Useful Vector Identities

Notation: ${\bf a}$, ${\bf b}$, ${\bf c}$, ${\bf d}$ are general vectors; $\phi$, $\psi$ are general scalar fields; ${\bf A}$, ${\bf B}$ are general vector fields; $({\bf A}\cdot\nabla)\,{\bf B}\equiv
({\bf A}\cdot\nabla B_x,\, {\bf A}\cdot\nabla B_y,\,{\bf A}\cdot\nabla B_z)$ and $\nabla^{\,2}{\bf A} = (\nabla^{\,2} A_x,\, \nabla^{\,2} A_y,\,\nabla^{\,2} A_z)$ (but, only in Cartesian coordinates)

$\displaystyle {\bf a}\times ({\bf b}\times {\bf c})$ $\displaystyle = ({\bf a}\cdot{\bf c})\,{\bf b} - ({\bf a}\cdot{\bf b})\,{\bf c},$ (1.176)
$\displaystyle ({\bf a}\times {\bf b})\times {\bf c}$ $\displaystyle = ({\bf c}\cdot{\bf a})\,{\bf b}
- ({\bf c}\cdot{\bf b})\,{\bf a},$ (1.177)
$\displaystyle ({\bf a}\times {\bf b})\cdot({\bf c}\times {\bf d})$ $\displaystyle =
({\bf a}\cdot{\bf c})\,({\bf b}\cdot{\bf d}) - ({\bf a}\cdot{\bf d})\,({\bf b}\cdot{\bf c}),$ (1.178)
$\displaystyle ({\bf a}\times {\bf b})\times ({\bf c}\times {\bf d})$ $\displaystyle = ({\bf a}\times
{\bf b}\cdot{\bf d})\,{\bf c} - ({\bf a}\times {\bf b}\cdot{\bf c})\,{\bf d},$ (1.179)
$\displaystyle \nabla(\phi\,\psi)$ $\displaystyle =\phi\,\nabla\psi+\psi\,\nabla\phi,$ (1.180)
$\displaystyle \nabla({\bf A}\cdot{\bf B})$ $\displaystyle = {\bf A}\times(\nabla\times{\bf B}) + {\bf B}\times(\nabla\times{\bf A})
+({\bf A}\cdot \nabla)\,{\bf B} + ({\bf B} \cdot \nabla)\,{\bf A},$ (1.181)
$\displaystyle \nabla\cdot\nabla \phi$ $\displaystyle =\nabla^{\,2}\phi,$ (1.182)
$\displaystyle \nabla\cdot\nabla \times {\bf A}$ $\displaystyle =0,$ (1.183)
$\displaystyle \nabla\cdot (\phi\,{\bf A})$ $\displaystyle =\phi \,\nabla\cdot {\bf A} + {\bf A}\cdot \nabla\phi,$ (1.184)
$\displaystyle \nabla\cdot({\bf A}\times{\bf B})$ $\displaystyle = {\bf B}\cdot \nabla\times{\bf A} - {\bf A}\cdot \nabla\times{\bf B},$ (1.185)
$\displaystyle \nabla\times\nabla\phi$ $\displaystyle =0,$ (1.186)
$\displaystyle \nabla\times(\nabla\times{\bf A})$ $\displaystyle = \nabla\,(\nabla\cdot{\bf A})- \nabla^{\,2}{\bf A},$ (1.187)
$\displaystyle \nabla\times(\phi\,{\bf A})$ $\displaystyle =\phi\, \nabla\times{\bf A} +\nabla\phi\times{\bf A},$ (1.188)
$\displaystyle \nabla\times({\bf A}\times{\bf B})$ $\displaystyle = (\nabla\cdot {\bf B})\,{\bf A}- (\nabla
\cdot{\bf A}) \,{\bf B}+({\bf B}\cdot\nabla)\,{\bf A}- ({\bf A}\cdot\nabla)\,{\bf B}.$ (1.189)