers.) To get a
vanishing magnetic field in S ′, we multiply on the right by the 4-velocity U µ = γ(u) (u, c), thus
tentatively arriving at the equation

F µν =
e

4π ε0 c r′ 3 U µ R ν. (12.208)

Recall that F 4i = −E i and F i j = −c B i j. However, this equation cannot be correct, because the
antisymmetric tensor F µν can only be equated to another antisymmetric tensor. Consequently, let
us try

F µν =
e

4π ε0 c r′ 3 (U µ R ν − U ν R µ). (12.209)

This is found to give the correct field at P in S ′, as long as R µ refers to any event whatsoever at the
charge. It only remains to interpret Equation (12.209) in S . It is convenient to choose for R µ that
event at the charge at which t = 0 (not the retarded event). Thus,

F jk = −c B jk =
e

4π ε0 c r′ 3 γ(u) (u j r k − u k r j), (12.210)

giving

Bi =
1
2
εi jkB jk = − µ0 e

4π r′ 3 γ(u) εi jk u j r k, (12.211)

or
B = − µ0 e γ

4π r′ 3 u × r. (12.212)

Likewise,
F 4i = −E i =

e γ
4π ε0 r′ 3 r i, (12.213)
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or
E = − e γ

4π ε0 r′ 3 r. (12.214)

Lastly, we must find an expression for r′ 3 in terms of quantities measured in S at time t = 0. If t′

is the corresponding time in S ′ at the charge then we have

r′ 2
= r 2 + c 2 t′ 2

= r 2 +
γ 2 u 2 x 2

c 2 = r 2
(
1 +

γ 2 u 2
r

c 2

)
. (12.215)

Thus,

E = − e
4π ε0

γ

r 3 (1 + u 2
r γ

2/c 2)3/2 r, (12.216)

B = −µ0 e
4π

γ

r 3 (1 + u 2
r γ

2/c 2)3/2 u × r =
1
c 2 u × E. (12.217)

Note that E acts in line with the point which the charge occupies at the instant of measurement,
despite the fact that, owing to the finite speed of propagation of all physical effects, the behavior
of the charge during a finite period before that instant can no longer affect the measurement. Note
also that, unlike Equations (12.203) and (12.204), the previous expressions for the fields are not
valid for an arbitrarily moving charge, nor can they be made valid by merely using retarded values.
For whereas acceleration does not affect the potentials, it does affect the fields, which involve the
derivatives of the potential.

For low velocities, u/c → 0, Equations (12.216) and (12.217) reduce to the well-known
Coulomb and Biot-Savart fields. However, at high velocities, γ(u) 
 1, the fields exhibit some
interesting behavior. The peak electric field, which occurs at the point of closest approach of the
charge to the observation point, becomes equal to γ times its non-relativistic value. However, the
duration of appreciable field strength at the point P is decreased. A measure of the time interval
over which the field is appreciable is

∆t ∼ b
γ c

, (12.218)

where b is the distance of closest approach (assuming γ 
 1). As γ increases, the peak field
increases in proportion, but its duration goes in the inverse proportion. The time integral of the
field is independent of γ. As γ → ∞, the observer at P sees electric and magnetic fields that
are indistinguishable from the fields of a pulse of plane polarized radiation propagating in the x-
direction. The direction of polarization is along the radius vector pointing towards the particle’s
actual position at the time of observation.

12.20 Relativistic Particle Dynamics

Consider a particle that, in its instantaneous rest frame S 0, has mass m0 and constant acceleration
in the x-direction a0. Let us transform to a frame S , in the standard configuration with respect
to S 0, in which the particle’s instantaneous velocity is u. What is the value of a, the particle’s
instantaneous x-acceleration, in S?



Relativity and Electromagnetism 287

The easiest way in which to answer this question is to consider the acceleration 4-vector [see
Equation (12.107)]

A µ = γ

(
dγ
dt

u + γ a, c
dγ
dt

)
. (12.219)

Using the standard transformation, (12.75)–(12.78), for 4-vectors, we obtain

a0 = γ
3 a, (12.220)

dγ
dt
=

u a0

c 2 . (12.221)

Equation (12.220) can be written

f = m0 γ
3 du

dt
, (12.222)

where f = m0 a0 is the constant force (in the x-direction) acting on the particle in S 0.
Equation (12.222) is equivalent to

f =
d(m u)

dt
, (12.223)

where
m = γm0. (12.224)

Thus, we can account for the ever decreasing acceleration of a particle subject to a constant force
[see Equation (12.220)] by supposing that the inertial mass of the particle increases with its velocity
according to the rule (12.224). Henceforth, m0 is termed the rest mass, and m the inertial mass.

The rate of increase of the particle’s energy E satisfies

dE
dt
= f u = m0 γ

3 u
du
dt
. (12.225)

This equation can be written
dE
dt
=

d(m c 2)
dt

, (12.226)

which can be integrated to yield Einstein’s famous formula

E = m c 2. (12.227)

The 3-momentum of a particle is defined

p = m u, (12.228)

where u is its 3-velocity. Thus, by analogy with Equation (12.223), Newton’s law of motion can
be written

f =
dp
dt
, (12.229)

where f is the 3-force acting on the particle.
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The 4-momentum of a particle is defined

P µ = m0 U µ = γm0 (u, c) = (p, E/c), (12.230)

where U µ is its 4-velocity. The 4-force acting on the particle obeys

F µ =
dP µ

dτ
= m0 A µ, (12.231)

where A µ is its 4-acceleration. It is easily demonstrated that

F µ = γ

(
f, c

dm
dt

)
= γ

(
f,

f · u
c

)
, (12.232)

because
dE
dt
= f · u. (12.233)

12.21 Force on a Moving Charge

The electromagnetic 3-force acting on a charge e moving with 3-velocity u is given by the well-
known formula

f = e (E + u × B). (12.234)

When written in component form this expression becomes

fi = e (Ei + εi jk u j B k), (12.235)

or
fi = e (Ei + Bi j u j), (12.236)

where use has been made of Equation (12.147).
Recall that the components of the E and B fields can be written in terms of an antisymmetric

electromagnetic field tensor Fµν via

Fi4 = −F4i = −Ei, (12.237)

Fi j = −F ji = −c Bi j. (12.238)

Equation (12.236) can be written

fi = − e
γ c

(Fi4 U 4 + Fi j U j), (12.239)

where U µ = γ (u, c) is the particle’s 4-velocity. It is easily demonstrated that

f · u
c
=

e
c

E · u = e
c

Ei u i =
e
γ c

(F4i U i + F44 U 4). (12.240)
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Thus, the 4-force acting on the particle,

Fµ = γ
(
−f,

f · u
c

)
, (12.241)

can be written in the form
Fµ = e

c
Fµν U ν. (12.242)

The skew symmetry of the electromagnetic field tensor ensures that

Fµ U µ =
e
c

Fµν U µ U ν = 0. (12.243)

This is an important result, because it ensures that electromagnetic fields do not change the rest
mass of charged particles. In order to appreciate this, let us assume that the rest mass m0 is not a
constant. Because

Fµ = d(m0 Uµ)
dτ

= m0 Aµ +
dm0

dτ
Uµ, (12.244)

we can use the standard results Uµ U µ = c 2 and Aµ U µ = 0 to give

Fµ U µ = c 2 dm0

dτ
. (12.245)

Thus, if rest mass is to remain an invariant, it is imperative that all laws of physics predict 4-forces
acting on particles that are orthogonal to the particles’ instantaneous 4-velocities. The laws of
electromagnetism pass this test.

12.22 Electromagnetic Energy Tensor

Consider a continuous volume distribution of charged matter in the presence of an electromagnetic
field. Let there be n0 particles per unit proper volume (that is, unit volume determined in the local
rest frame), each carrying a charge e. Consider an inertial frame in which the 3-velocity field of
the particles is u. The number density of the particles in this frame is n = γ(u) n0. The charge
density and the 3-current due to the particles are ρ = e n and j = e n u, respectively. Multiplying
Equation (12.242) by the proper number density of particles, n0, we obtain an expression

fµ = c−1 Fµν J ν (12.246)

for the 4-force fµ acting on unit proper volume of the distribution due to the ambient electromag-
netic fields. Here, we have made use of the definition J µ = e n0 U µ. It is easily demonstrated,
using some of the results obtained in the previous section, that

f µ =
(
ρE + j × B,

E · j
c

)
. (12.247)

The previous expression remains valid when there are many charge species (e.g., electrons and
ions) possessing different number density and 3-velocity fields. The 4-vector f µ is usually called
the Lorentz force density.
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We know that Maxwell’s equations reduce to

∂µF µν =
J ν

c ε0
, (12.248)

∂µG µν = 0, (12.249)

where F µν is the electromagnetic field tensor, and G µν is its dual. As is easily verified, Equa-
tion (12.249) can also be written in the form

∂µFνσ + ∂νFσµ + ∂σFµν = 0. (12.250)

Equations (12.246) and (12.248) can be combined to give

fν = ε0 Fνσ ∂µF µσ. (12.251)

This expression can also be written

fν = ε0

[
∂µ(F µσ Fνσ) − F µσ ∂µFνσ

]
. (12.252)

Now,

F µσ ∂µFνσ =
1
2

F µσ(∂µFνσ + ∂σFµν), (12.253)

where use has been made of the antisymmetry of the electromagnetic field tensor. It follows from
Equation (12.250) that

F µσ ∂µFνσ = −1
2

F µσ ∂νFσµ =
1
4
∂ν(F µσ Fµσ). (12.254)

Thus,

fν = ε0

[
∂µ(F µσ Fνσ) − 1

4
∂ν(F µσ Fµσ)

]
. (12.255)

The previous expression can also be written

fν = −∂µT µ
ν, (12.256)

where

T µ
ν = ε0

[
F µσ Fσν +

1
4
δµν (F ρσ Fρσ)

]
(12.257)

is called the electromagnetic energy tensor. Note that T µ
ν is a proper-4-tensor. It follows from

Equations (12.159), (12.162), and (12.194) that

T i
j = ε0 E i E j +

B i Bj

µ0
− δi

j
1
2

(
ε0 E k Ek +

B k Bk

µ0

)
, (12.258)

T i
4 = −T 4

i =
ε i jk E j Bk

µ0 c
, (12.259)

T 4
4 =

1
2

(
ε0 E k Ek +

B k Bk

µ0

)
. (12.260)
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Equation (12.256) can also be written

f ν = −∂µT µν, (12.261)

where T µν is a symmetric tensor whose elements are

T i j = −ε0 E i E j − B i B j

µ0
+ δ i j 1

2

(
ε0 E 2 +

B 2

µ0

)
, (12.262)

T i4 = T 4i =
(E × B) i

µ0 c
, (12.263)

T 44 =
1
2

(
ε0 E 2 +

B 2

µ0

)
. (12.264)

Consider the time-like component of Equation (12.261). It follows from Equation (12.247) that

E · j
c
= −∂iT i4 − ∂4T 44. (12.265)

This equation can be rearranged to give

∂U
∂t
+ ∇ · u = −E · j, (12.266)

where U = T 44 and ui = c T i4, so that

U =
ε0 E 2

2
+

B 2

2 µ0
, (12.267)

and
u =

E × B
µ0

. (12.268)

The right-hand side of Equation (12.266) represents the rate per unit volume at which energy is
transferred from the electromagnetic field to charged particles. It is clear, therefore, that Equa-
tion (12.266) is an energy conservation equation for the electromagnetic field. (See Section 1.9.)
The proper-3-scalar U can be identified as the energy density of the electromagnetic field, whereas
the proper-3-vector u is the energy flux due to the electromagnetic field: that is, the Poynting flux.

Consider the space-like components of Equation (12.261). It is easily demonstrated that these
reduce to

∂g
∂t
+ ∇ ·G = −ρE − j × B, (12.269)

where G i j = T i j and g i = T 4i/c, or

G i j = −ε0 E i E j − B i B j

µ0
+ δ i j 1

2

(
ε0 E 2 +

B 2

µ0

)
, (12.270)

and
g =

u
c 2 = ε0 E × B. (12.271)
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Equation (12.269) is basically a momentum conservation equation for the electromagnetic field.
(See Section 1.10.) The right-hand side represents the rate per unit volume at which momentum is
transferred from the electromagnetic field to charged particles. The symmetric proper-3-tensor G i j

specifies the flux of electromagnetic momentum parallel to the ith axis crossing a surface normal to
the jth axis. The proper-3-vector g represents the momentum density of the electromagnetic field.
It is clear that the energy conservation law (12.266) and the momentum conservation law (12.269)
can be combined together to give the relativistically invariant energy-momentum conservation law
(12.261).

12.23 Accelerated Charges

Let us calculate the electric and magnetic fields observed at position x i and time t due to a charge e
whose retarded position and time are x i′ and t′, respectively. From now on (x i, t) is termed the field
point and (x i′ , t′) is termed the source point. It is assumed that we are given the retarded position
of the charge as a function of its retarded time: i.e., x i′(t′). The retarded velocity and acceleration
of the charge are

u i =
dx i′

dt′
, (12.272)

and

u̇ i =
du i′

dt′
, (12.273)

respectively. The radius vector r is defined to extend from the retarded position of the charge to
the field point, so that r i = x i − x i′ . (Note that this is the opposite convention to that adopted in
Sections 12.18 and 12.19). It follows that

dr
dt′
= −u. (12.274)

The field and the source point variables are connected by the retardation condition

r(x i, x i′) =
[
(x i − x i′) (x i − x i′)

]1/2
= c (t − t′). (12.275)

The potentials generated by the charge are given by the Liénard-Wiechert formulae,

A(x i, t) =
µ0 e
4π

u
s
, (12.276)

φ(x i, t) =
e

4π ε0

1
s
, (12.277)

where s = r − r · u/c is a function both of the field point and the source point variables. Recall that
the Liénard-Wiechert potentials are valid for accelerating, as well as uniformly moving, charges.

The fields E and B are derived from the potentials in the usual manner:

E = −∇φ − ∂A
∂t
, (12.278)

B = ∇ × A. (12.279)
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However, the components of the gradient operator ∇ are partial derivatives at constant time, t,
and not at constant time, t′. Partial differentiation with respect to the x i compares the potentials
at neighboring points at the same time, but these potential signals originate from the charge at
different retarded times. Similarly, the partial derivative with respect to t implies constant x i, and,
hence, refers to the comparison of the potentials at a given field point over an interval of time
during which the retarded coordinates of the source have changed. Because we only know the time
variation of the particle’s retarded position with respect to t′ we must transform ∂/∂t|x i and ∂/∂x i|t
to expressions involving ∂/∂t′|x i and ∂/∂x i|t′ .

Now, because x i′ is assumed to be given as a function of t′, we have

r(x i, x i′(t′) ) ≡ r(x i, t′) = c (t − t′), (12.280)

which is a functional relationship between x i, t, and t′. Note that(
∂r
∂t′

)
x i

= −r · u
r
. (12.281)

It follows that
∂r
∂t
= c

(
1 − ∂t′

∂t

)
=
∂r
∂t′

∂t′

∂t
= −r · u

r
∂t′

∂t
, (12.282)

where all differentiation is at constant x i. Thus,

∂t′

∂t
=

1
1 − r · u/r c

=
r
s
, (12.283)

giving
∂

∂t
=

r
s
∂

∂t′
. (12.284)

Similarly,

∇r = −c∇t′ = ∇′r + ∂r
∂t′
∇t′ =

r
r
− r · u

r
∇t′, (12.285)

where ∇′ denotes differentiation with respect to x i at constant t′. It follows that

∇t′ = − r
s c
, (12.286)

so that
∇ = ∇′ − r

s c
∂

∂t′
. (12.287)

Equation (12.278) yields
4π ε0

e
E =
∇s
s 2 −

∂

∂t
u

s c 2 , (12.288)

or
4π ε0

e
E =
∇′s
s 2 −

r
s 3 c

∂s
∂t′
− r

s 2 c 2 u̇ +
r u

s 3 c 2

∂s
∂t′
. (12.289)
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However,
∇′s = r

r
− u

c
, (12.290)

and
∂s
∂t′
=
∂r
∂t′
− r · u̇

c
+

u · u
c
= −r · u

r
− r · u̇

c
+

u 2

c
. (12.291)

Thus,

4π ε0

e
E =

1
s 2 r

(
r − r u

c

)
+

1
s 3 c

(
r − r u

c

) (r · u
r
− u 2

c
+

r · u̇
c

)
− r

s 2 c 2 u̇, (12.292)

which reduces to

4π ε0

e
E =

1
s 3

(
r − r u

c

) (
1 − u 2

c 2

)
+

1
s 3 c 2

(
r ×

[(
r − r u

c

)
× u̇

])
. (12.293)

Similarly,
4π
µ0 e

B = ∇ × u
s
= −∇

′s × u
s 2 − r

s c
×

(
u̇
s
− u

s 2

∂s
∂t′

)
, (12.294)

or
4π
µ0 e

B = −r × u
s 2 r

− r
s c
×

[
u̇
s
+

u
s 2

(
r · u

r
+

r · u̇
c
− u 2

c

)]
, (12.295)

which reduces to

4π
µ0 e

B =
u × r

s 3

(
1 − u 2

c 2

)
+

1
s 3 c

r
r
×

(
r ×

[(
r − r u

c

)
× u̇

])
. (12.296)

A comparison of Equations (12.293) and (12.296) yields

B =
r × E

r c
. (12.297)

Thus, the magnetic field is always perpendicular to E and the retarded radius vector r. Note that
all terms appearing in the previous formulae are retarded.

The electric field is composed of two separate parts. The first term in Equation (12.293) varies
as 1/r 2 for large distances from the charge. We can think of ru = r − r u/c as the virtual present
radius vector: that is, the radius vector directed from the position the charge would occupy at time
t if it had continued with uniform velocity from its retarded position to the field point. In terms of
ru, the 1/r 2 field is simply

Einduction =
e

4π ε0

1 − u 2/c 2

s 3 ru. (12.298)

We can rewrite the expression (12.216) for the electric field generated by a uniformly moving
charge in the form

E =
e

4π ε0

1 − u 2/c 2

r 3
0 (1 − u 2/c 2 + u 2

r /c 2)3/2
r0, (12.299)
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where r0 is the radius vector directed from the present position of the charge at time t to the field
point, and ur = u · r0/r0. For the case of uniform motion, the relationship between the retarded
radius vector r and the actual radius vector r0 is simply

r0 = r − r
c

u. (12.300)

It is straightforward to demonstrate that

s = r0

√
1 − u 2/c 2 + u 2

r /c 2 (12.301)

in this case. Thus, the electric field generated by a uniformly moving charge can be written

E =
e

4π ε0

1 − u 2/c 2

s 3 r0. (12.302)

Because ru = r0 for the case of a uniformly moving charge, it is clear that Equation (12.298) is
equivalent to the electric field generated by a uniformly moving charge located at the position the
charge would occupy if it had continued with uniform velocity from its retarded position.

The second term in Equation (12.293),

Eradiation =
e

4π ε0 c 2

r × (ru × u̇)
s 3 , (12.303)

is of order 1/r, and, therefore, represents a radiation field. Similar considerations hold for the two
terms of Equation (12.296).

12.24 Larmor Formula

Let us transform to the inertial frame in which the charge is instantaneously at rest at the origin at
time t = 0. In this frame, u 	 c, so that ru � r and s � r for events that are sufficiently close to the
origin at t = 0 that the retarded charge still appears to travel with a velocity that is small compared
to that of light. It follows from the previous section that

Eradiation � e
4π ε0 c 2

r × (r × u̇)
r 3 , (12.304)

Bradiation � e
4π ε0 c 3

u̇ × r
r 2 . (12.305)

Let us define spherical polar coordinates whose axis points along the direction of instantaneous
acceleration of the charge. It is easily demonstrated that

Eθ � e
4π ε0 c 2

sin θ
r

u̇, (12.306)

Bφ � e
4π ε0 c 3

sin θ
r

u̇. (12.307)
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These fields are identical to those of a radiating dipole whose axis is aligned along the direction of
instantaneous acceleration. The radial Poynting flux is given by

Eθ Bφ

µ0
=

e 2

16π2 ε0 c 3

sin2 θ

r 2 u̇ 2. (12.308)

We can integrate this expression to obtain the instantaneous power radiated by the charge

P =
e 2

6π ε0 c 3 u̇ 2. (12.309)

This is known as Larmor’s formula. Note that zero net momentum is carried off by the fields
(12.306) and (12.307).

In order to proceed further, it is necessary to prove two useful theorems. The first theorem
states that if a 4-vector field T µ satisfies

∂µT µ = 0, (12.310)

and if the components of T µ are non-zero only in a finite spatial region, then the integral over
3-space,

I =
∫

T 4 d 3x, (12.311)

is an invariant. In order to prove this theorem, we need to use the 4-dimensional analog of Gauss’s
theorem, which states that ∫

V
∂µT µ d 4x =

∮
S

T µ dS µ, (12.312)

where dS µ is an element of the 3-dimensional surface S bounding the 4-dimensional volume V .
The particular volume over which the integration is performed is indicated in Figure 12.1. The
surfaces A and C are chosen so that the spatial components of T µ vanish on A and C. This is
always possible because it is assumed that the region over which the components of T µ are non-
zero is of finite extent. The surface B is chosen normal to the x 4-axis, whereas the surface D is
chosen normal to the x 4′-axis. Here, the x µ and the x µ

′ are coordinates in two arbitrarily chosen
inertial frames. It follows from Equation (12.312) that∫

T 4 dS 4 +

∫
T 4′ dS 4′ = 0. (12.313)

Here, we have made use of the fact that T µ dS µ is a scalar and, therefore, has the same value in all
inertial frames. Because dS 4 = −d 3x and dS 4′ = d 3x′ it follows that I =

∫
T 4 d 3x is an invariant

under a Lorentz transformation. Incidentally, taking the limit in which the two inertial frames are
identical, the previous argument also demonstrates that I is constant in time.

The second theorem is an extension of the first. Suppose that a 4-tensor field Q µν satisfies

∂µQ µν = 0, (12.314)
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Figure 12.1: Application of Gauss’ theorem.

and has components which are only non-zero in a finite spatial region. Let Aµ be a 4-vector whose
coefficients do not vary with position in space-time. It follows that T µ = Aν Q µν satisfies Equa-
tion (12.310). Therefore,

I =
∫

Aν Q 4ν d 3x (12.315)

is an invariant. However, we can write
I = Aµ B µ, (12.316)

where
B µ =

∫
Q 4µ d 3x. (12.317)

It follows from the quotient rule that if Aµ B µ is an invariant for arbitrary Aµ then B µ must transform
as a constant (in time) 4-vector.

These two theorems enable us to convert differential conservation laws into integral conserva-
tion laws. For instance, in differential form, the conservation of electrical charge is written

∂µJ µ = 0. (12.318)

However, from Equation (12.313) this immediately implies that

Q =
1
c

∫
J 4 d 3x =

∫
ρ d 3x (12.319)

is an invariant. In other words, the total electrical charge contained in space is both constant in
time, and the same in all inertial frames.

Suppose that S is the instantaneous rest frame of the charge. Let us consider the electromag-
netic energy tensor T µν associated with all of the radiation emitted by the charge between times
t = 0 and t = dt. According to Equation (12.261), this tensor field satisfies

∂µT µν = 0, (12.320)
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apart from a region of space of measure zero in the vicinity of the charge. Furthermore, the region
of space over which T µν is non-zero is clearly finite, because we are only considering the fields
emitted by the charge in a small time interval, and these fields propagate at a finite velocity. Thus,
according to the second theorem,

P µ =
1
c

∫
T 4µ d 3x (12.321)

is a 4-vector. It follows from Section 12.22 that we can write P µ = (dp, dE/c), where dp and dE
are the total momentum and energy carried off by the radiation emitted between times t = 0 and
t = dt, respectively. As we have already mentioned, dp = 0 in the instantaneous rest frame S .
Transforming to an arbitrary inertial frame S ′, in which the instantaneous velocity of the charge is
u, we obtain

dE
′
= γ(u)

(
dE + u dp1

)
= γ dE. (12.322)

However, the time interval over which the radiation is emitted in S ′ is dt′ = γ dt. Thus, the
instantaneous power radiated by the charge,

P′ =
dE′

dt′
=

dE
dt
= P, (12.323)

is the same in all inertial frames.
We can make use of the fact that the power radiated by an accelerating charge is Lorentz

invariant to find a relativistic generalization of the Larmor formula, (12.309), which is valid in all
inertial frames. We expect the power emitted by the charge to depend only on its 4-velocity and
4-acceleration. It follows that the Larmor formula can be written in Lorentz invariant form as

P = − e 2

6π ε0 c 3 Aµ A µ, (12.324)

because the 4-acceleration takes the form Aµ = (u̇, 0) in the instantaneous rest frame. In a general
inertial frame,

−Aµ A µ = γ 2
(
dγ
dt

u + γ u̇
)2

− γ 2 c 2
(
dγ
dt

)2

, (12.325)

where use has been made of Equation (12.107). Furthermore, it is easily demonstrated that

dγ
dt
= γ 3 u · u̇

c 2 . (12.326)

It follows, after a little algebra, that the relativistic generalization of Larmor’s formula takes the
form

P =
e 2

6π ε0 c 3 γ
6
[
u̇ 2 − (u × u̇) 2

c 2

]
. (12.327)
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12.25 Radiation Losses

Radiation losses often determine the maximum achievable energy in a charged particle accelera-
tor. Let us investigate radiation losses in various different types of accelerator device using the
relativistic Larmor formula.

For a linear accelerator, the motion is one dimensional. In this case, it is easily demonstrated
that

dp
dt
= m0 γ

3 u̇, (12.328)

where use has been made of Equation (12.326), and p = γm0 u is the particle momentum in the
direction of acceleration (the x-direction, say). Here, m0 is the particle rest mass. Thus, Equa-
tion (12.327) yields

P =
e 2

6π ε0 m 2
0 c 3

(
dp
dt

)2

. (12.329)

The rate of change of momentum is equal to the force exerted on the particle in the x-direction,
which, in turn, equals the change in the energy, E, of the particle per unit distance. Consequently,

P =
e 2

6π ε0 m 2
0 c 3

(
dE
dx

)2

. (12.330)

Thus, in a linear accelerator the radiated power depends on the external force acting on the particle,
and not on the actual energy or momentum of the particle. It is obvious, from the previous formula,
that light particles, such as electrons, are going to radiate a lot more than heavier particles, such as
protons. The ratio of the power radiated to the power supplied by the external sources is

P
dE/dt

=
e 2

6π ε0 m 2
0 c 3

1
u

dE
dx
� e 2

6π ε0 m0 c 2

1
m0 c 2

dE
dx
, (12.331)

because u � c for a highly relativistic particle. It is clear, from the previous expression, that the
radiation losses in an electron linear accelerator are negligible unless the gain in energy is of order
me c 2 = 0.511 MeV in a distance of e 2/(6π ε0 me c 2) = 1.28 × 10−15 meters. That is 3 × 1014

MeV/meter. Typical energy gains are less that 10 MeV/meter. It follows, therefore, that radiation
losses are completely negligible in linear accelerators, whether for electrons, or for other heavier
particles.

The situation is quite different in circular accelerator devices, such as the synchrotron and the
betatron. In such machines, the momentum p changes rapidly in direction as the particle rotates,
but the change in energy per revolution is small. Furthermore, the direction of acceleration is
always perpendicular to the direction of motion. It follows from Equation (12.327) that

P =
e 2

6π ε0 c 3 γ
4 u̇ 2 =

e 2

6π ε0 c 3

γ 4 u 4

ρ 2 , (12.332)

where ρ is the orbit radius. Here, use has been made of the standard result u̇ = u 2/ρ for circular
motion. The radiative energy loss per revolution is given by

δE =
2π ρ

u
P =

e 2

3 ε0 c3

γ 4 u 3

ρ
. (12.333)
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For highly relativistic (u � c) electrons, this expression yields

δE(MeV) = 8.85 × 10−2 [E(GeV)]4

ρ(meters)
. (12.334)

In the first electron synchrotrons, ρ ∼ 1 meter, Emax ∼ 0.3 GeV. Hence, δEmax ∼ 1 keV per revo-
lution. This was less than, but not negligible compared to, the energy gain of a few keV per turn.
For modern electron synchrotrons, the limitation on the available radio-frequency power needed to
overcome radiation losses becomes a major consideration, as is clear from the E 4 dependence of
the radiated power per turn.

12.26 Angular Distribution of Radiation

In order to calculate the angular distribution of the energy radiated by an accelerated charge, we
must think carefully about what is meant by the rate of radiation of the charge. This quantity is
actually the amount of energy lost by the charge in a retarded time interval dt′ during the emission
of the signal. Thus,

P(t′) = −dE
dt′

, (12.335)

where E is the energy of the charge. The Poynting vector

Erad × Brad

µ0
= ε0 c E 2

rad
r
r
, (12.336)

where use has been made of Brad = (r × Erad)/r c [see Equation (12.297)], represents the energy
flux per unit actual time, t. Thus, the energy loss rate of the charge into a given element of solid
angle dΩ is

dP(t′)
dΩ

dΩ = −dE(θ, ϕ)
dt′

dΩ =
dE(θ, ϕ)

dt
dt
dt′

r 2 dΩ = ε0 c E 2
rad

s
r

r 2 dΩ, (12.337)

where use has been made of Equation (12.283). Here, θ and ϕ are angular coordinates used to
locate the element of solid angle. It follows from Equation (12.303) that

dP(t′)
dΩ

=
e 2 r

16π2 ε0 c 3

[r × (ru × u̇)]2

s 5 . (12.338)

Consider the special case in which the direction of acceleration coincides with the direction of
motion. Let us define spherical polar coordinates whose axis points along this common direction.
It is easily demonstrated that, in this case, the previous expression reduces to

dP(t′)
dΩ

=
e 2 u̇ 2

16π2 ε0 c 3

sin2 θ

[1 − (u/c) cos θ]5 . (12.339)

In the non-relativistic limit, u/c → 0, the radiation pattern has the familiar sin2 θ dependence of
dipole radiation. In particular, the pattern is symmetric in the forward (θ < π/2) and backward (θ >
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π/2) directions. However, as u/c→ 1, the radiation pattern becomes more and more concentrated
in the forward direction. The angle θmax for which the intensity is a maximum is

θmax = cos−1
[

1
3 u/c

( √
1 + 15 u 2/c 2 − 1

)]
. (12.340)

This expression yields θmax → π/2 as u/c → 0, and θmax → 1/(2 γ) as u/c → 1. Thus, for a
highly relativistic charge, the radiation is emitted in a narrow cone whose axis is aligned along the
direction of motion. In this case, the angular distribution (12.339) reduces to

dP(t′)
dΩ

� 2 e 2 u̇ 2

π2 ε0 c 3 γ
8 (γ θ) 2

[1 + (γ θ) 2] 5 . (12.341)

The total power radiated by the charge is obtained by integrating Equation (12.339) over all solid
angles. We obtain

P(t′) =
e 2 u̇ 2

8π ε0 c 3

∫ π

0

sin3 θ dθ
[1 − (u/c) cos θ] 5 =

e 2 u̇ 2

8π ε0 c 3

∫ +1

−1

(1 − µ 2) dµ
[1 − (u/c) µ] 5 . (12.342)

It is easily verified that ∫ +1

−1

(1 − µ 2) dµ
[1 − (u/c) µ] 5 =

4
3
γ 6. (12.343)

Hence,

P(t′) =
e 2

6π ε0 c 3 γ
6 u̇ 2, (12.344)

which agrees with Equation (12.327), provided that u × u̇ = 0.

12.27 Synchrotron Radiation

Synchrotron radiation (i.e., radiation emitted by a charged particle constrained to follow a circular
orbit by a magnetic field) is of particular importance in astrophysics, because much of the observed
radio frequency emission from supernova remnants and active galactic nuclei is thought to be of
this type.

Consider a charged particle moving in a circle of radius a with constant angular velocity ω0.
Suppose that the orbit lies in the x-y plane. The radius vector pointing from the centre of the orbit
to the retarded position of the charge is defined

ρ = a (cosφ, sinφ, 0), (12.345)

where φ = ω0 t′ is the angle subtended between this vector and the x-axis. The retarded velocity
and acceleration of the charge take the form

u =
dρ
dt′
= u (− sinφ, cosφ, 0), (12.346)

u̇ =
du
dt′
= −u̇ (cos φ, sinφ, 0), (12.347)



302 CLASSICAL ELECTROMAGNETISM

where u = aω0 and u̇ = aω 2
0 . The observation point is chosen such that the radius vector r,

pointing from the retarded position of the charge to the observation point, is parallel to the y-z
plane. Thus, we can write

r = r (0, sinα, cosα), (12.348)

where α is the angle subtended between this vector and the z-axis. As usual, we define θ as the
angle subtended between the retarded radius vector r and the retarded direction of motion of the
charge u. It follows that

cos θ =
u · r
u r
= sinα cos φ. (12.349)

It is easily seen that
u̇ · r = −u̇ r sinα sinφ. (12.350)

A little vector algebra shows that

[r × (ru × u̇)] 2 = −(r · u̇) 2 r 2 (1 − u 2/c 2) + u̇ 2 r 4 (1 − r · u/r c) 2, (12.351)

giving

[r × (ru × u̇)] 2 = u̇ 2 r 4
[(

1 − u
c

cos θ
)2
−

(
1 − u 2

c 2

)
tan2 φ cos2 θ

]
. (12.352)

Making use of Equation (12.337), we obtain

dP(t′)
dΩ

=
e 2 u̇ 2

16π2 ε0 c 3

[1 − (u/c) cos θ)] 2 − (1 − u 2/c 2) tan2 φ cos2 θ

[1 − (u/c) cos θ] 5 . (12.353)

It is convenient to write this result in terms of the angles α and φ, instead of θ and φ. After a little
algebra we obtain

dP(t′)
dΩ

=
e 2 u̇ 2

16π2 ε0 c 3

[1 − (u 2/c 2)] cos2 α + [(u/c) − sinα cosφ] 2

[1 − (u/c) sinα cosφ] 5 . (12.354)

Let us consider the radiation pattern emitted in the plane of the orbit: that is, α = π/2, with
cosφ = cos θ. It is easily seen that

dP(t′)
dΩ

=
e 2 u̇ 2

16π2 ε0 c 3

[(u/c) − cos θ] 2

[1 − (u/c) cos θ] 5 . (12.355)

In the non-relativistic limit, the radiation pattern has a cos2 θ dependence. Thus, the pattern is like
that of dipole radiation where the axis is aligned along the instantaneous direction of acceleration.
As the charge becomes more relativistic, the radiation lobe in the forward direction (i.e., 0 < θ <
π/2) becomes more more focused and more intense. Likewise, the radiation lobe in the backward
direction (i.e., π/2 < θ < π) becomes more diffuse. The radiation pattern has zero intensity at the
angles

θ0 = cos−1(u/c). (12.356)

These angles demark the boundaries between the two radiation lobes. In the non-relativistic limit,
θ0 = ±π/2, so the two lobes are of equal angular extents. In the highly relativistic limit, θ0 → ±1/γ,
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so the forward lobe becomes highly concentrated about the forward direction (θ = 0). In the latter
limit, Equation (12.355) reduces to

dP(t′)
dΩ

� e 2 u̇ 2

2π2ε0 c 3 γ
6 [1 − (γ θ) 2] 2

[1 + (γ θ) 2] 5 . (12.357)

Thus, the radiation emitted by a highly relativistic charge is focused into an intense beam, of
angular extent 1/γ, pointing in the instantaneous direction of motion. The maximum intensity of
the beam scales like γ 6.

Integration of Equation (12.354) over all solid angle (making use of dΩ = sinα dα dφ) yields

P(t′) =
e 2

6π ε0 c 3 γ
4 u̇ 2, (12.358)

which agrees with Equation (12.327), provided that u · u̇ = 0. This expression can also be written

P
m0 c 2 =

2
3
ω 2

0 r0

c
β 2 γ 4, (12.359)

where r0 = e 2/(4π ε0 m0 c 2) = 2.82 × 10−15 meters is the classical electron radius, m0 is the
rest mass of the charge, and β = u/c. If the circular motion takes place in an orbit of radius a,
perpendicular to a magnetic field B, then ω0 satisfies ω0 = e B/(m0 γ). Thus, the radiated power is

P
m0 c 2 =

2
3

(
e B
m0

)2 r0

c
(β γ) 2, (12.360)

and the radiated energy ∆E per revolution is

∆E
m0 c 2 =

4π
3

r0

a
β 3 γ 4. (12.361)

Let us consider the frequency distribution of the emitted radiation in the highly relativistic
limit. Suppose, for the sake of simplicity, that the observation point lies in the plane of the orbit
(i.e., α = π/2). Because the radiation emitted by the charge is beamed very strongly in the charge’s
instantaneous direction of motion, a fixed observer will only see radiation (at some later time)
when this direction points almost directly towards the point of observation. This occurs once every
rotation period, when φ � 0, assuming that ω0 > 0. Note that the point of observation is located
many orbit radii away from the centre of the orbit along the positive y-axis. Thus, our observer
sees short periodic pulses of radiation from the charge. The repetition frequency of the pulses
(in radians per second) is ω0. Let us calculate the duration of each pulse. Because the radiation
emitted by the charge is focused into a narrow beam of angular extent ∆θ ∼ 1/γ, our observer only
sees radiation from the charge when φ <∼ ∆θ. Thus, the observed pulse is emitted during a time
interval ∆t′ = ∆θ/ω0. However, the pulse is received in a somewhat shorter time interval

∆t =
∆θ

ω0

(
1 − u

c

)
, (12.362)
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because the charge is slightly closer to the point of observation at the end of the pulse than at the
beginning. The previous equation reduces to

∆t � ∆θ

2ω0 γ 2 ∼
1

ω0 γ 3 , (12.363)

because γ 
 1 and ∆θ ∼ 1/γ. The width ∆ω of the pulse in frequency space obeys ∆ω∆t ∼ 1.
Hence,

∆ω = γ 3 ω0. (12.364)

In other words, the emitted frequency spectrum contains harmonics up to γ 3 times that of the
cyclotron frequency, ω0.

12.28 Exercises

12.1 Consider two Cartesian reference frames, S and S ′, in the standard configuration. Suppose
that S ′ moves with constant velocity v < c with respect to S along their common x-axis.
Demonstrate that the Lorentz transformation between coordinates in the two frames can be
written

x′ = x coshϕ − c t sinhϕ,

y′ = y,

z′ = z,

c t′ = c t coshϕ − x sinhϕ,

where tanhϕ = v/c. Show that the previous transformation is equivalent to a rotation
through an angle i ϕ, in the x–i c t plane, in (x, y, z, i c t) space.

12.2 Show that, in the standard configuration, two successive Lorentz transformations with ve-
locities v1 and v2 are equivalent to a single Lorentz transformation with velocity

v =
v1 + v2

1 + v1 v2/c 2 .

12.3 Let r and r′ be the displacement vectors of some particle in the Cartesian reference frames
S and S ′, respectively. Suppose that frame S ′ moves with velocity v with respect to frame
S . Demonstrate that a general Lorentz transformation takes the form

r′ = r +
[
(γ − 1) r · v

v 2 − γ t
]

v,

t′ = γ
(
t − r · v

c 2

)
, (12.365)
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where γ = (1 − v 2/c 2)−1/2. If u = dr/dt and u′ = dr′/dt′ are the particle’s velocities in
the two reference frames, respectively, demonstrate that a general velocity transformation
is written

u′ =
u +

[
(γ − 1) u · v/c 2 − γ

]
v

γ (1 − u · v/c 2)
.

12.4 Let v be the Earth’s approximately constant orbital speed. Demonstrate that the direction
of starlight incident at right-angles to the Earth’s instantaneous direction of motion appears
slightly shifted in the Earth’s instantaneous rest frame by an angle θ = sin−1(v/c). This
effect is known as the abberation of starlight. Estimate the magnitude of θ (in arc seconds).

12.5 Let E and B be the electric and magnetic field, respectively, in some Cartesian reference
frame S . Likewise, let E′ and B′ be the electric and magnetic field, respectively, in some
other Cartesian frame S ′, which moves with velocity v with respect to S . Demonstrate that
the general transformation of fields takes the form

E′ = γE +
1 − γ
v 2 (v · E) v + γ (v × B),

B′ = γB +
1 − γ
v 2 (v · B) v − γ

c 2 (v × E),

where γ = (1 − v 2/c 2)−1/2.

12.6 A particle of rest mass m and charge e moves relativistically in a uniform magnetic field of
strength B. Show that the particle’s trajectory is a helix aligned along the direction of the
field, and that the particle drifts parallel to the field at a uniform velocity, and gyrates in the
plane perpendicular to the field with constant angular velocity

Ω =
e B
γm

.

Here, γ = (1 − v 2/c 2)−1/2, and v is the particle’s (constant) speed.

12.7 Let P = E · B and Q = c 2 B 2 − E 2. Prove the following statements, assuming that E and B
are not both zero.

(a) At any given event, E is perpendicular to B either in all frames of reference, or in
none. Moreover, each of the three relations E > c B, E = c B, and E < c B holds in
all frames or in none.

(b) If P = Q = 0 then the field is said to be null. For a null field, E is perpendicular to B,
and E = c B, in all frames.

(c) If P = 0 and Q � 0 then there are infinitely many frames (with a common relative
direction of motion) in which E = 0 or B = 0, according as Q > 0 or Q < 0, and none
other. Precisely one of these frames moves in the direction E × B, its velocity being
E/B or c 2 B/E, respectively.
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(d) If P � 0 then there are infinitely many frames (with a common direction of motion)
in which E is parallel to B, and none other. Precisely one of these moves in the
direction E × B, its velocity being given by the smaller root of the quadratic equation
β 2 − R β + 1 = 0, where β = v/c, and R = (E 2 + c 2 B 2)/|E × cB|. In order for β to be
real we require R > 2. Demonstrate that this is always the case.

12.8 In the rest frame of a conducting medium, the current density satisfies Ohm’s law j′ = σE′,
where σ is the conductivity, and primes denote quantities in the rest frame.

(a) Taking into account the possibility of convection currents, as well as conduction cur-
rents, show that the covariant generalization of Ohm’s law is

J µ − 1
c 2 (Uν J ν) U µ =

σ

c
F µνUν,

where U µ is the 4-velocity of the medium, J µ the 4-current, and F µν the electromag-
netic field tensor.

(b) Show that if the medium has a velocity v = cβ with respect to some inertial frame
then the 3-vector current in that frame is

j = γ σ [E + β × c B − (β · E)β] + ρ v

where ρ is the charge density observed in the inertial frame.

12.9 Consider the relativistically covariant form of Maxwell’s equations in the presence of mag-
netic monopoles. Demonstrate that it is possible to define a proper-4-current

J µ = (j, ρ c),

and a pseudo-4-current
Jm = (jm, ρm c),

where j and ρ are the flux and density of electric charges, respectively, whereas jm and ρm

are the flux and density of magnetic monopoles, respectively. Show that the conservation
laws for electric charges and magnetic monopoles take the form

∂µJ µ = 0,

∂µJ µ
m = 0,

respectively. Finally, if F µν is the electromagnetic field tensor, and G µν its dual, show that
Maxwell’s equations are equivalent to

∂µF µν =
J ν

ε0 c
,

∂µG µν =
J ν

m

ε0 c
.
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12.10 Prove that the electromagnetic energy tensor satisfies the following two identities:

T µ
µ = 0,

and

T µ
σ T σ

ν =
I 2

4
δµν ,

where

I 2 =

(
B 2

µ0
− ε0 E 2

)2

+
4 ε0

µ0
(E · B)2.

12.11 A charge e moves in simple harmonic motion along the z axis, such that its retarded position
is z(t′) = a cos(ω0 t′).

(a) Show that the instantaneous power radiated per unit solid angle is

dP(t′)
dΩ

=
e 2 c β 4

16π2 ε0 a 2

sin2 θ cos2(ω0 t′)
[1 + β cos θ sin(ω0 t′)] 5

where β = aω0/c, and θ is a standard spherical polar coordinate.

(b) By time averaging, show that the average power radiated per unit solid angle is

dP
dΩ
=

e 2 c β 4

128π2 ε0 a 2

[
4 + β 2 cos2 θ

(1 − β 2 cos2 θ) 7/2

]
sin2 θ.

(c) Sketch the angular distribution of the radiation for non-relativistic and ultra-relativistic
motion.

12.12 The trajectory of a relativistic particle of charge e and rest mass m in a uniform magnetic
field B is a helix aligned with the field. Let the pitch angle of the helix be α (so, α = 0
corresponds to circular motion). By arguments similar to those used for synchrotron radia-
tion, show that an observer far from the charge would detect radiation with a fundamental
frequency

ω0 =
Ω

cos2 α
,

where Ω = e B/(γm), and that the spectrum would extend up to frequencies of order

ωc = γ
3 Ω cosα.


