next up previous
Next: Time-independent Maxwell equations Up: Vectors Previous: Curl

Summary

Vector addition:

\begin{displaymath}
{\bf a}+ {\bf b} \equiv (a_x+b_x, a_y+b_y,  a_z+b_z)
\end{displaymath}

Vector multiplication:

\begin{displaymath}
n {\bf a} \equiv (n a_x,n a_y, n a_z)
\end{displaymath}

Scalar product:

\begin{displaymath}
{\bf a}\cdot{\bf b} = a_x  b_x + a_y  b_y + a_z  b_z
\end{displaymath}

Vector product:

\begin{displaymath}
{\bf a}\times{\bf b} = (a_y  b_z-a_z  b_y,  a_z  b_x-a_x  b_z,  a_x  b_y-a_y  b_x)
\end{displaymath}

Scalar triple product:

\begin{displaymath}
{\bf a}\cdot {\bf b}\times{\bf c} = {\bf a}\times{\bf b}\cdo...
...}\cdot{\bf c}\times{\bf a} = -{\bf b}\cdot{\bf a}\times{\bf c}
\end{displaymath}

Vector triple product:

\begin{displaymath}
{\bf a}\times({\bf b}\times{\bf c})= ({\bf a}\cdot{\bf c}) {\bf b} - ({\bf a}\cdot
{\bf b}) {\bf c}
\end{displaymath}


\begin{displaymath}
({\bf a}\times{\bf b})\times{\bf c} = ({\bf a}\cdot{\bf c}) {\bf b} -({\bf b}
\cdot{\bf c}) {\bf a}
\end{displaymath}

Gradient:

\begin{displaymath}
{\bf grad} \phi = \left(\frac{\partial \phi}{\partial x}, ...
... \phi}
{\partial y}, 
\frac{\partial \phi}{\partial z}\right)
\end{displaymath}

Divergence:

\begin{displaymath}
{\mit div} {\bf A} = \frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}
+\frac{\partial A_z}{\partial z}
\end{displaymath}

Curl:

\begin{displaymath}
{\bf curl} {\bf A} = \left(\frac{\partial A_z}{\partial y}-...
...tial A_y}{\partial x}- \frac{\partial A_x}
{\partial y}\right)
\end{displaymath}

Gauss' theorem:

\begin{displaymath}
\oint_S {\bf A}\cdot d{\bf S} = \int_V {\mit div} {\bf A}  dV
\end{displaymath}

Stokes' theorem:

\begin{displaymath}
\oint_C {\bf A}\cdot d{\bf l} = \int_S {\bf curl A}\cdot d{\bf S}
\end{displaymath}

Del operator:

\begin{displaymath}
\nabla = \left(\frac{\partial}{\partial x},  \frac{\partial}{\partial y}, 
\frac{\partial}{\partial z}\right)
\end{displaymath}


\begin{displaymath}
{\bf grad} \phi = \nabla \phi
\end{displaymath}


\begin{displaymath}
{\mit div} {\bf A} = \nabla\cdot {\bf A}
\end{displaymath}


\begin{displaymath}
{\bf curl  A} = \nabla\times{\bf A}
\end{displaymath}

Vector identities:

\begin{displaymath}
\nabla\cdot\nabla \phi = \nabla^2 \phi = \left(\frac{\partia...
...phi}{\partial y^2}+\frac{\partial^2 \phi}{\partial z^2}\right)
\end{displaymath}


\begin{displaymath}
\nabla\cdot\nabla \times {\bf A} = 0
\end{displaymath}


\begin{displaymath}
\nabla\times\nabla\phi = 0
\end{displaymath}


\begin{displaymath}
\nabla^2{\bf A} = \nabla (\nabla\cdot{\bf A})- \nabla\times\nabla\times{\bf A}
\end{displaymath}

Other vector identities:

\begin{displaymath}
\nabla(\phi \psi) =\phi \nabla\psi+\psi \nabla\phi
\end{displaymath}


\begin{displaymath}
\nabla\cdot (\phi {\bf A}) =\phi  \nabla\cdot {\bf A} + {\bf A}\cdot \nabla\phi
\end{displaymath}


\begin{displaymath}
\nabla\times(\phi {\bf A}) =\phi  \nabla\times{\bf A} +\nabla\phi\times{\bf A}
\end{displaymath}


\begin{displaymath}
\nabla\cdot({\bf A}\times{\bf B}) = {\bf B}\cdot \nabla\times{\bf A} - {\bf A}\cdot
\nabla\times{\bf B}
\end{displaymath}


\begin{displaymath}
\nabla\times({\bf A}\times{\bf B}) = {\bf A} (\nabla\cdot {...
... A}) +({\bf B}\cdot\nabla){\bf A}- ({\bf A}\cdot\nabla){\bf B}
\end{displaymath}


\begin{displaymath}
\nabla({\bf A}\cdot{\bf B}) = {\bf A}\times(\nabla\times{\bf...
... +({\bf A}\cdot \nabla){\bf B} + ({\bf B} \cdot
\nabla){\bf A}
\end{displaymath}

Cylindrical polar coordinates:

\begin{displaymath}
x = r \cos\theta,   y = r \sin\theta,   z = z,   
dV = r dr d\theta dz
\end{displaymath}


\begin{displaymath}
\nabla f = \left(\frac{\partial f}{\partial r}, \frac{1}{r}...
...tial f}{\partial\theta}, \frac{\partial f}{\partial z}\right)
\end{displaymath}


\begin{displaymath}
\nabla\cdot {\bf A} = \frac{1}{r}\frac{\partial (r A_r)}{\pa...
...l A_\theta}{\partial \theta} + \frac{\partial A_z}{\partial z}
\end{displaymath}


\begin{displaymath}
\nabla\times {\bf A}=\left(\frac{1}{r}\frac{\partial A_z}{\p...
...tial r}-\frac{1}{r}\frac{\partial A_r}{\partial \theta}\right)
\end{displaymath}


\begin{displaymath}
\nabla^2 f = \frac{1}{r}\frac{\partial }{\partial r}\!\left(...
...tial^2 f}{\partial\theta^2}+
\frac{\partial^2 f}{\partial z^2}
\end{displaymath}

Spherical polar coordinates:

\begin{displaymath}
x = r \sin\theta \cos\phi,   y = r \sin\theta \sin\phi,   z = r \cos\theta,   dV = r^2 \sin\theta dr d\theta d\phi
\end{displaymath}


\begin{displaymath}
\nabla f = \left(\frac{\partial f}{\partial r}, \frac{1}{r}...
...,\frac{1}{r \sin\theta}\frac{\partial f}{\partial\phi}\right)
\end{displaymath}


\begin{displaymath}
\nabla\cdot{\bf A} = \frac{1}{r^2}\frac{\partial}{\partial r...
...)
+\frac{1}{r \sin\theta}\frac{\partial A_\phi}{\partial\phi}
\end{displaymath}


\begin{displaymath}
(\nabla\times{\bf A})_r = \frac{1}{r \sin\theta}\frac{\part...
...-\frac{1}{r \sin\theta}\frac{\partial A_\theta}{\partial\phi}
\end{displaymath}


\begin{displaymath}
(\nabla\times{\bf A})_\theta =
\frac{1}{r \sin\theta}\frac...
...artial \phi}-\frac{1}{r}\frac{\partial (r A_\phi)}{\partial r}
\end{displaymath}


\begin{displaymath}
(\nabla\times{\bf A})_z = \frac{1}{r}\frac{\partial (r A_\theta)}{\partial r}-\frac{1}{r}\frac{\partial A_r}{\partial \theta}
\end{displaymath}


\begin{displaymath}
\nabla^2 f = \frac{1}{r^2}\frac{\partial}{\partial r}\!\left...
...\frac{1}{r^2 \sin^2\theta}\frac{\partial^2 f}{\partial\phi^2}
\end{displaymath}


next up previous
Next: Time-independent Maxwell equations Up: Vectors Previous: Curl
Richard Fitzpatrick 2006-02-02