next up previous
Next: Gradient Up: Vectors Previous: Vector surface integrals

Volume integrals

A volume integral takes the form
\begin{displaymath}
\int\!\int\!\int_V f(x,y,z) dV,
\end{displaymath} (89)

where $V$ is some volume, and $dV = dx  dy  dz$ is a small volume element. The volume element is sometimes written $d^3{\bf r}$, or even $d\tau$. As an example of a volume integral, let us evaluate the centre of gravity of a solid hemisphere of radius $a$ (centered on the origin). The height of the centre of gravity is given by
\begin{displaymath}
\overline{z} = \left. \int\!\int\!\int z dV\right/ \int\!\int\!\int dV.
\end{displaymath} (90)

The bottom integral is simply the volume of the hemisphere, which is $2\pi  a^3/3$. The top integral is most easily evaluated in spherical polar coordinates, for which $z= r \cos\theta$ and $dV = r^2 \sin\theta dr d\theta d\phi$. Thus,
$\displaystyle \int\int
\int z dV$ $\textstyle =$ $\displaystyle \int_0^a dr\int_0^{\pi/2} d\theta \int_0^{2\pi} d\phi  r \cos\theta 
 
r^2 \sin\theta$  
  $\textstyle =$ $\displaystyle \int_0^a r^3 dr \int_0^{\pi/2} \sin\theta  \cos\theta d\theta \int_0^{2\pi}
d\phi = \frac{\pi  a^4}{4},$ (91)

giving
\begin{displaymath}
\overline{z} = \frac{ \pi  a^4}{4}\frac{3}{2\pi  a^3}= \frac{3 a}{8}.
\end{displaymath} (92)


next up previous
Next: Gradient Up: Vectors Previous: Vector surface integrals
Richard Fitzpatrick 2006-02-02