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Preface

Physics is an integrated and substantive body of knowledge regarding the nature of the universe that
is based on experimental observations. Physics is ultimately expressed as a mathematical model
that is capable of both explaining and predicting the behaviors of objects in the natural world. The
type of physics taught to undergraduates in universities, and other institutes of tertiary education,
has five main components. These components are Newtonian dynamics, classical electromag-
netism, special relativity, quantum mechanics, and thermal physics. In universities, undergraduate
physics is generally taught at three levels. At the elementary level, students are introduced to the
fundamental concepts of Newtonian dynamics, classical electromagnetism, and thermal physics.
At the intermediate level, Newtonian dynamics, classical electromagnetism, and thermal physics
are fleshed out as relatively coherent theories, and the fundamental concepts of special relativity
and quantum mechanics are introduced. At the advanced level, all five components of physics are
further developed to their final forms, with the addition of greater abstraction and more advanced
mathematics. This course is devoted to intermediate-level physics. The purpose of the course is
to present the five components of undergraduate physics as self-consistent and coherent theories.
The main emphasis of the presentation is to obtain as many predictions regarding the nature of the
physical world as possible while keeping the level of mathematical analysis as low as possible. It
turns out that this task is easier to achieve in some areas of physics than in others. In particular, it
is not possible to develop a coherent picture of classical electromagnetism without resorting to the
sophisticated mathematics of vector field theory.

This course is based on the author’s recollection of the first-year survey course, known as
Physics Part 1A, that was taught at Cambridge University (U.K.) in the early 1980s. The aim of
the course was to bridge the difficult gap between A-level physics and university physics, and also
to introduce new concepts in special relativity, quantum mechanics, and thermal physics. For U.S.
students, the course bridges the problematic gap between the standard two introductory college
physics courses (mechanics/heat and electromagnetism/optics) and upper division physics courses.
The course assumes a basic knowledge of physics, trigonometry, algebra, and calculus. The vector
algebra and calculus needed to understand the course material is summarized in Appendix A.

9
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Chapter 1

Newtonian Dynamics

1.1 Units

1.1.1 Mks Units
The first principle of any exact physical science is measurement. In Newtonian dynamics, there
are three fundamental quantities that are subject to measurement:

1. Intervals in space; that is, length.

2. Quantities of inertia, or inertial mass, possessed by various bodies.

3. Intervals in time.

Any other type of measurement in Newtonian dynamics can (effectively) be reduced to some com-
bination of measurements of these three quantities.

Each of the three fundamental quantities—length, mass, and time—is measured with respect
to some convenient standard. The system of units currently used by most scientists and engineers
is called the mks system—after the first initials of the names of the units of length, mass, and time,
respectively, in this system. That is, the meter, the kilogram, and the second.

The mks unit of length is the meter (symbol m). The meter was formerly the distance between
two scratches on a platinum-iridium alloy bar kept at the International Bureau of Weights and
Measures in Sèvres, France, but is now defined as the distance travelled by light in vacuum in
1/299792458 seconds.

The mks unit of mass is the kilogram (symbol kg). The kilogram was formally defined as the
mass of a platinum-iridium alloy cylinder kept at the International Bureau of Weights and Measures
in Sèvres, France, but is now defined in such a manner as to make Planck’s constant take the value
6.626 070 15 × 10−34 when expressed in mks units.

The mks unit of time is the second (symbol s). The second was formerly defined in terms of
the Earth’s rotation, but is now defined as the time required for 9192631770 complete oscillations
associated with the transition between the two hyperfine levels of the ground state of the isotope
Cesium 133.

11
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In addition to the three fundamental quantities, Newtonian dynamics also deals with derived
quantities, such as velocity, acceleration, momentum, angular momentum, et cetera. Each of these
derived quantities can be reduced to some particular combination of length, mass, and time. The
mks units of these derived quantities are, therefore, the corresponding combinations of the mks
units of length, mass, and time. For instance, a velocity can be reduced to a length divided by a
time. Hence, the mks units of velocity are meters per second:

[v] =
[L]
[T ]

= m s−1. (1.1)

Here, v stands for a velocity, L for a length, and T for a time, whereas the operator [· · · ] represents
the units, or dimensions, of the quantity contained within the brackets. Momentum can be reduced
to a mass multiplied by a velocity. Hence, the mks units of momentum are kilogram-meters per
second:

[p] = [M][v] =
[M][L]

[T ]
= kg m s−1. (1.2)

Here, p stands for a momentum, and M for a mass. In this manner, the mks units of all derived
quantities appearing in Newtonian dynamics can easily be obtained.

Some combinations of meters, kilograms, and seconds occur so often in physics that they have
been given special nicknames. Such combinations include the newton, which is the mks unit of
force, and the joule, which is the mks unit of energy. These so-called derived units are listed in
Table 1.1.

1.1.2 Standard Prefixes

Mks units are specifically designed to conveniently describe those motions that occur in everyday
life. Unfortunately, mks units tend to become rather unwieldy when dealing with motions on very
small scales (e.g., the motions of molecules) or on very large scales (e.g., the motions of stars in
the Milky Way galaxy). In order to help cope with this problem, a set of standard prefixes has
been devised that allow the mks units of length, mass, and time to be modified so as to deal more
easily with very small and very large quantities. These prefixes are specified in Table 1.2. Thus,
a kilometer (km) represents 10 3 m, a nanometer (nm) represents 10−9 m, and a femtosecond (fs)
represents 10−15 s. The standard prefixes can also be used to modify the units of derived quantities.

Physical Quantity Derived Unit Abbreviation Mks Equivalent

Force newton N m kg s−2

Energy joule J m2 kg s−2

Power watt W m2 kg s−3

Pressure pascal Pa m−1 kg s−2

Table 1.1: Derived units.
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Factor Prefix Symbol Factor Prefix Symbol

1018 exa- E 10−1 deci- d
1015 peta- P 10−2 centi- c
1012 tera- T 10−3 milli- m
109 giga- G 10−6 micro- µ

106 mega- M 10−9 nano- n
103 kilo- k 10−12 pico- p
102 hecto- h 10−15 femto- f
101 deka- da 10−18 atto- a

Table 1.2: Standard prefixes.

1.1.3 Other Units

The mks system is not the only system of units in existence. Unfortunately, the obsolete cgs
(centimeter-gram-second) system, and the even more obsolete fps (foot-pound-second) system,
are still in use today, although their continued employment is now strongly discouraged in sci-
ence and engineering. Conversion between different systems of units is, in principle, perfectly
straightforward, but, in practice, a frequent source of error. Witness, for example, the loss of the
Mars Climate Orbiter in 1999 (CE) because the Lockheed Martin engineers who designed and
built its rocket engine used fps units whereas the NASA mission controllers employed mks units.
Table 1.3 specifies the various conversion factors between mks, cgs, and fps units. Note that a
pound is a unit of force, rather than mass. Additional non-standard units of length include the
inch (1 ft = 12 in), the yard (1 ya = 3 ft), and the mile (1 mi = 5 280 ft). Additional non-standard
units of mass include the ton (in the U.S., 1 ton = 2 000 lb; in the U.K., 1 ton = 2 240 lb), and the
metric ton (1 tonne = 1 000 kg). Finally, additional non-standard units of time include the minute
(1 min = 60 s), the hour (1 hr = 60 min), the (solar) day (1 da = 24 hr), and the (Julian) year
(1 yr = 365.25 da).

1cm = 10−2 m
1g = 10−3 kg
1ft = 0.3048m
1lb = 4.448 kg m s−2

1slug = 14.59kg

Table 1.3: Conversion factors between the mks, cgs, and fps systems of units. Here, g, ft, and lb
are the abbreviations for gram, foot, and pound, respectively.
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1.1.4 Dimensional Analysis

As we have already seen, length, mass, and time are three fundamentally different entities that
are measured in terms of three completely independent units. It, therefore, makes no sense for
a prospective law of physics to express an equality between (say) a length and a mass. In other
words, the prospective physical law,

m = l, (1.3)

where m is a mass and l is a length, cannot possibly be correct. One easy way of seeing that
Equation (1.3) is invalid (as a law of physics) is to note that this equation is dependent on the
adopted system of units. That is, if m = l in mks units then m , l in fps units, because the
conversion factors which must be applied to the left- and right-hand sides of the equation differ.
Physicists hold very strongly to the maxim that the laws of physics possess objective reality. In
other words, the laws of physics are equivalent for all observers. One immediate consequence of
this maxim is that a law of physics must take the same form in all possible systems of units that
a prospective observer might choose to employ (because the choice of units is arbitrary, and has
nothing to do with physical reality). The only way in which this can be the case is if all laws
of physics are dimensionally consistent. In other words, the quantities on the left- and right-hand
sides of the equality sign in any given law of physics must have the same dimensions (i.e., the same
combinations of length, mass, and time). A dimensionally consistent equation naturally takes the
same form in all possible systems of units, because the same conversion factors are applied to both
sides of the equation when transforming from one system to another.

As an example, let us consider what is probably the most famous equation in physics; that is,
Einstein’s mass-energy relation,

E = m c2. (1.4)

(See Section 3.3.4.) Here, E is the energy of a body, m is its mass, and c is the speed of light in
vacuum. The dimensions of energy are [M] [L]2/[T ]2, and the dimensions of speed are [L]/[T ].
Hence, the dimensions of the left-hand side are [M] [L]2/[T ]2, whereas the dimensions of the
right-hand side are [M] ([L]/[T ])2 = [M] [L]2/[T ]2. It follows that Equation (1.4) is indeed di-
mensionally consistent. Thus, E = m c2 holds good in mks units, in cgs units, in fps units, and
in any other sensible set of units. Had Einstein proposed E = m c, or E = m c3 then his error
would have been immediately apparent to other physicists, because these prospective laws are not
dimensionally consistent. In fact, E = m c2 represents the only simple, dimensionally consistent
way of combining an energy, a mass, and the velocity of light in a law of physics.

The last comment leads naturally to the subject of dimensional analysis. That is, the use of the
idea of dimensional consistency to guess the forms of simple laws of physics.

1.1.5 Deriving Physical Relationships

Consider a viscous fluid flowing through a circular pipe. The volume rate of fluid flow through the
pipe, Q, might plausibly depend on the radius of the pipe, a, the viscosity of the fluid, η, and the
pressure gradient along the pipe, ∆p/l. Here, ∆p is the pressure difference between the two ends
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of the pipe, and l is the length of the pipe. Let us guess that

Q = A ax η y
(
∆p
l

)z

, (1.5)

where x, y, and z are, as yet, unknown exponents, and A is a dimensionless constant. Now, the
dimensions of Q are [L]3/[T ], the dimensions of a are [L], the dimensions of η are [M]/([L] [T ]),
and the dimensions of ∆p/l are {([M] [L]/[T ]2)/[L]2}/[L] = [M]/([L]2 [T ]2). Thus, equating the
dimensions of the left- and right-hand sides of the previous equation, we obtain

[L]3

[T ]
= [L]x

(
[M]

[L] [T ]

)y( [M]
[L]2 [T ]2

)z

. (1.6)

Now, if Equation (1.5) is to be dimensionally consistent then we can separately equate the expo-
nents of length, mass, and time in the previous expression. Equating the exponents of [L], we
obtain

3 = x − y − 2 z. (1.7)

Equating the exponents of [M], we get
0 = y + z. (1.8)

Finally, equating the exponents of [T ], we obtain

−1 = −y − 2 z. (1.9)

It is easily seen that x = 4, y = −1, and z = 1. Hence, we deduce that

Q = A
a4

η

(
∆p
l

)
. (1.10)

1.1.6 Scaling Laws
Suppose that a special effects studio wants to film a scene in which the Leaning Tower of Pisa
topples to the ground. In order to achieve this goal, the studio might make a scale model of the
tower, which is (say) 1m tall, and then film the model falling over. The only problem is that the
resulting footage would look completely unrealistic because the model tower would fall over too
quickly. The studio could easily fix this problem by slowing the film down. But, by what factor
should the film be slowed down in order to make it look realistic?

Although, at this stage, we do not know how to apply the laws of physics to the problem of a
tower falling over, we can, at least, make some educated guesses as to the factors upon which the
time, t f , required for this process to occur depends. In fact, it seems reasonable to suppose that t f

depends principally on the mass of the tower, m, the height of the tower, h, and the acceleration
due to gravity, g. In other words,

t f = C m x h y g z, (1.11)

where C is a dimensionless constant, and x, y, and z are unknown exponents. The exponents x, y,
and z can be determined by the requirement that the previous equation be dimensionally consistent.
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Incidentally, the dimensions of an acceleration are [L]/[T ]2. Hence, equating the dimensions of
both sides of Equation (1.11), we obtain

[T ] = [M] x [L] y
(

[L]
[T ]2

) z

. (1.12)

We can now compare the exponents of [L], [M], and [T ] on either side of the previous expression.
These exponents must all match in order for Equation (1.11) to be dimensionally consistent. Thus,

0 = y + z, (1.13)
0 = x, (1.14)
1 = −2 z. (1.15)

It immediately follows that x = 0, y = 1/2, and z = −1/2. Hence,

t f = C

√
h
g
. (1.16)

Now, the actual tower of Pisa is approximately 100 m tall. It follows that because t f ∝
√

h (g is
the same for both the real and the model tower) the 1m high model tower would fall over a factor
of
√

100/1 = 10 times faster than the real tower. Thus, the film must be slowed down by a factor
of 10 in order to make it look realistic.

1.2 Newton’s Laws of Motion

1.2.1 Introduction
Newton’s laws of motion were first enunciated by Sir Isaac Newton in a work entitled Philosophiae
Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy). This work,
which was first published in 1687 (CE), is nowadays more commonly referred to as the Principia.

1.2.2 Newton’s First Law of Motion
Newton’s first law of motion is

Every body continues in its state of rest, or uniform motion in a straight line, unless
compelled to change that state by forces impressed upon it.

Newton’s first law of motion states that a body subject to zero net force does not accelerate (i.e.,
it moves in a straight line at a constant speed). However, this law is only valid in special frames
of reference known as inertial frames. In fact, we can think of Newton’s first law as the definition
of an inertial frame. Namely, an inertial reference frame is one in which a body subject to zero
net force does not accelerate. There are an infinite number of different inertial reference frames
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all moving at constant velocities with respect to one another. (See Section 1.5.4.) It is impossible
to identify an exact inertial reference frame. The best approximation to such a frame is the so-
called International Celestial Reference System (ICRF), whose origin is the center of mass of the
solar system, and whose coordinate axes are defined with respect to extremely distant point radio
sources (mostly quasars) whose positions can be measured to great accuracy via very long baseline
interferometry (VLBI).1

1.2.3 Newton’s Second Law of Motion
Newton’s second law of motion is

The change of motion (i.e., momentum) of a body is proportional to the force im-
pressed upon it, and is made in the direction of the straight line in which the force is
impressed.

As before, Newton’s second law is only valid in an inertial reference frame. Suppose that the
body in question has a mass m, a displacement (from an arbitrary stationary point that forms the
origin of a Cartesian coordinate system that we have set up in our inertial reference frame) r, an
instantaneous velocity v = dr/dt, and is subject to a force f. Here, t denotes time. Newton’s second
law of motion states that

f =
dp
dt

=
d (m v)

dt
, (1.17)

where
p = m v (1.18)

is the body’s linear momentum.
If the mass of the body is assumed to be constant then Equation (1.17) reduces to

f = m
dv
dt

= m a, (1.19)

where a = dv/dt is the body’s instantaneous acceleration. Note that the mass that appears in the
previous equation is a measure of the reluctance of the body to deviate from its preferred state
of uniform motion in a straight line due to the action of a force. This type of mass is known as
inertial mass. However, another type of mass occurs in nature. A body situated in a gravitational
field whose local acceleration is g is subject to a gravitational force

f = m g. (1.20)

(See Section 1.8.1.) The mass that appears in the previous equation is a sort of gravitational charge
(i.e., it is analogous to the electric charge of a particle in an electric field). This type of mass
is known as gravitational mass. It is an observational fact that inertial mass is proportional to
gravitational mass for all bodies in the universe. In fact, the conventional system of units used in
physics is set up in such a manner that inertial mass is equal to gravitational mass. Nevertheless, it

1P. Charlot, et al., Astronomy and Astrophysics 644, A159 (2020).
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is important to understand that these two types of masses measure different physical properties of
a given body.

Incidentally, the reason that inertial mass is proportional to gravitational mass was not ex-
plained until 1916, when Albert Einstein proposed his general theory of relativity. According
to this theory, inertial mass is proportional to gravitational mass because it is impossible to dis-
tinguish experimentally between a gravitational acceleration and a fictitious acceleration due to
motion observed in a non-inertial reference frame. (See Section 1.5.4.)

Acceleration is a vector (i.e., it transforms under rotation of the coordinate axes in an analogous
manner to a displacement), whereas mass is a scalar (i.e., it is invariant under rotation of the
coordinate axes). (See Section A.5.) Thus, it follows from Equation (1.19) that force must be a
vector. (Otherwise, the form of Newton’s second law would depend unphysically on the arbitrary
orientation of the coordinate axes.) One consequence of force being a vector is that two forces, f1

and f2, both acting on a given body, have the same effect as a single force, f = f1 + f2, acting on
the same body, where the summation is performed according to the laws of vector addition. (See
Section A.3.) Likewise, a single force, f, acting at on a given body has the same effect as two
forces, f1 and f2, acting on the same body, provided that f1 + f2 = f. This method of combining and
splitting forces is known as the resolution of forces, and lies at the heart of many calculations in
classical dynamics.

1.2.4 Newton’s Third Law of Motion
Newton’s third law of motion is

To every action there is always opposed an equal reaction; or, the mutual actions of
two bodies upon each other are always equal and directed to contrary parts.

Consider a dynamical system consisting of two bodies, labelled 1 and 2. Let body 1 exert a force
f21 on body 2, and let body 2 exert a force f12 on body 1. According to Newton’s third law of
motion,

f12 = −f21. (1.21)

In other words, the two forces are equal and opposite. In Newtonian language, one of the forces is
the action, and the other is the reaction. Thus, action and reaction are always equal and opposite.
Newton’s third law holds irrespective of the nature of the forces acting between the two bodies.
One corollary of this law is that a body cannot exert a force on itself. Another corollary is that all
(non-fictitious) forces in the universe have corresponding reactions.

It should be noted that Newton’s third law implies action at a distance. In other words, if the
force that body 1 exerts on body 2 suddenly changes then Newton’s third law demands that there
must be an immediate change in the force that body 2 exerts on body 1. Moreover, this must be
the case irrespective of the distance between the two bodies. However, we know that Einstein’s
special theory of relativity forbids information from traveling through the universe faster than the
speed of light in vacuum. (See Section 3.2.10.) Hence, action at a distance is also forbidden. In
other words, if the force that body 1 exerts on body 2 suddenly changes then there must be a time
delay, which is at least as long as it takes a light ray to propagate between the two bodies, before
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the force that body 2 exerts on body 1 can respond. Of course, this means that Newton’s third law
is not, strictly speaking, correct. However, as long as we restrict our investigations to the motions
of dynamical systems on timescales that are long compared to the time required for light-rays to
traverse these systems, Newton’s third law can be regarded as being approximately correct.

1.3 Motion of Single Particle

1.3.1 Impulse

Consider the motion of a single particle (i.e., a body of negligible spatial extent). Newton’s second
law of motion, (1.19), can be written

f = m
dv
dt
, (1.22)

which implies that

f dt = m dv. (1.23)

Suppose that the particle in question has an instantaneous velocity v1 at an initial time t1, and an
instantaneous velocity v2 at a final time t2. Integrating the previous equation between the initial
and the final time, we obtain ∫ t2

t1
f(t) dt = m

∫ v2

v1

dv = m (v2 − v1), (1.24)

where we have taken into account the fact that the force f is, in general, a function of time. The
quantity

I =

∫ t2

t1
f(t) dt (1.25)

is known as impulse, and is essentially the ‘area’ under the f(t) curve between times t1 and t2. It is
clear from the previous two equations that

I = m∆v, (1.26)

where ∆v = v2 − v1 is the change in the particle’s velocity between the initial and the final times.
Equation (1.18) can be combined with the previous two equations to give

I = ∆p. (1.27)

In other words, the net impulse acting on a particle between an initial and a final time is equal to
the change in the momentum of the particle between the same two times.
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1.3.2 Work

Suppose that a particle subject to a force f undergoes an infinitesimal displacement dr. The net
work that the force does on the particle (i.e., the net energy transferred to the body by the force) is

dW = f · dr. (1.28)

(See Section A.6.) In other words, the work is the product of the displacement and the component
of the force parallel to the displacement. It follows from Equation (1.22) that

dW = m
dv
dt
· dr. (1.29)

However, dr = v dt, so we obtain

dW = m
dv
dt
· v dt = m v · dv. (1.30)

Furthermore,

v · dv = vx dvx + vy dvy + vz dvz =
1
2

d(v 2
x ) +

1
2

d(v 2
y ) +

1
2

d(v 2
z ) =

1
2

d(v2), (1.31)

where v = |v| = (v 2
x + v 2

y + v 2
z )1/2 is the particle’s speed. It follows from the previous two equations

that
dW = dK, (1.32)

where

K =
1
2

m v 2. (1.33)

Here, K is known as kinetic energy, and is the energy that the particle possesses by virtue of its
motion. Equation (1.32) can be integrated to give the work-energy theorem,

W = ∆K. (1.34)

According to this theorem, the net work done by the force acting on the particle in a given time
interval is equal to the change in the particle’s kinetic energy during the same time interval.

Suppose that the force is a function of the particle’s displacement, r. If the particle moves from
point A to point B along any path then Equations (1.28) and (1.34) imply that

W =

∫ rB

rA

f · dr = KB − KA, (1.35)

where rA denotes the displacement of point A, et cetera, KA is the kinetic energy at point A, et
cetera, and dr is an element of the path. (See Section A.14.)
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1.3.3 Conservative Forces

Suppose, again, that a particle is acted upon by a force f(r) that is a function of the particle’s
displacement, r. Suppose that the body travels from point A to point B along some particular path,
labelled 1. The net work done on the particle is

W1 =

(∫ rB

rA

f · dr
)

path 1

, (1.36)

where dr is an element of the path. (See Section A.14.) Suppose, now, that the particle travels
between the same two points along a different path, labelled 2. The net work done on the particle
is

W2 =

(∫ rB

rA

f · dr
)

path 2

. (1.37)

There are two types of forces in the universe. Conservative forces are such that

W1 = W2 (1.38)

irrespective of the locations of points A and B, and the nature of paths 1 and 2. (See Section A.18.)
In other words, a conservative force is such that the net work done on a particle moving between
two points is independent of the path taken between the two points. Gravity is an example of a
conservative force. On the other hand, non-conservative forces are such that net work done on a
particle moving between two points depends on the path taken between the two points. Friction is
an example of a non-conservative force.

Suppose that the particle is acted on by a conservative force and moves from point A to point
B along path 1, and then from point B to point A along path 2. In other words, the particle moves
in a closed loop. The net work done on the particle is

W =

(∫ rB

rA

f · dr
)

path 1

+

(∫ rA

rB

f · dr
)

path 2

=

(∫ rB

rA

f · dr
)

path 1

−
(∫ rB

rA

f · dr
)

path 2

= W1 −W2 = 0, (1.39)

where use has been made of the previous three equations. Thus, we conclude that∮
f · dr = 0. (1.40)

(See Section A.18.) In other words, if a particle subject to a conservative force moves in a closed
loop then zero net work is done on the particle.
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1.3.4 Potential Energy

Consider a particle subject to a conservative force. Let O be the origin of our coordinate system
(i.e., the point whose displacement is 0), and let P be a general point whose displacement is r. We
can define the function

U(r) = −
∫ r

0
f(r′) · dr′. (1.41)

The fact that the force is conservative ensures that this function has a unique value at each point
in space. On the other hand, if the force were non-conservative then the function would be ill-
defined, because there are an infinite number of different paths linking points O and P, and each
path would yield a different value of the integral on the right-hand side of the previous equation.
The quantity U is known as potential energy, and is the energy that the particle possesses by virtue
of its position. Obviously, it only makes sense to associate potential energy with a conservative
force. Note that the fact that the position of the origin of our coordinate system is arbitrary implies
that potential energy is undefined to an arbitrary additive constant. In other words, only differences
in potential energies are physically meaningful.

Suppose that the particle moves from point r to point r + dr. The associated change in the
particle’s potential energy is

dU = −f · r = − fx dx − fy dy − fz dz. (1.42)

Suppose that dy = dz = 0. We can write

fx = −
(

dU
dx

)
constant y, z

= −∂U
∂x

. (1.43)

Similar arguments yield

fy = −∂U
∂y

, (1.44)

fz = −∂U
∂z
. (1.45)

Hence, we deduce that

f = −∂U
∂x

ex − ∂U
∂y

ey − ∂U
∂z

ez, (1.46)

where ex is a unit vector parallel to the x-axis, et cetera. (See Section A.4.) The previous equation
can be written more succinctly as

f = −∇U. (1.47)

(See Section A.19.) In other words, a particle moving in a conservative force field experiences a
force that is equal to minus the gradient of the potential energy.
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1.3.5 Energy Conservation
Consider a particle moving in a conservative force field. Suppose that the particle moves from
point A to point B along some particular path. According to Equation (1.35),∫ rB

rA

f · dr = KB − KA. (1.48)

However, Equation (1.41) implies that∫ rB

rA

f · dr = −
∫ rA

0
f · dr +

∫ rB

0
f · dr = UA − UB, (1.49)

where UA is the potential energy at point A, et cetera. The previous two equations yield

KA + UA = KB + UB. (1.50)

Thus, if we define the total energy, E, of the particle as the sum of its kinetic and potential energies,

E = K + U, (1.51)

then we deduce that E is a constant of the motion. In other words, the total energy of a particle
moving in a conservative force field is a conserved quantity.

1.3.6 Energy Diagrams
Consider a moving in the x-direction, say, under the action of some x-directed force, f (x). Suppose
that f (x) is a conservative force; for instance, gravity. In this case, according to Equation (1.47),
we can write

f (x) = −dU(x)
dx

, (1.52)

where U(x) is the potential energy of the particle at position x.
Let the curve U(x) take the form shown in Figure 1.1. For instance, this curve might represent

the gravitational potential energy of a cyclist freewheeling in a hilly region. Observe that we have
set the potential energy at infinity to zero (which we are generally free to do, because potential
energy is undefined to an arbitrary additive constant). This is a fairly common convention. What
can we deduce about the motion of the particle in this potential?

We know that the total energy, E—which is the sum of the kinetic energy, K, and the potential
energy, U—is a constant of the motion. [See Equation (1.51).] Hence, we can write

K(x) = E − U(x). (1.53)

However, we also know that a kinetic energy can never be negative [because K = (1/2) m v 2, and
neither m nor v 2 can be negative]. Hence, the previous expression tells us that the particle’s motion
is restricted to the region (or regions) in which the potential energy curve U(x) falls below the
value E. This idea is illustrated in Figure 1.1. Suppose that the total energy of the system is E0.
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0

U
→

x1x0 x2

E0

E1

x →

E2

Figure 1.1: A potential energy curve.

It is clear, from the figure, that the particle is trapped inside one or other of the two dips in the
potential; these dips are generally referred to as potential wells. Suppose that we now raise the
energy to E1. In this case, the particle is free to enter or leave each of the potential wells, but
its motion is still bounded to some extent, because it clearly cannot move off to infinity. Finally,
let us raise the energy to E2. Now the particle is unbounded; that is, it can move off to infinity.
In conservative systems in which it makes sense to adopt the convention that the potential energy
at infinity is zero, bounded systems are characterized by E < 0, whereas unbounded systems are
characterized by E > 0.

The previous discussion suggests that the motion of an particle moving in a potential generally
becomes less bounded as the total energy E of the system increases. Conversely, we would expect
the motion to become more bounded as E decreases. In fact, if the energy becomes sufficiently
small then it appears likely that the system will settle down in some equilibrium state in which the
particle is stationary. Let us try to identify any prospective equilibrium states in Figure 1.1. If the
particle remains stationary then it must be subject to zero force (otherwise it would accelerate).
Hence, according to Equation (1.52), an equilibrium state is characterized by

dU
dx

= 0. (1.54)

In other words, a equilibrium state corresponds to either a maximum or a minimum of the potential
energy curve U(x). It can be seen that the U(x) curve shown in Figure 1.1 has three associated
equilibrium states located at x = x0, x = x1, and x = x2.

Let us now make a distinction between stable equilibrium points and unstable equilibrium
points. When the particle is slightly displaced from a stable equilibrium point then the resultant
force f acting on it must always be such as to return it to this point. In other words, if x = x0 is an
equilibrium point then we require

d f
dx

∣∣∣∣
x=x0

< 0 (1.55)
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x →

U
(x
)
→

Stable Equilibrium Unstable Equilibrium Neutral Equilibrium

Figure 1.2: Different types of equilibrium point.

for stability; that is, if the particle is displaced to the right, so that x − x0 > 0, then the force must
act to the left, so that f < 0, and vice versa. Likewise, if

d f
dx

∣∣∣∣
x=x0

> 0 (1.56)

then the equilibrium point x = x0 is unstable. It follows, from Equation (1.52), that stable equilib-
rium points are characterized by

d2U
dx2 > 0. (1.57)

In other words, a stable equilibrium point corresponds to a minimum of the potential energy curve
U(x). Likewise, an unstable equilibrium point corresponds to a maximum of the U(x) curve.
Hence, we conclude that, in Figure 1.1, x = x0 and x = x2 are stable equilibrium points, whereas
x = x1 is an unstable equilibrium point. Of course, this makes perfect sense if we think of U(x)
as a gravitational potential energy curve, so that U is directly proportional to height. In this case,
all we are saying is that it is easy to confine a low energy mass at the bottom of a valley, but very
difficult to balance the same mass on the top of a hill (because any slight displacement of the mass
will cause it to slide down the hill). Note, finally, that if

dU
dx

=
d2U
dx2 = 0 (1.58)

at any point (or in any region) then we have what is known as a neutral equilibrium point. We can
move the particle slightly away from such a point and it will still remain in equilibrium (i.e., it will
neither attempt to return to its initial state, nor will it continue to move). A neutral equilibrium
point corresponds to a flat spot in a U(x) curve. See Figure 1.2.

The equation of motion of a particle moving in one dimension under the action of a conservative
force is, in principle, integrable. Because K = (1/2) m v2, the energy conservation equation (1.53)
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can be rearranged to give

v = ±
(

2 [E − U(x)]
m

)1/2

, (1.59)

where the ± signs correspond to motion to the left and to the right, respectively. However, because
v = dx/dt, this expression can be integrated to give

t = ±
( m

2 E

)1/2
∫ x

x0

dx′√
1 − U(x′)/E

, (1.60)

where x(t = 0) = x0. For sufficiently simple potential functions, U(x), the previous equation can
be solved to give x as a function of t. For instance, if U = (1/2) k x 2, x0 = 0, and the plus sign is
chosen, then

t =
(m

k

)1/2
∫ (k/2 E)1/2 x

0

dy√
1 − y 2

=
(m

k

)1/2
sin−1

([
k

2 E

]1/2

x

)
, (1.61)

which can be inverted to give
x = a sin(ω t), (1.62)

where a =
√

2 E/k and ω =
√

k/m. This type of motion is known as simple harmonic motion.
Note that the particle reverses direction each time it reaches one of the so-called turning points
(x = ±a) at which U = E (and, so K = 0). This analysis suggests that a particle trapped in a
general potential well exhibits oscillatory motion between the turning points.

1.4 Motion of System of Many Particles

1.4.1 Equations of Motion
Consider a dynamical system consisting of N particles. Let particle i have mass mi, displacement
ri, and velocity vi = dri/dt. Suppose that particle i is subject to a force fi j exerted by particle
j. Suppose, in addition, that particle i is subject to an external force (i.e., a force that originates
outside the dynamical system) Fi. Applying Newton’s second law of motion to the particle [see
Equation (1.19)], we obtain

mi
dvi

dt
=

j,i∑
j=1,N

fi j + Fi, (1.63)

assuming that all of the forces acting on particle i are superposable. (This is reasonable because
gravitational and electromagnetic forces are superposable.) Newton’s third law of motion, (1.21),
can be generalized to give

fi j = −f ji, (1.64)

for all i and j. Note, in particular, that fii = −fii = 0. In other words, particle i cannot exert a
force on itself. This accounts for the exclusion of particle i in the sum on the right-hand side of
Equation (1.63).
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There are N equations of motion of analogous form to Equation (1.63); one for each particle
that makes up the system. We can sum all of these equations to give∑

i=1,N

mi
dvi

dt
=
∑
i=1,N

j,i∑
j=1,N

fi j +
∑
i=1,N

Fi. (1.65)

Now, every term, fi j, appearing in the double sum on the right-hand side of the previous equation,
can be paired with another term—f ji, in this case—that is equal and opposite according to Newton’s
third law of motion, (1.64). In other words, the terms in the sum all cancel out in pairs. It follows
that the previous equation reduces to ∑

i=1,N

mi
dvi

dt
= F, (1.66)

where
F =

∑
i=1,N

Fi. (1.67)

is the net external force acting on the system.

1.4.2 Center of Mass
The center of mass of a dynamical system is an imaginary point whose coordinates are the mass-
weighted average of the coordinates of the system’s constituent particles. It follows that the dis-
placement of the center of mass is

R =

∑
i=1,N mi ri∑

i=1,N mi
. (1.68)

The velocity of the center of mass, which is obtained by differentiating the previous expression
with respect to time, is

dR
dt

=
1
M

∑
i=1,N

mi vi, (1.69)

where
M =

∑
i=1,N

mi (1.70)

is the total mass of the system. Likewise, the acceleration of the center of mass is

d2R
dt2 =

1
M

∑
i=1,N

mi
dvi

dt
. (1.71)

A comparison of Equations (1.66) and (1.71) reveals that

M
d2R
dt2 = F. (1.72)

We conclude that the center of mass moves like a particle of mass M subject to the net exter-
nal force, F, acting on the system. In particular, the motion of the center of mass is completely
unaffected by the internal forces that the system’s constituent particle exert on one another.
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Figure 1.3: The unfortunate history of the planet Krypton.

1.4.3 Explosion of Krypton

As an illustration of the points raised in the previous discussion, let us consider the unfortunate
history of the planet Krypton. As is well-known, Krypton—Superman’s home planet—eventually
exploded. Note, however, that before, during, and after this explosion, the net external force acting
on Krypton, or the fragments of Krypton—namely, the gravitational attraction due to Krypton’s
sun—remained the same. In other words, the forces responsible for the explosion can be thought of
as large, transitory, internal forces. We conclude that the motion of the center of mass of Krypton,
or the fragments of Krypton, was unaffected by the explosion. This follows, from Equation (1.72),
because the motion of the center of mass is independent of internal forces. Before the explosion,
the planet Krypton presumably executed a standard Keplerian orbit around Krypton’s sun. We
conclude that, after the explosion, the fragments of Krypton (or, to be more exact, the center of
mass of these fragments) continued to execute exactly the same orbit. See Figure 1.3.

1.4.4 Conservation of Linear Momentum

Suppose that our dynamical system is isolated. In other words, the system is not subject to a net
external force, so that F = 0. In this case, Equation (1.66) reduces to∑

i=1,N

mi
dvi

dt
= 0. (1.73)

However, the linear momentum of the ith particle is

pi = mi vi. (1.74)

Thus, Equation (1.73) yields ∑
i=1,N

dpi

dt
= 0, (1.75)

or
dP
dt

= 0, (1.76)
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where
P =

∑
i=1,N

pi (1.77)

is the total linear momentum of the system. Equation (1.76) implies that the total linear momentum
of an isolated dynamical system is a conserved quantity. In other words, the total momentum does
not evolve in time.

1.4.5 Conservation of Angular Momentum
Taking the vector product of Equation (1.63) with the displacement ri, we obtain

mi ri × dvi

dt
=

j,i∑
j=1,N

ri × fi j + ri × Fi. (1.78)

Now, the angular momentum of particle i about the origin of the coordinate system is defined

li = ri × pi = mi ri × vi. (1.79)

(See Section A.8.) It follows that

dli

dt
= mi vi × vi + mi ri × dvi

dt
= mi ri × dvi

dt
. (1.80)

(See Sections A.8 and A.12.) Hence, Equation (1.78) yields the following angular equation of
motion for the ith particle:

dli

dt
=

j,i∑
j=1,N

ri × fi j + ri × Fi. (1.81)

There are N angular equations of motion of analogous form to the previous equation; one for
each particle that makes up the system. We can sum all of these equations to give

dL
dt

=
∑
i=1,N

j,i∑
j=1,N

ri × fi j + τ, (1.82)

where
L =

∑
i=1,N

li (1.83)

is the total angular momentum of the system about the origin of the coordinate system, and

τ =
∑
i=1,N

ri × Fi (1.84)

is the net external torque acting on the system about the origin of the coordinate system. (See
Section A.8.)
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Consider the double sum on the right-hand side of Equation (1.82). A general term, ri × fi j,
in this sum can always be paired with a matching term, r j × f ji, in which the indices have been
swapped. Making use of Equation (1.64), the sum of a general matched pair can be written

ri × fi j + r j × f ji = (ri − r j) × fi j. (1.85)

Let us assume that the forces acting between the various components of the system are central in
nature, so that fi j is parallel to ri − r j. In other words, the force exerted on particle j by particle i
either points directly toward, or directly away from, particle i, and vice versa. This is a reasonable
assumption, because most of the forces that we encounter in the world around us are of this type
(e.g., gravity). It follows that if the forces are central in nature then the vector product on the
right-hand side of the previous expression is zero. (See Section A.8.) We conclude that

ri × fi j + r j × f ji = 0, (1.86)

for all values of i and j. Thus, the double sum on the right-hand side of Equation (1.82) is zero for
any kind of central internal force. We are left with

dL
dt

= τ. (1.87)

In particular, if the system is isolated, such that it is not subject to a net external torque, so that
τ = 0, then the previous equation reduces to

dL
dt

= 0. (1.88)

In other words, the total angular momentum of an isolated system is a conserved quantity, provided
that the different components of the system interact via central forces.

1.5 Invariance Laws

1.5.1 Inertial Reference Frame
Suppose that we have found an inertial frame of reference, and have set up a Cartesian coordinate
system in this frame. The motion of particle i in the many-particle system discussed in Section 1.4
is specified by giving its displacement, ri ≡ (xi, yi, zi), with respect to the origin of the coordinate
system, as a function of time, t. In particular, the linear and angular equations of motion the particle
take the respective forms

mi
dvi

dt
=

j,i∑
j=1,N

fi j + Fi, (1.89)

and

mi
d(ri × vi)

dt
=

j,i∑
j=1,N

ri × fi j + ri × Fi. (1.90)

[See Equations (1.63), (1.79), and (1.81).]
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1.5.2 Rotational Invariance
The displacement, ri, is, by definition, a vector (i.e., its components, xi, yi, zi, transform under
rotation of the coordinate axes in such a manner that the length and direction of ri are preserved).
(See Section A.5.) Moreover, mi and t are scalars (i.e., they are invariant under rotation of the
coordinate axes). It follows that vi = dri/dt and dvi/dt are vectors. Furthermore, we have already
seen that forces are vectors. (See Section 1.2.3.) Finally, we know that if a and b are vectors then
so is a × b. (See Section A.8.) It follows that every term appearing in the previous two equations
transforms as a vector under rotation of the coordinate axes. In other words, the forms of the linear
and angular equations of motion, (1.89) and (1.90), respectively, are invariant under rotation of
the coordinate axes. Of course, this must be the case because the choice of the orientation of the
axes of a Cartesian coordinate system is completely arbitrary, and has no bearing on the motions
of bodies in the universe.

1.5.3 Translational Invariance
Suppose that we transform our coordinate system such that the origin shifts from r = 0 to r = rshift,
where rshift is independent of time. It follows that

ri → ri − rshift, (1.91)

vi → vi, (1.92)

fi j → fi j, (1.93)

Fi → Fi. (1.94)

The latter two equations follow because forces are obviously not affected by the transformation.
It is clear that the linear equation of motion, (1.89), is invariant under the transformation. On the
other hand, the angular equation of motion, (1.90), becomes

mi
d(ri × vi)

dt
− mi rshift × dvi

dt
=

j,i∑
j=1,N

ri × fi j + ri × Fi − rshift ×
j,i∑

j=1,N

fi j − rshift × Fi. (1.95)

However, the vector product of rshift with Equation (1.89) yields

mi rshift × dvi

dt
= rshift ×

j,i∑
j=1,N

fi j + rshift × Fi, (1.96)

The previous two equations can be combined to give

mi
d(ri × vi)

dt
=

j,i∑
j=1,N

ri × fi j + ri × Fi. (1.97)

Thus, we conclude that the angular equation of motion, (1.90), is also invariant under the transfor-
mation. Of course, all of this makes sense because the choice of the origin of a Cartesian coordinate
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system is completely arbitrary, and has no bearing on the motions of bodies in the universe. One
corollary of the previous analysis is that it does not matter about which point we choose to take
moments of momenta and forces to generate angular momenta and torques, respectively, as long
as we choose the same point in all cases.

1.5.4 Galilean Invariance
Consider a second frame of reference moving with some arbitrary constant velocity u with respect
to our original inertial reference frame. We can assume, without loss of generality, that the origins
of the two coordinate systems coincide at time t = 0. (Note that there is a tacit assumption that
clocks run at the same rate in both reference frames. This is the case provided that the relative
speed of the two frames is much smaller than the speed of light in vacuum. See Section 3.2.3.) It
follows that

ri → ri − u t, (1.98)

vi → vi − u, (1.99)

dvi

dt
→ dvi

dt
, (1.100)

fi j → fi j, (1.101)

Fi → Fi. (1.102)

Here, we are assuming that the forces are the same in both reference frames. It is clear that the
linear equation of motion, (1.89), takes the same form in the second reference frame. On the other
hand, the angular equation of motion, (1.90), becomes

mi
d(ri × vi)

dt
− mi t u × dvi

dt
=

j,i∑
j=1,N

ri × fi j + ri × Fi − t u ×
j,i∑

j=1,N

fi j − t u × Fi. (1.103)

However, the vector product of u with Equation (1.89) yields

mi u × dvi

dt
= u ×

j,i∑
j=1,N

fi j + u × Fi, (1.104)

The previous two equations can be combined to give

mi
d(ri × vi)

dt
=

j,i∑
j=1,N

ri × fi j + ri × Fi. (1.105)

Thus the angular equation of motion, (1.90), also takes the same form in the second reference
frame. It is clear that the second frame of reference is also an inertial reference frame (i.e., a frame
in which Newton’s laws of motion are valid). In particular, if all of the forces are zero then the
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system’s constituent particle do not accelerate in either the first or the second reference frame, in
accordance with Newton’s first law of motion. Given that the constant velocity u is arbitrary, we
conclude that there are an infinite number of different inertial frames of reference all moving at
constant velocities with respect to one another, and that Newton’s laws of motion are equally valid
in each frame. In particular, if the total energy of the system is conserved in one inertial reference
frame then it is conserved in all inertial reference frames. Likewise, if the total momentum of the
system is conserved in one inertial reference frame then it is conserved in all inertial reference
frames. Finally, if the total angular momentum of the system is conserved in one inertial reference
frame then it is conserved in all inertial reference frames.

Consider the special case in which u = u ex. Let r = (x, y, z) be a general displacement in
the first reference frame, and let r′ = (x′, y′, z′) be the corresponding displacement in the second
frame. It follows from Equation (1.98) that

x′ = x − u t, (1.106)

y′ = y, (1.107)

z′ = z. (1.108)

This coordinate transformation was implied in the researches of Galileo Galilei, and is known as a
Galilean transformation in his honor. Hence, the fact that Newton’s laws of motion take the same
form in all inertial reference frames is known as Galilean invariance.

Suppose that the second frame of reference accelerates with respect to the first. In other words,
suppose that u = u(t). It follows that

ri → ri −
∫ t

0
u(t′) dt′, (1.109)

vi → vi − u, (1.110)

dvi

dt
→ dvi

dt
− du

dt
, (1.111)

fi j → fi j, (1.112)

Fi → Fi. (1.113)

It is easily seen that Equations (1.89) and (1.90) transform to give

mi
dvi

dt
=

j,i∑
j=1,N

fi j + Fi + mi
du
dt
, (1.114)

mi
d(ri × vi)

dt
=

j,i∑
j=1,N

ri × fi j + ri × Fi + mi ri × du
dt
, (1.115)

respectively. Note the appearance of the so-called fictitious force, mi du/dt, and the so-called
fictitious torque, mi ri×du/dt, on the right-hand sides of the previous two equations. It is clear that
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Figure 1.4: A one-dimension collision in the laboratory frame.

the second frame of reference is not an inertial frame. (For instance, if all of the real forces were
zero then the system’s constituent particles would still accelerate, which is not in accordance with
Newton’s first law of motion.) Hence, we conclude that any frame of reference that accelerates
with respect to a given inertial reference frame is non-inertial.

1.6 Two-Particle Collisions

1.6.1 One-Dimensional Collisions

Consider two particles of mass m1 and m2, respectively, that are free to move in one dimension.
Suppose that these two particles collide. Suppose, further, that both particles are subject to zero net
force when they are not in contact with one another. Finally, let us assume that we are observing
the collision in a convenient inertial reference frame known as the laboratory frame. This situation
is illustrated in Figure 1.4.

Both before and after the collision, the two particles move with constant velocity, in accordance
with Newton’s first law of motion. Let v1i and v2i be the velocities of the first and second particles,
respectively, before the collision. Here, velocities to the right in Figure 1.4 are positive. Likewise,
let v1 f and v2 f be the velocities of the first and second particles, respectively, after the collision.
During the collision itself, the first particle exerts a large transitory force, f21, on the second,
whereas the second particle exerts an equal and opposite force, f12 = − f21, on the first. In fact, we
can model the collision as equal and opposite impulses given to the two particles at the instant in
time when they come together. (See Section 1.3.1.)

We are clearly considering a system in which there is zero net external force (because the
forces associated with the collision are internal in nature). Hence, the total (linear) momentum of
the system is a conserved quantity. (See Section 1.4.4.) Equating the total momenta before and
after the collision, we obtain

m1 v1i + m2 v2i = m1 v1 f + m2 v2 f . (1.116)

This equation is valid for any one-dimensional collision, irrespective its nature.
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Suppose that the collision is elastic, which means that there is no associated loss of kinetic
energy. Equating the net kinetic energies before and after the collision, we obtain

1
2

m1 v
2
1i +

1
2

m2 v
2
2i =

1
2

m1 v
2
1 f +

1
2

m2 v
2
2 f . (1.117)

(See Section 1.3.2.) It follows that

m1 (v 2
1 f − v 2

1i) = −m2 (v 2
2 f − v 2

2i), (1.118)

or
m1 (v1 f − v1i) (v1 f + v1i) = −m2 (v2 f − v2i) (v2 f + v2i). (1.119)

However, Equation (1.116) yields

m1 (v1 f − v1i) = −m2 (v2 f − v2i). (1.120)

The previous two equations can be combined to give

v1 f + v1i = v2 f + v2i, (1.121)

or
(v2 f − v1 f ) = −(v2i − v1i). (1.122)

Thus, we conclude that an elastic collision causes the relative velocity of the two particles to reverse
direction, while keeping the same magnitude.

Suppose that we transform to a frame of reference that co-moves with the center of mass of
the system. The motion of a multi-particle system often looks particularly simple when viewed in
such a frame. Because the system is subject to zero net external force, the velocity of the center of
mass is invariant [see Equations (1.72)], and is given by

V =
m1 v1i + m2 v2i

m1 + m2
=

m1 v1 f + m2 v2 f

m1 + m2
. (1.123)

[See Equation (1.68).] A particle that possesses a velocity v in the laboratory frame possesses a
velocity v′ = v − V in the so-called center-of-mass frame. It is easily demonstrated that

v′1i = − m2

m1 + m2
(v2i − v1i), (1.124)

v′2i = +
m1

m1 + m2
(v2i − v1i), (1.125)

v′1 f = − m2

m1 + m2
(v2 f − v1 f ), (1.126)

v′2 f = +
m1

m1 + m2
(v2 f − v1 f ). (1.127)

Note, incidentally, that the center-of-mass frame is obviously inertial (because it is moving at a
constant velocity with respect to the inertial laboratory frame).
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Figure 1.5: A one-dimension collision in the center-of-mass frame.

The previous four equations yield

−p′1i = p′2i = µ (v2i − v1i), (1.128)

−p′1 f = p′2 f = µ (v2 f − v1 f ), (1.129)

where µ = m1 m2/(m1 + m2) is the so-called reduced mass (see Section 1.10.7), and p′1i = m1 v
′
1i

is the initial momentum of the first particle in the center-of-mass frame, et cetera. In other words,
when viewed in the center-of-mass frame, the two particles approach one another with equal and
opposite momenta before the collision, and diverge from one another with equal and opposite
momenta after the collision. See Figure 1.5. Thus, the center-of-mass momentum conservation
equation,

p′1i + p′2i = p′1 f + p′2 f , (1.130)

is trivially satisfied, because both the left- and right-hand sides are zero. Incidentally, this result is
valid for both elastic and inelastic collisions.

Equations (1.122), (1.128), and (1.129) can be combined to give

p′1 f = −p′1i, (1.131)

p′2 f = −p′2i. (1.132)

In other words, in the center-of-mass frame, an elastic collision causes the equal and opposite
momenta of the two particles to both reverse direction, but keep the same magnitude. The previous
two expressions imply that

v′1 f = −v′1i, (1.133)

v′2 f = −v′2i. (1.134)

In other words, in the center-of-mass frame, an elastic collision also causes the velocity of each
particle to reverse direction, but keep the same magnitude. Thus, the total kinetic energy of the
system is obviously a conserved quantity in the center-of-mass frame.

Equations (1.124) and (1.125) can be combined with the previous two equations to give

v′1 f =
m2

m1 + m2
(v2i − v1i), (1.135)
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v′2 f = − m1

m1 + m2
(v2i − v1i). (1.136)

However, v1 f = v′1 f + V and v2 f = v′2 f + V , which allows us to express the velocities of the two
particles after the collision in the laboratory frame in terms of the corresponding velocities before
the collision:

v1 f =

(
m1 − m2

m1 + m2

)
v1i +

(
2 m2

m1 + m2

)
v2i, (1.137)

v2 f =

(
2 m1

m1 + m2

)
v1i −

(
m1 − m2

m1 + m2

)
v2i. (1.138)

Let us, now, consider some special cases. Suppose that two equal-mass particles collide elasti-
cally. If m1 = m2 then Equations (1.137) and (1.138) yield

v1 f = v2i, (1.139)

v2 f = v1i. (1.140)

In other words, the two particles simply exchange velocities when they collide. For instance, if
the second particle is stationary and the first particle strikes it head-on with velocity v then the first
particle is brought to a halt whereas the second particle moves off with velocity v. It is possible to
reproduce this effect in snooker or pool by striking the cue ball with great force in such a manner
that it slides, rather that rolls, over the table; in this case, when the cue ball strikes another ball head-
on it comes to a complete halt, and the other ball is propelled forward very rapidly. Incidentally, it
is necessary to prevent the cue ball from rolling, because rolling motion is not taken into account
in our analysis, and actually changes the answer.

Suppose that the second particle is much more massive than the first (i.e., m2 � m1), and is
initially at rest (i.e., v2i = 0). In this case, Equations (1.137) and (1.138) yield

v1 f ' −v1i, (1.141)

v2 f ' 0. (1.142)

In other words, the velocity of the light particle is effectively reversed during the collision, whereas
the massive particle remains approximately at rest. Indeed, this is the sort of behavior we expect
when an object collides elastically with an immovable obstacle; for instance, when an elastic ball
bounces off a brick wall.

Suppose, finally, that the second particle is much lighter than the first (i.e., m2 � m1), and is
initially at rest (i.e., v2i = 0). In this case, Equations (1.137) and (1.138) yield

v1 f ' v1i, (1.143)

v2 f ' 2 v1i. (1.144)

In other words, the motion of the massive particle is essentially unaffected by the collision, whereas
the light particle ends up moving twice as fast as the massive one.
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1.6.2 Totally Inelastic Collisions
In a totally inelastic collision, the two particles stick together after colliding, so that they end up
moving with the same final velocity, v f = v1 f = v2 f . In this case,

v f =
m1 v1i + m2 v2i

m1 + m2
= V. (1.145)

In other words, the common final velocity of the two particles is equal to the center-of-mass veloc-
ity of the system. This is hardly a surprising result. We have already seen that in the center-of-mass
frame the two particles must diverge with equal and opposite momenta after the collision. How-
ever, in a totally inelastic collision these two momenta must also be equal (because the two objects
stick together). The only way in which this is possible is if the two particles remain stationary in
the center-of-mass frame after the collision. Hence, after the collision, the two particles move with
the center-of-mass velocity in the laboratory frame.

Suppose that the second object is initially at rest (i.e., v2i = 0) in the laboratory frame. In this
special case, the common final velocity of the two objects is

v f =
m1

m1 + m2
v1i. (1.146)

Note that the first object is slowed down by the collision. The fractional loss in kinetic energy of
the system due to the collision is given by

f =
m2

m1 + m2
. (1.147)

The loss in kinetic energy is small if the (initially) stationary object is much lighter than the moving
object (i.e., if m2 � m1), and almost 100% if the moving object is much lighter than the stationary
one (i.e., if m2 � m1). Of course, the lost kinetic energy of the system is converted into some other
form of energy; for instance, heat energy.

1.6.3 Two-Dimensional Collisions
Suppose that an object of mass m1, moving with initial velocity v1i, strikes a second object, of
mass m2, that is initially at rest. Suppose, further, that the collision is not head-on, so that after
the collision the first object moves off at an angle θ1 to its initial direction of motion, whereas the
second object recoils at an angle θ2 to this direction. Let the final velocities of the two objects be
v1 f and v2 f , respectively. See Figure 1.6.

We are again considering a system in which there is zero net external force (because the forces
associated with the collision are internal in nature). It follows that the total momentum of the
system is a conserved quantity. However, unlike before, we must now treat momentum as a vector
quantity, because we are no longer dealing with one-dimensional motion. Momentum conservation
implies that

m2 v1i = m1 v1 f + m2 v2 f . (1.148)
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Figure 1.6: A two-dimensional collision in the laboratory frame.

As before, it is convenient to transform to a frame of reference that co-moves with the center
of mass of the system. The invariant velocity of the center of mass is given by

V =
m1 v1i

m1 + m2
=

m1 v1 f + m2 v2 f

m1 + m2
. (1.149)

An object that possesses a velocity v in the laboratory frame possesses a velocity v′ = v −V in the
center-of-mass frame. Hence, it follows that

v′1i =

(
m2

m1 + m2

)
v1i, (1.150)

v′2i = −
(

m1

m1 + m2

)
v1i, (1.151)

v′1 f = −
(

m2

m1 + m2

)
(v2 f − v1 f ), (1.152)

v′2 f =

(
m1

m1 + m2

)
(v2 f − v1 f ). (1.153)

Furthermore, the momenta in the center-of-mass frame take the form

−p′1i = p′2i = −µ v1i, (1.154)

−p′1 f = p′2 f = µ (v2 f − v1 f ), (1.155)

where µ = m1 m2/(m1 + m2). (Of course, p′1i = m1 v′1i, et cetera.) As before, in the center-of-mass
frame, the two objects approach one another with equal and opposite momenta before the collision,
and diverge from one another with equal and opposite momenta after the collision. Let θ be the
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Figure 1.7: A two-dimensional collision in the center-of-mass frame.

direction subtended between the final and initial momenta of each object in the center-of-mass
frame. See Figure 1.7. It follows that in the x-y coordinate system shown in the figure,

p′1i = p′1i (1, 0), (1.156)

p′2i = −p′1i (1, 0), (1.157)

p′1 f = p′1 f (cos θ, sin θ), (1.158)

p′2 f = −p′1 f (cos θ, sin θ), (1.159)

where p′1i = |p′1i|, et cetera. Finally, if the collision is elastic then the kinetic energy before the
collision must equal that after the collision (in both the laboratory and the center-of-mass frames).
It follows that

p′1 f = p′1i. (1.160)

Hence,

v′1 f ≡
p′1 f

m1
=

(
m2 v1i

m1 + m2

)
(cos θ, sin θ), (1.161)

v′2 f ≡
p′2 f

m2
= −

(
m1 v1i

m1 + m2

)
(cos θ, sin θ), (1.162)

It can be seen from the previous two equations that an elastic two-dimensional collision is fully
characterized once the initial velocity, v1i, and the scattering angle, θ, are specified. In general,
we would expect θ to be able to take all values in the range 0 to π. In fact, a head-on collision
corresponds to θ = π, whereas a glancing collision corresponds to θ � 1.

Now, v = v′ + V, where

V =

(
m1 v1 i

m1 + m2

)
(1, 0). (1.163)
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It follows that, in the x-y coordinate system shown in Figure 1.6, the laboratory-frame velocities
of the two objects after the collision are

v1 f =

(
v1i

m1 + m2

)
(m1 + m2 cos θ, m2 sin θ), (1.164)

v2 f =

(
m1 v1i

m1 + m2

)
(1 − cos θ, − sin θ). (1.165)

Hence, according to Figure 1.6,

tan θ1 =
sin θ

cos θ + m1/m2
, (1.166)

tan θ2 =
sin θ

1 − cos θ
= tan

(
π

2
− θ

2

)
. (1.167)

The last equation implies that

θ2 =
π

2
− θ

2
. (1.168)

Differentiating Equation (1.166) with respect to θ, we obtain

d tan θ1

dθ
=

1 + (m1/m2) cos θ
(cos θ + m1/m2) 2 . (1.169)

Thus, tan θ1 attains an extreme value, which can be shown to correspond to a maximum possible
value of θ1, when the numerator of the previous expression is zero; that is, when

cos θ = −m2

m1
. (1.170)

Note that it is only possible to solve the previous equation when m1 > m2. If this is the case then
Equation (1.166) yields

tan θ1 max =
m2/m1√

1 − (m2/m1) 2
, (1.171)

which reduces to

θ1 max = sin−1
(

m2

m1

)
. (1.172)

Hence, we conclude that when m1 > m2 there is a maximum possible value of the scattering angle,
θ1, in the laboratory frame. This maximum value is always less than π/2, which implies that there
is no backward scattering (i.e., θ1 > π/2) at all when m1 > m2. For the special case when m1 = m2,
the maximum scattering angle is π/2. However, for m1 < m2 there is no maximum value, and the
scattering angle in the laboratory frame can thus range all the way to π.

Suppose that the two particles have equal masses, so that m1 = m2. In this case, Equa-
tion (1.166) yields

tan θ1 =
sin θ

cos θ + 1
= tan

(
θ

2

)
. (1.173)
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Hence,

θ1 =
θ

2
. (1.174)

In other words, the scattering angle of the first particle in the laboratory frame is half of the scat-
tering angle in the center-of-mass frame. The previous equation can be combined with Equa-
tion (1.168) to give

θ1 + θ2 =
π

2
. (1.175)

Thus, in the laboratory frame, the two particles move off at right-angles to one another after the
collision. It is possible to reproduce this effect in snooker or pool by striking the cue ball with
great force in such a manner that it slides, rather that rolls, over the table; in this case, when the
cue ball strikes another ball obliquely then the two balls move off at right-angles to one another.
Incidentally, it is necessary to prevent the cue ball from rolling, because rolling motion is not taken
into account in our analysis, and actually changes the answer. Finally, it is easily demonstrated
that the fractions of the initial kinetic energy carried off by the two particles after the collision are

E1 f

E1i
= cos2 θ1, (1.176)

E2 f

E1i
= sin2 θ1. (1.177)

1.7 Rigid Body Rotation

1.7.1 Fundamental Equations
We can think of a rigid body as a collection of a large number of small mass elements that all
maintain a fixed spatial relationship with respect to one another. Let there be N elements, and let
the ith element have mass mi, instantaneous displacement ri, and instantaneous velocity vi. The
equation of motion of the ith element is written

mi
dvi

dt
=

j,i∑
j=1,N

fi j + Fi. (1.178)

(See Section 1.4.1.) Here, fi j is the internal force exerted on the ith element by the jth element,
and Fi the external force acting on the ith element. The internal forces, fi j, represent the stresses
that develop within the body in order to ensure that its various elements maintain a constant spatial
relationship with respect to one another. Of course, fi j = −f ji, by Newton’s third law. The external
forces represent forces that originate outside the body.

Repeating the analysis of Section 1.4.2, we can sum Equation (1.178) over all mass elements
to obtain

M
d2R
dt2 = F. (1.179)

Here, M =
∑

i=1,N mi is the total mass, R the displacement of the center of mass [see Equa-
tion (1.68)], and F =

∑
i=1,N Fi the total external force. It can be seen that the center of mass
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Figure 1.8: A rigid rotating body.

of a rigid body moves under the action of the external forces like a point particle whose mass is
identical to that of the body.

Repeating the analysis of Section 1.4.5, we can sum ri × Equation (1.178) over all mass ele-
ments to obtain

dL
dt

= τ. (1.180)

Here, L =
∑

i=1,N mi ri × vi is the total angular momentum of the body (about the origin), and
τ =

∑
i=1,N ri × Fi the total external torque (about the origin). Note that the previous equation is

only valid if the internal forces are central in nature. However, this is not a particularly onerous
constraint. Equation (1.180) describes how the angular momentum of a rigid body evolves in time
under the action of the external torques.

In the following, we shall only consider the rotational motion of rigid bodies, because their
translational motion is similar to that of point particles [see Equation (1.179)], and, therefore,
fairly straightforward in nature.

1.7.2 Moment of Inertia Tensor
Consider a rigid body rotating with fixed angular velocity ω about an axis that passes through the
origin. See Figure 1.8. Let ri be the displacement of the ith mass element, whose mass is mi. We
expect this displacement to precess about the axis of rotation (which is parallel to ω) with angular
velocity ω. It, therefore, follows from Equation (A.52) that

vi = ω × ri. (1.181)

The total angular momentum of the body (about the origin) is written

L =
∑
i=1,N

mi ri × vi =
∑
i=1,N

mi ri × (ω × ri) =
∑
i=1,N

mi
[
r 2

i ω − (ri · ω) ri
]
, (1.182)
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where use has been made of Equation (1.181), and some standard vector identities. (See Sec-
tion A.11.) The previous formula can be written as a matrix equation of the form Lx

Ly
Lz

 =

 Ixx, Ixy, Ixz

Iyx, Iyy, Iyz

Izx, Izy, Izz

 ωx

ωy

ωz

 , (1.183)

where

Ixx =
∑
i=1,N

(
y 2

i + z 2
i

)
mi, (1.184)

Iyy =
∑
i=1,N

(
x 2

i + z 2
i

)
mi, (1.185)

Izz =
∑
i=1,N

(
x 2

i + y 2
i

)
mi, (1.186)

Ixy = Iyx = −
∑
i=1,N

xi yi mi (1.187)

Iyz = Izy = −
∑
i=1,N

yi zi mi, (1.188)

Ixz = Izx = −
∑
i=1,N

xi zi mi. (1.189)

Here, Ixx is called the moment of inertia about the x-axis, Iyy the moment of inertia about the y-axis,
Ixy the x-y product of inertia, Iyz the y-z product of inertia, et cetera. The matrix of the Ii j values is
known as the moment of inertia tensor.

Suppose that our body is rotationally symmetric about the z-axis. In this case, it is easily seen
that the products of inertia are all zero. Moreover, Ixx = Iyy = I⊥. Let us write Izz = I‖. Note that,
in general, I‖ , I⊥ (unless the body is spherically symmetric). Thus, Equation (1.183) simplifies to
give

L = I⊥ ωx ex + I⊥ ωy ey + I‖ ωz ez. (1.190)

The angular momentum vector, L, obtained from the previous equation, does not necessarily point
in the same direction as the angular velocity vector, ω (because I‖ , I⊥). In other words, L is
generally not parallel to ω. However, if the body rotates about ez or any axis in the x-y plane then
L is parallel to ω. These special axes of rotation are called principal axes of rotation, and the
associated moments of inertia, I‖ and I⊥, respectively, are called principal moments of inertia.

It can be demonstrated that any rigid body (not just an axisymmetric one) has three mutually
perpendicular principal axes of rotation. Furthermore, if a body is rotating about one of its principal
axes of rotation then

L = Iω, (1.191)

where I is the associated principal moment of inertia. More generally, assuming that the Cartesian
axis are parallel to the principal moments of inertia, we can write

L = Ixx ωx ex + Iyy ωy ey + Izz ωz ez, (1.192)
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where Ixx, Iyy, and Izz are the three principal moments of inertia.

1.7.3 Rotational Kinetic Energy
The instantaneous rotational kinetic energy of a rotating rigid body is written

K =
1
2

∑
i=1,N

mi vi · vi. (1.193)

Making use of Equation (1.181), and some vector identities (see Section A.10), the kinetic energy
takes the form

K =
1
2

∑
i=1,N

mi (ω × ri) · (ω × ri) =
1
2
ω ·
∑
i=1,N

mi ri × ω × ri). (1.194)

Hence, it follows from Equation (1.182) that

K =
1
2
ω · L. (1.195)

For the special case of an axisymmetric body, making use of Equation (1.190), we obtain

K =
1
2

I⊥ (ω 2
x + ω 2

y ) +
1
2

I‖ ω 2
z . (1.196)

For the special case of a body rotating about a principal axis of rotation,

K =
1
2

I ω2, (1.197)

where I is the associated principal moment of inertia. More generally,

K =
1
2

Ixx ω
2
x +

1
2

Iyy ω 2
y +

1
2

Izz ω
2
z =

L 2
x

2 Ixx
+

L 2
y

2 Iyy
+

L 2
z

2 Izz
, (1.198)

assuming that the Cartesian axes are parallel to the principal axes of rotation.

1.7.4 Power
It follows from Equation (1.193) that

dK
dt

=
∑
i=1,N

mi
dvi

dt
· vi. (1.199)

Making use of Equation (1.181), we obtain

dK
dt

=
∑
i=1,N

mi
dvi

dt
· ω × ri = ω ·

∑
i=1,N

mi ri × dvi

dt
. (1.200)
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Figure 1.9: A flywheel.

However, according to Equations (1.180) and (1.182),

dL
dt

=
d
dt

∑
i=1,N

mi ri × vi =
∑
i=1,N

mi ri × dvi

dt
= τ. (1.201)

Hence, we obtain
dK
dt

= τ · ω. (1.202)

The right-hand side of the previous equation specified the work per unit time done on the system
by the external torque.

1.7.5 Uniform Flywheel
Consider a uniform flywheel of mass M and radius a. Suppose that the flywheel rotates about a
horizontal axes that passes through its center, and is perpendicular to the plane of the flywheel.
Let the flywheel have a light inextensible cord wrapped around its circumference to one end of
which is attached a mass m that dangles below the flywheel. Let T be the tension in the cord. See
Figure 1.9. Let us determine the angular acceleration of the flywheel.

The flywheel is rotationally symmetric about its axis of rotation, which implies that this axis
is a principal axis of rotation. Suppose that the rotation axis corresponds to the z-axis (this axis is
directed out of the paper in Figure 1.9). It follows that

ω = ω ez, (1.203)
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L = I ω ez, (1.204)

where I is the associated principal moment of inertia, and use has been made of Equation (1.191).
Now, it is clear that the tension in the cord exerts a torque

τ = T a ez (1.205)

on the flywheel. Hence, the rotational equation of motion of the flywheel, (1.180), yields

I
dω
dt

= τ = T a. (1.206)

Consider the equation of motion of the dangling mass. We can write

m
dv
dt

= m g − T, (1.207)

where v is the mass’s downward velocity, and g is the acceleration due to gravity. Because the
cord is inextensible, it follows that v is also the downward velocity of the cord. Assuming that the
cord unwraps from the flywheel without slipping, its downward velocity must match the tangential
velocity of the flywheel’s outer rim. In other words,

v = aω, (1.208)

which implies that
dv
dt

= a
dω
dt
. (1.209)

Equations (1.206), (1.207), and (1.209) yield

T =

(
I

I + m a2

)
m g, (1.210)

dv
dt

=

(
m a2

I + m a2

)
g, (1.211)

dω
dt

=

(
m a2

I + m a2

)
g

a
. (1.212)

It remains to calculate the principal moment of inertia, I, of the flywheel about its rotation axis.
The moment of inertia is written

I =
∑

i

mi r 2
i (1.213)

for all of the mass elements that make up then flywheel. Here, r represents radial distance from
the axis of rotation. See Figure 1.9. We can assume that the flywheel has a constant mass per unit
area (in the plane perpendicular to the rotation axis), ρ. Consider the contribution of an annulus
of inner radius r and outer radius r + dr to the moment of inertia. It is clear that the area of the
annulus is 2π r dr, Thus, its mass is dm = 2π r dr ρ. Hence,

dI = dm r2 = 2π ρ r3 dr, (1.214)
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which implies that

I = 2π ρ
∫ a

0
r3 dr =

π ρ a4

2
. (1.215)

However, the total mass of the flywheel is

M =

∫
dm = 2π ρ

∫ a

0
r dr = π ρ a2. (1.216)

It follows that
I =

1
2

M a2. (1.217)

Finally, according to Equations (1.212) and (1.217), the angular acceleration of the flywheel is

dω
dt

=

(
2 m

M + 2 m

)
g

a
. (1.218)

1.7.6 Gravitational Collapse of Star
A star can be thought of as a spherically symmetric body that rotates about an axis passing through
its center. The spherical symmetry of the star implies that all three of its principal moments of
inertia are equal to one another, and that any axis that passes through the center is a principal axis
of rotation. (See Section 1.7.2.)

Suppose that the star in question is rotating about the z-axis. Its moment of inertia is

I =
∑

i

mi (x 2
i + y 2

i ), (1.219)

where the sum is over all of the mass elements that make up the star. If we model the star as a body
of uniform mass density ρ then the previous equation becomes

I = ρ

∫
(x2 + y2) dV, (1.220)

where dV is a volume element, and the integral is over the volume of the star. In spherical polar
coordinates, x2 + y2 = r2 sin2 θ and dV = r2 sin θ dr dθ dφ. (See Section A.23.) Hence,

I = ρ

∫ a

0

∫ π

0

∫ 2π

0
r4 sin3 θ dr dθ dφ, (1.221)

where a is the radius of the star. It follows that

I = 2π ρ
∫ a

0
r4 dr

∫ π

0
sin3 θ dθ = 2π ρ

a5

5
4
3

=
8π ρ a5

15
. (1.222)

However,

M =
4π ρ a3

3
, (1.223)
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where M is the mass of the star. The previous two equations yield

I =
2
5

M a2. (1.224)

The angular momentum of the star is

L = I ω, (1.225)

where ω is its angular velocity. If the star is isolated, such that it is not subject to an external torque,
then its angular equation of motion, (1.180), reduces to

dL
dt

= 0. (1.226)

In other words, the angular momentum of the star is a conserved quantity.
Consider what would happen if a star such as the Sun collapsed gravitationally until it became

a neutron star. The radius of the Sun-like star is about 106 km. On the other hand, the radius of
a neutron star is only about 10 km. Moreover, the Sun rotates at about 1 revolution per month,
which corresponds to an angular velocity of 2.5 × 10−6 rad s−1. Thus, we are considering a process
in which the star’s initial radius and angular velocity are a1 = 106 km and ω1 = 2.5 × 10−6 rad s−1,
respectively, and its final radius is a2 = 10 km. The question is what is the star’s final angular
velocity, ω2. Well, it is clear from Equations (1.224) and (1.225) that if angular momentum is to
be conserved during the collapse then we require

a 2
1 ω1 = a 2

2 ω2, (1.227)

or

ω2 =

(
a1

a2

)2

ω1 =

(
106

10

)2

2.5 × 10−6 = 2.5 × 104 rad s−1, (1.228)

which corresponds to about 4000 revolutions per second. Thus, we deduce that neutron stars
are likely to rotate thousands of times a second (as is indeed the case) as a consequence of the
conservation of angular momentum during their formation. Finally, the star’s rotational kinetic
energy is K = (1/2) I ω2 ∝ a2 ω2, so the ratio of the final to the initial kinetic energy of the star is

K2

K1
=

(
a2

a1

)2(
ω2

ω1

)2

=

(
a1

a2

)2

= 1010. (1.229)

1.7.7 Gyroscopic Precession
Consider a gyroscope that consists of a symmetric top of mass M that rotates about its symmetry
axis at the constant angular velocity ω. (The rotation axis is obviously a principal axis of rotation.)
The top is free to rotate (without friction) about a fixed pivot point P. Suppose that the axis of the
top subtends a constant angle θ with the vertical. Let us set up a Cartesian coordinate system such
that the z-axis is vertical, and the x-y plane is horizontal. Suppose that the projection of the axis of
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Figure 1.10: A gyroscope.

the top on to the x-y plane subtends an (instantaneous) angle φ with the x-axis. Let C be the center
of mass of the top (which lies on the symmetry axis), and let the distance PC be l. Finally, let I be
the (principal) moment of inertia of the top about its symmetry axis. See Figure 1.10.

It follows, from Figure 1.10, that the angular velocity of the top is

ω = ω sin θ cos φ ex + ω sin θ sin φ ey + ω cos θ ez. (1.230)

Hence, the angular momentum of the top is

L = I ω sin θ cos φ ex + I ω sin θ sin φ ey + I ω cos θ ez, (1.231)

where use has been made of Equation (1.191). Now, the weight of the top exerts a torque τ that is
of magnitude M g l sin θ and whose direction is specified in the figure. Here, g is the acceleration
due to gravity. Hence,

τ = −M g l sin θ sin φ ex + M g l sin θ cos φ ey. (1.232)

The angular equation of motion of the top, (1.180), is

dL
dt

= τ. (1.233)

Assuming that θ and ω are constants, whereas φ is time-varying, the x-, y-, and z-components of
the previous equation are

−I ω sin θ sin φ
dφ
dt

= −M g l sin θ sin φ, (1.234)

I ω sin θ cos φ
dφ
dt

= M g l sin θ cos φ, (1.235)

0 = 0, (1.236)
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respectively. Hence, we deduce that the gravitational torque acting on the top causes its axis of
rotation to precess about the vertical at the rate

dφ
dt

=
M g l
I ω

, (1.237)

while maintaining a constant inclination to the vertical, and a constant spin rate. Note that the
precession is in the same direction as the vertical component of the top’s angular velocity. Inter-
estingly enough, the precession rate is independent of the angle of inclination of the rotation axis
to the vertical.

1.8 Newtonian Gravity

1.8.1 Gravity
The force that causes objects to fall toward the surface of the Earth, maintains the Moon in orbit
about the Earth, and maintains the planets in orbit around the Sun, is called gravity, and was first
correctly described by Isaac Newton in 1687. According to Newton, any two point mass objects
(or spherically symmetric objects of finite extent) exert a force of attraction on one another. This
force points along the line of centers joining the objects, is directly proportional to the product of
the objects’ masses, and inversely proportional to the square of the distance between them.

Consider a system consisting of two point mass objects. Let object 1 have mass m1 and dis-
placement r1. Let object 2 have mass m2 and displacement r2. The gravitational force exerted on
object 2 by object 1 is written

f21 = −G m1 m2
r2 − r1

|r2 − r1|3 . (1.238)

The constant of proportionality, G, is called the universal gravitational constant, and takes the
value

G = 6.67430 × 10−11 m3 kg−1 s−2. (1.239)

This constant was first ‘measured’ by Henry Cavendish in 1798 (to be more exact, the result G =

6.74 × 10−11 m3 kg−1 s−2 can be inferred from Cavendish’s results). An equal and opposite force to
(1.238) acts on object 1.

Suppose that we have a system of N point mass objects. Let the ith object have mass mi and
displacement ri. Now, it is an experimentally verified fact that gravity is a superposable force. In
other words, the gravitational force exerted on object i by object j is unaffected by the presence of
any other objects in the universe. Hence, the net gravitational force experienced by object i is

fi = −G mi

j,i∑
j=1,N

m j
ri − r j

|ri − r j|3 . (1.240)

Note that object i is missing from the sum on the right-hand side of the previous equation because
this object cannot exert a gravitational force on itself.
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Figure 1.11: Fluid outflow from a point source.

Suppose, finally, that a point object of mass m is located at the origin of our coordinate sys-
tem. It follows from Equation (1.238) that the gravitational acceleration, due to the gravitational
attraction of mass m, experienced by another point object whose displacement is r is

g = −G m
r
r3 . (1.241)

1.8.2 Gauss’s Law
Gauss’s law applies to any inverse-square central force. This law was first discovered by Joseph-
Louis Lagrange in 1773, and was later rediscovered by Carl Friedrich Gauss in 1835.

Suppose that we have an isolated point source that emits an incompressible fluid isotropically
in all directions at the rate Q (m3 s−1). By symmetry, we would expect the fluid to flow radially
away from the source, isotropically in all directions. In other words, if the source is located at the
origin then we expect the fluid velocity at displacement r to be of the form

v = v(r)
r
r
. (1.242)

Let us surround our source by an imaginary spherical surface of radius r. See Figure 1.11. The
net volume rate of flow of fluid out of the surface is 4π r2 v(r). However, if the fluid is incom-
pressible (and the flow pattern has achieved a steady-state) then the volume rate of flow out of the
surface must equal the volume rate of flow from the source (otherwise, the fluid inside the surface
would suffer compression or rarefaction). In other words, 4π r2 v(r) = Q. Hence, Equation (1.242)
becomes

v =
Q
4π

r
r3 . (1.243)

It can be seen that the previous expression has an analogous form to expression (1.241), provided
that we make the identifications v→ g and Q→ −4πG m.
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Suppose that we have N point sources of incompressible fluid. Let the ith source have a volume
rate of flow Qi. Let us surround these sources by an imaginary closed surface (that is not necessarily
spherical), S . Now, the volume rate of flow of fluid out of S is

∮
S v · dS, where v(r) is the flow

field, and dS is an (outward pointing) element of S . (See Section A.16.) However, if the fluid is
incompressible (and the flow pattern has achieved a steady-state) then the volume rate of flow out
of S must match the sum of the volume rates of flow of the sources within S (otherwise, the fluid
inside the surface would suffer compression or rarefaction). Thus, we deduce that∮

S
v · dS =

∑
i=1,N

Qi. (1.244)

Now, if there are sources that lie outside S then they do not affect the previous relation (because
a source outside S gives rise to zero net flow of incompressible fluid out of S ). Hence, we can
interpret the sum in the previous equation as a sum that includes all sources that lie inside S , but
excludes any sources that lie outside S .

Finally, we can exploit the previously mentioned analogy between incompressible fluid flow
and gravitational acceleration to deduce the following result. Suppose that there are N point ob-
jects of mass mi. Let us surround these objects by an imaginary surface S . Making use of the
identifications v→ g and Qi → −4πG mi, the previous equation transforms to give∮

S
g · dS = −4πG

∑
i=1,N

mi. (1.245)

As before, if there are objects outside S then they do not affect the previous relation. Thus, we
deduce that the flux of gravitational acceleration out of an arbitrary closed surface, S , is equal to
−4πG multiplied by the sum of the masses of any objects lying inside the surface. This is Gauss’s
law. The imaginary surface S is known as a Gaussian surface.

Suppose that, instead of having a collection of point objects, we have a continuous mass distri-
bution whose mass density is ρ(r). The previous equation generalizes to give∮

S
g · dS = −4πG

∫
V
ρ dV, (1.246)

where V is the volume enclosed by S , and dV is an element of V . (See Section A.17.) Now,
according to the divergence theorem (see Section A.20),∮

S
g · dS =

∫
V
∇ · g dV, (1.247)

where ∇ · g = ∂gx/∂x + ∂gy/∂y + ∂gz/∂z is the divergence of the acceleration field. The previous
two equations yield ∫

V
∇ · g dV = −4πG

∫
V
ρ dV. (1.248)

However, the volume V is arbitrary, so the only way that the previous equation could hold for all
possible volumes is if

∇ · g = −4πG ρ. (1.249)

This is the differential form of Gauss’s law.
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1.8.3 Gravitational Field of Earth
Suppose that we model the Earth (not very accurately) as a uniform sphere of mass M and radius
R. Let the center of the Earth lie at the origin. We wish to determine the gravitational acceleration
due to the Earth, g, both inside and outside the Earth. By symmetry, we expect the gravitational
acceleration at a general point whose displacement is r to be directed radially inward toward the
center of the Earth, and to only depend on the radial distance, r, from the center of the Earth. In
other words,

g = −a(r)
r
r
. (1.250)

Consider a spherical Gaussian surface, S , of radius r, whose center corresponds to the center
of the Earth. The flux of gravitational acceleration out of this surface is∮

S
g · dS = −4π r2 a(r). (1.251)

Thus, Gauss’s law, (1.246), yields

a(r) =
G m(r)

r2 , (1.252)

where m(r) is the mass enclosed by the surface. Now, if r < R then m(r) = (r/R)3 M (by propor-
tion), but if r > R then m(r) = M. Thus, we deduce that

a(r) =
G M r

R3 (1.253)

for r < R, and

a(r) =
G M

r2 (1.254)

for r > R. In other words, inside the Earth, the gravitational acceleration due to the Earth increases
linearly with distance from the Earth’s center, but, outside the Earth, it falls off as the inverse-
square of distance from the Earth’s center. In particular, the gravitational field outside the Earth
is exactly the same as that of a point object whose mass is equal to that of the Earth, and that is
located at the Earth’s center. This is an example of an important result first derived by Newton;
namely, that the gravitational field outside a spherically symmetric mass distribution is the same
as that of a point object located at the center of the distribution whose mass is equal to that of the
distribution.

It is clear from Equation (1.254) that the gravitational acceleration at the surface of the Earth is

g ≡ a(R) =
G M
R2 . (1.255)

Given that the measured (average) gravitational acceleration at the Earth’s surface is g = 9.81 m s−2,
and that the measured (mean) radius of the Earth is R = 6.371 × 106 m, we arrive at the following
estimate for the Earth’s mass,

M =
gR2

G
=

9.81 × (6.371 × 106)2

6.67430 × 10−11 = 5.965 × 1024 kg (1.256)

This estimate lies within 0.1% of the correct value, which is M = 5.972 × 1024 kg
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1.8.4 Gravitational Potential Energy
Suppose that a spherically symmetric object of mass M is located at the origin of our coordinate
system. The gravitational force, due to the gravitational attraction of mass M, experienced by a
point object of mass m and displacement is r (located outside the former mass) is

f = −G M m
r
r3 . (1.257)

[See Equation (1.241).] Now, r = (x2 + y2 + z2)1/2. It is easily demonstrated that

∂r
∂x

=
x
r
, (1.258)

∂r
∂y

=
y

r
, (1.259)

∂r
∂z

=
z
r
. (1.260)

Consider

∇
(

1
r

)
≡ ∂(1/r)

∂x
ex +

∂(1/r)
∂y

ey +
∂(1/r)
∂z

ez. (1.261)

(See Section A.19.) It follows that

∇
(

1
r

)
= − 1

r2

∂r
∂x

ex − 1
r2

∂r
∂y

ey − 1
r2

∂r
∂z

ez

= − x
r3 ex − − yr3 ey − z

r3 ey

= − r
r3 , (1.262)

where use has been made of Equations (1.258)–(1.260). The previous equation can be combined
with Equation (1.257) to give

f = ∇
(

G M m
r

)
. (1.263)

A comparison with Equation (1.47) reveals that the gravitational force field of our spherical object
is a conservative field with the associated potential energy

U(r) = −G M m
r

. (1.264)

Note that, by convention, the potential energy at infinity is zero.
A particle of mass m moving in the gravitational field of our spherical object has a conserved

energy

E = K + U =
1
2

m v2 − G M m
r

, (1.265)

where v is the particle’s instantaneous speed. (See Sections 1.3.2 and 1.3.5.)
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Let us again model the Earth as a sphere of mass M and radius R that is centered at the origin.
Consider an object that is launched from the surface of the Earth, in an arbitrary outward direction,
with speed vescape. Suppose that the object only just manages to escape from the Earth’s gravita-
tional field. It follows that the object’s speed at infinity (i.e., 1/r = 0) is zero. Thus, it is clear from
the previous equation that the object’s conserved energy, E, is also zero. Hence,

0 =
1
2

m v2
escape −

G M m
R

(1.266)

at the surface of the Earth, which implies that

vescape =

(
2 G M

R

)1/2

=

[
2 × (6.67430 × 10−11) × (5.972 × 1024)

6.371 × 106

]1/2

= 11.19 km s−1. (1.267)

The speed vescape, which is known as the escape speed, is the minimum speed at which an object
must be launched from the Earth’s surface if it is to reach outer space.

1.8.5 Gravitational Potential
We have seen that the force experienced by a point object of mass m situatated in a gravitational
field can be written

f = −∇U, (1.268)

where U is the object’s gravitational potential energy. It is clear from Equation (1.264) that U ∝ m.
It follows that the gravitational acceleration of the object, g = f/m, can be written

g = −∇Φ, (1.269)

where Φ = U/m is independent of m. The quantity Φ is known as gravitational potential.
From Equation (1.264), the gravitational potential due to a point object (or a spherically sym-

metric object) of mass M situated at the origin is

Φ(r) = −G M
r
. (1.270)

Consider a collection of N point objects. Let the ith object have mass mi and displacement ri.
Given that gravity is a superposable force, the generalization of the previous equation is clearly

Φ(r) = −
∑
i=1,N

G mi

|r − ri| . (1.271)

Moreover, the gravitational acceleration due to the collection of objects is again given by Equa-
tion (1.269). Finally, if, instead of having a collection of point mass objects, we have a continuous
mass distribution characterized by a mass density ρ(r), then the previous expression generalizes to
give

Φ(r) = −
∫

G ρ(r′)
|r − r′| dV ′, (1.272)
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where the integral is over all space.
Equation (1.269) can be combined with the differential form of Gauss’s theorem, (1.249), to

give
∇2Φ = 4πG ρ. (1.273)

Here,

∇2Φ ≡ ∇ · ∇Φ =
∂2Φ

dx2 +
∂2Φ

dy2 +
∂2Φ

dz2 , (1.274)

is known as the Laplacian of Φ. (See Section A.21.) Equation (1.273), which specifies the gravita-
tional potential, Φ(r), generated by a continuous mass distribution of mass density ρ(r), is known
as Poisson’s equation. Of course, Equation (1.272) is the integral form of Poisson’s equation.

1.9 Planetary Motion

1.9.1 Kepler’s Laws
As is well known, Johannes Kepler was the first astronomer to correctly describe planetary motion
in the solar system (in works published between 1609 and 1619). The motion of the planets is
summed up in three simple laws:

1. The planetary orbits are all ellipses that are confocal with the Sun (i.e., the Sun lies at one of
the focii of each ellipse).

2. The radius vectors connecting each planet to the Sun sweep out equal areas in equal time
intervals.

3. The squares of the orbital periods of the planets are proportional to the cubes of their orbital
major radii.

Let us now see if we can derive Kepler’s laws from Newton’s laws of motion.
Suppose that the Sun, which is of mass M, is located at the origin of our coordinate system.

Consider a planet, of mass m, whose instantaneous displacement is r. The gravitational force
exerted on the planet by the Sun is thus written

f = −G M m
r3 r. (1.275)

[See Equation (1.257).] An equal and opposite force to (1.275) acts on the Sun. However, we shall
assume that the Sun is so much more massive than the planet in question that this force does not
cause the Sun’s position to shift appreciably. Hence, the Sun will always remain at the origin of
our coordinate system. Likewise, we shall neglect the gravitational forces exerted on our planet by
the other planets in the solar system, compared to the much larger gravitational force exerted by
the Sun. Thus, according to Newton’s second law, the equation of motion of our planet is

m
d2r
dt2 = f, (1.276)
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which reduces to
d2r
dt2 = −G M

r3 r. (1.277)

Note that the planetary mass, m, has cancelled out on both sides of the previous equation.

1.9.2 Planetary Conservation Laws
As we have seen, gravity is a conservative force. Hence, the gravitational force (1.275) can be
written

f = −∇U, (1.278)

where the potential energy, U(r), of our planet in the Sun’s gravitational field takes the form

U(r) = −G M m
r

. (1.279)

[See Equation (1.264).] It follows that the total energy of our planet is a conserved quantity. (See
Section 1.3.5.) In other words,

E =
v2

2
− G M

r
(1.280)

is constant in time. Here, E is actually the planet’s total energy per unit mass, and v = dr/dt.
Gravity is also a central force. This means that the gravitational force exerted on our planet is

always directed toward the origin of our coordinate system (i.e., the Sun), which implies that the
force exerts zero torque about the origin. Hence, the angular momentum of our planet (about the
origin) is a conserved quantity. (See Section 1.4.5.) In other words,

h = r × v, (1.281)

which is actually the planet’s angular momentum per unit mass, is constant in time. Taking the
scalar product of the previous equation with r, we obtain

h · r = 0. (1.282)

This is the equation of a plane that passes through the origin, and whose normal is parallel to h.
Because h is a constant vector, it always points in the same direction. We, therefore, conclude that
the motion of our planet is two-dimensional in nature; that is, it is confined to some fixed plane
that passes through the origin. Without loss of generality, we can let this plane coincide with the
x-y plane.

1.9.3 Plane Polar Coordinates
We can determine the instantaneous position of our planet in the x-y plane in terms of standard
Cartesian coordinates, (x, y), or plane polar coordinates, (r, θ), as illustrated in Figure 1.12. Here,
r = (x2 +y2)1/2 and θ = tan−1(y/x). It is helpful to define two unit vectors, er ≡ r/r and eθ ≡ ez×er,
at the instantaneous position of the planet. The first always points radially away from the origin,
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Figure 1.12: Plane polar coordinates.

whereas the second is normal to the first, in the direction of increasing θ. As is easily demonstrated,
the Cartesian components of er and eθ are

er = (cos θ, sin θ), (1.283)

eθ = (− sin θ, cos θ), (1.284)

respectively.
We can write the displacement of our planet as

r = r er. (1.285)

Thus, the planet’s velocity becomes

v =
dr
dt

=
.r er + r .er, (1.286)

where
.

is shorthand for d/dt. Note that er has a non-zero time-derivative (unlike a Cartesian unit
vector) because its direction changes as the planet moves around. As is easily demonstrated, from
differentiating Equation (1.283) with respect to time,

.er =
.
θ (− sin θ, cos θ) =

.
θ eθ. (1.287)

Thus,
v =

.r er + r
.
θ eθ. (1.288)

The planet’s acceleration is written

a =
dv
dt

=
d2r
dt2 =

..r er +
.r .er + ( .r

.
θ + r

..
θ) eθ + r

.
θ

.eθ. (1.289)
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Figure 1.13: An ellipse.

Again, eθ has a non-zero time-derivative because its direction changes as the planet moves around.
Differentiation of Equation (1.284) with respect to time yields

.eθ =
.
θ (− cos θ, − sin θ) = − .

θ er. (1.290)

Hence,
a = (..r − r

.
θ 2) er + (r

..
θ + 2 .r

.
θ) eθ. (1.291)

It follows that the equation of motion of our planet, (1.277), can be written

a = (..r − r
.
θ 2) er + (r

..
θ + 2 .r

.
θ) eθ = −G M

r2 er. (1.292)

Because er and eθ are mutually orthogonal, we can separately equate the coefficients of both, in the
previous equation, to give a radial equation of motion,

..r − r
.
θ 2 = −G M

r2 , (1.293)

and a tangential equation of motion,
r

..
θ + 2 .r

.
θ = 0. (1.294)

1.9.4 Conic Sections

The ellipse, the parabola, and the hyperbola are collectively known as conic sections, because these
three types of curve can be obtained by taking various different plane sections of a right cone. It
turns out that the possible solutions of Equations (1.293) and (1.294) are all conic sections. It is,
therefore, appropriate for us to briefly review these curves.



Newtonian Dynamics 61

x

y

Figure 1.14: A parabola.

An ellipse, centered on the origin, of major radius a and minor radius b, which are aligned along
the x- and y-axes, respectively (see Figure 1.13), satisfies the following well-known equation:

x2

a2 +
y2

b2 = 1. (1.295)

Likewise, a parabola that is aligned along the +x-axis, and passes through the origin (see
Figure 1.14), satisfies:

y2 − b x = 0, (1.296)

where b > 0.
Finally, a hyperbola that is aligned along the +x-axis, and whose asymptotes intersect at the

origin (see Figure 1.15), satisfies:
x2

a2 −
y2

b2 = 1. (1.297)

Here, a is the distance of closest approach to the origin. The asymptotes subtend an angle φ =

tan−1(b/a) with the x-axis.
It is not clear, at this stage, what the ellipse, the parabola, and the hyperbola have in common

(other than being conic sections). Well, it turns out that what these three curves have in common is
that they can all be represented as the locus of a movable point whose distance from a fixed point
is in a constant ratio to its perpendicular distance to some fixed straight-line. Let the fixed point
(which is termed the focus of the ellipse/parabola/hyperbola) lie at the origin, and let the fixed line
correspond to x = −d (with d > 0). Thus, the distance of a general point (x,y) (which lies to the
right of the line x = −d) from the origin is r1 = (x 2 + y 2)1/2, whereas the perpendicular distance
of the point from the line x = −d is r2 = x + d. See Figure 1.16. In polar coordinates, r1 = r and
r2 = r cos θ + d. Hence, the locus of a point for which r1 and r2 are in a fixed ratio satisfies the
following equation:

r1

r2
=

√
x2 + y2

x + d
=

r
r cos θ + d

= e, (1.298)
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Figure 1.15: A hyperbola.

where e ≥ 0 is a constant. When expressed in terms of polar coordinates, the previous equation
can be rearranged to give

r =
rc

1 − e cos θ
, (1.299)

where rc = e d.
When written in terms of Cartesian coordinates, Equation (1.298) can be rearranged to give

(x − xc)2

a2 +
y2

b2 = 1, (1.300)

for e < 1. Here,

a =
rc

1 − e2 , (1.301)

b =
rc√

1 − e2
=
√

1 − e2 a, (1.302)

xc =
e rc

1 − e2 = e a. (1.303)

Equation (1.300) can be recognized as the equation of an ellipse whose center lies at (xc,0), and
whose major and minor radii, a and b, are aligned along the x- and y-axes, respectively [cf., Equa-
tion (1.295)].

When again written in terms of Cartesian coordinates, Equation (1.298) can be rearranged to
give

y2 − 2 rc (x − xc) = 0, (1.304)

for e = 1. Here, xc = −rc/2. This is the equation of a parabola that passes through the point (xc,0),
and that is aligned along the +x-direction [cf., Equation (1.296)].
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Figure 1.16: Conic sections in plane polar coordinates.

Finally, when written in terms of Cartesian coordinates, Equation (1.298) can be rearranged to
give

(x − xc)2

a2 − y
2

b2 = 1, (1.305)

for e > 1. Here,

a =
rc

e2 − 1
, (1.306)

b =
rc√

e2 − 1
=
√

e2 − 1 a, (1.307)

xc = − e rc

e2 − 1
= −e a. (1.308)

Equation (1.305) can be recognized as the equation of a hyperbola whose asymptotes intersect at
(xc,0), and that is aligned along the +x-direction [cf., Equation (1.297)]. The asymptotes subtend
an angle

φ = tan−1
(

b
a

)
= tan−1

(√
e2 − 1

)
(1.309)

with the x-axis.
In conclusion, Equation (1.299) is the polar equation of a general conic section that is confocal

with the origin. For e < 1, the conic section is an ellipse. For e = 1, the conic section is a parabola.
Finally, for e > 1, the conic section is a hyperbola.

1.9.5 Kepler’s Second Law
Multiplying our planet’s tangential equation of motion, (1.294), by r, we obtain

r2 ..
θ + 2 r .r

.
θ = 0. (1.310)
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Figure 1.17: Kepler’s second law.

However, the previous equation can be also written

d(r2
.
θ)

dt
= 0, (1.311)

which implies that
h = r2 .

θ (1.312)

is constant in time. It is easily demonstrated that h is the magnitude of the vector h defined in
Equation (1.281). Thus, the fact that h is constant in time is equivalent to the statement that the
angular momentum of our planet is a constant of its motion. As we have already mentioned, this
is the case because gravity is a central force.

Suppose that the radius vector connecting our planet to the origin (i.e., the Sun) sweeps out an
angle δθ between times t and t + δt. See Figure 1.17. The approximately triangular region swept
out by the radius vector has the area

δA ' 1
2

r2 δθ, (1.313)

because the area of a triangle is half its base (r δθ) times its height (r). Hence, the rate at which the
radius vector sweeps out area is

dA
dt

= lim
δt→0

r 2 δθ

2 δt
=

r2

2
dθ
dt

=
h
2
. (1.314)

Thus, the radius vector sweeps out area at a constant rate (because h is constant in time). This
is Kepler’s second law. We conclude that Kepler’s second law of planetary motion is a direct
consequence of angular momentum conservation.

1.9.6 Kepler’s First Law

Our planet’s radial equation of motion, (1.293), can be combined with Equation (1.312) to give

..r − h 2

r3 = −G M
r2 . (1.315)
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Suppose that r = u−1, where u = u(θ). It follows that

.r = −
.u

u2 = −r 2 du
dθ

dθ
dt

= −h
du
dθ
. (1.316)

Likewise,
..r = −h

d2u
dθ2

.
θ = −u2 h2 d2u

dθ2 . (1.317)

Hence, Equation (1.315) can be written in the linear form

d 2u
dθ 2 + u =

G M
h 2 . (1.318)

The general solution to the previous equation is

u(θ) =
G M
h2 [1 − e cos(θ − θ0)] , (1.319)

where e and θ0 are arbitrary constants. Without loss of generality, we can set θ0 = 0 by rotating
our coordinate system about the z-axis. Thus, we obtain

r(θ) =
rc

1 − e cos θ
, (1.320)

where

rc =
h 2

G M
. (1.321)

We immediately recognize Equation (1.320) as the equation of a conic section that is confocal
with the origin (i.e., with the Sun). Specifically, for e < 1, Equation (1.320) is the equation of an
ellipse that is confocal with the Sun. Thus, the orbit of our planet around the Sun is a confocal
ellipse. This is Kepler’s first law of planetary motion. Of course, a planet cannot have a parabolic
or a hyperbolic orbit, because such orbits are only appropriate to objects that are ultimately able to
escape from the Sun’s gravitational field.

For the case of an elliptic orbit, the eccentricity, e, measures the displacement of the Sun from
the geometric center of the orbit; in fact, according to Equation (1.303), this displacement is e a,
where a = rc/(e2−1) is the major radius. The eccentricity also measures the elongation of the orbit;
in fact, according to Equations (1.301) and (1.302), b/a =

√
1 − e2, where b is the minor radius.

Note that the displacement is first order in e, whereas the elongation is second order. As is clear
from Table 1.4, the planets in the solar system all have orbits characterized by small eccentricities,
which implies that these orbits are actually all quite close to being circular.

1.9.7 Kepler’s Third Law
We have seen that the radius vector connecting our planet to the origin sweeps out area at the
constant rate dA/dt = h/2. [See Equation (1.314).] We have also seen that the planetary orbit is an
ellipse. Suppose that the major and minor radii of the ellipse are a and b, respectively. It follows
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Planet a(AU) e T(yr) T 2/a3

Mercury 0.3871 0.20564 0.241 1.0013
Venus 0.7233 0.00676 0.615 0.9995
Earth 1.0000 0.01673 1.000 1.0000
Mars 1.5237 0.09337 1.881 1.0002

Jupiter 5.2025 0.04854 11.87 1.0006
Saturn 9.5415 0.05551 29.47 0.9998
Uranus 19.188 0.04686 84.05 1.0000

Neptune 30.070 0.00895 164.9 1.0001

Table 1.4: Orbits of planets in the solar system. a - major radius; e - eccentricity; T - orbital period.
Here, an astronomical unit (AU) is 1.496 × 1011 m.

that the area of the ellipse is A = π a b. Now, we expect the radius vector to sweep out the whole
area of the ellipse in a single orbital period, T . Hence,

T =
A

(dA/dt)
=

2π a b
h

. (1.322)

It follows from Equations (1.301), (1.302), and (1.321) that

T 2 =
4π2 a3

G M
. (1.323)

In other words, the square of the orbital period of our planet is proportional to the cube of its orbital
major radius. This is Kepler’s third law of planetary motion. As is clear from Table 1.4, Kepler’s
third law very accurately describes the orbits of the planets in the solar system.

1.9.8 Orbital Energies
According to Equations (1.320) and (1.321), when θ = π an object moving in the Sun’s gravita-
tional attains its closest distance to the Sun,

rp =
h2

G M (1 + e)
. (1.324)

This distance is known as the perihelion distance. At the point of closest approach to the Sun, the
object’s instantaneous radial velocity, .r, is zero (because r attains a minimum value at this point).
Hence, making use of Equations (1.288) and (1.312), the object’s speed at the perihelion distance
is

v2 = r 2
p

.
θ 2 =

h2

r 2
p
. (1.325)

Thus, according to Equation (1.280) and (1.324), the object’s energy per unit mass at the perihelion
distance is

E =
h2

2 r 2
p
− G

rp
=

G M (1 + e)
2 rp

− G M
rp

, (1.326)
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which reduces to
E =

G M
2 rp

(e − 1). (1.327)

Of course, because E is a conserved quantity, the previous expression specifies the energy per
unit mass of the object at all distances from the Sun. We conclude that an object in an elliptic
orbit (e < 1) has a negative total energy, whereas an object in a parabolic orbit (e = 1) has zero
total energy, and an object in a hyperbolic orbit (e > 1) has a positive total energy. This makes
sense, because in a conservative system in which the potential energy at infinity is set to zero
[see Equation (1.279)], we expect bounded orbits to have negative total energies, and unbounded
orbits to have positive total energies. (See Section 1.3.6.) Thus, elliptical orbits, which are clearly
bounded, should indeed have negative total energies, whereas hyperbolic orbits, which are clearly
unbounded, should indeed have positive total energies. Parabolic orbits are marginally bounded
(i.e., an object executing a parabolic orbit only just escapes from the Sun’s gravitational field), and
thus have zero total energy.

1.10 Spheroidal Mass Distributions

1.10.1 Gravitational Potential of Uniform Spheroid
Let us use Poisson’s equation, (1.273), to calculate the gravitational potential generated around a
spheroid of uniform mass density γ and mean radius R. A spheroid is the solid body produced by
rotating an ellipse about a major or a minor axis. Let the center of the spheroid be located at the
origin, let its axis of rotation coincide with the z-axis, and let its outer boundary satisfy

r = Rθ(θ) = R
[

1 − 2
3
ε P2(cos θ)

]
, (1.328)

where ε is termed the ellipticity. Here, r, θ, φ are conventional spherical coordinates. (See Sec-
tion A.23.) Moreover,

P2(x) =
1
2

(3 x2 − 1) (1.329)

is a Legendre polynomial of degree 2. It can be seen that the radius of the spheroid at the poles
(i.e., along the rotation axis, θ = 0) is Rp = R (1 − 2 ε/3), whereas the radius at the equator (i.e., in
the bisecting plane perpendicular to the axis, θ = π/2) is Re = R (1 + ε/3). Hence,

ε =
Re − Rp

R
. (1.330)

Let us assume that |ε| � 1, so that the spheroid is very close to being a sphere. If ε > 0 then the
spheroid is slightly squashed along its axis of rotation, and is termed oblate. Likewise, if ε < 0
then the spheroid is slightly elongated along its axis, and is termed prolate. See Figure 1.18. Of
course, if ε = 0 then the spheroid reduces to a sphere. Note that R is the surface-averaged radius
of the spheroid, which implies that the volume of the spheroid is equal to that of a sphere of radius
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Figure 1.18: Prolate and oblate spheroids.

R. In other words, the slight squashing or elongation of the spheroid along its axis, as ε is varied,
does not modify its volume.

Let Φ(r, θ) and ρ(r, θ) be the gravitational potential and the mass density of the spheroid, re-
spectively. Let us write

Φ(r, θ) = Φ0(r) +Φ2(r) P2(cos θ), (1.331)

and
ρ(r, θ) = ρ0(r) + ρ2(r) P2(cos θ), (1.332)

where

ρ0(r) =

{
γ r ≤ R
0 r > R

, (1.333)

and

ρ2(r) = −2
3
γR ε δ(r − R). (1.334)

Here, δ(x) is a Dirac delta function. (See Section 2.1.6.) This function has the unusual property
that δ(x) = 0 for x , 0, δ(x) = ∞ at x = 0, but∫ ∞

−∞
δ(x) dx = 1. (1.335)

Thus, a Dirac delta function is an integrable spike function, centered on x = 0, that has unit area
under it. Note that ρ0(r) is the density distribution of a uniform sphere of density γ and radius
R. On the other hand, ρ2(r) P2(cos θ) = γ [Rθ(θ) − R] δ(r − R) is the density distribution obtained
by taking the slight excess or deficit of surface mass, due to the deviation from sphericity of the
spheroid, and placing it all at radius R. Note that, in writing Equation (1.331), we have assumed
that an axisymmetric mass distribution (i.e., a distribution that is independent of the azimuthal
angle, φ) gives rise to an axisymmetric gravitational potential.
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Now, in spherical coordinates, the Laplacian of Φ(r, θ) (i.e., a function of spherical coordinates
that is independent of the azimuthal angle, φ) takes the form

1
r2

∂

∂r

(
r2 ∂Φ

∂r

)
+

1
r2

∂

∂µ

[
(1 − µ2)

∂Φ

∂µ

]
, (1.336)

where µ = cos θ. (See Section A.23.) Thus, according to Poisson’s equation, (1.273), we can write

1
r2

d
dr

(
r2 dΦ0

dr

)
= 4πG ρ0, (1.337)

1
r2

d
dr

(
r2 dΦ2

dr

)
− 6Φ2 = 4πG ρ2. (1.338)

Here, we have made use of the easily proved result

d
dµ

[
(1 − µ2)

dP2(µ)
dµ

]
= −6 P2(µ). (1.339)

We have also employed the readily demonstrated result that∫ 1

−1
P2(µ) dµ = 0, (1.340)

which allows us to separately equate the components of Poisson’s equation that are independent of
θ, and that vary with θ as P2(cos θ).

Equations (1.333) and (1.337) must be solved subject to the physical boundary conditions that
Φ0(r) be finite at both r = 0 and r = ∞, and that Φ0(r) and its first derivative both be continuous at
r = R. The latter constraint ensures that the gravitational acceleration is both finite and continuous
at r = R. It is easily seen, by inspection, that the appropriate solution is

Φ0(r) =
G M
2 R

[( r
R

)2
− 3
]

(1.341)

for r < R, and

Φ0(r) = −G M
r

(1.342)

for r > R. Here, M = (4π/3) γR3 is the mass of the spheroid. If we calculate the associated
gravitational acceleration, g = −∇Φ0, then we can see that this solution is the same as that found
for a uniform sphere in Section 1.8.3 using Gauss’s law.

Equation (1.334) and (1.338) yield

1
r2

d
dr

(
r2 dΦ2

dr

)
− 6Φ2 = −8π

3
G γR ε δ(r − R). (1.343)

Now, Φ2(r) must be continuous across r = R otherwise the gravitational acceleration would be in-
finite. Hence, integrating the previous equation across r = R, and making use of Equation (1.335),
we obtain [

dΦ2

dr

]r=R+

r=R−
= −8π

3
G γR ε. (1.344)



70 INTERMEDIATE COLLEGE PHYSICS

Note that the discontinuity in the gradient of Φ2 at r = R is just an artifact of the fact that we have
placed all of the excess or deficit of surface mass at this radius, and is not a real phenomenon (i.e.,
the discontinuity would be resolved if we were to spread the mass out slightly). Now, for r , R,
the Dirac delta function, δ(r − R), is zero, and Equation (1.343) reduces to

1
r2

d
dr

(
r2 dΦ2

dr

)
− 6Φ2 = 0. (1.345)

This equation must be solved subject to the physical boundary conditions that Φ2(r) be finite at
both r = 0 and r = ∞, that Φ2(r) be continuous at r = R, and that Φ2(r) satisfy Equation (1.344).
It can be seen, by inspection, that the appropriate solution is

Φ2(r) =
2
5
ε

G M r2

R3 (1.346)

for r < R, and

Φ2(r) =
2
5
ε

G M R2

r3 (1.347)

for r > R.
Hence, we deduce that the net gravitational potential is

Φ(r, θ) =
G M
2 R

[( r
R

)2
− 3
]

+
2
5
ε

G M r2

R3 P2(cos θ) (1.348)

inside the spheroid, and

Φ(r, θ) = −G M
r

+
2
5
ε

G M R2

r3 P2(cos θ) (1.349)

outside the spheroid. In particular, the gravitational potential on the surface of the spheroid is

Φ(Rθ, θ) = −G M
R

[
1 +

4
15

ε P2(cos θ) + O(ε2)
]
. (1.350)

1.10.2 Rotational Flattening of Earth
The Earth rotates diurnally with an angular velocity vector, Ω, that is directed from the center of
the Earth toward its north geographic pole, and is of magnitude

Ω =
2π

23h 56m 04s = 7.292 × 10−5 rad s−1. (1.351)

Here, 23h 56m 04s is the length of a so-called sidereal day, and is the period of the Earth’s diurnal
rotation relative to the distant stars (as opposed to the Sun).

Let the Earth’s axis of rotation correspond to the z-axis, and let us set up a conventional spheri-
cal coordinate system whose origin is the Earth’s center, and whose symmetry axis corresponds to
the z-axis. (See Section A.23.) A general point in the Earth whose spherical coordinates are r, θ,
φ rotates at angular velocity Ω ez in a circle of radius r sin θ. See Figure 1.19. Thus, according to
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Figure 1.19: Centripetal acceleration.

elementary physics, the point accelerates toward the z-axis with an acceleration a = Ω2 r sin θ. As
is clear from Figure 1.19, the point’s vector acceleration is

a = −Ω2 r sin θ (sin θ er + cos θ eθ), (1.352)

where er = ∇r/|∇r| and eθ = ∇θ/|∇θ| are unit vectors in the spherical coordinate system. However,
it is easily demonstrated that

a = ∇χ (1.353)

(see Section A.23), where

χ(r, θ) = −Ω
2 r2

2
sin2 θ =

Ω2 r2

3
[P2(cos θ) − 1] (1.354)

can be thought of as a kind of centrifugal potential. (Because in the non-inertial frame of refer-
ence that co-rotates with the Earth the point in question would appear to be subject to a fictitious
centrifugal force −∇χ.)

Let us model the interior of the Earth as a fluid of uniform mass density γ. [It turns out that
the centrifugal potential, (1.354), is sufficiently large that the rigidity of the rock that makes up the
Earth is insufficient to prevent the Earth from responding to the potential in a fluid-like manner.]
Now, if p(r) is the pressure distribution in the interior of the Earth then a small cuboid volume of
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the Earth lying between x and x + dx, y and y + dy, and z and z + dz, experiences a net pressure
force

F =
[
p(x, y, z) − p(x + dx, y, z)

]
dy dz ex +

[
p(x, y, z) − p(x, y + dy, z)

]
dx dz ey

+
[
p(x, y, z) − p(x, y, z + dz)

]
dx dy ez

= −∂p
∂x

dV ex − ∂p
∂y

dV ey − ∂p
∂z

dV ez

= −∇p dV, (1.355)

where dV = dx dy dz is the volume of the cuboid. (See Section A.19). Thus, the force per unit
mass due to the pressure inside the Earth is

f =
F

γ dV
= −∇p

γ
. (1.356)

The equation of motion of a general point inside the Earth is

a = −∇Φ − ∇p
γ
, (1.357)

Here, the first term on the right-hand side of the previous equation is the gravitational force per unit
mass acting at the point [see Equation (1.269)], whereas the second term is the force per unit mass
due to internal pressure. Making use of Equation (1.353), we deduce that force balance inside the
Earth requires that

∇
(
Φ + χ +

p
γ

)
= 0. (1.358)

The previous equation can be integrated to give

Φ + χ +
p
γ

= c, (1.359)

where c is a constant.
Let us model the Earth as a spheroid whose outer radius, Rθ(θ), is specified by Equation (1.328).

(See Section 1.10.1.) It follows from Equation (1.350) that the gravitational potential at the Earth’s
surface is

Φ(Rθ, θ) ' −G M
R

[
1 +

4
15

ε P2(cos θ)
]
, (1.360)

where M is the Earth’s mass, R its mean radius, and ε its ellipticity. It is clear from Equation (1.354)
that the centrifugal potential at the Earth’s surface is

χ(Rθ, θ) ' Ω2 R2

3
[P2(cos θ) − 1] . (1.361)

Note that we have neglected the slight difference between Rθ and R, when evaluating the previ-
ous expression, because the centrifugal potential is relatively small compared to the gravitational
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potential [see Equation (1.366)], and ε is also assumed to be small [see Equation (1.367)]. Now,
the pressure at the Earth’s surface must be zero, otherwise the surface would not be in equilibrium
with outer space. (Here, we are neglecting the relatively small pressure due to the atmosphere.) It
follows from the previous three equations that, on the surface of the Earth,

−G M
R

[
1 +

4
15

ε P2(cos θ)
]

+
Ω2 R2

3
[P2(cos θ) − 1] = c. (1.362)

We can separately equate the components of the previous equation that are independent of θ, and
that vary with θ as P2(cos θ), to give

c = −G M
R
− Ω

2 R2

3
, (1.363)

and
ε =

15
4
ζ. (1.364)

where

ζ =
Ω2 R3

3 G M
(1.365)

is the ratio of the typical centrifugal acceleration to the typical gravitational acceleration at r = R.
Given that Ω = 7.292 × 10−5 rad s−1, R = 6.371 × 106 m, and M = 5.972 × 1024 kg, we deduce

that
ζ = 1.15 × 10−3, (1.366)

and
ε = 4.31 × 10−3. (1.367)

In other words, as consequence of the Earth’s rotation, the shape of the Earth is an oblate (because
ε > 0) spheroid. Thus, the Earth is slightly flattened along an axis passing through its geographic
poles. This result was first obtained by Newton. The predicted difference between the Earth’s
equatorial and polar radii is ∆R = Re − Rp = ε R = 27.5 km. In fact, the observed ellipticity of the
Earth is

ε = 3.35 × 10−3, (1.368)

with an associated difference between the equatorial and polar radii of 21.4 km. Our analysis has
overestimated the Earth’s rotational flattening because, for the sake of simplicity, we modeled the
Earth as a uniform body. In fact, the interior of the Earth is much denser than its crust.

1.10.3 Surface Gravity of Earth
Making use of Equations (1.329), (1.349), (1.354), (1.364), and (1.365), the combined gravitational
and centrifugal potential outside the Earth is

Φ + χ = −G M
R

[
R
r
− 3 ζ

2

(
R
r

)3

+
9 ζ
4

(
R
r

)3

sin2 θ +
3 ζ
2

( r
R

)2
sin2 θ

]
. (1.369)
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According to Equations (1.328), (1.329), and (1.364), the surface of the Earth lies at radius

Rθ(θ) = R
(

1 − 5 ζ
2

+
15 ζ

4
sin2 θ

)
. (1.370)

The effective gravitational acceleration at the Earth’s surface is g = |∇(Φ+χ)|(Rθ, θ), which reduces
to

g(λ) =
G M
R2

[
1 +

ζ

2
− 15 ζ

4
cos2 λ + O(ζ2)

]
, (1.371)

where λ = π/2−θ corresponds to terrestrial latitude. The previous expression shows that the Earth’s
rotation, combined with its equatorial bulge, causes the acceleration experienced by objects close
to the Earth’s surface, that co-rotate with the Earth, to vary slightly with latitude. The acceleration
is greatest at the poles (λ = π/2), and weakest at the equator (λ = 0). To be more exact, we predict
that

gpole =
G M
R2

(
1 +

ζ

2

)
= 9.826 m s−1, (1.372)

and

gequator =
G M
R2

(
1 − 13 ζ

4

)
= 9.783 m s−1. (1.373)

In fact, the true values of the polar and equatorial accelerations are gpole = 9.832 m s−1 and gequator =

9.781 m s−1, respectively.

1.10.4 MacCullagh’s Formula
Consider the uniform spheroid discussed in Section 1.10.1. Let us set up a Cartesian coordinate
system whose origin coincides with the center of the spheroid, and whose z-axis corresponds to
the spheroid’s rotation axis.

It is clear, by symmetry, that the x-, y-, and z-axes are principal axes of rotation. (See Sec-
tion 1.7.2.) Hence, given that x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, where r, θ, z
are conventional spherical coordinates (see Section A.23), the principal moments of inertia of the
spheroid are

Ixx =

∫
V

(y2 + z2) ρ(x, y, z) dV =

∫
V

r2 (sin2 θ sin2 φ + cos2 θ) ρ(r, θ) dV

=
1
2

∫
V

r2 (1 + cos2 θ) ρ(r, θ) dV, (1.374)

Iyy =

∫
V

(x2 + z2) ρ(x, y, z) dV =

∫
V

r2 (sin2 θ cos2 φ + cos2 θ) ρ(r, θ) dV

=
1
2

∫
V

r2 (1 + cos2 θ) ρ(r, θ) dV, (1.375)

Izz =

∫
V

(x2 + y2) ρ(x, y, z) dV =

∫
V

r2 (1 − cos2 θ) dV, (1.376)
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where the integral is over the volume, V , of the spheroid. In writing the previous formulae, we have
made use of the fact that the mass density of the spheroid, ρ(r, θ), is independent of the azimuthal
angle, φ, and that the averages of cos2 φ and sin2 φ over the volume of a mass distribution that is
independent of φ are both equal to 1/2.

Let us write Ixx = Iyy = I⊥ and I‖ = Izz. (See Section 1.7.2.) Now, according to Equa-
tions (1.332)–(1.334), the mass density of the spheroid is

ρ(r, θ) = ρ0(r) − 2
3
γR ε δ(r − R) P2(cos θ), (1.377)

where

ρ0(r) =

{
γ r ≤ R
0 r > R

. (1.378)

Here, R is the mean radius of the spheroid, and γ is its uniform mass density. Given that dV =

r2 sin θ dr dθ dφ, we can evaluate the integrals (1.374)–(1.376) to give

I‖ =
2
5

M R2 +
4
15

ε M R2, (1.379)

I⊥ =
2
5

M R2 − 2
15

ε M R2. (1.380)

Here, M = (4π/3) R3 γ is the mass of the spheroid.
If we apply the previous two results to the Earth, for which ε = 3.35×10−3 (see Section 1.10.2),

then it is clear that the slight rotational flattening of the Earth along its axis of diurnal rotation
causes the principal moment of inertia about this axis, I‖, to be slightly larger that the principal
moment of inertia, I⊥, about an axis that lies in the Earth’s equatorial plane. In particular,

I‖ − I⊥ =
2
5
ε M R2. (1.381)

Thus, it follows from Equation (1.349) that the self-generated gravitational potential outside the
Earth can be written

Φ(r, θ) = −G M
r

+
G (I‖ − I⊥)

r3 P2(cos θ). (1.382)

This result is known as MacCullagh’s formula. It turns out the that the previous formula applies
to any axisymmetric mass distribution (i.e., it is not limited to spheroidal mass distributions of
uniform mass density). The first term on the right-hand side MacCullagh’s formula is the monopole
gravitational potential that would be generated if all the Earth’s mass were concentrated at its center
of mass, whereas the second term is the quadrupole gravitational potential generated by the slight
deviation of the Earth’s shape from that of a sphere.

1.10.5 Gravitational Torque on Axisymmetric Mass Distribution
Consider an axisymmetric mass distribution. Let us set up a Cartesian coordinate system whose
origin corresponds to the center of mass of the distribution, and whose z-axis corresponds to the
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symmetry axis. The fact that the origin corresponds to the center of mass implies that∫
V

x ρ dV =

∫
V
y ρ dV =

∫
V

z ρ dV = 0, (1.383)

where the integrals are over the volume, V , of the distribution, and ρ is the distribution’s mass
density. (See Section 1.4.2.) By symmetry, the Cartesian axes are principal axes of rotation, which
implies that all of the products of inertia are zero. (See Section 1.7.2.) In other words,∫

V
x y ρ dV =

∫
V
y z ρ dV =

∫
V

z x ρ dV = 0. (1.384)

Finally, the principal moments of inertia of the distribution are

I‖ = Izz =

∫
V

(x2 + y2) ρ dV, (1.385)

I⊥ = Ixx = Iyy =

∫
V

(x2 + z2) ρ dV =

∫
V

(y2 + z2) ρ dV. (1.386)

Suppose that the mass distribution lies in the gravitational field of a distant object. LetΦ(x, y, z)
be the gravitational potential generated by the distant object. The gravitational torque, about the
center of mass, that the distant object exerts on the mass distribution is

τ = −
∫

V
r × ∇Φρ dV. (1.387)

[See Section 1.4.5 and Equation (1.269).] However, we expect Φ(x, y, z) to only vary slightly
across the mass distribution, assuming that the distance of the distant object from the origin is
much larger than the dimensions of the mass distribution. Thus, we can Taylor expand Φ(x, y, z)
about the origin to give

Φ(x, y, z) ' Φx x +Φy y+Φz z +
1
2
Φxx x2 +

1
2
Φyy y

2 +
1
2
Φzz z2 +Φxy x y+Φyz y z +Φzx z x. (1.388)

Here, Φx denotes ∂Φ/∂x evaluated at the origin, whereas Φxy denotes ∂2Φ/∂x ∂y evaluated at the
origin, et cetera. Note that we have set the value of Φ at the origin to zero, as we are free to do,
given that gravitational potential (like gravitational potential energy) is undefined to an arbitrary
additive constant. The previous six equations can be combined to give

τx = −(I‖ − I⊥)Φyz, (1.389)

τy = (I‖ − I⊥)Φzx, (1.390)

τz = 0. (1.391)

We conclude that the distant object exerts a torque on the mass distribution whose direction lies in
the distribution’s equatorial plane. Note, however, that the distant object is incapable of exerting a
torque on a spherically symmetric mass distribution (i.e., a distribution for which I‖ = I⊥).
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1.10.6 Lunisolar Precession of Earth
Let us investigate the influence of the Sun on the Earth’s diurnal rotation. Consider the Earth-Sun
system. See Figure 1.20. From a geocentric viewpoint, the Sun orbits the Earth counterclockwise
(if we look from the north), once per year, in an approximately circular orbit of radius as = 1.496×
1011 m. In astronomy, the plane of the Sun’s apparent orbit relative to the Earth is known as the
ecliptic plane. Let us define non-rotating (with respect to distant stars) Cartesian coordinates,
centered on the Earth, which are such that the x′- and y′-axes lie in the ecliptic plane, and the
z′-axis is normal to this plane (in the sense that the Earth’s north pole lies at positive z′). It follows
that the z′-axis is directed toward a point in the sky (located in the constellation Draco) known as
the north ecliptic pole. In the following, we shall treat the x′, y′, z′ coordinate system as inertial.
This is a reasonable approximation because the orbital acceleration of the Earth is much smaller
than the acceleration due to its diurnal rotation. It is convenient to parameterize the instantaneous
position of the Sun in terms of a counterclockwise (if we look from the north) azimuthal angle λs

that is zero on the positive x′-axis. See Figure 1.20. Thus, the coordinates of the Sun in the x′, y′,
z′ system are

x′s = as cos λs, (1.392)

y′s = as sin λs, (1.393)

z′s = 0. (1.394)

Note that
λs = ωs t, (1.395)

where

ωs =

(
G Ms

a 3
s

)1/2

(1.396)

is the Sun’s apparent orbital angular velocity about the Earth. [See Equation (1.323).] Here,
Ms = 1.989 × 1030 kg is the mass of the Sun.

Let Ω be the Earth’s angular velocity vector due to its diurnal rotation. This vector subtends
an angle θ with the z′-axis, where θ = 23.44◦ is the mean inclination of the ecliptic to the Earth’s
equatorial plane. Suppose that the projection of Ω onto the ecliptic plane subtends an angle φ with
the x′-axis, where φ is measured in a counterclockwise (if we look from the north) sense, and is
zero on the positive x′-axis. See Figure 1.20. The orientation of the Earth’s axis of rotation (which
is, of course, parallel to Ω) is thus determined by the two angles θ and φ. The components of Ω in
the x′, y′, z′ system are

Ωx′ = Ω sin θ cos φ, (1.397)

Ωy′ = Ω sin θ sin φ, (1.398)

Ωz′ = Ω cos θ. (1.399)

Let us define a second coordinate system, centered on the Earth, such that the z-axis corre-
sponds to the Earth’s axis of rotation. The transformation between the x, y, z system and the x′, y′,
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Earth
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φ

as λs
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x′
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Figure 1.20: The Earth-Sun system.

z′ system is  x
y

z

 =

 cos θ cos φ, cos θ sin φ, − sin θ
− sin φ, cos φ, 0

sin θ cos φ, sin θ sin φ, cos θ


 x′

y′

z′

 . (1.400)

(See Section A.5.) The inverse transformation is x′

y′

z′

 =

 cos θ cos φ, − sin φ, sin θ cos φ
cos θ sin φ, cos φ, sin θ sin φ
− sin θ, 0, cos θ


 x

y

z

 . (1.401)

Of course, the previous two transformations also apply to the components of all vectors in the two
coordinate systems. It is easily verified, from Equations (1.397)–(1.400), that Ω = Ω ez in the x, y,
z coordinate system. Note that ey lies both in the Earth’s equatorial plane and the ecliptic plane.

The gravitational potential of the Sun can be written

Φ(x, y, z) = − G Ms

|r − rs| = −
G Ms

[(x − xs)2 + (y − ys)2 + (z − zs)2]1/2 , (1.402)

where

xs = as (cos θ cos φ cos λs + cos θ sin φ sin λs), (1.403)

ys = as (− sin φ cos λs + cos φ sin λs), (1.404)

zs = as (sin θ cos φ cos λs + sin θ sin φ sin λs) (1.405)

are the coordinates of the Sun in the x, y, z system. [See Equations (1.392)–(1.394) and Equa-
tion (1.400).] It follows that

Φyz ≡ ∂ 2Φ

∂y ∂z

∣∣∣∣
x=y=z=0

= −3 G Ms ys zs

a 5
s

=
3
2

G Ms

a 3
s

sin θ sin[2 (φ − λs)], (1.406)
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Φzx ≡ ∂ 2Φ

∂z ∂x

∣∣∣∣
x=y=z=0

= −3 G Ms zs xs

a 5
s

= −3 G Ms

2 a 3
s

cos θ sin θ (1 + cos[2 (φ − λs)]). (1.407)

Because we are primarily interested in the motion of the Earth’s axis of rotation on timescales that
are much longer than a year, we can average the preceding expressions over the Sun’s orbit to give

Φyz = 0, (1.408)

Φzx = −3 G Ms

2 a 3
s

cos θ sin θ. (1.409)

(This follows because the averages of cos[2 (φ− λs)] and sin[2 (φ− λs)] over a year are both zero.)
Equations (1.389)–(1.391), combined with the previous two equations, reveal that the components
of the gravitational torque exerted by the Sun on the Earth in the x, y, z system are

τx = 0, (1.410)

τy = −3
2

G Ms (I‖ − I⊥)
a 3

s
cos θ sin θ, (1.411)

τz = 0, (1.412)

where I‖ and I⊥ are the Earth’s principal moments of inertia. [See Equations (1.385) and (1.386).]
Making use of Equation (1.401), the components of the torque in the x′, y′, z′ system are thus

τx′ =
3
2

G Ms (I‖ − I⊥)
a 3

s
cos θ sin θ sin φ, (1.413)

τy′ = −3
2

G Ms (I‖ − I⊥)
a 3

s
cos θ sin θ cos φ, (1.414)

τz′ = 0. (1.415)

Because the Earth is rotating about the principal axis of rotation whose principal moment of
inertia is I‖, the Earth’s angular momentum can be written L = I‖Ω. (See Section 1.7.2.) Thus, the
components of L in the x′, y′, z′ system are

Lx′ = I‖Ω sin θ cos φ, (1.416)

Ly′ = I‖Ω sin θ sin φ, (1.417)

Lz′ = I‖Ω cos θ. (1.418)

[See Equations (1.397)–(1.399).]
The angular equation of motion of the Earth is

dL
dt

= τ. (1.419)

(See Section 1.7.1.) However, we must solve this equation in the inertial x′, y′, z′ coordinate
system, rather than the x, y, z coordinate system. The reason for this is that the Earth’s angular
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velocity, Ω, rotates about the z′-axis under the action of the gravitational torque exerted by the Sun
on the Earth. Hence, the x, y, z coordinate system, which co-moves with the Earth, accelerates with
respect to the x′, y′, z′ system. It follows that the x, y, z system is non-inertial. (See Section 1.5.4.)
Making use of Equations (1.413)–(1.418), the components of the previous equation in the x′, y′, z′

system are

d
dt

(
I‖Ω sin θ cos φ

)
=

3
2

G Ms (I‖ − I⊥)
a 3

s
cos θ sin θ sin φ, (1.420)

d
dt

(
I‖Ω sin θ sin φ

)
= −3

2
G Ms (I‖ − I⊥)

a 3
s

cos θ sin θ cos φ, (1.421)

d
dt

(
I‖Ω cos θ

)
= 0. (1.422)

If we assume Ω and θ are constants, but that φ varies in time, then we can solve the previous three
equations to give

dφ
dt

= −Ωφ, (1.423)

where

Ωφ =
3
2

G Ms

Ω a 3
s

(
I‖ − I⊥

I‖

)
cos θ =

3
2
ω 2

s

Ω
ε cos θ, (1.424)

and use has been made of Equations (1.379), (1.381), and (1.396).
According to Equation (1.423), the gravitational torque exerted by the Sun on the Earth, due

to the Earth’s slight oblateness, causes the Earth’s axis of rotation to precess steadily about the
normal to the ecliptic plane at the rate −Ωφ. This precession is analogous to that of a spinning
top discussed in Section 1.7.7. The fact that −Ωφ is negative implies that the precession is in the
opposite sense to that of the Earth’s diurnal rotation and the Sun’s apparent orbit about the Earth.
The precession period in (sidereal) years is given by

Tφ(yr) =
ωs

Ωφ

=
2 Ts(day)
3 ε cos θ

, (1.425)

where Ts(day) = Ω/ωs = 366.26 is the length of a sidereal year in sidereal days. (Sidereal means
measured with respect to distant stars.) Thus, given that ε = 3.35× 10−3 and θ = 23.44◦, we obtain

Tφ ' 79,400 years. (1.426)

Unfortunately, the observed precession period of the Earth’s axis of rotation about the normal to
the ecliptic plane is approximately 25,800 years, so something is clearly missing from our model.
It turns out that the missing factor is the influence of the Moon.

From a geocentric viewpoint, the Moon orbits the Earth counterclockwise (if we look from the
north), once per month, in an approximately circular orbit of radius am = 3.844× 108 m. This orbit
is inclined at about 5◦ to the ecliptic plane. However, in the following, we shall ignore this small
inclination, and place the Moon’s orbit in the ecliptic plane. Analogous analysis to that employed
in the preceding part of this section reveals that the gravitational torque exerted by the Moon on
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the Earth (averaged over an month) gives rise to additional contribution to the precession rate Ωφ.
In fact, by analogy with Equation (1.424), we expect

Ωφ =
3

2Ω

(
G Ms

a 3
s

+
G Mm

a 3
m

)(
I‖ − I⊥

I‖

)
cos θ. (1.427)

Here, Mm = 7.324 × 1022 kg is the mass of the Moon. Now,

ωm =

(
G Me

a 2
m

)1/2

(1.428)

is the Moon’s orbital angular velocity about the Earth. [See Equation (1.323).] Here, Me = 5.972×
1024 kg is the mass of the Earth. Making use of the previous equation, as well as Equations (1.379),
(1.381), and (1.396), we obtain

Ωφ =
3
2
ω 2

s + µm ω
2
m

Ω
cos θ, (1.429)

where µm = Mm/Me.
According to Equations (1.423) and (1.429), the combined gravitational torque exerted by the

Sun and the Moon on the Earth, due to the Earth’s slight oblateness, causes the Earth’s axis of
rotation to precess steadily about the normal to the ecliptic plane at the rate −Ωφ. As before, the
negative sign indicates that the precession is in the opposite direction to the (apparent) orbital
motion of the Sun and the Moon. The period of this so-called lunisolar precession in (sidereal)
years is given by

Tφ(yr) =
ωs

Ωφ

=
2 Ts(day)

3 ε (1 + µm/[Tm(yr)]2) cos θ
, (1.430)

where Tm(yr) = ωs/ωm = 0.00748 is the Moon’s (sidereal) orbital period in years. Given that
ε = 3.35 × 10−3, θ = 23.44◦, Ts(day) = 366.26, and µm = 0.0123, we obtain

Tφ ' 24,800 years. (1.431)

This prediction is fairly close to the observed precession period of 25,800 years. The main reason
that our estimate is slightly inaccurate is because we have neglected to take into account the small
eccentricities of the Earth’s orbit around the Sun (see Table 1.4) and the Moon’s orbit around the
Earth, as well as the small inclination of the Moon’s orbit to the Earth’s.

The point in the sky toward which the Earth’s axis of rotation is directed is known as the north
celestial pole. Currently, this point lies within about a degree of the fairly bright star Polaris, which
is consequently sometimes known as the north star or pole star. See Figure 1.21. It follows that
Polaris appears to be almost stationary in the sky, always lying due north, and can thus be used for
navigational purposes. Indeed, mariners have relied on the north star for many hundreds of years to
determine direction at sea. Unfortunately, because of the precession of the Earth’s axis of rotation,
the north celestial pole is not a fixed point in the sky, but instead traces out a circle, of angular
radius 23.44◦, about the north ecliptic pole, with a period of 25,800 years. See Figure 1.21. Hence,
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Figure 1.21: Path of the north celestial pole against the backdrop of the stars as consequence of
the precession of the equinoxes (calculated assuming constant precessional speed and obliquity).
Numbers indicate years relative to start of common era.

a few thousand years from now, the north celestial pole will no longer coincide with Polaris, and
there will be no convenient way of telling direction from the stars.

The projection of the ecliptic plane onto the sky is called the ecliptic circle, and coincides
with the apparent path of the Sun against the backdrop of the stars. The projection of the Earth’s
equator onto the sky is known as the celestial equator. As has been previously mentioned, the
ecliptic is inclined at 23.44◦ to the celestial equator. The two points in the sky at which the ecliptic
crosses the celestial equator are called the equinoxes, because night and day are equally long when
the Sun lies at these points. Thus, the Sun reaches the vernal equinox on about March 20, and
this traditionally marks the beginning of spring (in the Earth’s northern hemisphere). Likewise,
the Sun reaches the autumnal equinox on about September 22, and this traditionally marks the
beginning of autumn. (In fact, in our calculation, the unit vector ey = − sin φ ex′ + cos φ ey′ is
directed toward the autumnal equinox.) However, the precession of the Earth’s axis of rotation
causes the celestial equator (which is always normal to this axis) to precess in the sky; it thus also
causes the equinoxes to precess along the ecliptic. This effect is known as the precession of the
equinoxes. The precession is in the opposite direction to the Sun’s apparent motion around the
ecliptic, and is of magnitude 1.4◦ per century. Amazingly, this miniscule effect was discovered
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by the ancient Greeks (with the help of ancient Babylonian observations). In about 2000 BCE,
when the science of astronomy originated in ancient Egypt and Babylonia, the vernal equinox lay
in the constellation Aries. See Figure 1.22. Indeed, the vernal equinox is still sometimes called
the first point of Aries in astronomical texts. About 90 BCE, the vernal equinox moved into the
constellation Pisces, where it still remains. The equinox will move into the constellation Aquarius
(marking the beginning of the much heralded “Age of Aquarius”) in about 2600 CE. Incidentally,
the position of the vernal equinox in the sky is of great significance in astronomy, because it is used
as the zero of celestial longitude (much as the Greenwich meridian is used as the zero of terrestrial
longitude).

1.10.7 Two-Body Dynamics
Let us consider the motion of a dynamical system that consists of two freely moving and mutually
interacting point objects. Suppose that our first object is of mass m1, and is located at displacement
r1. Likewise, our second object is of mass m2, and is located at displacement r2. Let the first
object exert a force f21 on the second. By Newton’s third law, the second object exerts an equal and
opposite force, f12 = −f21, on the first. (See Section 1.2.4.) Suppose that there are no other forces
in the problem. The equations of motion of our two objects are thus

m1
d 2r1

dt 2 = −f, (1.432)

m2
d 2r2

dt 2 = f, (1.433)
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where f = f21.
The center of mass of our system is located at

R =
m1 r1 + m2 r2

m1 + m2
. (1.434)

(See Section 1.4.2.) Hence, we can write

r1 = R − m2

m1 + m2
r, (1.435)

r2 = R +
m1

m1 + m2
r, (1.436)

where r = r2 − r1. Substituting the previous two equations into Equations (1.432) and (1.433),
and making use of the fact that the center of mass of an isolated system does not accelerate (see
Section 1.4.2), we find that both equations yield

µ
d 2r
dt 2 = f, (1.437)

where
µ =

m1 m2

m1 + m2
(1.438)

is called the reduced mass. Hence, we have effectively converted our original two-body problem
into an equivalent one-body problem. In the equivalent problem, the force f is the same as that
acting on both objects in the original problem (modulo a minus sign). However, the mass, µ, is
different, and is less than either of m1 or m2 (which is why it is called the “reduced” mass).

1.10.8 Binary Star Systems
Approximately half of the stars in our galaxy are members of so-called binary star systems. Such
systems consist of two stars orbiting about their common center of mass. The distance separating
the stars is always very much less than the distance to the nearest-neighbor star. Hence, a binary
star system can be treated as a two-body dynamical system to a very good approximation.

In a binary star system, the gravitational force that the first star exerts on the second is

f = −G m1 m2

r 3 r, (1.439)

where r = r2 − r1. [See Equation (1.238).] As we have seen, a two-body system can be reduced
to an equivalent one-body system whose equation of motion is of the form (1.437), where µ =

m1 m2/(m1 + m2). Hence, in this particular case, we can write

m1 m2

m1 + m2

d 2r
dt 2 = −G m1 m2

r 3 r, (1.440)

which gives
d 2r
dt 2 = −G M

r 3 r, (1.441)
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Figure 1.23: An example binary star orbit calculated with m1/m2 = 0.4 and e = 0.8.

where
M = m1 + m2. (1.442)

Equation (1.441) is identical to Equation (1.277), which we have already solved. Hence, we
can immediately write down the solution (see Sections 1.9.5–1.9.7):

r = (r cos θ, r sin θ, 0), (1.443)

where

r =
a (1 − e 2)
1 − e cos θ

, (1.444)

and
dθ
dt

=
h
r 2 , (1.445)

with

a =
h 2

(1 − e 2) G M
. (1.446)

Here, h is a constant, and we have aligned our Cartesian axes so that the plane of the orbit coin-
cides with the x-y plane. According to the previous solution, the second star executes a Keplerian
elliptical orbit, with major radius a and eccentricity e, relative to the first star, and vice versa. From
Equation (1.323), the period of revolution, T , is given by

T =

√
4π 2 a 3

G M
. (1.447)
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Figure 1.24: Two orbiting masses.

In the inertial frame of reference whose origin always coincides with the center of mass—the
so-called center of mass frame—the displacement of the two stars are

r1 = − m2

m1 + m2
r, (1.448)

r2 =
m1

m1 + m2
r, (1.449)

where r was specified previously. Figure 1.23 shows an example binary star orbit, in the center
of mass frame, calculated with m1/m2 = 0.4 and e = 0.8. It can be seen that both stars execute
elliptical orbits about their common center of mass. Furthermore, at any given point in time, the
stars are diagrammatically opposite one another, relative to the center of mass.

Binary star systems have been very useful to astronomers, because it is possible to determine
the masses of both stars in such a system by careful observation. The sum of the masses of the two
stars, M = m1 + m2, can be found from Equation (1.447) after a measurement of the major radius,
a (which is the mean of the greatest and smallest distance apart of the two stars during their orbit),
and the orbital period, T . The ratio of the masses of the two stars, m1/m2, can be determined from
Equations (1.448) and (1.449) by observing the fixed ratio of the relative distances of the two stars
from the common center of mass about which they both appear to rotate. Obviously, given the sum
of the masses, and the ratio of the masses, the individual masses themselves can then be calculated.

1.10.9 Tidal Elongation of Earth
Consider two point objects, of masses m and m′, executing circular orbits about their common
center of mass, C, with angular velocity ω. Let a be the distance between the masses, and ρ the
distance between point C and mass m. See Figure 1.24. We know from Section 1.10.8 that

ω2 =
G M
a3 , (1.450)

and
ρ =

m′

M
a, (1.451)

where M = m + m′.
Let us transform to a non-inertial frame of reference that rotates, about an axis perpendicular

to the orbital plane and passing through C, at the angular velocity ω. In this reference frame, both
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Figure 1.25: Calculation of tidal forces.

masses appear to be stationary. Consider mass m. In the rotating frame, this mass experiences a
gravitational acceleration

ag =
G m′

a2 (1.452)

directed toward the center of mass, and a centrifugal acceleration (see Section 1.10.2)

ac = ω2 ρ (1.453)

directed away from the center of mass. However, it is easily demonstrated, using Equations (1.450)
and (1.451), that

ac = ag. (1.454)

In other words, the gravitational and centrifugal accelerations balance, as must be the case if mass
m is to remain stationary in the rotating frame. Let us investigate how this balance is affected if the
masses m and m′ have finite spatial extents.

Let the center of the mass distribution m′ lie at A, the center of the mass distribution m at B,
and the center of mass at C. See Figure 1.25. We wish to calculate the centrifugal and gravita-
tional accelerations at some point D in the vicinity of point B. It is convenient to adopt spherical
coordinates, centered on point B, and aligned such that the z-axis coincides with the line BA.

Let us assume that the mass distribution m is orbiting around C, but is not rotating about an
axis passing through its center of mass, in order to exclude rotational flattening from our analysis.
If this is the case then it is easily seen that each constituent point of m executes circular motion
of angular velocity ω and radius ρ. See Figure 1.26. Hence, each point experiences the same
centrifugal acceleration:

gc = −ω2 ρ ez. (1.455)

It follows that
gc = −∇χ′, (1.456)

where
χ′ = ω2 ρ z (1.457)

is the centrifugal potential and z = r cos θ. The centrifugal potential can also be written

χ′ =
G m′

a
r
a

P1(cos θ), (1.458)
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Figure 1.26: The center B of mass distribution m orbits about the center of mass C in a circle of
radius ρ. If m is non-rotating then a non-central point D maintains a constant spatial relationship
to B, such that D orbits some point C′ that has the same spatial relationship to C that D has to B,
in a circle of radius ρ.

where
P1(x) = x (1.459)

is a Legendre polynomial of degree 1.
The gravitational acceleration at point D due to mass m′ is given by

gg = −∇Φ′, (1.460)

where the gravitational potential takes the form

Φ′ = −G m′

a′
. (1.461)

(See Section 1.8.5.) Here, a′ is the distance between points A and D. The gravitational potential
generated by the mass distribution m′ is the same as that generated by an equivalent point mass at
A, as long as the distribution is spherically symmetric, which we shall assume to be the case. (See
Section 1.8.3.)

Now,
a′ = a − r, (1.462)

where a′ is the vector
→
DA, and a the vector

→
BA. See Figure 1.25. It follows that

a′ −1 =
(
a2 − 2 a · r + r2

)−1/2
=
(
a2 − 2 a r cos θ + r2

)−1/2
. (1.463)

Expanding in powers of r/a, it is easily demonstrated that

Φ′ ' −G m′

a

[
1 +

r
a

P1(cos θ) +
r2

a2 P2(cos θ)
]
, (1.464)
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to second order in r/a, where the Legendre polynomials P2(x) and P1(x) are defined in Equa-
tions (1.329) and (1.459), respectively.

Adding χ′ and Φ′, we find that

χ = χ′ +Φ′ ' −G m′

a

[
1 +

r2

a2 P2(cos θ)
]
, (1.465)

to second order in r/a. Note that χ is the potential due to the net externally generated force acting
on the mass distribution m in the rotating frame. This potential is constant up to first order in
r/a, because the first-order variations in χ′ and Φ′ cancel each other. The cancellation is a man-
ifestation of the balance between the centrifugal and gravitational accelerations in the equivalent
point mass problem discussed previously. However, this balance is only exact at the center of the
mass distribution m. Away from the center, the centrifugal acceleration remains constant, whereas
the gravitational acceleration increases with increasing z. At positive z, the gravitational accelera-
tion is larger than the centrifugal acceleration, giving rise to a net acceleration in the +z-direction.
Likewise, at negative z, the centrifugal acceleration is larger than the gravitational, giving rise to a
net acceleration in the −z-direction. It follows that the mass distribution m is subject to a residual
acceleration, represented by the second-order variation in Equation (1.465), that acts to elongate it
along the z-axis. This effect is known as tidal elongation.

Suppose that the mass distribution m is a uniform fluid sphere of radius R. Let us estimate
the elongation of this distribution due to the tidal potential specified in Equation (1.465), which
(neglecting constant terms) can be written

χ(r, θ) =
G m

R
ζ
( r

R

)2
P2(cos θ). (1.466)

Here, the dimensionless parameter

ζ = −m′

m

(
R
a

)3

(1.467)

is (minus) the typical ratio of the tidal acceleration to the gravitational acceleration at r ' R. Let
us assume that |ζ | � 1. By analogy with the analysis in Section 1.10.2, in the presence of the
tidal potential, the distribution becomes slightly spheroidal in shape, such that its outer boundary
satisfies Equation (1.328). Moreover, the induced ellipticity, ε, of the distribution is related to the
normalized amplitude, ζ, of the tidal potential according to

ε =
15
4
ζ. (1.468)

[See Equation (1.364).]
Consider the tidal elongation of the Earth due to the Moon. In this case, we have R = 6.371 ×

106 m, a = 3.844 × 108 m, m = 5.972 × 1024 kg, and m′ = 7.324 × 1022 kg. Hence, we find that

ζ = −5.58 × 10−8. (1.469)

Thus, according to Equation (1.468), the ellipticity of the Earth induced by the tidal effect of the
Moon is

ε =
15
4
ζ ' −2.09 × 10−7. (1.470)
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The fact that ε is negative implies that the Earth is elongated along the z-axis; that is, along the axis
joining its center to that of the Moon. [See Equation (1.328).] If R+ and R− are the greatest and
least radii of the Earth, respectively, due to this elongation, then

∆R = R+ − R− = −ε R = 1.33 m. (1.471)

Thus, we predict that the tidal effect of the Moon (which is actually due to spatial gradients in the
Moon’s gravitational field) causes the Earth to elongate along the axis joining its center to that of
the Moon by about 133 centimeters. This turns out to be an overestimate because the tidal potential
of the Moon is not strong enough to force the rocks that make up the Earth to respond to it as a
fluid.

Consider the tidal elongation of the Earth due to the Sun. In this case, we have R = 6.371 ×
106 m, a = 1.496 × 1011 m, m = 5.972 × 1024 kg, and m′ = 1.989 × 1030 kg. Hence, we find that

ζ = −2.65 × 10−8, (1.472)

and
ε =

15
4
ζ = −9.95 × 10−8, (1.473)

with
∆R = R+ − R− = −ε R = 0.63 m. (1.474)

Again, this turns out to be an overestimate because the tidal potential of the Sun is not strong
enough to force the rocks that make up the Earth to respond to it as a fluid. Nevertheless, we can
conclude that the tidal elongation of the Earth due to the Sun is about half that due to the Moon.

Because the Earth’s oceans are liquid, their tidal elongation is significantly larger than that of
the underlying land. Hence, the oceans rise, relative to the land, in the region of the Earth closest
to the Moon, and also in the region furthest away. Because the Earth is rotating, while the tidal
bulge of the oceans remains relatively stationary, the Moon’s tidal effect causes the ocean at a given
point on the Earth’s surface to rise and fall twice daily, giving rise to the phenomenon known as the
tides. There is also an oceanic tidal bulge due to the Sun that is about half as large as that due to
the Moon. Consequently, ocean tides are particularly high when the Sun, the Earth, and the Moon
lie approximately in a straight line, so that the tidal effects of the Sun and the Moon reinforce one
another. This occurs at a new moon, or at a full moon. These type of tides are called spring tides
(the name has nothing to do with the season). Conversely, ocean tides are particularly low when
the Sun, the Earth, and the Moon form a right angle, so that the tidal effects of the Sun and the
Moon partially cancel one another. These type of tides are called neap tides. Generally speaking,
we would expect two spring tides and two neap tides per month.



Chapter 2

Classical Electromagnetism

2.1 Electrostatic Fields

2.1.1 Electricity
We usually associate electricity with the 20th century (CE), during which it revolutionized the lives
of countless millions of ordinary people, in much the same manner as steam power revolutionized
lives in the 18th century. It is, therefore, somewhat surprising to learn that humans have known
about electricity for many thousands of years. In about 1000 BCE, the ancient Greeks started to
navigate the Black Sea, and opened up trade routes, via the river Dnieper, to the Baltic region.
Amongst the many trade items that the Greeks obtained from the Baltic was a substance that they
called “electron” (ἠλέκτρον), but that we nowadays call amber. Amber is fossilized pine resin, and
was used by the Greeks, much as it is used today, as a gem stone. However, in about 600 BCE,
Thales of Miletus discovered that amber possesses a rather peculiar property; namely, when it is
rubbed with fur it develops the ability to attract light objects, such as feathers. For many centuries,
this strange phenomenon was thought to be a unique property of amber.

In Elizabethan times, the physician William Gilbert coined the word “electric” (from the Greek
word for amber) to describe the previously mentioned effect. It was later found that many materials
become electric when rubbed with certain other materials. In 1733 (CE), the chemist Charles du
Fay discovered that there are, in fact, two different types of electricity. When amber is rubbed with
fur it acquires so-called “resinous” electricity. On the other hand, when glass is rubbed with silk it
acquires so-called “vitreous” electricity. Electricity repels electricity of the same kind, but attracts
electricity of the opposite kind. At the time, it was thought that electricity was created by friction.

Scientists in the 18th century eventually developed the concept of electric charge in order to
account for a large body of observations made in countless electrical experiments. There are two
types of electric charge; positive (which is equivalent to vitreous), and negative (which is equivalent
to resinous). Like electric charges repel one another, whereas opposite charges attract. When two
bodies are rubbed together, electric charge can be transferred from one to the other, but the total
charge remains constant. Thus, when amber is rubbed with fur, there is transfer of electric charge
such that the amber acquires a negative charge, and the fur an equal positive charge. Likewise,
when glass is rubbed with silk, the glass acquires a positive charge, and the silk an equal negative
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charge. The idea that electric charge is a conserved quantity is attributed to the Benjamin Franklin
(who is also to blame for the unfortunate sign convention that led to electrons having a negative
charge).

In the 20th century, scientists, such as J.J. Thompson and Ernest Rutherford, discovered that the
atoms out of which ordinary matter is composed consist of two components; a relatively massive,
positively charged nucleus, surrounded by a cloud of relatively light, negatively charged particles
called electrons. Electrons and atomic nuclei carry fixed electrical charges, and are essentially
indestructible (provided that we neglect nuclear reactions). Under normal circumstances, only the
electrons are mobile. Thus, when amber is rubbed with fur, electrons are transferred from the fur
to the amber, giving the amber an excess of electrons, and, hence, a negative electric charge, and
the fur a deficit of electrons, and, hence, a positive charge. Substances normally contain neither an
excess nor a deficit of electrons, and are, therefore, electrically neutral.

The SI unit of electric charge is the coulomb (C). The electric charge of an electron is

e = −1.602 × 10−19 C. (2.1)

2.1.2 Coulomb’s Law
Between 1785 and 1787, Charles Augustine de Coulomb performed a series of experiments in-
volving electric charges, and eventually established what is nowadays known as Coulomb’s law.
According to this law, any two point electric charges (i.e., electrically charged objects of negligi-
ble spatial extents) exert a force on one another. This force is directed along the line of centers
joining the two charges, is repulsive for two like charges and attractive for opposite charges, is
directly proportional to the product of the charges, and is inversely proportional to the square of
the distance between the charges.

Consider a system consisting of two point electric charges. Let charge 1 have electric charge
q1 and displacement r1. Let charge 2 have electric charge q2 and displacement r2. Coulomb’s law
states that the electrical force exerted on charge 2 by charge 1 is

f21 =
q1 q2

4π ε0

r2 − r1

|r2 − r1|3 . (2.2)

An equal and opposite force acts on the first charge, in accordance with Newton’s third law of
motion. (See Section 1.2.4.) The universal constant ε0 is called the electrical permittivity of free
space, and takes the value

ε0 = 8.854 × 10−12 C 2 N−1m−2. (2.3)

As we saw in Section 1.8.1, according to Newtonian gravity, if two point mass objects of
masses m1 and m2 are located at displacements r1 and r2, respectively, then the gravitational force
acting on the second object is

f21 = −G m1 m2
r2 − r1

|r2 − r1|3 . (2.4)

The universal gravitational constant G takes the value

G = 6.674 × 10−11 N m2 kg−2. (2.5)
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[See Equation (1.239).] Note that Coulomb’s law has the same mathematical form as Newton’s
law of gravity. In particular, they are both inverse-square force laws; that is,

|f21| ∝ 1
|r2 − r1|2 . (2.6)

However, Coulomb’s and Newton’s laws differ in two crucial respects. First, the force due to grav-
ity is always attractive (because there is no such thing as a negative mass). Second, the magnitudes
of the forces predicted by the two laws are vastly different. Consider the ratio of the electrical and
gravitational forces acting on two particles. This ratio is a constant, independent of the relative
positions of the particles, and is given by

|felectrical|
|fgravitational| =

|q1|
m1

|q2|
m2

1
4π ε0 G

. (2.7)

For electrons, the charge to mass ratio is |q|/m = 1.759 × 1011 C kg−1, so

|felectrical|
|fgravitational| = 4.17 × 1042, (2.8)

which is a truly colossal number. Suppose we were studying a physics problem involving the
motion of particles under the action of two forces with the same spatial range, but differing in
magnitude by a factor 1042. It would seem a plausible approximation (to say the least) to start the
investigation by neglecting the weaker force altogether. Applying this reasoning to the motion of
particles in the universe, we would expect the universe to be governed entirely by electrical forces.
However, this is not the case. The force that holds us to the surface of the Earth, and prevents
us from floating off into space, is gravity. The force that causes the Earth to orbit the Sun is also
gravity. In fact, on astronomical lengthscales, gravity is the dominant force, and electrical forces
are largely irrelevant. The key to understanding this paradox is that there are both positive and
negative electric charges, whereas there are only positive gravitational “charges.” This implies
that gravitational forces are always cumulative, whereas electrical forces can cancel one another
out. Suppose, for the sake of argument, that the universe starts out with randomly distributed
electric charges. Initially, we expect electrical forces to completely dominate gravitational forces.
These forces act to cause every positive electric charge to get as far away as possible from the
other positive charges in the universe, and as close as possible to the other negative charges. After
a while, we would expect the positive and negative electric charges to form close pairs. Just
how close is determined by quantum mechanics, but, in general, it is fairly close; that is, about
10−10 m. The electrical forces due to the charges in each pair effectively cancel one another out
on lengthscales much larger than the mutual spacing of the pair. However, it is only possible
for gravity to be the dominant long-range force in the universe if the number of positive electric
charges is almost equal to the number of negative charges. In this situation, every positive charge
can find a negative charge to team up with, and there are virtually no charges left over. In order for
the cancellation of long-range electrical forces to be effective, the relative difference in the number
of positive and negative electric charges in the universe must be incredibly small. In fact, positive
and negative charges have to cancel one another to such accuracy that most physicists believe that
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the net electric charge of the universe is exactly zero. But, it is not sufficient for the universe to
start out with zero net charge. Suppose there were some elementary particle process that did not
conserve electric charge. Even if this were to go on at a very low rate, it would not take long
before the fine balance between positive and negative charges in the universe was wrecked. Thus,
it is important that electric charge is a conserved quantity (i.e., the net charge of the universe can
neither increase or decrease). As far as we know, this is the case. To date, no elementary particle
reaction has been discovered that can create or destroy net electric charge.

In summary, there are two long-range forces in the universe, electricity and gravity. The former
is enormously stronger than the latter, but is usually hidden away inside neutral atoms. The fine
balance of forces due to negative and positive electric charges starts to break down on atomic
scales. In fact, interatomic and intermolecular forces are all electrical in nature. So, electrical
forces are basically what prevent us from falling though the floor. But, this is electromagnetism
on the microscopic, or atomic, scale. Classical electromagnetism generally describes phenomena
in which some sort of violence is done to matter, so that the close pairing of negative and positive
electric charges is disrupted, allowing electrical forces to manifest themselves on macroscopic
lengthscales. Of course, very little disruption is necessary before gigantic forces are generated.
Hence, it is no coincidence that the vast majority of useful machines that humankind has devised
during the last century or so are electrical in nature.

2.1.3 Electric Field
Consider a system of N point electric charges. Let the ith charge have electric charge qi and
displacement ri. As is the case for gravitational forces (see Section 1.8.1), it is an experimentally
demonstrated fact that electrical forces are superposable; that is, the electrical force acting on a
test charge whose electric charge is q and whose displacement is r is simply the sum of all of the
Coulomb-law forces exerted on it by each of the other N charges taken in isolation. In other words,
the electrical force exerted by the ith charge (say) on the test charge is the same as if all of the other
charges were not present. Thus, generalizing Equation (2.2), the force acting on the test charge is
given by

f(r) = q
∑
i=1,N

qi

4π ε0

r − ri

|r − ri|3 . (2.9)

It is helpful to introduce a vector field, E(r), known as the electric field, which is defined as
the force exerted on a test charge of unit electric charge whose displacement is r. Thus, from the
previous equation, the electrical force on a test charge q whose displacement is r is written

f(r) = q E(r), (2.10)

where the electric field is given by

E(r) =
∑
i=1,N

qi

4π ε0

r − ri

|r − ri|3 . (2.11)

At this point, we have no reason to believe that the electric field has any real physical existence. It
is just a useful device for calculating the electrical force that acts on test charges placed at various
locations.
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Figure 2.1: Electric field-lines generated by a positive charge.

According to the previous equation, the electric field generated by a single point electric charge
q located at the origin is purely radial, is directed outward if the charge is positive, and inward if it
is negative, and has magnitude

Er(r) =
q

4π ε0 r2 , (2.12)

where r is a spherical polar coordinate. Moreover, Er is the radial component of the field in
spherical polar coordinates. The other components are zero. (See Section A.23.) We can represent
an electric field by so-called field-lines. The direction of the lines indicates the direction of the
local electric field, and the density of the lines perpendicular to this direction is proportional to the
magnitude of the local electric field. It follows from Equation (2.12) that the number of field-lines
crossing the surface of a sphere centered on a point charge (which is equal to Er times the area,
4π r2, of the surface) is independent of the radius of the sphere. Thus, the field of a point positive
electric charge is represented by a group of equally-spaced, unbroken, straight-lines radiating from
the charge. See Figure 2.1. Likewise, field of a point negative charge is represented by a group of
equally-spaced, unbroken, straight-lines converging on the charge.

Because electrical forces are superposable, it follows that electric fields are also superposable.
In other words, the electric field generated by a collection of electric charges is simply the sum of
the fields generated by each of the charges taken in isolation. Suppose that, instead of having a
collection of discrete electric charges, we have a continuous distribution of charge represented by
an electric charge density ρ(r). Thus, the electric charge at displacement r′ is ρ(r′) dV ′, where dV ′

is the volume element at r′. It follows from a straight-forward extension of Equation (2.11) that
the electric field generated by this charge distribution is

E(r) =
1

4π ε0

∫
V′
ρ(r′)

r − r′

|r − r′|3 dV ′, (2.13)

where the volume integral is over a volume, V ′, that contains all of the charges.
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2.1.4 Electric Scalar Potential
Suppose that r = (x, y, z) and r′ = (x′, y′, z′) in Cartesian coordinates. The x-component of
(r − r′)/|r − r′|3 is written

x − x′

[(x − x′)2 + (y − y′)2 + (z − z′)2] 3/2 . (2.14)

However, it is easily demonstrated that

x − x′

[(x − x′)2 + (y − y′)2 + (z − z′)2] 3/2 =

− ∂

∂x

(
1

[(x − x′)2 + (y − y′)2 + (z − z′)2] 1/2

)
. (2.15)

Here, ∂/∂x denotes differentiation with respect to x at constant y, z, x′, y′, and z′. Because there is
nothing special about the x-axis, we can write

r − r′

|r − r′|3 = −∇
(

1
|r − r′|

)
, (2.16)

where ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z) is a differential operator that involves the components of r, but not
those of r′. (See Section A.19.) It follows from Equation (2.13) that

E = −∇φ, (2.17)

where
φ(r) =

1
4π ε0

∫
V′

ρ(r′)
|r − r′| dV ′. (2.18)

Thus, we conclude that the electric field, E(r), generated by a collection of fixed electric charges
can be written as minus the gradient of a scalar field, φ(r)—known as the electric scalar potential—
and that this scalar field can be expressed as a simple volume integral involving the electric charge
distribution.

The scalar potential generated by an electric charge q located at the origin is

φ(r) =
q

4π ε0 r
, (2.19)

where r is a spherical polar coordinate. (See Section A.23.) Moreover, according to Equa-
tions (2.11) and (2.16), the scalar potential generated by a set of N discrete charges qi, located
at displacements ri, is

φ(r) =
∑
i=1,N

φi(r), (2.20)

where
φi(r) =

qi

4π ε0 |r − ri| . (2.21)

Thus, the net scalar potential is just the sum of the potentials generated by each of the charges
taken in isolation.
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2.1.5 Electric Potential Energy
Suppose that a particle of electric charge q is taken along some path from point P to point Q. The
net work done on the particle by electrical forces is

W =

∫ Q

P
f · dr, (2.22)

where f(r) is the electrical force, and dr is an element of the path. (See Section 1.3.2.) Making use
of Equations (2.10) and (2.17), we obtain

W = q
∫ Q

P
E · dr = −q

∫ Q

P
∇φ · dr = −q

[
φ(Q) − φ(P)

]
. (2.23)

(See Section A.18.) Thus, the work done on the particle is simply minus the product of its charge
and the difference in electric potential between the end point and the beginning point. This work
is clearly independent of the path taken between points P and Q. Thus, we conclude that an
electric field generated by stationary charges is an example of a conservative force field. (See
Section 1.3.3.) The work done on the particle when it is taken around a closed loop is zero, so∮

C
E · dr = 0 (2.24)

for any closed loop C. This implies from the curl theorem that

∇ × E = 0 (2.25)

for any electric field generated by stationary charges. (See Section A.22.) Equation (2.25) also
follows directly from Equation (2.17), because ∇ × ∇φ ≡ 0 for any scalar potential φ. (See Sec-
tion A.22.)

The SI unit of electric potential is the volt (V), which is equivalent to a joule per coulomb.
Thus, according to Equation (2.23), the electrical work done on a particle when it is taken between
two points is the product of minus its electric charge and the voltage difference between the points.

We are familiar with the idea that a particle moving in a gravitational field possesses potential
energy, as well as kinetic energy. (See Section 1.3.5.) If the particle moves from point P to a
lower point Q then the gravitational field does work on the particle, causing its kinetic energy
to increase. The increase in kinetic energy of the particle is balanced by an equal decrease in
its potential energy, so that the overall energy of the particle is a conserved quantity. Therefore,
the work done on the particle as it moves from P to Q is minus the difference in its gravitational
potential energy between points Q and P. Of course, it only makes sense to talk about gravitational
potential energy because the gravitational field is conservative. Thus, the work done in taking a
particle between two points is path independent, and, therefore, well defined. This implies that
the difference in potential energy of the particle between the beginning and end points is also well
defined. We have already seen that an electric field generated by stationary charges is conservative.
In follows that we can define an electric potential energy of a particle moving in such a field. By
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analogy with gravitational fields, the work done in taking a particle of electric charge q from point
P to point Q is equal to minus the difference in the electric potential energy of the particle between
points Q and P. It follows from Equation (2.23) that the electric potential energy of the particle at
a general point Q, relative to some reference point P (where the potential energy is set to zero), is
given by

W(Q) = q φ(Q), (2.26)

where φ(Q) is the electric scalar potential at point Q. Free particles tend to move down gradients
of potential energy, in order to attain a minimum potential energy state. (See Section 1.3.6.) Thus,
free particles in the Earth’s gravitational field tend to fall downward. Likewise, positive charges
moving in an electric field tend to migrate towards regions with the most negative voltage, and vice
versa for negative charges.

The scalar electric potential is undefined to an additive constant. In other words, the transfor-
mation

φ(r)→ φ(r) + c, (2.27)

where c is a spatial constant, leaves the electric field unchanged according to Equation (2.17).
The scalar potential can be fixed unambiguously by specifying its value at a single point. The
usual convention is to say that the potential is zero at infinity. This convention is implicit in
Equation (2.18), where it can be seen that φ→ 0 as |r| → ∞, provided that the total electric charge∫

V′ ρ(r′) dV ′ is finite.

2.1.6 Gauss’s Law
Consider a single electric charge q located at the origin. The electric field generated by such a
charge is given by Equation (2.12). Suppose that we surround the charge by a concentric spherical
surface S of radius r. See Figure 2.2. The flux of the electric field through this surface is given by∮

S
E · dS =

∮
S

Er dS r = Er(r) 4π r2 =
q

4π ε0 r2 4π r2 =
q
ε0
, (2.28)

because the normal to the surface is always parallel to the local electric field. (See Section A.16.)
Here, r is also a spherical polar coordinate. (See Section A.23.)

However, we also know from the divergence theorem that∮
S

E · dS =

∫
V
∇ · E dV, (2.29)

where V is the volume enclosed by surface S . (See Section A.20.) Let us evaluate ∇ · E directly.
In Cartesian coordinates, the electric field (2.12) is written

E =
q

4π ε0

( x
r3 ,

y

r3 ,
z
r3

)
, (2.30)

where r2 = x2 + y2 + z2. So,

∂Ex

∂x
=

q
4π ε0

(
1
r3 −

3 x
r4

x
r

)
=

q
4π ε0

r2 − 3 x2

r5 . (2.31)
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V

Figure 2.2: Gauss’ law.

Here, use has been made of the easily demonstrated result

∂r
∂x

=
x
r
. (2.32)

Formulae analogous to Equation (2.31) can be obtained for ∂Ey/∂y and ∂Ez/∂z. The divergence of
the field is, thus, given by

∇ · E ≡ ∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
=

q
4π ε0

3 r2 − 3 x2 − 3 y2 − 3 z2

r5 = 0. (2.33)

(See Section A.20.) This is an extremely puzzling result. We have from Equations (2.28) and
(2.29) that ∫

V
∇ · E dV =

q
ε0
, (2.34)

and yet we have just proved that ∇ ·E = 0. This paradox can be resolved after a close examination
of Equation (2.33). At the origin (r = 0), we find that ∇·E = 0/0, which implies that ∇·E can take
any value at this point. Thus, Equations (2.33) and (2.34) can be reconciled if ∇ · E is some sort
of “spike” function; that is, if it is zero everywhere, except arbitrarily close to the origin, where it
becomes very large. This must occur in such a manner that the volume integral over the spike is
finite.

Let us examine how we might construct a one-dimensional spike function. Consider the “box-
car” function

g(x, ε) =

{
1/ε for |x| < ε/2
0 otherwise . (2.35)

See Figure 2.3. It is clear that ∫ ∞
−∞
g(x, ε) dx = 1. (2.36)
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−ǫ/2 xǫ/2

1/ǫ

g

Figure 2.3: A box-car function.

Now, consider the function
δ(x) = lim

ε→0
g(x, ε). (2.37)

This function is zero everywhere, except arbitrarily close to x = 0, where it is very large. However,
according to Equation (2.36), the function still possess a finite integral:∫ ∞

−∞
δ(x) dx = 1. (2.38)

Thus, δ(x) has all of the required properties of a spike function. The one-dimensional spike func-
tion δ(x) is called the Dirac delta function, after Paul Dirac who invented it in 1927 while in-
vestigating quantum mechanics. The delta function is an example of what mathematicians call a
generalized function; it is not well defined at x = 0, but its integral is nevertheless well defined.
Consider the integral ∫ ∞

−∞
f (x) δ(x) dx, (2.39)

where f (x) is a function that is well behaved in the vicinity of x = 0. Because the delta function is
zero everywhere, apart from arbitrarily close to x = 0, it is clear that∫ ∞

−∞
f (x) δ(x) dx = f (0)

∫ ∞
−∞
δ(x) dx = f (0), (2.40)

where use has been made of Equation (2.38). A simple change of variables allows us to define
δ(x − x0), which is a delta function centered on x = x0. Equation (2.40) gives∫ ∞

−∞
f (x) δ(x − x0) dx = f (x0). (2.41)

We actually require a three-dimensional delta function; that is, a function that is zero every-
where, apart from arbitrarily close to the origin, where it is very large, and whose volume integral
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is unity. If we denote this function by δ(r) then it is easily seen that the three-dimensional delta
function is the product of three one-dimensional delta functions:

δ(r) = δ(x) δ(y) δ(z). (2.42)

This function is clearly zero everywhere, except arbitrarily close the origin, where it is very large.
But, is its volume integral unity? Let us integrate over a cube of dimension 2 a that is centered on
the origin, and aligned along the Cartesian axes. This volume integral is obviously separable, so
that ∫

δ(r) dV =

∫ a

−a
δ(x) dx

∫ a

−a
δ(y) dy

∫ a

−a
δ(z) dz. (2.43)

(See Section A.17.) The integral can be turned into an integral over all space by taking the limit
a→ ∞. However, we know that, for one-dimensional delta functions,

∫ ∞
−∞ δ(s) ds = 1, so it follows

from the previous equation that ∫
δ(r) dV = 1, (2.44)

which is the desired result. A simple generalization of previous arguments yields∫
f (r) δ(r) dV = f (0), (2.45)

where f (r) is any well-behaved scalar field. Finally, we can change variables and write

δ(r − r′) = δ(x − x′) δ(y − y′) δ(z − z′), (2.46)

which is a three-dimensional delta function centered on r = r′. It is easily demonstrated that∫
f (r) δ(r − r′) dV = f (r′). (2.47)

Up to now, we have only considered volume integrals taken over all space. However, it should be
obvious that the previous result also holds for integrals over any finite volume V that contains the
point r = r′. Likewise, the integral is zero if V does not contain the point r = r′.

Let us now return to the problem in hand. The electric field generated by an electric charge q
located at the origin has ∇ · E = 0 everywhere apart from the origin, and also satisfies∫

V
∇ · E dV =

q
ε0

(2.48)

for a spherical volume V centered on the origin. These two facts imply that

∇ · E =
q
ε0
δ(r), (2.49)

where use has been made of Equation (2.44).
Consider, again, an electric charge q located at the origin, and surrounded by a spherical surface

S that is centered on the origin. We have seen that the flux of the electric field out of S is q/ε0.
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Suppose that we now displace the surface S , so that it is no longer centered on the origin. What
now is the flux of the electric field out of S? We have∮

S
E · dS =

∫
V
∇ · E dV (2.50)

from the divergence theorem (see Section A.20), as well as Equation (2.49). From these two
equations, it is clear that the flux of E out of S is still q/ε0, as long as the displacement is not
large enough that the origin is no longer enclosed by the sphere. Suppose that the surface S is
not spherical, but is instead highly distorted. What now is the flux of E out of S ? As before, the
divergence theorem and Equation (2.49) tell us that the flux remains q/ε0, provided that the surface
contains the origin. Moreover, this result is completely independent of the shape of S .

Let us try to extend the previous result. Consider N electric charges qi located at displacements
ri. A simple generalization of Equation (2.49) gives

∇ · E =
∑
i=1,N

qi

ε0
δ(r − ri). (2.51)

Thus, Equation (2.50) and the previous equation imply that∮
S

E · dS =

∫
V
∇ · E dV =

Q
ε0
, (2.52)

where Q is the total charge enclosed by the surface S . This result is called Gauss’s law, and does
not depend on the shape of the surface. Note that the previous equation is analogous in form to
the gravitational version of Gauss’s law, (1.245). This is not surprising because, as we previously
mentioned, Gauss’s law holds for any inverse-square force law.

Suppose, finally, that instead of having a set of discrete electric charges, we have a continuous
charge distribution described by a charge density ρ(r). The charge contained in a small rectangular
volume of dimensions dx, dy, and dz, located at displacement r, is Q = ρ(r) dx dy dz. However, if
we integrate ∇ · E over this volume element then we obtain

∇ · E dx dy dz =
Q
ε0

=
ρ dx dy dz

ε0
, (2.53)

where use has been made of Equation (2.52). Here, the volume element is assumed to be suffi-
ciently small that ∇ · E does not vary significantly across it. Thus, we get

∇ · E =
ρ

ε0
. (2.54)

Equation (2.54) is a differential equation that describes the electric field generated by a set of
charges. We already know the solution to this equation when the charges are stationary; it is given
by Equation (2.13),

E(r) =
1

4π ε0

∫
V′
ρ(r′)

r − r′

|r − r′|3 dV ′. (2.55)
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Incidentally, Equations (2.54) and (2.55) can be reconciled provided

∇ ·
(

r − r′

|r − r′|3
)

= −∇2
(

1
|r − r′|

)
= 4π δ(r − r′), (2.56)

where use has been made of Equation (2.16). (See Section A.21.) It follows that

∇ · E(r) =
1

4π ε0

∫
ρ(r′)∇ ·

(
r − r′

|r − r′|3
)

dV ′

=

∫
ρ(r′)
ε0

δ(r − r′) dV ′ =
ρ(r)
ε0

, (2.57)

which is the desired result. Here, use has been made of Equation (2.47).
Finally, the most general form of Gauss’s law, Equation (2.52), is obtained by integrating Equa-

tion (2.54) over a volume V surrounded by a surface S , and making use of the divergence theorem:∮
S

E · dS =
1
ε0

∫
V
ρ(r) dV. (2.58)

(See Section A.20.)

2.1.7 Applications of Gauss’s Law
One particularly interesting application of Gauss’s law is Earnshaw’s theorem, which states that it
is impossible for a collection of electrically charged particles to remain in static equilibrium solely
under the influence of (classical) electrostatic forces. For instance, consider the motion of the ith
particle in the electric field, E(r), generated by all of the other static particles. The equilibrium
position of the ith particle corresponds to some point of displacement ri at which E(ri) = 0,
because this implies that the particle is not subject to an electrical force. By implication, ri does
not correspond to the equilibrium displacement of any other particle in the system. However, in
order for ri to be the displacement of a stable equilibrium point, the ith particle must experience a
restoring force when its displacement deviates slightly from ri in any direction. Assuming that the
ith particle is (say) positively charged, this implies that the electric field must be directed radially
toward the point whose displacement is ri at all neighboring points. Hence, if we consider a small
sphere centered on displacement ri then there must be a negative flux of E through the surface
of this sphere. According to Gauss’s law, this necessitates the presence of a negative charge at
displacement ri. However, there is no such charge at displacement ri. Hence, we conclude that
E cannot be directed radially toward the point whose displacement is ri at all neighboring points.
In other words, there must be some neighboring points at which E is directed away from the
point whose displacement is ri. Hence, a positively charged particle placed at displacement ri can
always escape by moving to such neighboring points. One corollary of Earnshaw’s theorem is that
classical electrostatics cannot account for the stability of atoms and molecules.

As an example of the use of Gauss’s law, let us calculate the electric field generated by a
spherically symmetric charge annulus of inner radius a, and outer radius b, centered on the origin,
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and carrying a uniformly distributed electric charge Q. Now, by symmetry, we expect a spherically
symmetric charge distribution to generate a spherically symmetric potential, φ(r), where r is a
spherical polar coordinate. (See Section A.23.) It therefore follows from Equation (2.17) that the
electric field is both spherically symmetric and radial; that is, E = Er(r) er. Let us apply Gauss’s
law to an imaginary spherical surface, of radius r, centered on the origin. See Figure 2.4. Such a
surface is generally known as a Gaussian surface. According to Gauss’s law, (2.58), the flux of the
electric field out of the surface is equal to the enclosed charge, divided by ε0. The flux is easy to
calculate because the electric field is everywhere perpendicular to the surface. We obtain

4π r2 Er(r) =
Q(r)
ε0

, (2.59)

where Q(r) is the charge enclosed by a Gaussian surface of radius r. However, simple arguments
involving proportion reveal that

Q(r) =


0 r < a[
(r3 − a3)/(b3 − a3)

]
Q a ≤ r ≤ b

Q b < r
. (2.60)

Hence,

Er(r) =


0 r < a[
Q/(4π ε0 r2)

] [
(r3 − a3)/(b3 − a3)

]
a ≤ r ≤ b

Q/(4π ε0 r2) b < r
. (2.61)

The previous electric field distribution illustrates two important points. First, the electric field
generated outside a spherically symmetric charge distribution is the same as that which would
be generated if all of the charge in the distribution was concentrated at its center. Second, zero
electric field is generated inside an empty cavity surrounded by a spherically symmetric charge
distribution.

We can easily determine the electric potential associated with the electric field (2.61) using

dφ(r)
dr

= −Er(r). (2.62)

[See Equation (2.17).] The boundary conditions are that φ(∞) = 0, and that φ(r) is continuous at
r = a and r = b. (Of course, a discontinuous potential would lead to an infinite electric field, which
is unphysical.) It follows that

φ(r) =


[Q/(4π ε0)] (3/2)

[
(b2 − a2)/(b3 − a3)

]
r < a

[Q/(4π ε0 r)]
[
(3b3 r − r3 − 2 a3)/2 (b3 − a3)

]
a ≤ r ≤ b

Q/(4π ε0 r) b < r
. (2.63)

Hence, the work done in slowly moving a charge from infinity to the center of the distribution
(which is minus the work done by the electric field) is

W = q
[
φ(0) − φ(∞)

]
=

q Q
4π ε0

3
2

(
b2 − a2

b3 − a3

)
. (2.64)

[See Equation (2.23).]
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Figure 2.4: An example use of Gauss’s law.

2.1.8 Electrostatic Energy
Consider a collection of N static point electric charges qi located at displacements ri. What is the
electrostatic energy stored in such a collection? In other words, how much work would we have to
perform in order to assemble the charges, starting from an initial state in which they are all at rest
and very widely separated?

We know that a static electric field is conservative, and can consequently be written in terms of
a scalar potential:

E = −∇φ. (2.65)

[See Equation (2.17).] We also know that the electrical force acting on a charge q located at
displacement r is written

f = q E(r). (2.66)

[See Equation (2.10).] The work that we would have to do against electrical forces in order to
slowly move the charge from point P to point Q is simply

W =

∫ Q

P
(−f) · dr = −q

∫ Q

P
E · dr = q

∫ Q

P
∇φ · dr = q

[
φ(Q) − φ(P)

]
, (2.67)

where dr is an element of the path taken between the two points. (See Section 1.3.2.) The negative
sign in the previous expression comes about because we would have to exert a force −f on the
charge, in order to counteract the force exerted by the electric field. Recall, finally, that the scalar
potential field generated by a point charge q located at position r′ is

φ(r) =
1

4π ε0

q
|r − r′| . (2.68)

[See Equation (2.21).]
Let us build up our collection of charges one by one. It takes no work to bring the first charge

from infinity, because there is no electric field to fight against. Let us clamp this charge in position
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at displacement r1. In order to bring the second charge into position at displacement r2, we have
to do work against the electric field generated by the first charge. According to Equations (2.67)
and (2.68), this work is given by

W2 =
1

4π ε0

q2 q1

|r2 − r1| . (2.69)

Let us now bring the third charge into position. Because electric fields and scalar potentials are
superposable, the work done while moving the third charge from infinity to displacement r3 is
simply the sum of the works done against the electric fields generated by charges 1 and 2, taken in
isolation:

W3 =
1

4π ε0

(
q3 q1

|r3 − r1| +
q3 q2

|r3 − r2|
)
. (2.70)

Thus, the total work done in assembling the collection of three charges is given by

W =
1

4π ε0

(
q2 q1

|r2 − r1| +
q3 q1

|r3 − r1| +
q3 q2

|r3 − r2|
)
. (2.71)

This result can easily be generalized to a collection of N charges:

W =
1

4π ε0

∑
i=1,N

j<i∑
j=1,N

qi q j

|ri − r j| . (2.72)

The restriction that j must be less than i makes the previous summation rather messy. If we were
to sum without restriction (other than j , i) then each pair of charges would be counted twice. It
is convenient to do just this, and then to divide the result by two. Thus, we obtain

W =
1
2

1
4π ε0

∑
i=1,N

j,i∑
j=1,N

qi q j

|ri − r j| . (2.73)

This is the electric potential energy (i.e., the difference between the total energy and the kinetic en-
ergy) of a collection of point electric charges. We can think of this quantity as the work required to
bring stationary charges from infinity and assemble them in the required formation. Alternatively,
it is the kinetic energy that would be released if the collection were dissolved, and the charges
returned to infinity. But where is this potential energy stored? Let us investigate further.

Equation (2.73) can be written

W =
1
2

∑
i=1,N

qi φi, (2.74)

where

φi =
1

4π ε0

j,i∑
j=1,N

q j

|ri − r j| (2.75)

is the scalar potential experienced by the ith charge due to the other charges in the distribution.
[See Equation (2.20).]
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Let us now consider the potential energy of a continuous charge distribution. It is tempting to
write

W =
1
2

∫
ρ φ dV, (2.76)

by analogy with Equations (2.74) and (2.75), where

φ(r) =
1

4π ε0

∫
ρ(r′)
|r − r′| dV ′ (2.77)

is the familiar scalar potential generated by a continuous charge distribution of charge density ρ(r)
[see Equation (2.18)], and where the volume integrals are over all space. Let us try this scheme
out. We know from Equation (2.54) that

ρ = ε0 ∇ · E, (2.78)

so Equation (2.76) can be written

W =
ε0

2

∫
φ∇ · E dV. (2.79)

Now,
∇ · (E φ) ≡ φ∇ · E + E · ∇φ. (2.80)

(See Section A.24.) However, ∇φ = −E, so we obtain

W =
ε0

2

[∫
∇ · (E φ) dV +

∫
E2 dV

]
(2.81)

Application of the divergence theorem (see Section A.20) gives

W =
ε0

2

(∮
S
φE · dS +

∫
V

E2 dV
)
, (2.82)

where V is some volume that encloses all of the charges, and S is its bounding surface. Let us
assume that V is a sphere, centered on the origin, and let us take the limit in which the radius r
of this sphere goes to infinity. We know that, in general, the electric field at large distances from
a bounded charge distribution looks like the field of a point charge, and, therefore, falls off like
1/r2. Likewise, the potential falls off like 1/r. (See Section 2.1.7.) However, the surface area of
the sphere increases like r2. Hence, it is clear that, in the limit as r → ∞, the surface integral in
Equation (2.82) falls off like 1/r, and is consequently zero. Thus, Equation (2.82) reduces to

W =
ε0

2

∫
E2 dV, (2.83)

where the volume integral is over all space. This is a very interesting result. It tells us that the
potential energy of a continuous charge distribution is stored in the electric field generated by that
distribution. Of course, we now have to assume that an electric field possesses an energy density

U =
ε0

2
E2. (2.84)
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Incidentally, the fact that an electric field possess an energy density demonstrates that it has a real
physical existence, and is not just an aid to the calculation of electrostatic forces.

We can easily check that Equation (2.83) is correct. Suppose that we have an electric charge
Q that is uniformly distributed within a sphere of radius a centered on the origin. Let us imag-
ine building up this charge distribution from a succession of thin spherical layers of infinitesimal
thickness. At each stage, we gather a small amount of charge dq from infinity, and spread it over
the surface of the sphere in a thin layer extending from r to r + dr. We continue this process until
the final radius of the sphere is a. If q(r) is the sphere’s charge when it has attained radius r then
the work done in bringing a charge dq to its surface is

dW =
1

4π ε0

q(r) dq
r

. (2.85)

This follows from Equation (2.69), because the electric field generated outside a spherical charge
distribution is the same as that of a point charge q(r) located at its geometric center (r = 0). (See
Section 2.1.7.) If the constant charge density of the sphere is ρ then

q(r) =
4π
3

r3 ρ, (2.86)

and
dq = 4π r2 ρ dr. (2.87)

Thus, Equation (2.85) becomes

dW =
4π
3 ε0

ρ2 r4 dr. (2.88)

The total work needed to build up the sphere from zero radius to radius a is plainly

W =
4π
3 ε0

ρ2
∫ a

0
r4 dr =

4π
15 ε0

ρ2 a5. (2.89)

This can also be written in terms of the total charge Q = (4π/3) a3 ρ as

W =
3
5

Q2

4π ε0 a
. (2.90)

Now that we have evaluated the potential energy of a spherical charge distribution by the di-
rect method, let us work it out using Equation (2.83). We shall assume that the electric field is
both radial and spherically symmetric, so that E = Er(r) er. Here, r is a standard spherical polar
coordinate. (See Section A.23.) Application of Gauss’s law,∮

S
E · dS =

1
ε0

∫
V
ρ dV, (2.91)

where V is a sphere of radius r, centered on the origin, gives

Er(r) =
Q

4π ε0

r
a3 (2.92)
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for r < a, and

Er(r) =
Q

4π ε0 r2 (2.93)

for r ≥ a. Equations (2.83), (2.92), and (2.93) yield

W =
Q2

8π ε0

(
1
a6

∫ a

0
r4 dr +

∫ ∞
a

dr
r2

)
, (2.94)

which reduces to

W =
Q2

8π ε0 a

(
1
5

+ 1
)

=
3
5

Q2

4π ε0 a
. (2.95)

Thus, Equation (2.83) gives the correct answer.
The reason that we have checked Equation (2.83) so carefully is that, on close inspection,

it is found to be inconsistent with Equation (2.74), from which it was supposedly derived. For
instance, the energy given by Equation (2.83) is manifestly positive definite, whereas the energy
given by Equation (2.74) can be negative (it is certainly negative for a collection of two point
charges of opposite sign). The inconsistency was introduced into our analysis when we replaced
Equation (2.75) by Equation (2.77). In Equation (2.75), the self-interaction of the ith charge with
its own electric field is specifically excluded, whereas it is included in Equation (2.77). Thus, the
potential energies (2.74) and (2.83) are different because in the former we start from ready-made
point charges, whereas in the latter we build up the whole charge distribution from scratch. Hence,
if we were to work out the potential energy of a point charge distribution using Equation (2.83)
then we would obtain the energy (2.74) plus the energy required to assemble the point charges.
What is the energy required to assemble a point electric charge? In fact, it is infinite. To see
this, let us suppose, for the sake of argument, that our point charges actually consist of electric
charge uniformly distributed in small spheres of radius b. According to Equation (2.90), the energy
required to assemble the ith point charge is

Wi =
3
5

q 2
i

4π ε0 b
. (2.96)

We can think of this as the self-energy of the ith charge. Thus, we can write

W =
ε0

2

∫
E2 dV =

1
2

∑
i=1,N

qi φi +
∑
i=1,N

Wi (2.97)

which enables us to reconcile Equations (2.74) and (2.83). Unfortunately, if our point charges
really are point charges then b→ 0, and the self-energy of each charge becomes infinite. Thus, the
potential energies predicted by Equations (2.74) and (2.83) differ by an infinite amount. What does
this all mean? We have to conclude that the idea of locating electrostatic potential energy in the
electric field runs into conceptual difficulties in the presence of point electric charges. One way out
of this dilemma would be to say that elementary electric charges, such as protons and electrons, are
not point objects, but instead have finite spatial extents. Regrettably, although protons have finite
spatial extents (of about 10−15 m), electrons really do seem to be point objects.
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2.1.9 Poisson’s Equation
We have seen that the electric field generated by a set of stationary charges can be written as the
gradient of a scalar potential, so that

E = −∇φ. (2.98)

[See Equation (2.17).] The previous equation can be combined with the field equation (2.54) to
give a partial differential equation for the scalar potential:

∇2φ = − ρ
ε0
. (2.99)

(See Section A.21.) This equation is known as Poisson’s equation. (See Section 1.8.5.)

2.1.10 Uniqueness Theorem
Consider a volume V bounded by some surface S . Suppose that we are given the electric charge
density ρ throughout V , and the (not necessarily constant) value of the scalar potential φS on S . Is
this sufficient information for Poisson’s equation to uniquely specify the scalar potential throughout
V? Suppose, for the sake of argument, that the solution is not unique. Let there be two different
potentials φ1 and φ2 that both satisfy

∇2φ1 = − ρ
ε0
, (2.100)

∇2φ2 = − ρ
ε0

(2.101)

throughout V , and

φ1 = φS , (2.102)

φ2 = φS (2.103)

on S . We can form the difference between these two potentials:

φ3 = φ1 − φ2. (2.104)

The potential φ3 clearly satisfies
∇2φ3 = 0 (2.105)

throughout V , and
φ3 = 0 (2.106)

on S .
Now,

∇ · (φ3 ∇φ3) ≡ (∇φ3)2 + φ3∇2φ3. (2.107)

(See Section A.24.) Thus, making use of the divergence theorem,∫
V

[
(∇φ3)2 + φ3∇2φ3

]
dV =

∮
S
φ3∇φ3 · dS. (2.108)
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(See Section A.20.) But, ∇2φ3 = 0 throughout V , and φ3 = 0 on S , so the previous equation
reduces to ∫

V
(∇φ3)2 dV = 0. (2.109)

Note that (∇φ3)2 is a positive definite quantity. The only way in which the volume integral of a
positive definite quantity can be zero is if that quantity itself is zero throughout the volume. This
is not necessarily the case for a non-positive definite quantity, because we could have positive and
negative contributions from various regions inside the volume that cancel one another out. Thus,
because (∇φ3)2 ≡ ∇φ3 · ∇φ3 is positive definite, it is zero throughout V . It follows that ∇φ3 = 0
throughout V , and, hence, that

φ3 = constant (2.110)

throughout V . However, we know that φ3 = 0 on S , so we get

φ3 = 0 (2.111)

throughout V . In other words,
φ1 = φ2 (2.112)

throughout V and on S . Our initial supposition that φ1 and φ2 are two different solutions of Pois-
son’s equation, satisfying the same boundary conditions, turns out to be incorrect. Hence, we
deduce that the solutions to Poisson’s equation in a volume bounded by a surface on which the
electric potential is specified are unique. This important result is known as the uniqueness theo-
rem.

2.1.11 Ohm’s Law
A conductor is a medium that contains free electric charges (usually electrons) that acquire a net
drift velocity in the presence of an applied electric field, giving rise to an electric current flowing
in the same direction as the field. The well-known relationship between the current and the voltage
in a typical conductor is given by Ohm’s law:

V = I R, (2.113)

where V is the voltage drop across a conductor of electrical resistance R through which a current
I flows. Incidentally, the unit of electric current is the ampere (or amp) (A), which is equivalent
to a coulomb per second. Furthermore, the unit of electrical resistance is the ohm (Ω), which is
equivalent to a volt per ampere.

Let us generalize Ohm’s law so that it is expressed in terms of the electric field, E, and current
density, j, at a given point inside the conductor, rather than the global quantities V and I. Here,
the magnitude of the current density vector, j, measures the amount of current flowing per unit
time per unit cross-sectional area, whereas the direction of the vector specifies the direction of the
current flow. Consider a length l of a conductor of uniform cross-sectional area A through which
a net electric current I flows. In general, we expect the electrical resistance of the conductor to be
proportional to its length, l, and inversely proportional to its cross-sectional area, A (i.e., we expect
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it to be harder to push an electrical current down a long rather than a short wire, and easier to push
an electrical current down a wide rather than a narrow conducting channel.) Thus, we can write

R = η
l
A
. (2.114)

Here, the constant η is called the resistivity of the conducting medium, and is measured in units of
ohm-meters. Hence, Ohm’s law becomes

V = η
l
A

I. (2.115)

However, I/A = jz (supposing that the conductor is aligned along the z-axis) and V/l = Ez [see
Equation (2.17)], so the previous equation reduces to

Ez = η jz. (2.116)

Because there is nothing special about the z-axis (in an isotropic conducting medium), the previous
formula immediately generalizes to

E = η j. (2.117)

This is the most fundamental form of Ohm’s law.
It is fairly easy to account for the previous equation at the microscopic level. Consider a metal

that has ne free electrons per unit volume. Of course, the metal also has a fixed lattice of metal
ions whose charge per unit volume is equal and opposite to that of the free electrons, rendering the
medium electrically neutral. In the presence of an electric field E, a given free electron is subject
to an electrical force f = −e E [see Equation (2.10)], and therefore accelerates (from rest at t = 0)
such that its drift velocity is written v = −(e/me) t E, where −e is the electron charge, and me the
electron mass. Suppose that, on average, a drifting electron collides with a metal ion once every τ
seconds. Given that a metal ion is much more massive than an electron, we expect a free electron to
lose all of the momentum it had previously acquired from the electric field during such a collision.
It follows that the mean drift velocity of the free electrons is 〈v〉 = −(e τ/2 me) E. Hence, the mean
current density is

j = −ne e 〈v〉 =
ne e2 τ

2 me
E. (2.118)

Thus, we can account for Equation (2.117), as long as the resistivity takes the form

η =
2 me

ne e2 τ
. (2.119)

We conclude that the resistivity of a typical conducting medium is determined by the number
density of free electrons, as well as the mean collision rate of these electrons with the fixed ions.

A free charge q that moves through a voltage drop V acquires an energy q V from the electric
field. (See Section 2.1.5.) In a conducting medium, this energy is dissipated as heat (the conversion
to heat takes place each time a free charge collides with a fixed ion). This particular type of heating
is called ohmic heating or Joule heating. Suppose that N charges per unit time pass through a
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conductor. The current flowing through the conductor is obviously I = N q. The total energy
gained by the charges, which appears as heat inside the conductor, is

P = N q V = I V (2.120)

per unit time. Thus, the heating power is

P = I V = I2 R =
V2

R
. (2.121)

Equations (2.120) and (2.121) generalize to

P = j · E = η j 2, (2.122)

where P is now the power dissipated per unit volume inside the conducting medium.

2.1.12 Ideal Conductors
Most electrical conductors obey Ohm’s law, and are termed ohmic conductors. Suppose that we
apply an electric field to an ohmic conductor of very low resistivity. What is going to happen?
According to Equation (2.117), the electric field drives very large currents inside the conductor.
These currents will redistribute the electric charge within the conductor until the original electric
field is canceled out. At this point, the currents stop flowing. It might be objected that the currents
could keep flowing in closed loops. According to Ohm’s law, this would require a non-zero elec-
tromotive force (emf),

∮
E · dr, acting around each loop (unless the conductor is a superconductor,

with η = 0). However, we know that in a steady state∮
C

E · dr = 0 (2.123)

around any closed loop C. [See Equation (2.24).] This proves that a steady-state emf acting around
a closed loop inside a conductor is impossible. The only other alternative is

j = E = 0 (2.124)

everywhere inside the conductor. It immediately follows from the field equation ∇ · E = ρ/ε0 [see
Equation (2.54)] that

ρ = 0. (2.125)

We conclude that there is zero net electric charge in the interior of an ideal conductor. But, how
can a conductor cancel out an applied electric field if it contains no internal electric charge? The
answer is that the requisite charges reside on the surface of the conductor. (In reality, the charges
lie within one or two atomic layers of the surface.)

Now, the difference in scalar potential between two points P and Q is simply

φ(Q) − φ(P) =

∫ Q

P
∇φ · dr = −

∫ Q

P
E · dr. (2.126)
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[See Equation (2.17) and Section A.18.] However, if points P and Q both lie inside the same
conductor then it is clear from Equations (2.124) and (2.126) that the potential difference between
P and Q is zero. This is true no matter where P and Q are situated inside the conductor, so we
conclude that the scalar potential must be uniform inside a conductor. One corollary of this fact is
that the surface of a conductor is an equipotential (i.e., φ = constant) surface.

We have demonstrated that the electric field inside a conductor is zero. We can also demonstrate
that the field within an empty cavity lying inside a conductor is zero, provided that there are no
charges within the cavity. Let V be the cavity in question, and let S be its bounding surface.
Because there are no electric charges within the cavity, the electric potential, φ, inside the cavity
satisfies

∇2φ = 0. (2.127)

[See Equation (2.99).] However, because S corresponds to the inner surface of the conductor that
surrounds the cavity, S is an equipotential surface. In other words, the electric potential on S
takes a constant value, φS (say). So, we need to solve a simplified version of Poisson’s equation,
(2.127), throughout V , subject to the boundary condition that φ = φS on S . One obvious solution
to this problem is φ = φS throughout V and on S . However, we showed in Section 2.1.10 that
the solutions to Poisson’s equation in a volume surrounded by a surface on which the potential is
specified are unique. Thus, φ = φS throughout V and on S is the only solution to the problem. It
follows that the electric field E = −∇φ is zero throughout the cavity. [See Equation (2.17).]

We have shown that if a charge-free cavity is completely enclosed by a conductor then no
stationary distribution of charges outside the conductor can ever produce any electric fields inside
the cavity. It follows that we can shield a sensitive piece of electrical equipment from stray external
electric fields by placing it inside a metal can. In fact, a wire mesh cage will do, as long as the
mesh spacing is not too wide. Such a cage is known as a Faraday cage.

Consider a small region lying on the surface of a conductor. Suppose that the local surface
electric charge density is σ, and that the electric field just outside the conductor is E. Note that this
field must be directed normal to the surface of the conductor. Any parallel component would be
shorted out by surface currents. Another way of saying this is that the surface of a conductor is an
equipotential. We know that ∇φ is always perpendicular to an equipotential (see Section A.18), so
E = −∇φ [see Equation (2.17)] must be locally perpendicular to a conducting surface. Let us use
Gauss’s law [see Equation (2.58)], ∮

S
E · dS =

1
ε0

∫
V
ρ dV, (2.128)

where the volume V is a so-called Gaussian pill-box. See Figure 2.5. A Gaussian pill-box is a
volume of space whose shape is similar to an old-fashioned pill-box (or a modern pizza box). Let
the two flat ends of the pill-box be aligned parallel to the surface of the conductor, with the surface
running between them, and let the comparatively short sides be perpendicular to the surface. It
is clear that E is parallel to the sides of the box, so the sides make no contribution to the surface
integral. The end of the box that lies inside the conductor also makes no contribution, because
E = 0 inside a conductor. Thus, the only non-zero contribution to the surface integral comes
from the end lying in free space. This contribution is simply E⊥ A, where E⊥ denotes an outward
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Figure 2.5: The surface of a conductor.

pointing (from the conductor) normal electric field, and A is the cross-sectional area of the box.
The charge enclosed by the box is simply σ A, from the definition of a surface charge density.
Thus, Gauss’s law yields

E⊥ =
σ

ε0
(2.129)

as the relationship between the normal electric field immediately outside a conductor and the sur-
face charge density.

Let us look at the electric field generated by a sheet charge distribution a little more carefully.
Suppose that the charge per unit area is σ. By symmetry, we expect the field generated below the
sheet to be the mirror image of that above the sheet (at least, locally). Thus, if apply Gauss’s law
to a pill-box of cross-sectional area A, as shown in Figure 2.6, then the two ends both contribute
Esheet A to the surface integral, where Esheet is the normal electric field generated above and below
the sheet. The charge enclosed by the pill-box is just σ A. Thus, Gauss’s law yields a symmetric
electric field

Esheet =

{
+σ/(2 ε0) above
−σ/(2 ε0) below

. (2.130)

So, how do we get the asymmetric electric field of a conducting surface, which is zero immediately
below the surface (i.e., inside the conductor) and non-zero immediately above it? Clearly, we have
to add in an external field (i.e., a field that is not generated locally by the sheet charge). The
requisite field is

Eext =
σ

2 ε0
(2.131)

both above and below the charge sheet. The total field is the sum of the field generated locally by
the charge sheet and the external field. Thus, we obtain

Etotal =

{
+σ/ε0 above
0 below

, (2.132)
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Figure 2.6: The electric field of a sheet charge.

which is in agreement with Equation (2.129). Now, the external electric field exerts a force on
the charge sheet. Of course, the field generated locally by the sheet itself cannot exert a local
force (i.e., by Newton’s third law of motion, the charge sheet cannot locally exert a force on itself;
see Section 1.2.4). Thus, the force per unit area acting on the surface of a conductor always acts
outward, and is given by

p = σ Eext =
σ2

2 ε0
. (2.133)

[See Equation (2.10).] We conclude that there is an electrostatic pressure acting on any charged
conductor. This effect can be observed by charging up soap bubbles; the additional electrostatic
pressure eventually causes them to burst.

Making use of Equations (2.131) and (2.133), the electrostatic pressure acting at the surface of
a conductor can also be written

p =
ε0

2
E 2
⊥, (2.134)

where E⊥ is the electric field-strength immediately above the surface of the conductor. Note that,
according to the previous formula, the electrostatic pressure is equivalent to the energy density
of the electric field immediately outside the conductor. [See Equation (2.84).] This is not a co-
incidence. Suppose that the conductor expands normally by an average distance dx, due to the
electrostatic pressure. The electric field is excluded from the region into which the conductor ex-
pands. The volume of this region is dV = A dx, where A is the surface area of the conductor. Thus,
the energy of the electric field decreases by an amount dE = U dV = (ε0/2) E 2

⊥ dV , where U is the
energy density of the field. This decrease in energy can be ascribed to the work that the field does
on the conductor in order to make it expand. This work is dW = p A dx, where p is the force per
unit area that the field exerts on the conductor. Thus, dE = dW, from energy conservation, giving

p =
ε0

2
E 2
⊥. (2.135)

Incidentally, this technique for calculating a force, given an expression for the energy of a system
as a function of some adjustable parameter, is called the principle of virtual work.
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2.1.13 Capacitors
It is clear that we can store electric charge on the surface of a conductor. However, electric fields
will be generated immediately above this surface. Now, the conductor can only successfully store
charge if it is electrically insulated from its surroundings. Of course, air is a very good electrical
insulator. Unfortunately, air ceases to be an insulator when the electric field-strength through it
exceeds some critical value which is about Ecrit ∼ 106 volts per meter. This phenomenon, which is
known as breakdown, is associated with the formation of sparks. The most well-known example
of the breakdown of air is during a lightning strike. Thus, a good charge-storing device is one that
holds a relatively large amount of charge, but only generates relatively small external electric fields
(so as to avoid breakdown). Such a device is called a capacitor.

Consider two thin, parallel, conducting plates of cross-sectional area A that are separated by a
small distance d (i.e., d � √A). Suppose that each plate carries an equal and opposite charge ±Q
(where Q > 0). We expect this charge to spread evenly over the plates to give an effective sheet
charge density ±σ = Q/A on each plate. Suppose that the upper plate carries a positive charge and
that the lower carries a negative charge. According to Equation (2.130), the field generated by the
upper plate is normal to the plate and of magnitude

Eupper =

{
+σ/(2 ε0) above
−σ/(2 ε0) below

. (2.136)

Likewise, the field generated by the lower plate is

Elower =

{ −σ/(2 ε0) above
+σ/(2 ε0) below

. (2.137)

Note that we are neglecting any leakage of the field at the edges of the plates. This is reasonable
provided that the plates are relatively closely spaced. The total electric field is the sum of the two
fields generated by the upper and lower plates. Thus, the net field is normal to the plates, and of
magnitude

E⊥ =

{
σ/ε0 between
0 otherwise

. (2.138)

See Figure 2.7. Because the electric field between the plates is uniform, the potential difference
between the plates is simply

V = E⊥ d =
σ d
ε0
. (2.139)

[See Equation (2.17).]
It is conventional to measure the capacity of a conductor, or set of conductors, to store electric

charge, but generate small external electric fields, in terms of a parameter called capacitance. This
parameter is usually denoted C. The capacitance of a charge storing device is simply the ratio of
the charge stored to the potential difference generated by this charge:

C =
Q
V
. (2.140)
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Figure 2.7: The electric field of a parallel plate capacitor.

Clearly, a good charge storing device has a high capacitance. Incidentally, capacitance is measured
in farads (F), which are equivalent to coulombs per volt. This is a rather unwieldy unit, because
capacitors in electrical circuits typically have capacitances that are only about one millionth of a
farad.

For a parallel plate capacitor, we have

C =
σ A
V

=
ε0 A

d
. (2.141)

Note that the capacitance only depends on geometric quantities, such as the area and spacing of
the plates. This is a consequence of the superposability of electric fields. If we double the charge
on a set of conductors then we double the electric fields generated around them, and we, therefore,
double the potential difference between the conductors. Thus, the potential difference between the
conductors is always directly proportional to the charge on the conductors. Moreover, the constant
of proportionality (the inverse of the capacitance) can only depend on geometry.

Suppose that the charge ±Q on each plate of a parallel plate capacitor is built up gradually by
transferring small amounts of charge from one plate to another. If the instantaneous charge on the
plates is ±q, and an infinitesimal amount of positive charge dq is transferred from the negatively
charged to the positively charge plate, then the work done is dW = V dq = q dq/C, where V is
the instantaneous voltage difference between the plates. (See Section 2.1.5.) Note that the voltage
difference is such that it opposes any increase in the charge on either plate. The total work done in
charging the capacitor is

W =
1
C

∫ Q

0
q dq =

Q2

2 C
=

1
2

C V2, (2.142)

where use has been made of Equation (2.140). The energy stored in the capacitor is the same as
the work required to charge up the capacitor. Thus, the stored energy is

W =
1
2

C V2. (2.143)

This is a general result that holds for all types of capacitor.
The energy of a charged parallel plate capacitor is actually stored in the electric field generated

between the plates. This field is of approximately constant magnitude E⊥ = V/d, and occupies
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a region of volume A d. Thus, given the energy density of an electric field, U = (ε0/2) E2 [see
Equation (2.84)], the energy stored in the electric field is

W =
ε0

2
V2

d2 A d =
1
2

C V2, (2.144)

where use has been made of Equation (2.141). Note that Equations (2.142) and (2.144) agree with
one another. The fact that the energy of a capacitor is stored in its electric field is also a general
result.

The idea, that we discussed in the previous section, that an electric field exerts a negative pres-
sure (ε0/2) E 2

⊥ on conductors immediately suggests that the two plates in a parallel plate capacitor
attract one another with a mutual force

F =
ε0

2
E 2
⊥ A =

1
2

C V2

d
. (2.145)

It is not actually necessary to have two oppositely charged conductors in order to make a
capacitor. Consider an isolated conducting sphere of radius a, centered on the origin, that carries
an electric charge Q. The spherically symmetric, radial electric field generated outside the sphere
is given by

Er(r > a) =
Q

4π ε0 r2 , (2.146)

and the associated electric potential is

φ(r > a) =
Q

4π ε0 r
. (2.147)

(See Section 2.1.7.) Here, r is a spherical polar coordinate. (See Section A.23.) It follows that the
potential difference between the sphere and infinity—or, more realistically, some large, relatively
distant reservoir of charge such as the Earth—is

V =
Q

4π ε0 a
. (2.148)

Thus, the capacitance of the sphere is

C =
Q
V

= 4π ε0 a. (2.149)

The energy of a spherical capacitor when it carries a charge Q is again given by (1/2) C V2. It can
easily be demonstrated that this is equivalent to the energy contained in the electric field surround-
ing the capacitor.

Suppose that we have two spheres of radii a and b, respectively, that are connected by a long
electric wire. See Figure 2.8. The wire allows electric charge to move back and forth between the
spheres until they reach the same potential (with respect to infinity). Let Qa be the charge on the
first sphere, and Qb the charge on the second sphere. Of course, the total charge Q0 = Qa + Qb
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Figure 2.8: Two conducting spheres connected by a wire.

carried by the two spheres is a conserved quantity. It follows from Equation (2.148) that if the
spheres are at the same potential then

Qa

Q0
=

a
a + b

, (2.150)

Qb

Q0
=

b
a + b

. (2.151)

Note that if one sphere is much smaller than the other one—for instance, if b � a—then the large
sphere grabs most of the charge; that is,

Qa

Qb
' a

b
� 1. (2.152)

The ratio of the electric fields generated just above the surfaces of the two spheres follows from
Equations (2.146) and (2.152):

Eb

Ea
' a

b
. (2.153)

Note that if b � a then the field just above the smaller sphere is far larger than that above the larger
sphere. Equation (2.153) is a simple example of a far more general rule; namely, the electric field
directly above some point on the surface of a conductor is inversely proportional to the local radius
of curvature of the surface.

It is clear that if we wish to store significant amounts of charge on a conductor then the sur-
face of the conductor must be made as smooth as possible. Any sharp spikes on the surface will
inevitably have comparatively small radii of curvature. Intense local electric fields are thus gen-
erated around such spikes. These fields can easily exceed the critical field for the breakdown of
air, leading to sparking and the eventual loss of the charge on the conductor. Sparking can also
be very destructive, because the associated electric currents flow through very localized regions,
giving rise to intense ohmic heating.

As a final example, consider two co-axial conducting cylinders of radii a and b, where a < b.
Suppose that the charge per unit length carried by the outer and inner cylinders is +λ and −λ,
respectively. We can safely assume that E = Er(r) er, by symmetry (adopting standard cylindrical
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polar coordinates). (See Section A.23.) Let us apply Gauss’s law (see Section 2.4) to a cylindrical
surface of radius r, co-axial with the conductors, and of length l. For a < r < b, we find that

2π r l Er(r) =
λ l
ε0
, (2.154)

so that

Er =
λ

2π ε0 r
(2.155)

for a < r < b. It is fairly obvious that Er = 0 if r is not in the range a to b. The potential difference
between the inner and outer cylinders is [see Equation (2.17)]

V = −
∫ inner

outer
E · dr =

∫ outer

inner
E · dr =

∫ b

a
Er dr =

λ

2π ε0

∫ b

a

dr
r
, (2.156)

so

V =
λ

2π ε0
ln
(

b
a

)
. (2.157)

Thus, the capacitance per unit length of the two cylinders is

C =
λ

V
=

2π ε0

ln(b/a)
. (2.158)

2.1.14 Method of Images

Suppose that a point electric charge q is located a distance d from an infinite, grounded (i.e., held at
zero potential), conducting plate. See Figure 2.9. Let the plate lie in the x-y plane, and suppose that
the point charge is located at Cartesian coordinates (0, 0, d). What is the scalar potential generated
in the region above the plate? This is not a simple question, because the point charge induces
surface charges on the plate, and we do not know beforehand how these charges are distributed.

Let us consider what do we know in this problem. We know that the conducting plate is
an equipotential surface. In fact, the potential of the plate is zero, because it is grounded. We
also know that the potential at infinity is zero (this is our usual boundary condition for the scalar
potential). Thus, we need to solve Poisson’s equation, (2.99), in the region z > 0, with a single
point charge q located at coordinates (0, 0, d), subject to the boundary conditions

φ(x, y, 0) = 0, (2.159)

and
φ(x, y, z)→ 0 as x2 + y2 + z2 → ∞. (2.160)

Let us forget about the real problem, for a moment, and concentrate on a slightly different one.
We shall refer to this as the analog problem. See Figure 2.9. In the analog problem, we have a
charge q located at coordinates (0, 0, d), and a charge −q located at coordinates (0, 0, -d), with
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Figure 2.9: The method of images for a charge and a grounded conducting plane.

no conductors present. We can easily find the scalar potential for this problem, because we know
where all the charges are located. We get

φanalog(x, y, z) =
1

4π ε0

[
q√

x2 + y2 + (z − d)2
− q√

x2 + y2 + (z + d)2

]
. (2.161)

[See Equation (2.20).] Note, however, that

φanalog(x, y, 0) = 0, (2.162)

and
φanalog(x, y, z)→ 0 as x2 + y2 + z2 → ∞. (2.163)

Moreover, in the region z > 0, φanalog satisfies Poisson’s equation, (2.99), for a point charge q
located at coordinates (0, 0, d). Thus, in this region, φanalog is a solution to the problem posed
earlier. Now, the uniqueness theorem tells us that there is only one solution to Poisson’s equation
that satisfies a given well-posed set of boundary conditions. (See Section 2.1.10.) So, φanalog must
be the correct potential in the region z > 0. Of course, φanalog is completely wrong in the region
z < 0. We know this because the grounded plate shields the region z < 0 from the point charge, so
that φ = 0 in this region.

Now that we have found the potential in the region z > 0, we can easily work out the distribution
of charges induced on the conducting plate. We already know that the relation between the electric
field immediately above a conducting surface and the density of charge on the surface is

E⊥ =
σ

ε0
. (2.164)

[See Equation (2.129).] In this case,

E⊥(x, y) = Ez(x, y, 0+) = −∂φ(x, y, 0+)
∂z

= −∂φanalog(x, y, 0+)
∂z

, (2.165)
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so
σ(x, y) = −ε0

∂φanalog(x, y, 0+)
∂z

. (2.166)

It follows from Equation (2.161) that

∂φanalog

∂z
=

q
4π ε0

{ −(z − d)
[x2 + y2 + (z − d)2]3/2 +

(z + d)
[x2 + y2 + (z + d)2]3/2

}
, (2.167)

so
σ(x, y) = − q d

2π (x2 + y2 + d2)3/2 . (2.168)

Clearly, the charge induced on the plate has the opposite sign to the point charge. The charge
density on the plate is also symmetric about the z-axis, and is largest where the plate is closest to
the point charge. The total charge induced on the plate is

Q =

∫
x−y plane

σ dS , (2.169)

which yields

Q = −q d
2π

∫ ∞
0

2π r dr
(r2 + d2)3/2 , (2.170)

where r2 = x2 + y2. Thus,

Q = −q d
2

∫ ∞
0

dk
(k + d2)3/2 = q d

[
1

(k + d2)1/2

]∞
0

= −q. (2.171)

So, the total charge induced on the plate is equal and opposite to the point charge that induces it.
As we have just seen, our point electric charge induces charges of the opposite sign on the

conducting plate. This, presumably, gives rise to a force of attraction between the charge and the
plate. What is this force? Well, because the potentials, and, hence, the electric fields, in the vicinity
of the point charge are the same in the real and analog problems, the forces acting on this charge
must be the same as well. In the analog problem, there are two charges ±q a net distance 2 d apart.
The force acting on the charge at coordinates (0, 0, d) (i.e., the real charge) is

f = − q2

16π ε0 d2 ez. (2.172)

[See Equation (2.2).] Hence, this is also the force acting on the charge in the real problem.
What, finally, is the potential energy of the system. For the analog problem this is simply

Wanalog = − q2

8π ε0 d
. (2.173)

[See Equation (2.69).] Note that in the analog problem the fields on opposite sides of the conduct-
ing plate are mirror images of one another, as are the charges (apart from the change in sign). This
is why the technique of replacing conducting surfaces by imaginary charges is called the method
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of images. We know that the potential energy of a set of charges is equivalent to the energy stored
in the surrounding electric field. Thus,

W =
ε0

2

∫
all space

E2 dV. (2.174)

[See Equation (2.84).] Moreover, as we just mentioned, in the analog problem, the fields on either
side of the x-y plane are mirror images of one another, so that E2(x, y,−z) = E2(x, y, z). It follows
that

Wanalog = 2
ε0

2

∫
z>0

E2
analog dV. (2.175)

Now, in the real problem,

E =

{
Eanalog for z > 0
0 for z < 0

. (2.176)

So,

W =
ε0

2

∫
z>0

E2 dV =
ε0

2

∫
z>0

E2
analog dV =

1
2

Wanalog, (2.177)

giving

W = − q2

16π ε0 d
. (2.178)

There is another method by which we can obtain the previous result. Suppose that the point
electric charge is gradually moved toward the plate along the z-axis, starting from infinity, until it
reaches its final coordinates (0, 0, d). How much work is required to achieve this? We know that
the force of attraction acting on the charge is

fz = − q2

16π ε0 z2 . (2.179)

[See Equation (2.172).] Thus, the work required to move this charge by dz is

dW = − fz dz =
q2

16π ε0 z2 dz. (2.180)

So, the total work needed to move the charge from z = ∞ to z = d is

W =
1

4π ε0

∫ d

∞

q2

4 z2 dz =
1

4π ε0

[
− q2

4 z

]d

∞
= − q2

16π ε0 d
. (2.181)

Of course, this work is equivalent to the potential energy (2.178), and is, in turn, the same as the
energy contained in the surrounding electric field.

As a second example of the method of images, consider a grounded conducting sphere of
radius a centered on the origin. Suppose that a point electric charge q is placed outside the sphere
at Cartesian coordinates (b, 0, 0), where b > a. See Figure 2.10. What is the force of attraction
between the sphere and the charge? In this case, we proceed by considering an analog problem in
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which the sphere is replaced by an image charge −q′ placed somewhere on the x-axis at coordinates
(c, 0, 0). See Figure 2.10. The electric potential throughout space in the analog problem is simply

φ(x, y, z) =
q

4π ε0

1
[(x − b)2 + y2 + z2]1/2 −

q′

4π ε0

1
[(x − c)2 + y2 + z2]1/2 . (2.182)

[See Equation (2.20).] Now, the image charge must be chosen so as to make the surface φ = 0
correspond to the surface of the sphere. Setting the previous expression to zero, and performing a
little algebra, we find that the φ = 0 surface corresponds to

x2 +
2 (c − λ b)
λ − 1

x + y2 + z2 =
c2 − λ b2

λ − 1
, (2.183)

where λ = q′ 2/q2. Of course, the surface of the sphere satisfies

x2 + y2 + z2 = a2. (2.184)

The previous two equations can be made identical by setting λ = c/b and a2 = λ b2, or

q′ =
a
b

q, (2.185)

and

c =
a2

b
. (2.186)

According to the uniqueness theorem, the potential in the analog problem is now identical with that
in the real problem in the region outside the sphere. (Of course, in the real problem, the potential
inside the sphere is zero.) Hence, the force of attraction between the sphere and the original charge
in the real problem is the same as the force of attraction between the image charge and the real
charge in the analog problem. It follows that

f =
q q′

4π ε0 (b − c)2 =
q2

4π ε0

a b
(b2 − a2)2 . (2.187)

[See Equation (2.2).]
What is the total charge induced on the grounded conducting sphere? Well, according to

Gauss’s law, the flux of the electric field out of a spherical Gaussian surface lying just outside
the surface of the conducting sphere is equal to the enclosed charge divided by ε0. (See Sec-
tion 2.1.6.) In the real problem, the enclosed charge is the net charge induced on the surface of
the sphere. In the analog problem, the enclosed charge is simply −q′. However, the electric fields
outside the conducting sphere are identical in the real and analog problems. Hence, from Gauss’s
law, the charge enclosed by the Gaussian surface must also be the same in both problems. We thus
conclude that the net charge induced on the surface of the conducting sphere is

−q′ = −a
b

q. (2.188)
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Figure 2.10: The method of images for a charge and a grounded conducting sphere.

As another example of the method of images, consider an insulated, uncharged, conducting
sphere of radius a, centered on the origin, in the presence of a point electric charge q placed
outside the sphere at Cartesian coordinates (b, 0, 0), where b > a. See Figure 2.11. What is the
force of attraction between the sphere and the charge? Clearly, this new problem is very similar to
the one that we just discussed. The only difference is that the surface of the sphere is now at some
unknown fixed potential V , and also carries zero net charge. Note that if we add a second image
charge q′′, located at the origin, to the analog problem pictured in Figure 2.10 then the surface r = a
remains an equipotential surface. In fact, the potential of this surface becomes V = q′′/(4π ε0 a).
[See Equation (2.20).] Moreover, the total charge enclosed by the surface is −q′ + q′′. This, of
course, is the net charge induced on the surface of the sphere in the real problem. Hence, we can
see that if q′′ = q′ = (a/b) q then zero net charge is induced on the surface of the sphere. Thus, our
modified analog problem is now a solution to the problem under discussion, in the region outside
the sphere. See Figure 2.11. It follows that the surface of the sphere is at potential

V =
q′

4π ε0 a
=

q
4π ε0 b

. (2.189)

Moreover, the force of attraction between the sphere and the original charge in the real problem
is the same as the force of attraction between the image charges and the real charge in the analog
problem. Hence, the force is given by

f =
q q′

4πε0 (b − c)2 −
q q′

4π ε0 b2 =
q2

4π ε0

(a
b

)3 (2 b2 − a2)
(b2 − a2)2 . (2.190)

[See Equation (2.2).]
As a final example of the method of images, consider two identical, infinitely long, conducting

cylinders of radius a that run parallel to the z-axis, and lie a distance 2 d apart. Suppose that one
of the conductors is held at potential +V , while the other is held at potential −V . See Figure 2.12.
What is the capacitance per unit length of the cylinders?
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Figure 2.11: The method of images for a charge and an uncharged conducting sphere.

Consider an analog problem in which the conducting cylinders are replaced by two infinitely
long charge lines, of charge per unit length ±λ, that run parallel to the z-axis, and lie a distance 2 p
apart. Now, the potential in the x-y plane generated by a charge line λ running along the z-axis is

φ(x, y) = − λ

2π ε0
ln r, (2.191)

where r =
√

x2 + y2 is the radial cylindrical polar coordinate. (See Section A.23.) The corre-
sponding electric field is radial, and satisfies

Er(r) = −∂φ
∂r

=
λ

2π ε0 r
. (2.192)

Incidentally, it is easily demonstrated from Gauss’s law (see Section 2.1.6) that this is the correct
electric field. Hence, the potential generated by two charge lines ±λ located in the x-y plane at
coordinates (±p, 0), respectively, is

φ(x, y) =
λ

2π ε0
ln

[
1√

(x − p)2 + y2

]
− λ

2π ε0
ln

[
1√

(x + p)2 + y2

]

=
λ

4π ε0
ln
[

(x + p)2 + y2

(x − p)2 + y2

]
. (2.193)

Suppose that
(x + p)2 + y2

(x − p)2 + y2 = α, (2.194)

where α is a constant. It follows that

x2 − 2 p
(α + 1)
(α − 1)

x + p2 + y2 = 0. (2.195)
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Figure 2.12: The method of images for two parallel cylindrical conductors.

Completing the square, we obtain
(x − d)2 + y2 = a2, (2.196)

where
d =

(α + 1)
(α − 1)

p, (2.197)

and
a2 = d2 − p2. (2.198)

Of course, Equation (2.196) is the equation of a cylindrical surface of radius a centered on coordi-
nates (d, 0). Moreover, it follows from Equations (2.193) and (2.194) that this surface lies at the
constant potential

V =
λ

4π ε0
lnα. (2.199)

Finally, it is easily demonstrated that the equipotential φ = −V corresponds to a cylindrical surface
of radius a centered on (−d, 0). Hence, we can make the analog problem match the real problem
in the region outside the cylinders by choosing

α =
d + p
d − p

=
d +
√

d2 − a2

d − √d2 − a2
. (2.200)

Thus, we obtain

V =
λ

4π ε0
ln

(
d +
√

d2 − a2

d − √d2 − a2

)
. (2.201)

Now, it follows from Gauss’s law (see Section 2.1.6), and the fact that the electric fields in the
real and analog problems are identical outside the cylinders, that the charge per unit length stored
on the surfaces of the two cylinders is ±λ. Moreover, the voltage difference between the cylinders
is 2 V . Hence, the capacitance per unit length of the cylinders is C = λ/(2 V), yielding

C = 2π ε0

/
ln

(
d +
√

d2 − a2

d − √d2 − a2

)
. (2.202)
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This expression simplifies to give

C = π ε0

/
ln

(
d
a

+

√
d2

a2 − 1

)
, (2.203)

which can also be written
C =

π ε0

cosh−1(d/a)
, (2.204)

because cosh−1 x ≡ ln(x +
√

x2 − 1).

2.2 Magnetostatic Fields

2.2.1 Magnetism
The phenomenon of magnetism has been known to humankind for many thousands of years. Load-
stone (a magnetized form of the commonly occurring iron oxide mineral magnetite) was the first
permanent magnetic material to be identified and studied. The ancient Greeks were aware of the
ability of loadstone to attract small pieces of iron. The Greek word Magnes (Μάγνης), which is
the root of the English word magnet, refers to a something (in this case, a stone) originating from
Magnesia ad Sipylum, which was an ancient city in Asia Minor that was once a copious source of
loadstones.

The magnetic compass was invented some time during the first ten centuries CE. Credit is
variously given to the Chinese, the Arabs, and the Italians. What is certain is that, by the 12th
century, magnetic compasses were in regular use by mariners to aid navigation at sea. In the 13th
century, Peter Perigrinus discovered that the magnetic effect of a spherical loadstone is strongest
at two oppositely directed points on the surface of the sphere, which he termed the poles of the
magnet. He found that there are two types of poles, and that like poles repel one another, whereas
unlike poles attract. In 1600, the physician William Gilbert concluded, quite correctly, that the
reason that magnets preferentially align themselves in a north-south direction is that the Earth itself
is a magnet. Furthermore, the Earth’s magnetic poles are aligned, more or less, along its axis of
rotation. This insight immediately gave rise to a fairly obvious nomenclature for the two different
poles of a magnet; a magnetic north pole (N) has the same magnetic polarity as the geographic
south pole of the Earth, and a magnetic south pole (S) has the same polarity as the geographic
north pole of the Earth. Thus, the north pole of a magnet preferentially points northward toward
the geographic north pole of the Earth (which is its magnetic south pole). In 1750, John Michell,
discovered that the attractive and repulsive forces between the poles of magnets vary inversely as
the square of the distance of separation. Thus, the inverse square law for forces between magnets
was actually discovered prior to that for forces between electric charges.

2.2.2 Magnetic Field
In 1820, the physicist Hans Christian Ørsted was giving a lecture demonstration of various elec-
trical and magnetic effects. Suddenly, much to his amazement, he noticed that the needle of a
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Figure 2.13: Magnetic loops around a current-carrying wire.

compass that he was holding was deflected when he moved it close to a current-carrying wire.
This was a very surprising observation, because, until that moment, electricity and magnetism
had been thought of as two quite unrelated phenomena. Word of this discovery spread quickly,
and scientists such as Andre Marie Ampère, François Arago, Jean-Baptiste Biot, Félix Savart, and
Michael Faraday immediately decided to investigate further. Their discoveries can be encapsulated
by describing a series of simple, and easily reproducible, experiments.

Consider an experiment in which a long straight wire carries an electrical current I. As is easily
demonstrated, the needle of a small compass maps out a series of concentric circular loops in the
plane perpendicular to such a wire. See Figure 2.13. The direction of circulation around such
magnetic loops is conventionally taken to be the direction in which the north pole of a compass
needle points. Using this convention, the circulation of the loops is given by a right-hand rule.
If the thumb of the right-hand points along the direction of the current then the fingers of the
right-hand circulate in the same sense as the magnetic loops.

Our next experiment involves bringing a short test wire, carrying a current I′, close to the
original long straight wire, and investigating the force exerted on the test wire. This experiment
is not quite as clear cut as Coulomb’s experiment regarding the force exerted between electric
charges, because, unlike electric charges, electric currents cannot exist as point entities; they have
to flow in complete circuits. We must imagine that the circuit that connects with the central wire
is sufficiently far away that it has no appreciable influence on the outcome of the experiment. The
circuit that connects with the test wire is more problematic. Fortunately, if the feed wires are
twisted around each other, as indicated in Figure 2.14, then they effectively cancel one another out,
and also do not influence the outcome of the experiment.

It can easily be demonstrated that the force exerted on the test wire is directly proportional to its
length. Furthermore, if the current in the test wire (i.e., the test current) flows parallel to the current
in the central wire then the two wires attract one another. If the current in the test wire is reversed
then the two wires repel one another. If the test current is directed radially toward the central
wire (and the current in the central wire flows upward) then the test wire is subject to a downward
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Figure 2.14: Force on current-carrying wire.

force. If the test current is reversed then the force is upward. If the test current is rotated in a
single plane, such that it starts parallel to the central current and ends up pointing radially toward
it, then the force on the test wire is of constant magnitude, and is always perpendicular to the
test current. If the test current is parallel to a magnetic loop then there is no force exerted on the
test wire. If the test current is rotated in a single plane, such that it starts parallel to the central
current, and ends up pointing along a magnetic loop, then the magnitude of the force on the test
wire attenuates like cos θ (where θ is the angle through which the current is turned, and θ = 0
corresponds to the case where the test current is parallel to the central current), and its direction
is again always perpendicular to the test current. Finally, the attractive force between two parallel
current-carrying wires is proportional to the product of the two currents, and inversely proportional
to the perpendicular distance between the wires.

The rather complicated force law established by the previously described experiments can be
summed up succinctly provided that we define a vector field B(r), called the magnetic field, that
fills space, and whose direction is everywhere tangential to the magnetic loops mapped out by the
north pole of a small compass. The dependence of the force per unit length, F, acting on a test wire,
located at displacement r, with the different possible orientations of the test current is described by

F(r) = I′ × B(r), (2.205)

where I′ is a vector whose direction and magnitude are the same as those of the test current.
The variation of the force per unit length acting on a test wire with the strength of the central

current, I, and the perpendicular distance, r, to the central wire, is accounted for by saying that
the strength of the magnetic generated around the central wire is directly proportional to I, and
inversely proportional to r. Thus, we can write

B =
µ0 I
2π r

. (2.206)

The constant of proportionality µ0 is called the magnetic permeability of free space, and takes the
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value
µ0 = 4π × 10−7 N A−2. (2.207)

Incidentally, the SI unit of magnetic field strength is the tesla (T), which is equivalent to a newton
per ampere per meter.

The concept of a magnetic field that fills the space around a current-carrying wire allows the
calculation of the force on a test wire to be conveniently split into two parts. In the first part,
we calculate the magnetic field generated by the current flowing in the central wire. This field
circulates in the plane normal to the wire. Its magnitude is proportional to the central current,
and inversely proportional to the perpendicular distance from the wire. In the second part, we
employ Equation (2.205) to calculate the force per unit length acting on a short current-carrying
wire placed in the magnetic field generated by the central current. This force is perpendicular to
both the direction of the magnetic field and the direction of the test current. Note that, at this stage,
we have no reason to suppose that the magnetic field has any real existence; it is introduced merely
to facilitate the calculation of the force exerted on the test wire by the central wire.

2.2.3 Ampère’s Law

It is an experimentally demonstrable fact that magnetic fields, like electric fields, are completely
superposable. So, if a magnetic field B1(r) is generated by an electric current I1 flowing through
some circuit, and a field B2(r) is generated by a current I2 flowing through another circuit, then
when the currents I1 and I2 flow through both circuits simultaneously the generated magnetic field
is B1(r) + B2(r).

FF

I1 I2

B1 B2

r

Figure 2.15: Two parallel current-carrying wires.

Consider two parallel wires separated by a perpendicular distance r, and carrying electric cur-
rents I1 and I2, respectively. The magnetic field-strength at the second wire due to the current
flowing in the first wire is B = µ0 I1/2π r. [See Equation (2.206).] This field is orientated perpen-
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dicular to the second wire, so the force per unit length exerted on the second wire is

F =
µ0 I1 I2

2π r
. (2.208)

The previous expression follows from Equation (2.205), which is valid for continuous wires as
well as short test wires. The force acting on the second wire is directed radially inward toward
the first wire. The magnetic field-strength at the first wire due to the current flowing in the second
wire is B = µ0 I2/2π r. This field is orientated perpendicular to the first wire, so the force per unit
length acting on the first wire is equal and opposite to that acting on the second wire, according to
Equation (2.205). Equation (2.208) is known as Ampère’s law.

Equation (2.208) is the basis of the official (prior to 2019) SI definition of the ampere, which
is:

One ampere is the magnitude of the current which, when flowing in each of two long
parallel wires one meter apart, results in a force between the wires of 2 × 10−7 N per
meter of length.

We can see that it is no accident that the constant µ0 has the numerical value of exactly 4π ×
10−7. (Incidentally, this rather strange definition arose because electromagnetism was originally
formulated in the cgs system of units. In the cgs system, the force per unit length exerted by two
parallel wires, one centimeter apart, both carrying a current of 1 abampere (i.e., 10 amperes), is 2
dynes per centimeter.)

2.2.4 Lorentz Force Law
The flow of an electric current down a conducting wire is ultimately due to the movement of elec-
trically charged particles (in most cases, electrons) along the wire. It seems reasonable, therefore,
that the force exerted on the wire when it is placed in a magnetic field is simply the resultant of the
forces exerted on these moving charges. Let us suppose that this is the case.

Let A be the (uniform) cross-sectional area of the wire, and let n be the number density of
mobile charges in the wire. Suppose that the mobile charges each have charge q and drift velocity
v. We must assume that the wire also contains stationary charges, of charge −q and number density
n, say, so that the net charge density in the wire is zero. In most conductors, the mobile charges
are electrons, and the stationary charges are ions. The magnitude of the electric current flowing
through the wire is simply the number of coulombs per second that flow past a given point. In
one second, a mobile charge moves a distance v, so all of the charges contained in a cylinder of
cross-sectional area A and length v flow past a given point. Thus, the magnitude of the current
is q n A v. The direction of the current is the same as the direction of motion of the charges (i.e.,
I′ ∝ v), so the vector current is

I′ = q n A v. (2.209)

According to Equation (2.205), the force per unit length acting on the wire is

F = I′ × B = q n A v × B. (2.210)
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However, a unit length of the wire contains n A moving charges. So, assuming that each charge is
subject to an equal force from the magnetic field (and we have no reason to suppose otherwise),
the magnetic force acting on an individual charge is

f = q v × B. (2.211)

This formula implies that the magnitude of the magnetic force exerted on a moving charged particle
is the product of the particle’s electric charge, its velocity, the magnetic field-strength, and the sine
of the angle subtended between the particle’s direction of motion and the direction of the magnetic
field. (See Section A.8.) The force is directed perpendicular to both the magnetic field and the
particle’s instantaneous direction of motion.

We can combine the previous equation with Equation (2.10) to give the force acting on an
electric charge q moving with velocity v in an electric field E and a magnetic field B:

f = q (E + v × B) . (2.212)

This result is called the Lorentz force law, after Hendrick Antoon Lorentz, who first formulated it.
The electric force on a charged particle is parallel to the local electric field. The magnetic force,
however, is perpendicular to both the local magnetic field and the particle’s direction of motion.
No magnetic force is exerted on a stationary charged particle.

The equation of motion of a free particle of charge q and mass m moving in electric and mag-
netic fields is

m a = q (E + v × B) , (2.213)

according to the Lorentz force law. (See Section 1.2.3.) Here, a is the particle’s acceleration.
This equation of motion was verified in a famous experiment carried out by the Cambridge physi-
cist J.J. Thompson in 1897. Thompson was investigating cathode rays, a then mysterious form of
radiation emitted by a heated metal element held at a large negative voltage (i.e., a cathode) with re-
spect to another metal element (i.e., an anode) in an evacuated tube. German physicists maintained
that cathode rays were a form of electromagnetic radiation, whereas British and French physicists
suspected that they were, in reality, a stream of charged particles. Thompson was able to demon-
strate that the latter view was correct. In Thompson’s experiment, the cathode rays pass though a
region of crossed electric and magnetic fields (still in vacuum). The fields are perpendicular to the
original trajectory of the rays, and are also mutually perpendicular.

Let us analyze Thompson’s experiment. Suppose that the rays are originally traveling in the
x-direction, and are subject to a uniform electric field E in the z-direction, and a uniform magnetic
field B in the −y-direction. See Figure 2.16. Let us assume, as Thompson did, that cathode rays
are a stream of particles of mass m and charge q. The z-component of the equation of motion of an
individual particle is

m az = q (E − v B) , (2.214)

where v is the x-component of its velocity, and az the z-component of its acceleration. Thompson
started off his experiment by only turning on the electric field in his apparatus, and measuring the
deflection d of the rays in the z-direction after they had traveled a distance l through the field.
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Figure 2.16: Thompson’s experiment.

Now, a particle subject to a constant acceleration az in the z-direction is deflected a distance d =

(1/2) az t2 in a time t. Thus,

d =
1
2

q E
m

t2 =
q
m

E l2

2 v2 , (2.215)

where the time of flight t is replaced by l/v. This replacement is only valid if d � l (i.e., if the
deflection of the rays is small compared to the distance that they travel through the electric field),
which is assumed to be the case. Next, Thompson turned on the magnetic field in his apparatus,
and adjusted it so that the cathode rays were no longer deflected. The lack of deflection implies that
the net force on the particles in the z-direction is zero. In other words, the electric and magnetic
forces balance exactly. It follows from Equation (2.214) that, with a properly adjusted magnetic
field-strength,

v =
E
B
. (2.216)

Thus, Equations (2.215) and (2.216) can be combined and rearranged to give the charge to mass
ratio of the particles in terms of measured quantities:

q
m

=
2 d E
l2 B2 . (2.217)

Using this method, Thompson inferred that cathode rays are made up of negatively charged parti-
cles (the sign of the charge is obvious from the direction of the deflection in the electric field) with
a charge to mass ratio of −1.7 × 1011 C kg−1.

A decade later, in 1908, Robert Millikan performed his famous oil drop experiment in which
he discovered that mobile electric charges are quantized in units of −1.6 × 10−19 C. Assuming that
mobile electric charges and the particles that make up cathode rays are one and the same thing,
Thompson’s and Millikan’s experiments imply that the mass of these particles is 9.4 × 10−31 kg.
Of course, this is the mass of an electron (the modern value is 9.1 × 10−31 kg), and −1.6 × 10−19 C
is the charge of an electron. Thus, cathode rays are, in fact, streams of electrons that are emitted



136 INTERMEDIATE COLLEGE PHYSICS

f

v

q

ρ

magnetic field

into paper 

Figure 2.17: Circular motion of a charged particle in a magnetic field.

from a heated cathode, and then accelerated because of the large voltage difference between the
cathode and anode.

If a particle is subject to a force f that causes it to displace by dr then the work done on the
particle by the force is

W = f · dr = f dr cos θ, (2.218)

where θ is the angle subtended between the force and the displacement. (See Section 1.3.2.) How-
ever, this angle is always 90◦ for the force exerted by a magnetic field on a charged particle, because
the magnetic force is always perpendicular to the particle’s instantaneous direction of motion. It
follows that a magnetic field is unable to do work on a charged particle. In other words, a charged
particle can never gain or lose energy due to interaction with a magnetic field. On the other hand,
a charged particle can certainly gain or lose energy due to interaction with an electric field. Thus,
magnetic fields are often used in particle accelerators to guide charged particle motion (e.g., in a
circle), but the actual acceleration is always performed by electric fields.

2.2.5 Charged Particle Motion in a Magnetic Field

Suppose that a particle of mass m moves in a circular orbit of radius ρ with a constant speed v. As
is well known, the acceleration of the particle is of magnitude v2/ρ, and is always directed toward
the center of the orbit. It follows that the acceleration is always perpendicular to the particle’s
instantaneous direction of motion.

We have seen that the force exerted on an electrically charged particle by a magnetic field is
always perpendicular to its instantaneous direction of motion. Does this imply that the field causes
the particle to execute a circular orbit? Consider the case shown in Figure 2.17. Suppose that a
particle of positive charge q and mass m moves in a plane perpendicular to a uniform magnetic
field B. In the figure, the field is directed into the plane of the paper. Suppose that the particle
moves, in a counter-clockwise manner, with constant speed v (recall that the magnetic field cannot
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Figure 2.18: Spiral trajectory of a charged particle in a uniform magnetic field.

do work on the particle, so it cannot affect its speed), in a circular orbit of radius ρ. The magnetic
force acting on the particle is of magnitude f = q v B and, according to Equation (2.211), this force
is always directed toward the center of the orbit. Thus, if

f = q v B =
m v2

ρ
, (2.219)

then we have a self-consistent picture. It follows that

ρ =
m v

q B
. (2.220)

The angular frequency of rotation of the particle (i.e., the number of radians the particle rotates
through in one second) is

ω =
v

ρ
=

q B
m
. (2.221)

Note that this frequency, which is known as the Larmor frequency, does not depend on the velocity
of the particle. For a negatively charged particle, the picture is exactly the same as described
previously, except that the particle moves in a clockwise orbit.

It is clear, from Equation (2.221), that the angular frequency of gyration of a charged particle in
a known magnetic field can be used to determine its charge to mass ratio, q/m. Furthermore, if the
speed of the particle is known then the radius of the orbit can also be used to determine q/m, via
Equation (2.220). In the past, this method was used extensively in high energy physics experiments
to identify particles from photographs of the tracks that they left in magnetized cloud chambers or
bubble chambers. It is, of course, easy to differentiate positively charged particles from negatively
charged ones using the direction of deflection of the particles in the magnetic field.

We have seen that a charged particle placed in a magnetic field executes a circular orbit in the
plane perpendicular to the direction of the field. However, we can also add an arbitrary drift along
the direction of the magnetic field. This follows because the force q v × B acting on the particle
only depends on the component of the particle’s velocity that is perpendicular to the direction of
magnetic field (the vector product of two parallel vectors is always zero because the angle θ they
subtend is zero). (See Section A.8.) The combination of circular motion in the plane perpendicular
to the magnetic field, and uniform motion along the direction of the field, gives rise to a spiral
trajectory of a charged particle in a magnetic field, where the field forms the axis of the spiral. See
Figure 2.18.
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Figure 2.19: Hall effect for positive charge carriers (left) and negative charge carriers (right).

2.2.6 Hall Effect
We have repeatedly stated that the mobile charges in conventional conducting materials are nega-
tively charged. (They are, in fact, electrons.) Is there any direct experimental evidence that this is
true? Actually, there is. We can use a phenomenon called the Hall effect to determine whether the
mobile charges in a given conductor are positively or negatively charged. Let us investigate this
effect.

Consider a thin, flat, uniform, ribbon of some conducting material that is orientated such that
its flat side is perpendicular to a uniform magnetic field B. See Figure 2.19. Suppose that we pass
a current I along the length of the ribbon. There are two alternatives. Either the current is carried
by positive charges moving from left to right (in the figure), or it is carried by negative charges
moving in the opposite direction.

Suppose that the current is carried by positive charges moving from left to right. These charges
are deflected upward (in the figure) by the magnetic field. Thus, the upper edge of the ribbon
becomes positively charged, while the lower edge becomes negatively charged. Consequently,
there is a positive potential difference VH between the upper and lower edges of the ribbon. This
potential difference is called the Hall voltage.

Suppose, now, that the current is carried by negative charges moving from right to left. These
charges are also deflected upward by the magnetic field. Thus, the upper edge of the ribbon be-
comes negatively charged, while the lower edge becomes positively charged. It follows that the
Hall voltage (i.e., the potential difference between the upper and lower edges of the ribbon) is
negative in this case.

Clearly, it is possible to determine the sign of the mobile charges in a current-carrying conduc-
tor by measuring the Hall voltage. If the voltage is positive then the mobile charges are positive
(assuming that the magnetic field and the current are orientated as shown in the figure), whereas if
the voltage is negative then the mobile charges are negative. If we were to perform this experiment
then we would discover that the mobile charges in metals are always negative (because they are
electrons). However, in some types of semiconductor the mobile charges turn out to be positive.
These positive charge carriers are called holes. Holes are actually missing electrons in the atomic
lattice of the semiconductor, but they act essentially like positive charges.
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Let us investigate the magnitude of the Hall voltage. Suppose that the mobile charges each
possess a charge q and move along the ribbon with the drift velocity vd. The magnetic force on a
given mobile charge is of magnitude q vd B, because the charge moves essentially perpendicular to
the magnetic field. [See Equation (2.211).] In a steady state, this force is balanced by the electric
force due to the build up of charges on the upper and lower edges of the ribbon. If the Hall voltage
is VH, and the width of the ribbon is w, then the electric field directed from the upper to the lower
edge of the ribbon is of magnitude E = VH/w. [See Equation (2.17).] Now, the electric force on
a mobile charge is q E. [See Equation (2.10).] This force acts in opposition to the magnetic force.
In a steady state,

q E =
q VH

w
= q vd B, (2.222)

giving
VH = vd w B. (2.223)

Note that the Hall voltage is directly proportional to the magnitude of the magnetic field. In fact,
this property of the Hall voltage is exploited in instruments, called Hall probes, that are used to
measure magnetic field-strengths.

Suppose that the thickness of the conducting ribbon is d, and that it contains n mobile charge
carriers per unit volume. It follows that the total current flowing through the ribbon can be written

I = q nw d vd, (2.224)

because all mobile charges contained in a rectangular volume of length vd, width w, and thickness
d, flow past a given point on the ribbon in one second. Combining Equations (2.223) and (2.224),
we obtain

VH =
I B

q n d
. (2.225)

It is clear that the Hall voltage is proportional to the current flowing through the ribbon and the
magnetic field-strength, and is inversely proportional to the number density of mobile charges in
the ribbon and the thickness of the ribbon. Thus, in order to construct a sensitive Hall probe (i.e.,
one that produces a large Hall voltage in the presence of a small magnetic field), we need to take a
thin ribbon of some material that possesses relatively few mobile charges per unit volume (e.g., a
semiconductor), and then run a large current through it.

2.2.7 Biot-Savart Law
Consider a closed electric circuit of general shape, fabricated from an idealized zero thickness wire,
around which a current I flows. According to Biot-Savart law, which is named after Jean-Baptiste
Biot and Félix Savart, and which can be experimentally verified, the magnetic field generated by
such a circuit is

B(r) =
µ0 I
4π

∮
dr′ × (r − r′)
|r − r′|3 , (2.226)

where dr′ is an element of the wire, whose displacement is r′, and the integral is taken around the
whole circuit.
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Figure 2.20: A Biot-Savart law calculation.

Consider an infinite straight wire, running along the z-axis, that carries a current I. See Fig-
ure 2.20. Let us reconstruct the magnetic field generated by the wire at point P using the Biot-
Savart law. Suppose that the perpendicular distance to the wire is ρ. It is easily seen that

ez × (r − r′) = ρ eθ, (2.227)

l = ρ tan φ, (2.228)

dl =
ρ

cos2 φ
dφ, (2.229)

|r − r′| = ρ

cos φ
, (2.230)

where θ is a cylindrical polar coordinate. (See Section A.23.) Hence,

dr′ × (r − r′) =
ρ2 eθ

cos2 φ
dφ. (2.231)

Thus, according to Equation (2.226), we have

B =
µ0 I
4π

∫ π/2

−π/2

ρ2

cos2 φ

1
ρ3 (cos φ)−3 dφ eθ

=
µ0 I
4π ρ

∫ π/2

−π/2
cos φ dφ eθ =

µ0 I
4π ρ

[
sin φ

]π/2
−π/2 eθ, (2.232)

which gives

B =
µ0 I
2π ρ

eθ. (2.233)



Classical Electromagnetism 141

Thus, we conclude that the Biot-Savart law is a more general form of the familiar result (2.206)
that is not restricted to long straight wires.

Consider a circular wire loop of radius a that carries a current I. Suppose that the loop lies in
the x-y plane, and is centered on the origin. Let us use the Biot-Savart law to calculate the magnetic
field generated by the coil along a perpendicular axis that passes through its center (i.e., along the
z-axis). Let z be the distance of the point of observation from the center of the loop, and let the
angle θ parameterize position on the loop. Thus, we have

r = (0, 0, z), (2.234)

r′ = (a cos θ, a sin θ, 0), (2.235)

where the right-hand sides of the previous two equations are Cartesian components. It follows that

r − r′ = (−a cos θ, −a sin θ, z), (2.236)

|r − r′| = (a2 + z2)1/2, (2.237)

dr′ = (−a sin θ dθ, a cos θ dθ, 0), (2.238)

dr′ × (r − r′) = (a z cos θ dθ, a z sin θ dθ, a2 dθ). (2.239)

Thus, the Biot-Savart law, (2.226), yields

Bx =
µ0 I
4π

∮
a z cos θ dθ
(a2 + z2)3/2 = 0, (2.240)

By =
µ0 I
4π

∮
a z sin θ dθ
(a2 + z2)3/2 = 0, (2.241)

Bz =
µ0 I
4π

∮
a2 dθ

(a2 + z2)3/2 =
µ0 I
2

a2

(a2 + z2)3/2 . (2.242)

Thus, the magnetic field generated on the z-axis is

B =
µ0 I
2

a2

(a2 + z2)3/2 ez. (2.243)

Suppose that we have two identical current loops of radius a. Let both loops be centered on
the z-axis, and let the first lie in the plane z = d, and the second in the plane z = −d. Furthermore,
suppose that a current I flows around each loop in the same direction. By the principle of superpo-
sition, making use of the previous equation, the magnetic field generated on the z-axis by the two
loops is

Bz =
µ0 I
2

(
a2

[a2 + (z − d)2]3/2 +
a2

[a2 + (z + d)2]3/2

)
. (2.244)

If we Taylor expand the previous expression about z = 0 then we obtain

Bz =
µ0 I
2

a2

(a2 + d2)3/2

{
2 + 3

[
(2 d)2 − a2

(a2 + d2)2

]
z2 + O(z4)

}
. (2.245)
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Suppose that we wish to make the magnetic field in the region between the loops as uniform as
possible. We can clearly achieve this goal if we adjust the spacing 2 d between the loops in such a
manner that the coefficient of z2 in the previous expression is set to zero. In this case, the leading
order non-constant term in the expansion is O(z4). It can be seen that we need 2 d = a. In other
words, the spacing between the loops must equal the radius of the loops. The approximately
uniform magnetic field between the loops becomes

Bz =

(
4
5

)3/2
µ0 I
a
. (2.246)

A pair of current loops set up in this manner are known as Helmholtz coils.
Finally, we can generalize the Biot-Savart law, (2.226), to determine the magnetic field gener-

ated by a distributed current of density j(r) by making the identification

I dr = j(r) dV. (2.247)

Thus, we obtain

B(r) =
µ0

4π

∫
j(r′) × (r − r′)
|r − r′|3 dV ′, (2.248)

where the volume integral is taken over all space.

2.2.8 Magnetic Vector Potential
We saw in Equation (2.16) that

r − r′

|r − r′|3 = −∇
(

1
|r − r′|

)
. (2.249)

This equation can be combined with the generalized Biot-Savart law, (2.248), to give

B(r) =
µ0

4π

∫
∇
(

1
|r − r′|

)
× j(r′) dV ′. (2.250)

It follows that
B = ∇ × A, (2.251)

where
A(r) =

µ0

4π

∫
j(r′)
|r − r′| dV ′. (2.252)

(See Section A.24.) Here, the vector field A(r) is known as the magnetic vector potential.
It is possible to prove that the magnetic vector potential defined in the previous equation is a

divergence-free field. Note that

∂

∂x

(
1

|r − r′|
)

= − x − x′

|r − r′|3 =
x′ − x
|r − r′|3 = − ∂

∂x′

(
1

|r − r′|
)
, (2.253)
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which implies that

∇
(

1
|r − r′|

)
= −∇′

(
1

|r − r′|
)
, (2.254)

where ∇′ is the operator (∂/∂x′, ∂/∂y′, ∂/∂z′). (See Section A.19.) Taking the divergence of Equa-
tion (2.252), and making use of the previous relation, we obtain

∇ · A =
µ0

4π

∫
j(r′) · ∇

(
1

|r − r′|
)

dV ′ = −µ0

4π

∫
j(r′) · ∇′

(
1

|r − r′|
)

dV ′. (2.255)

Now, ∫ ∞
−∞
g
∂ f
∂x

dx =
[
g f
]∞
−∞ −

∫ ∞
−∞

f
∂g

∂x
dx. (2.256)

However, if g f → 0 as x → ±∞ then we can neglect the first term on the right-hand side of the
previous equation, and write ∫ ∞

−∞
g
∂ f
∂x

dx = −
∫ ∞
−∞

f
∂g

∂x
dx. (2.257)

A simple generalization of this result yields∫
g · ∇ f dV = −

∫
f ∇ · g dV, (2.258)

provided that gx f → 0 as |r| → ∞, etc cetera. Thus, Equation (2.255) yields

∇ · A =
µ0

4π

∫ ∇′ · j(r′)
|r − r′| dV ′, (2.259)

provided that |j(r)| is bounded as |r| → ∞. Now, the flux of electric charge out of a surface S ,
enclosing a volume V , is ∮

S
j · dS =

∫
V
∇ · j dV, (2.260)

where use has been made of the divergence theorem. (See Section A.20.) However, for a steady
current distribution, this flux must be zero, otherwise positive or negative electric charge would
build up inside V . Moreover, the flux must be zero for all possible volumes, V , which implies that

∇ · j = 0 (2.261)

for a steady current distribution. Hence, we deduce from Equation (2.259) that

∇ · A = 0 (2.262)

for a steady current distribution.
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Figure 2.21: Magnetic field-lines generated by a bar magnet.

2.2.9 Magnetic Monopoles
Equation (2.251) immediately suggests that

∇ · B = 0, (2.263)

because the divergence of a curl is identically zero. (See Section A.22.) In other words, the steady
magnetic field generated by a pattern of steady circulating electric currents is divergence free. If
we integrate the previous equation over a general volume V , bounded by a surface S , making use
of the divergence theorem (see Section A.20), then we obtain∮

S
B · dS = 0. (2.264)

We conclude that the flux of the magnetic field generated by a steady current pattern out of any
closed surface is zero. This implies that the magnetic field-lines generated by a steady current
pattern are solenoidal (see Section A.20) and, consequently, never begin or end.

What about magnetic fields generated by permanent magnets (the modern equivalent of load-
stones)? Do they also never begin or end? We know that a conventional bar magnet has both a
north and south magnetic pole (like the Earth). If we track the magnetic field-lines with a small
compass then they all emanate from the north pole, spread out, and eventually re-converge on the
south pole. See Figure 2.21. It appears likely (but we cannot prove it with a compass) that the
field-lines inside the magnet connect from the south to the north pole so as to form closed loops
that never begin or end.

Can we produce an isolated north or south magnetic pole; for instance, by snapping a bar
magnet in two? A compass needle would always point toward an isolated south pole, so this would
act like a negative magnetic charge. Likewise, a compass needle would always point away from an
isolated north pole, so this would act like a positive magnetic charge. It is clear, from Figure 2.22,
that if we take a closed surface S containing an isolated magnetic pole, which is usually termed a
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Figure 2.22: Magnetic field-lines generated by magnetic monopoles.

magnetic monopole, then
∮

S B · dS , 0. In fact, the flux will be positive for an isolated north pole,
and negative for an isolated south pole. It follows from the divergence theorem (see Section A.20)
that if

∮
S B · dS , 0 then ∇ ·B , 0. Thus, the statement that ∇ ·B = 0 is equivalent to the statement

that magnetic monopoles do not exist. It is actually quite possible to formulate electromagnetism
so as to allow for magnetic monopoles. However, as far as we are aware, there are no magnetic
monopoles in the universe. We know that if we try to make a magnetic monopole by snapping
a bar magnet in two then we just end up with two smaller bar magnets. If we snap one of these
smaller magnets in two then we end up with two even smaller bar magnets. We can continue this
process down to the atomic level without ever producing a magnetic monopole. In fact, permanent
magnetism is generated by electric currents circulating on the atomic scale, and so this type of
magnetism is not fundamentally different to the magnetism generated by macroscopic currents.

In conclusion, all steady magnetic fields in the universe are generated by circulating electric
currents of some description. Such fields are solenoidal; that is, they have field-lines that never
begin or end, and also satisfy the field equation

∇ · B = 0. (2.265)

We have only proved that ∇ · B = 0 for steady magnetic fields, but, in fact, it turns out that this is
also the case for time-dependent fields.

2.2.10 Ampère’s Circuital Law
According to Equation (2.251),

∇ × B = ∇ × (∇ × A) ≡ ∇ (∇ · A) − ∇ 2A, (2.266)

where use has been made of Equation (A.187). However, Equation (2.262) indicates that ∇ ·A = 0
for a steady current distribution. Hence, the previous equation simplifies to give

∇ × B = −∇ 2A. (2.267)
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The previous equation can be combined with Equation (2.252) to give

∇ × B(r) = −µ0

4π

∫
j(r′)∇2

(
1

|r − r′|
)

dV ′. (2.268)

However, according to Equation (2.56),

∇2
(

1
|r − r′|

)
= −4π δ(r − r′), (2.269)

so we obtain
∇ × B(r) = µ0

∫
j(r′) δ(r − r′) dV ′ = µ0 j(r), (2.270)

where use has been made of Equation (2.47).
The previous equation can be written

∇ × B = µ0 j. (2.271)

Let us calculate the flux of µ0 j through some surface S , bounded by a loop C. Making use of the
previous field equation, as well as the curl theorem (see Section A.22), we obtain∮

C
B · dr = µ0

∫
S

j · dS. (2.272)

In other words, the line integral of the magnetic field around some loop C is equal to µ0 multiplied
by the net electric current flowing across some surface, S , attached to the loop. This result is
known as Ampère’s circuital law. Note that because the current density associated with a steady
current pattern is divergence free [see Equation (2.261)], the net current flowing across any surface
attached to C is the same. (See Section A.20.) Of course, when performing the line integral we
have to choose an arbitrary sense of circulation around the loop. Once we have done this, any
currents that the loop circles in an counter-clockwise direction (looking against the direction of
the current) count as positive currents, whereas any currents that the loop circles in a clockwise
direction (looking against the direction of the current) count as negative currents.

Let us apply Ampère’s circuital law to the trivial case of a circular loop of radius r that lies in
the plane perpendicular to a long straight wire, carrying a current I, that passes though its center.
By symmetry, we expect the magnetic field to be of the form B = Bθ(r) eθ, where r, θ, z are
right-handed cylindrical polar coordinates defined such that the wire runs along the z-axis. (See
Section A.23.) If the chosen sense of circulation around the loop is in the direction of increasing θ
then I counts as a positive current. Thus, Equation (2.272) yields

2π r Bθ(r) = µ0 I, (2.273)

or
Bθ =

µ0 I
2π r

, (2.274)

which is equivalent to Equation (2.206).
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Figure 2.23: An example use of Ampère’s circuital law.

As another example of the use of Ampère’s circuital law, let us calculate the magnetic field
generated by a cylindrical current annulus of inner radius a, and outer radius b, co-axial with the
z-axis, and carrying a uniformly distributed z-directed current I. By symmetry, and also by analogy
with the magnetic field generated by a straight wire, we expect the current distribution to generate a
magnetic field of the form B = Bθ(r) eθ, where r, θ, z are right-handed cylindrical polar coordinates.
(See Section A.23.) Let us apply Ampère’s circuital law to an imaginary circular loop in the x-y
plane, of radius r, centered on the z-axis. See Figure 2.23. Such a loop is generally known as an
Ampèrian loop. As before, if the chosen sense of circulation around the loop is in the direction
of increasing θ then I counts as a positive current. According to Ampère’s circuital law, the line
integral of the magnetic field around the loop is equal to the current passing through the plane
of the loop, multiplied by µ0. The line integral is easy to calculate because the magnetic field is
everywhere tangential to the loop. We obtain

2π r Bθ(r) = µ0 I(r),

where I(r) is the current that passes through an Ampèrian loop of radius r. Simple arguments
involving proportion reveal that

I(r) =


0 r < a[
(r2 − a2)/(b2 − a2)

]
I a ≤ r ≤ b

I b < r
. (2.275)

Hence,

Bθ(r) =


0 r < a[
µ0 I/(2π r)

] [
(r2 − a2)/(b2 − a2)

]
a ≤ r ≤ b

µ0 I/(2π r) b < r
. (2.276)
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Figure 2.24: A solenoid.

2.2.11 Magnetic Field of a Solenoid
A solenoid is a tightly wound, helical coil of wire whose diameter is small compared to its length.
The magnetic field generated in the center, or core, of a current-carrying solenoid is essentially
uniform, and is directed along the axis of the solenoid. Outside the solenoid, the magnetic field
is far weaker. Figure 2.24 shows (rather schematically) the magnetic field generated by a typical
solenoid. The solenoid is wound from a single helical wire that carries a current I. The winding is
sufficiently tight that each turn of the solenoid is well approximated as a circular wire loop, lying
in the plane perpendicular to the axis of the solenoid, that carries a current I. Suppose that there
are N such turns per unit axial length of the solenoid. What is the magnitude of the magnetic field
in the core of the solenoid?

In order to answer this question, let us apply Ampère’s circuital law to the rectangular loop
abcd. We must first find the line integral of the magnetic field around abcd. Along bc and da
the magnetic field is essentially perpendicular to the loop, so there is no contribution to the line
integral from these sections of the loop. Along cd the magnetic field is approximately uniform, of
magnitude B, say, and is directed parallel to the loop. Thus, the contribution to the line integral
from this section of the loop is B L, where L is the length of cd. Along ab the magnetic field-
strength is essentially negligible, so this section of the loop makes no contribution to the line
integral. It follows that the line integral of the magnetic field around abcd is simply

w = B L. (2.277)

By Ampère’s circuital law, this line integral is equal to µ0 multiplied by the algebraic sum of the
currents that pass through the plane of the loop abcd. Because the length of the loop along the axis
of the solenoid is L, the loop encloses N L turns of the solenoid, each of which carries a current
I. Thus, the total current that passes through the plane of the loop is N L I. This current counts
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as a positive current, because if we look against the direction of the currents flowing in each turn
(i.e., into the page in the figure) then the loop abcd circulates these currents in a counter-clockwise
direction. Ampère’s circuital law yields

B L = µ0 N L I, (2.278)

which reduces to
B = µ0 N I. (2.279)

Thus, the magnetic field in the core of a solenoid is directly proportional to the product of the
current flowing around the solenoid and the number of turns per unit length of the solenoid. This,
result is exact in the limit in which the length of the solenoid is very much greater than its diameter.

2.3 Magnetic Induction

2.3.1 Faraday’s Law
The phenomenon of magnetic induction plays a crucial role in three very useful electrical devices;
the electric generator (see Section 2.3.10), the electric motor (see Section 2.3.12), and the trans-
former (see Section 2.3.13). Without these devices, modern life would be impossible in its present
form. Magnetic induction was discovered in 1830 by Michael Faraday. Joseph Henry indepen-
dently made the same discovery at about the same time. Both physicists were intrigued by the
fact that an electric current flowing around a circuit can generate a magnetic field. Surely, they
reasoned, if an electric current can generate a magnetic field then a magnetic field must somehow
be able to generate an electric current. However, it took many years of fruitless experimentation
before they were able to find the essential ingredient that allows a magnetic field to generate an
electric current. This ingredient is time variation.

Prior to 1830, the only known way in which to cause an electric current to flow through a
conducting wire was to connect the ends of the wire to the positive and negative terminals of a
battery. We measure a battery’s ability to push current down a wire in terms of its voltage, by
which we mean the voltage difference between its positive and negative terminals. Of course, volts
are the units used to measure electric scalar potential, so when we talk about a 6V battery, what we
are really saying is that the difference in electric scalar potential between its positive and negative
terminals is six volts. This insight allows us to write

V = φ(⊕) − φ(	) = −
∫ 	
⊕
∇φ · dr =

∫ 	
⊕

E · dr, (2.280)

where V is the battery voltage, ⊕ denotes the positive terminal, 	 the negative terminal, and dr
is an element of length along the wire. Of course, the previous equation is a direct consequence
of E = −∇φ. [See Equation (2.17) and Section A.18.] Clearly, a voltage difference between two
ends of a wire attached to a battery implies the presence of a longitudinal electric field that pushes
electric charges along the wire. This field is directed from the positive terminal of the battery to
the negative terminal, and is, therefore, such as to force electrons to flow through the wire from the
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negative to the positive terminal. As expected, this implies that a net positive current flows from
the positive to the negative terminal. The fact that E is a conservative field (i.e., E = −∇φ) ensures
that the voltage difference, V , is independent of the path of the wire between the terminals. In other
words, two different wires attached to the same battery develop identical voltage differences.

Let us now consider a closed loop of wire (with no battery). The voltage around such a loop,
which is sometimes called the electromotive force, or emf, is

V =

∮
E · dr = 0. (2.281)

The fact that the right-hand side of the previous equation is zero is a direct consequence of the
field equation ∇ × E = −∇ × ∇φ = 0 and the curl theorem. [See Equations (2.17) and (2.25), and
Section A.22.] We conclude that, because E is a conservative field (i.e., E = −∇φ), the emf around
a closed loop of wire is automatically zero, and so there is no current flow around such a loop.

However, in 1830, Michael Faraday discovered that a changing magnetic field can cause a
current to flow around a closed loop of wire (in the absence of a battery). Of course, if current
flows around the loop then there must be an emf. In other words,

V =

∮
E · dr , 0, (2.282)

which immediately implies that E is not a conservative field, and that ∇ × E , 0. Clearly, we are
going to have to modify some of our ideas regarding electric fields.

Faraday continued his experiments, and found that another way of generating an emf around
a loop of wire is to keep the magnetic field constant and to move the loop. (See Section 2.3.9.)
Eventually, Faraday was able to formulate a law that accounted for all of his experiments; the emf
generated around a loop of wire in a magnetic field is proportional to the rate of change of the flux
of the magnetic field through the loop. (See Section A.20.) Thus, if the loop is denoted C, and S
is some surface attached to the loop, then Faraday’s experiments can be summed up by writing

V =

∮
C

E · dr = A
∂

∂t

∫
S

B · dS, (2.283)

where A is a constant of proportionality. Thus, the changing flux of the magnetic field passing
through the loop generates an electric field directed around the loop. This process is know as
magnetic induction.

SI units have been carefully chosen so as to make |A| = 1 in the previous equation. So, the
only question that we now have to answer is whether A = +1 or A = −1. In other words, we need
to decide which way around the loop the induced emf drives the current. We possess a general
principle, known as Le Chatelier’s principle, that allows us to answer such questions. According
to Le Chatelier’s principle, every change in a physical system generates a reaction that acts to
minimize the change. Essentially, this implies that the universe is stable to small perturbations.
When Le Chatelier’s principle is applied to the particular case of magnetic induction, it is usually
called Lenz’s law, after Emil Lenz who formulated it in 1834. According to Lenz’s law, the current
induced by an emf around a closed loop is always such that the magnetic field it produces acts to
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Figure 2.25: Lenz’s law.

counteract the change in magnetic flux that generates the emf. From Figure 2.25, it is clear that if
the magnetic field B is increasing and the current I circulates clockwise (as seen from above) then
the current generates a field B′ that opposes the increase in the magnetic flux through the loop, in
accordance with Lenz’s law. The direction of the current is opposite to the sense of circulation of
the current loop C, as determined by the right-hand rule (assuming that the flux of B through the
loop is positive), so this implies that A = −1 in Equation (2.283). Thus, Faraday’s law takes the
form

V =

∮
C

E · dr = − ∂
∂t

∫
S

B · dS = −dΦ
dt
, (2.284)

where Φ =
∫

S B · dS is the magnetic flux through the loop.
Experimentally, Faraday’s law is found to correctly predict the emf (i.e.,

∮
E · dr) generated

around any wire loop, irrespective of the position or shape of the loop. It is reasonable to assume
that the same emf would be generated in the absence of the wire (of course, no current would flow
in this case). We conclude that Equation (2.284) is valid for any closed loop C. Now, if Faraday’s
law is to make sense then it must hold for all surfaces, S , attached to the loop, C. Clearly, if the
flux of the magnetic field through the loop depends on the surface upon which it is evaluated then
Faraday’s law is going to predict different emfs for different surfaces. Because there is no preferred
surface for a general non-coplanar loop, this would not make any sense. The condition for the flux
of the magnetic field,

∫
S B · dS, to depend only on the loop C to which the surface S is attached,

and not on the nature of the surface itself, is∮
S ′

B · dS′ = 0, (2.285)

for any closed surface S ′. (See Section A.20.)
Faraday’s law, Equation (2.284), can be converted into a field equation using the curl theorem.

(See Section A.22.) We obtain

∇ × E = −∂B
∂t
. (2.286)
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This field equation describes how a changing magnetic field generates an electric field. The diver-
gence theorem (see Section A.20) applied to Equation (2.285) gives the familiar field equation

∇ · B = 0. (2.287)

[See Equation (2.263).] This equation ensures that the magnetic flux through a loop is a well
defined quantity.

The divergence of Equation (2.286) yields

∂ (∇ · B)
∂t

= 0, (2.288)

because ∇ · ∇ × E ≡ 0. (See Section A.22.) Thus, the field equation (2.286) actually demands
that the divergence of the magnetic field must be constant in time for self-consistency (this implies
that the flux of the magnetic field through a loop need not be a well defined quantity, as long as
its time derivative is well defined). However, a constant non-solenoidal magnetic field can only be
generated by magnetic monopoles, and magnetic monopoles do not exist (as far as we are aware).
(See Section 2.2.9.) Hence, ∇ · B = 0.

As an example of the use of Faraday’s law, let us calculate the electric field generated by a
decaying magnetic field of the form B = Bz(r, t) ez, where

Bz(r, t) =

{
B0 exp(−t/τ) r ≤ a
0 r > a

, (2.289)

and r is a cylindrical polar coordinate. (See Section A.23.) Here, B0 and τ are positive constants.
By symmetry, we expect an induced electric field of the form E(r, t). We also expect ∇ · E = 0,
because there are no electric charges in the problem. [See Equation (2.54).] This rules out a radial
electric field. We can also rule out a z-directed electric field, because ∇× [Ez(r) ez] = −(∂Ez/∂r) eθ,
and we require ∇ × E ∝ B ∝ ez. Hence, the induced electric field must be of the form E(r, t) =

Eθ(r, t) eθ. Now, according to Faraday’s law, (2.284), the line integral of the electric field around
some closed loop is equal to minus the rate of change of the magnetic flux passing through the
loop. If we choose a loop that is a circle of radius r in the x-y plane then we have

2π r Eθ(r, t) = −dΦ
dt
, (2.290)

where Φ is the flux of the magnetic field (in the +z direction) passing through a circular loop of
radius r. It is evident that

Φ(r, t) =

{
π r2 B0 exp(−t/τ) r ≤ a
π a2 B0 exp(−t/τ) r > a

. (2.291)

Hence,

Eθ(r, t) =

{
(B0/2 τ) r exp(−t/τ) r ≤ a
(B0/2 τ) (a2/r) exp(−t/τ) r > a

. (2.292)
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2.3.2 Electric Scalar Potential
We now have a problem. We can only write the electric field in terms of a scalar potential (i.e.,
E = −∇φ) provided that ∇ × E = 0. This follows because ∇ × ∇φ ≡ 0. (See Section A.22.)
However, we have just discovered that the curl of the electric field is non-zero in the presence of a
changing magnetic field. In other words, E is not, in general, a conservative field. Does this mean
that we have to abandon the concept of electric scalar potential? Fortunately, it does not. It is still
possible to define a scalar potential that is physically meaningful.

Let us start from the field equation
∇ · B = 0, (2.293)

which is valid for both time-varying and constant magnetic fields. Because the magnetic field is
solenoidal, we can write it as the curl of a vector potential:

B = ∇ × A. (2.294)

[See Equation (2.251)]. This follows because ∇ · (∇ × A) ≡ 0. (See Section A.22.) So, there
is no problem with the vector potential in the presence of time-varying fields. Let us substitute
Equation (2.294) into the field equation (2.286). We obtain

∇ × E = −∂ (∇ × A)
∂t

, (2.295)

which can be written

∇ ×
(

E +
∂A
∂t

)
= 0. (2.296)

Now, we know that a curl-free vector field can always be expressed as the gradient of a scalar
potential (see Section A.22), so let us write

E +
∂A
∂t

= −∇φ, (2.297)

or
E = −∇φ − ∂A

∂t
. (2.298)

This equation implies that the electric scalar potential, φ, only describes the conservative electric
field generated by electric charges. The electric field induced by time-varying magnetic fields is
non-conservative, and is described by the magnetic vector potential, A.

2.3.3 Gauge Invariance
As we saw in the previous section, electric and magnetic fields can be written in terms of scalar
and vector potentials, as follows:

E = −∇φ − ∂A
∂t
, (2.299)
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B = ∇ × A. (2.300)

However, this prescription is not unique. There are many different potentials that can generate the
same fields. This phenomenon is known as gauge invariance. The most general transformation
that leaves the E and B fields unchanged in Equations (2.299) and (2.300) is

φ→ φ +
∂ψ

∂t
, (2.301)

A→ A − ∇ψ, (2.302)

where ψ(r, t) is a general scalar field known as the gauge field. A particular choice of the gauge
field is termed a choice of the gauge.

We are free to choose the gauge so as to make our equations as simple as possible. As before,
the most sensible gauge for the scalar potential is to set it to zero at infinity:

φ(r, t)→ 0 as |r| → ∞. (2.303)

For steady fields, we found that
∇ · A = 0. (2.304)

[See Equation (2.262).] This choice is known as the Coulomb gauge. We can still use this gauge
for time-varying fields.

Equation (2.299) can be combined with the field equation [see Equation (2.54)]

∇ · E =
ρ

ε0
(2.305)

(which remains valid for time-varying fields) to give

−∇2φ − ∂ (∇ · A)
∂t

=
ρ

ε0
. (2.306)

(See Section A.21.) With the Coulomb gauge, ∇ · A = 0, the previous expression reduces to

∇2φ = − ρ
ε0
, (2.307)

which is just Poisson’s equation. [See Equation (2.99).] Thus, we can immediately write down an
expression for the scalar potential generated by time-varying fields. It is exactly analogous to our
previous expression for the scalar potential generated by steady fields:

φ(r, t) =
1

4π ε0

∫
ρ(r′, t)
|r − r′| dV ′. (2.308)

[See Equation (2.18).] However, this apparently simple result is extremely deceptive. Equation
(2.308) is a typical action at a distance law. If the charge density changes suddenly at r′ then the po-
tential at r responds immediately. However, special relativity forbid information from propagating
faster than the speed of light in vacuum, because this would violate causality. (See Section 3.2.10.)



Classical Electromagnetism 155

How can these two statements be reconciled? The crucial point is that the scalar potential cannot
be measured directly, it can only be inferred from the electric field. In the time dependent case,
there are two parts to the electric field; that part that comes from the scalar potential, and that part
that comes from the vector potential. [See Equation (2.299).] So, if the scalar potential in some
region responds immediately to some distance rearrangement of charge density then it does not
necessarily follow that the electric field also has an immediate response. What actually happens
is that the change in the part of the electric field that comes from the scalar potential is balanced
by an equal and opposite change in the part that comes from the vector potential, so that the over-
all electric field remains unchanged. This state of affairs persists at least until sufficient time has
elapsed for a light signal to travel from the distant charges to the region in question. Thus, causality
is not violated, because it is the electric field, and not the scalar potential, that carries physically
accessible information.

It is clear that the apparent action at a distance nature of Equation (2.308) is highly mislead-
ing. This suggests, very strongly, that the Coulomb gauge is not the optimum gauge in the time
dependent case. A more sensible choice is the so-called Lorenz gauge:

∇ · A = −ε0 µ0
∂φ

∂t
. (2.309)

Substituting the Lorenz gauge into Equation (2.306), we obtain

ε0 µ0
∂2φ

∂t2 − ∇2φ =
ρ

ε0
. (2.310)

It turns out that this is a three-dimensional wave equation in which information propagates at the
speed of light in vacuum. (See Section 2.4.4.) Thus, the Lorenz gauge makes manifest the fact that
information carried by electric and magnetic fields propagates at the velocity of light in vacuum,
which implies that causality is not violated.

2.3.4 Inductance
We have already learned about the concepts of voltage, resistance, and capacitance. Let us now
investigate the concept of inductance. Electrical engineers like to reduce all pieces of electrical
circuitry to an equivalent circuit consisting of pure voltage sources, pure inductors, pure capacitors,
and pure resistors. Hence, once we understand inductors, we shall be ready to apply the laws of
electromagnetism to general electrical circuits.

Consider two stationary loops of wire, labeled 1 and 2. See Figure 2.26. Let us run a steady
current I1 around the first loop to produce a magnetic field B1. Some of the field-lines of B1 will
pass through the second loop. Let Φ2 be the flux of B1 through loop 2,

Φ2 =

∫
loop 2

B1 · dS2, (2.311)

where dS2 is a surface element of loop 2. This flux is generally quite difficult to calculate exactly
(unless the two loops have a particularly simple geometry). However, we can infer from the Biot-
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Figure 2.26: Two current-carrying loops.

Savart law [see Equation (2.226)],

B1(r) =
µ0 I1

4π

∮
loop 1

dr1 × (r − r1)
|r − r1|3 , (2.312)

that the magnitude of B1 is proportional to the current I1. Here, dr1 is a line element of loop 1
located at displacement r1. It follows that the flux Φ2 must also be proportional to I1. Thus, we
can write

Φ2 = M21 I1, (2.313)

where M21 is a constant of proportionality. This constant is termed the mutual inductance of the
two loops.

Let us write the magnetic field B1 in terms of a vector potential A1, so that

B1 = ∇ × A1. (2.314)

It follows from the curl theorem (see Section A.22) that

Φ2 =

∫
loop 2

B1 · dS2 =

∫
loop 2
∇ × A1 · dS2 =

∮
loop 2

A1 · dr2, (2.315)

where dr2 is a line element of loop 2. However, we know that

A1(r) =
µ0 I1

4π

∮
loop 1

dr1

|r − r1| . (2.316)

The previous equation is just a special case of the more general result [see Equation (2.252)],

A1(r) =
µ0

4π

∫
j(r′)
|r − r′| dV ′, (2.317)

for j(r1) = dr1 I1/(dr1 dA) and dV ′ = dr1 dA, where dA is the cross-sectional area of loop 1. Thus,

Φ2 =
µ0 I1

4π

∮
loop 1

∮
loop 2

dr1 · dr2

|r2 − r1| , (2.318)
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where r2 is the position vector of the line element dr2 of loop 2, which implies that

M21 =
µ0

4π

∮
loop 1

∮
loop 2

dr1 · dr2

|r2 − r1| . (2.319)

In fact, mutual inductances are rarely worked out using the previous formula, because it is usually
far too difficult. However, this formula, which is known as the Neumann formula, tells us two
important things. Firstly, the mutual inductance of two current loops is a purely geometric quantity,
having to do with the sizes, shapes, and relative orientations of the loops. Secondly, the integral is
unchanged if we switch the roles of loops 1 and 2. In other words,

M21 = M12. (2.320)

Hence, we can drop the subscripts, and just call both of these quantities M. This result implies that
no matter what the shapes and relative positions of the two loops, the magnetic flux through loop 2
when a current I runs around loop 1 is exactly the same as the flux through loop 1 when the same
current runs around loop 2.

We have seen that a current I flowing around some wire loop, 1, generates a magnetic flux
linking some other loop, 2. However, flux is also generated through the first loop. As before, the
magnetic field, and, therefore, the flux, Φ, is proportional to the current, so we can write

Φ = L I. (2.321)

The constant of proportionality L is called the self inductance. Like M it only depends on the
geometry of the loop.

The SI unit of inductance is the henry (H), which is equivalent to a volt-second per ampere.
The henry, like the farad, is a rather unwieldy unit, because inductors in electrical circuits typically
have a inductances of order a micro-henry.

2.3.5 Self Inductance
Consider a long, uniformly wound, cylindrical solenoid of length l, and radius r, that has N
turns per unit length, and carries a current I. The longitudinal (i.e., directed along the axis of
the solenoid) magnetic field within the solenoid is approximately uniform, and is given by

B = µ0 N I. (2.322)

(See Section 2.2.11.) The magnetic flux passing though each turn of the solenoid wire is Bπ r2 =

µ0 N I π r2. Thus, the total flux passing through the solenoid wire, which has N l turns, is

Φ = N l µ0 N I π r2. (2.323)

Hence, the self inductance of the solenoid is

L =
Φ

I
= µ0 N2 π r2 l. (2.324)
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Figure 2.27: The equivalent circuit of a solenoid connected to a battery.

Note that the self inductance only depends on geometric quantities, such as the number of turns
per unit length of the solenoid, and the cross-sectional area of the turns.

Suppose that the current I flowing through the solenoid changes. A change in the current
implies a change in the magnetic flux linking the solenoid wire, because Φ = L I. According to
Faraday’s law, this change generates an emf in the wire. By Lenz’s law, the emf is such as to
oppose the change in the current; that is, it is a back-emf. Thus, we can write

E = −dΦ
dt

= −L
dI
dt
, (2.325)

where E is the generated back-emf. [See Equation (2.284).]
Suppose that our solenoid has an electrical resistance R. Let us connect the ends of the solenoid

across the terminals of a battery of constant voltage V . The equivalent circuit is shown in Fig-
ure 2.27. The inductance and resistance of the solenoid are represented by a perfect inductor, L,
and a perfect resistor, R, connected in series. The voltage drop across the inductor and resistor
is equal to the voltage of the battery, V . The voltage drop across the resistor is simply I R (see
Section 2.1.11), whereas the voltage drop across the inductor (i.e., minus the back-emf) is L dI/dt.
Here, I is the current flowing through the solenoid. It follows that

V = I R + L
dI
dt
. (2.326)

This is a differential equation for the current I. We can rearrange it to give

dI
dt

+
R
L

I =
V
L
. (2.327)

The general solution is

I(t) =
V
R

+ k exp
(
−R t

L

)
. (2.328)
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Figure 2.28: Typical current rise profile in a circuit of the type shown in Figure 2.27. Here,
I0 = V/R and τ = L/R.

The constant k is fixed by the initial conditions. Suppose that the battery is connected at time t = 0,
when I = 0. It follows that k = −V/R, so that

I(t) =
V
R

[
1 − exp

(
−R t

L

)]
. (2.329)

This curve is shown in Figure 2.28. It can be seen that, after the battery is connected, the current
ramps up, and attains its steady-state value V/R (which comes from Ohm’s law), on the character-
istic timescale

τ =
L
R
. (2.330)

To be more exact, the current has risen to approximately 63% of its final value at time t = τ,
and to more than 99% of its final value at time t = 5 τ. The timescale τ is sometimes called the
time constant of the circuit, or (somewhat unimaginatively) the L over R time of the circuit. We
conclude that it takes a finite time to establish a steady current flowing through a solenoid.

2.3.6 RC Circuits
Let us now discuss a topic that, admittedly, has nothing whatsoever to do with inductors, but is
mathematically so similar to the topic just discussed that it seems sensible to consider it at this
point.

Consider a circuit in which a battery of emf V is connected in series with a capacitor of ca-
pacitance C, and a resistor of resistance R. For fairly obvious reasons, such a circuit is generally
referred to as an RC circuit. In a steady state, the charge on the positive plate of the capacitor is
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Figure 2.29: An RC circuit with a switch.

given by Q = C V , and zero current flows around the circuit (because current cannot flow across
the insulating gap between the capacitor plates).

Let us now introduce a switch into the circuit, as shown in Figure 2.29. Suppose that the
switch is initially open, but is suddenly closed at t = 0. It is assumed that the capacitor plates
are uncharged when the switch is thrown. We expect a transient current, i, to flow around the
circuit until the charge, q, on the positive plate of the capacitor attains its final steady-state value,
Q = C V . But, how long does this process take?

The potential difference, v, between the positive and negative plates of the capacitor is given by

v = V − i R. (2.331)

In other words, the potential difference between the plates is the emf of the battery minus the
potential drop across the resistor. The charge, q, on the positive plate of the capacitor is written

q = C v = Q − i R C, (2.332)

where Q = C V is the final charge. Now, if i is the instantaneous current flowing around the circuit
then, in a short time interval dt, the charge on the positive plate of the capacitor increases by a
small amount dq = i dt (because all of the charge that flows around the circuit must accumulate on
the plates of the capacitor). It follows that

i =
dq
dt
. (2.333)

Thus, the instantaneous current flowing around the circuit is numerically equal to the rate at which
the charge accumulated on the positive plate of the capacitor increases with time. Equations (2.332)
and (2.333) can be combined together to give

dq′

dt
= − q′

R C
, (2.334)

where
q′ = q − Q. (2.335)
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Figure 2.30: Sketch of the charging phase in an RC circuit switched on at t = 0.

At t = 0, just after the switch is closed, the charge on the positive plate of the capacitor is zero, so

q′(t = 0) = −Q. (2.336)

Integration of Equation (2.334), subject to the initial condition (2.336), yields

q′(t) = −Q exp
(
− t

R C

)
. (2.337)

It follows from Equation (2.335) that

q(t) = Q
[
1 − exp

(
− t

R C

)]
(2.338)

The previous expression specifies the charge, q, on the positive plate of the capacitor a time inter-
val, t, after the switch is closed (at time t = 0). The variation of the charge with time is sketched
in Figure 2.30. It can be seen that, when the switch is closed, the charge q on the positive plate
of the capacitor does not suddenly jump up to its final value, Q = C V . Instead, the charge in-
creases smoothly from zero, and gradually asymptotes to its final value. The charge has risen to
approximately 63% of its final value a time

τ = R C (2.339)

after the switch is closed. By the time t = 5 τ, the charge has risen to more than 99% of its
final value. Thus, τ = R C is a good measure of how long after the switch is closed it takes
for the capacitor to fully charge up. The quantity τ is termed the time constant, or, somewhat
unimaginitely, the RC time, of the circuit.

According to Equations (2.333) and (2.334),

i =
dq
dt

=
dq′

dt
= − q′

R C
. (2.340)
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It follows from Equation (2.337) that

i(t) = I exp
(
− t

R C

)
, (2.341)

where I = V/R. The previous expression specifies the current, i, flowing around the circuit a time
interval, t, after the switch is closed (at time t = 0). It can be seen that, immediately after the switch
is thrown, the current, I = V/R, that flows in the circuit is that which would flow if the capacitor
were replaced by a conducting wire. However, this current is only transient, and rapidly decays
away to a negligible value. After one RC time, the current has decayed to 37% of its initial value.
After five RC times, the current has decayed to less than 1% of its initial value. It is interesting to
note that, for a short instant of time, just after the switch is closed, the current in the circuit acts
as if there is no insulating gap between the capacitor plates. It essentially takes an RC time for the
information about the break in the circuit to propagate around the circuit, and cause the current to
stop flowing.

2.3.7 Mutual Inductance
Consider two long, thin, cylindrical solenoids, one wound on top of the other. The common length
of each solenoid is l, and the common radius is r. Suppose that the inner solenoid has N1 turns per
unit length, and carries a current I1. The magnetic field generated within the inner solenoid is B1 =

µ0 N1 I1. [See Equation (2.322).] The magnetic flux passing through each turn of the outer solenoid
is µ0 N1 I1 π r2, and the total flux linking the outer solenoid is therefore Φ2 = N2 l µ0 N1 I1 π r2,
where N2 is the number of turns per unit length of the outer solenoid. It follows that the mutual
inductance of the two solenoids, defined Φ2 = M I1 [see Equation (2.313)] is given by

M = µ0 N1 N2 π r2 l. (2.342)

Recall that the self inductance of the inner solenoid is

L1 = µ0 N 2
1 π r2 l, (2.343)

and that of the outer solenoid is
L2 = µ0 N 2

2 π r2 l. (2.344)

[See Equation (2.324).] Hence, the mutual inductance can be written

M =
√

L1 L2. (2.345)

Note that this result depends on the assumption that all of the magnetic flux produced by one
solenoid passes through the other solenoid. In reality, some of the flux leaks out, so that the mutual
inductance is somewhat less than that given in the previous formula. We can write

M = k
√

L1 L2, (2.346)

where the dimensionless constant k is called the coefficient of coupling, and lies in the range 0 ≤
k ≤ 1.
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Suppose that the inner and outer solenoids have resistances R1 and R2, respectively, If an in-
stantaneous current I1 flow through the inner solenoid then the voltage drop across it due to its
resistance is I1 R1. The voltage drop due to the back-emf generated by the self inductance of the
solenoid is L1 dI1/dt. (See Section 2.3.5.) There is also a back-emf due to inductive coupling with
the outer solenoid. The magnetic flux through the inner solenoid due to the instantaneous current
I2 flowing through the outer solenoid is

Φ1 = M I2. (2.347)

Thus, by Faraday’s law and Lenz’s law, the back-emf induced in the inner solenoid is

E = −dΦ1

dt
= −M

dI2

dt
. (2.348)

[See Equation (2.284).] The voltage drop across the inner solenoid due to its mutual inductance
with the top coil is minus this expression. Thus, the net voltage drop across the inner solenoid is

V1 = R1 I1 + L1
dI1

dt
+ M

dI2

dt
. (2.349)

Likewise, the net voltage drop across the outer solenoid is

V2 = R2 I2 + L2
dI2

dt
+ M

dI1

dt
. (2.350)

Suppose that, at time t = 0, we suddenly connect a battery of constant voltage V1 to the inner
solenoid. The outer solenoid is assumed to be open-circuited, or connected to a voltmeter of very
high internal resistance, so that I2 = 0. Because I2 = 0, the circuit equation for the inner solenoid
is

V1 = R1 I1 + L1
dI1

dt
, (2.351)

where V1 is constant, and I1(t = 0) = 0. We have already seen the solution to this equation:

I1 =
V1

R1

[
1 − exp

(
−R1 t

L1

)]
. (2.352)

[See Equation (2.329).] The circuit equation for the outer solenoid is

V2 = M
dI1

dt
, (2.353)

giving

V2 = V1
M
L1

exp
(
−R1 t

L1

)
. (2.354)

It follows from Equation (2.346) that

V2 = V1 k

√
L2

L1
exp

(
−R1 t

L1

)
. (2.355)
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Because L1/L2 = N 2
1 /N

2
2 [see Equations (2.343) and (2.344)], we obtain

V2 = V1 k
N2

N1
exp

(
−R1 t

L1

)
. (2.356)

Now,
V2(t = 0)

V1
= k

N2

N1
, (2.357)

so if N2 � N1 then the voltage in the inner solenoid is considerably amplified in the outer solenoid.
This effect is the basis for old-fashioned car ignition systems. A large voltage spike is induced in
a secondary circuit (connected to a coil with very many turns) whenever the current in a primary
circuit (connected to a coil with not so many turns) is either switched on or off. The primary circuit
is connected to the car battery (whose voltage is typically 12 volts). The switching is done by a set
of points, which are mechanically opened and closed as the engine turns. The large voltage spike
induced in the secondary circuit, as the points are either opened or closed, causes a spark to jump
across a gap in this circuit. This spark ignites a petrol/air mixture in one of the engine’s cylinders.
We might think that the optimum configuration is to have only one turn in the primary circuit, and
many turns in the secondary circuit, so that the ratio N2/N1 is made as large as possible. However,
this is not the case. Most of the magnetic flux generated by a single-turn primary coil is likely to
miss the secondary coil altogether. This implies that the coefficient of coupling k is small, which
reduces the voltage induced in the secondary circuit. Thus, we need a reasonable number of turns
in the primary coil in order to localize the induced magnetic flux, so that it links effectively with
the secondary coil.

2.3.8 Magnetic Energy
Suppose that, at t = 0, a solenoid of inductance L, and resistance R, is connected across the
terminals of a battery of voltage V . The circuit equation is

V = L
dI
dt

+ R I. (2.358)

[See Equation (2.326).] The power output of the battery is V I. [Every charge q that goes around
the circuit falls through a potential difference q V . In order to raise it back to the starting potential,
so that it can perform another circuit, the battery must do work q V . See Section 2.1.5. The work
done per unit time (i.e., the power) is n q V , where n is the number of charges per unit time passing
a given point on the circuit. But, I = n q, so the power output is V I.] Thus, the net work done by
the battery in raising the current in the circuit from zero at time t = 0 to IT at time t = T is

W =

∫ T

0
V I dt. (2.359)

Using the circuit equation (2.358), we obtain

W = L
∫ T

0
I

dI
dt

dt + R
∫ T

0
I2 dt, (2.360)
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giving

W =
1
2

L I 2
T + R

∫ T

0
I2 dt. (2.361)

The second term on the right-hand side of the previous equation represents the irreversible conver-
sion of electrical energy into heat energy by the resistor. (See Section 2.1.11.) The first term is the
amount of energy stored in the solenoid at time T . This energy can be recovered after the solenoid
is disconnected from the battery. Suppose that the battery is disconnected at time T . The circuit
equation is now

0 = L
dI
dt

+ RI, (2.362)

giving

I = IT exp
[
−R

L
(t − T )

]
, (2.363)

where we have made use of the initial condition I(T ) = IT . Thus, the current decays away ex-
ponentially. The energy stored in the solenoid is dissipated as heat in the resistor. The total heat
energy appearing in the resistor after the battery is disconnected is∫ ∞

T
I2 R dt =

1
2

L I 2
T , (2.364)

where use has been made of Equation (2.363). Thus, the heat energy appearing in the resistor
is equal to the energy stored in the solenoid. This energy is actually stored in the magnetic field
generated inside the solenoid.

Consider, again, our circuit with two solenoids wound on top of one another. (See the previous
section.) Suppose that each solenoid is connected to its own battery. The circuit equations are thus

V1 = R1 I1 + L1
dI1

dt
+ M

dI2

dt
, (2.365)

V2 = R2 I2 + L2
dI2

dt
+ M

dI1

dt
, (2.366)

where V1 is the voltage of the battery in the first circuit, et cetera. The net work done by the two
batteries in increasing the currents in the two circuits, from zero at time 0, to I1 and I2 at time T ,
respectively, is

W =

∫ T

0
(V1 I1 + V2 I2) dt

=

∫ T

0
(R1 I 2

1 + R2 I 2
2 ) dt +

1
2

L1 I 2
1 +

1
2

L2 I 2
2

+ M
∫ T

0

(
I1

dI2

dt
+ I2

dI1

dt

)
dt. (2.367)
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Thus,

W =

∫ T

0
(R1 I 2

1 + R2 I 2
2 ) dt +

1
2

L1 I 2
1 +

1
2

L2 I 2
2 + M I1 I2. (2.368)

Clearly, the total magnetic energy stored in the two solenoids is

WB =
1
2

L1 I 2
1 +

1
2

L2 I 2
2 + M I1 I2. (2.369)

Note that the mutual inductance term increases the stored magnetic energy if I1 and I2 are of
the same sign; that is, if the currents in the two solenoids flow in the same direction, so that
they generate magnetic fields that reinforce one another. Conversely, the mutual inductance term
decreases the stored magnetic energy if I1 and I2 are of the opposite sign. However, the total stored
energy can never be negative, otherwise the coils would constitute a power source (a negative
stored energy is equivalent to a positive generated energy). Thus,

1
2

L1 I 2
1 +

1
2

L2 I 2
2 + M I1 I2 ≥ 0, (2.370)

which can be written

1
2
(√

L1 I1 +
√

L2 I2
)2 − I1 I2

(√
L1 L2 − M

) ≥ 0, (2.371)

assuming that I1 I2 < 0. It follows that

M ≤ √L1 L2. (2.372)

The equality sign corresponds to the situation in which all of the magnetic flux generated by one
solenoid passes through the other. If some of the flux misses then the inequality sign is appropriate.
In fact, the previous formula is valid for any two inductively coupled circuits, and effectively sets
an upper limit on their mutual inductance.

We intimated previously that the energy stored in an solenoid is actually stored in the surround-
ing magnetic field. Let us now obtain an explicit formula for the energy stored in a magnetic field.
Consider an ideal cylindrical solenoid. The energy stored in the solenoid when a current I flows
through it is

W =
1
2

L I2, (2.373)

where L is the self inductance. We know that

L = µ0 N2 π r2 l, (2.374)

where N is the number of turns per unit length of the solenoid, r the radius, and l the length.
[See Equation (2.324).] The magnetic field inside the solenoid is approximately uniform, with
magnitude

B = µ0 N I, (2.375)
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and is approximately zero outside the solenoid. [See Equation (2.279).] Equation (2.373) can be
rewritten

W =
B2

2 µ0
V, (2.376)

where V = π r2 l is the volume of the solenoid. The previous formula strongly suggests that a
magnetic field possesses an energy density

U =
B2

2 µ0
. (2.377)

Let us now examine a more general proof of the previous formula. Consider a system of N
circuits (labeled i = 1 to N), each carrying a current Ii. The magnetic flux through the ith circuit is
written [see Equation (2.315)]

Φi =

∫
B · dSi =

∮
A · dri, (2.378)

where B = ∇ × A, and dSi and dri denote a surface element and a line element of this circuit,
respectively. The back-emf induced in the ith circuit follows from Faraday’s law:

Ei = −dΦi

dt
. (2.379)

[See Equation (2.284).] The rate of work of the battery that maintains the current Ii in the ith circuit
against this back-emf is

Pi = −Ii Ei = Ii
dΦi

dt
. (2.380)

Thus, the total work required to raise the currents in the N circuits from zero at time 0, to I0 i at
time T , is

W =
∑
i=1,N

∫ T

0
Ii

dΦi

dt
dt. (2.381)

The previous expression for the work done is, of course, equivalent to the total energy stored in
the magnetic field surrounding the various circuits. This energy is independent of the manner in
which the currents are set up. Suppose, for the sake of simplicity, that the currents are ramped up
linearly, so that

Ii = I0 i
t
T
. (2.382)

The fluxes are proportional to the currents, so they must also ramp up linearly; that is,

Φi = Φ0 i
t
T
. (2.383)

It follows that

W =
∑
i=1,N

∫ T

0
I0 i Φ0 i

t
T 2 dt, (2.384)
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giving

W =
1
2

∑
i=1,N

I0 i Φ0 i. (2.385)

So, if instantaneous currents Ii flow in the N circuits, which link instantaneous fluxes Φi, then the
instantaneous stored energy is

W =
1
2

∑
i=1,N

Ii Φi. (2.386)

Equations (2.378) and (2.386) imply that

W =
1
2

∑
i=1,N

Ii

∮
A · dri. (2.387)

It is convenient, at this stage, to replace our N line currents by N current distributions of small, but
finite, cross-sectional area. Equation (2.387) transforms to give

W =
1
2

∫
V

A · j dV, (2.388)

where V is a volume that contains all of the circuits. Note that for an element of the ith circuit, j =

Ii dri/(dri Ai) and dV = dri Ai, where Ai is the cross-sectional area of the circuit. Now, µ0 j = ∇×B
[see Equation (2.271)], so

W =
1

2 µ0

∫
V

A · ∇ × B dV. (2.389)

However,
∇ · (A × B) ≡ B · ∇ × A − A · ∇ × B (2.390)

(see Section A.24), which implies that

W =
1

2 µ0

∫
V

[−∇ · (A × B) + B · ∇ × A] dV. (2.391)

Using the divergence theorem (see Section A.20), and B = ∇ × A, we obtain

W = − 1
2 µ0

∮
S

A × B · dS +
1

2 µ0

∫
V

B2 dV, (2.392)

where S is the bounding surface of some volume V . Let us take this surface to infinity. It is easily
demonstrated that the magnetic field generated by a current loop falls of like r−3 at large distances.
(See Section 2.2.7.) The vector potential falls off like r−2. However, the area of surface S only
increases like r2. It follows that the surface integral is negligible in the limit r → ∞. Thus, the
previous expression reduces to

W =

∫
B2

2 µ0
dV, (2.393)
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Figure 2.31: Motional emf.

where the integral is over all space. Because this expression is valid for any magnetic field what-
soever, we can safely conclude that the energy density of a general magnetic field generated by a
system of electrical circuits is given by

U =
B2

2 µ0
. (2.394)

Note, finally, that the fact that a magnetic field possesses an energy density demonstrates that it has
a real physical existence, and is not merely an aid to calculating the forces that current-carrying
wires exert on one another.

2.3.9 Motional Emf
Consider a simple circuit in which a conducting rod of length l slides along a U-shaped conduct-
ing frame in the presence of a uniform magnetic field. This circuit is illustrated in Figure 2.31.
Suppose, for the sake of simplicity, that the magnetic field is directed perpendicular to the plane of
the circuit. To be more exact, the magnetic field is directed into the page in the figure. Suppose,
further, that the rod moves to the right at the constant speed v.

The magnetic flux passing through the circuit is simply the product of the perpendicular mag-
netic field-strength, B, and the area of the circuit, l x, where x determines the position of the sliding
rod. Thus,

ΦB = B l x. (2.395)

Now, the rod moves a distance dx = v dt in a time interval dt, so in the same time interval the
magnetic flux passing through the circuit increases by

dΦB = B l dx = B l v dt. (2.396)
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It follows, from Faraday’s law [see Equation (2.284)], that the magnitude of the emf V generated
around the circuit is given by

V =
dΦB

dt
= B l v. (2.397)

Thus, the emf generated in the circuit by the moving rod is simply the product of the magnetic field-
strength, the length of the rod, and the velocity of the rod. If the magnetic field is not perpendicular
to the circuit, but instead subtends an angle θ with respect to the normal direction to the plane of
the circuit, then it is easily demonstrated that the so-called motional emf generated in the circuit
by the moving rod is

V = B⊥ l v, (2.398)

where B⊥ = B cos θ is the component of the magnetic field that is perpendicular to the plane of the
circuit.

Because the magnetic flux linking the circuit increases in time, by Lenz’s law, the emf acts in
the negative direction (i.e., in the opposite sense to the fingers of a right-hand, if the thumb points
along the direction of the magnetic field). The emf, V , therefore, acts in a counter-clockwise direc-
tion in the figure. If R is the total resistance of the circuit then this emf drives an counter-clockwise
electric current of magnitude I = V/R around the circuit. Of course, this current generates a
magnetic field that acts to reduce the increase in the magnetic flux passing through the circuit.

But, where does the motional emf come from? Let us again remind ourselves what an we mean
by an emf. When we say that an emf V acts around the circuit in the counter-clockwise direction,
what we really mean is that a charge q that circulates once around the circuit in a counter-clockwise
direction acquires the energy q V . The only manner in which the charge can acquire this energy is
if something does work on it as it circulates. Let us assume that the charge circulates very slowly.
The magnetic field exerts a negligibly small force on the charge when it is traversing the non-
moving part of the circuit (because the charge is moving very slowly). However, when the charge
is traversing the moving rod it experiences an upward (in the figure) magnetic force of magnitude
f = q v B (assuming that q > 0). (See Section 2.2.4.) The net work done on the charge by this
force as it traverses the rod is

W ′ = q v B l = q V, (2.399)

because V = B l v. Thus, it would appear that the motional emf generated around the circuit can be
accounted for in terms of the magnetic force exerted on charges traversing the moving rod.

However, there is something seriously wrong with the previous explanation. We seem to be
saying that the charge acquires the energy q V from the magnetic field as it moves around the
circuit once in a counter-clockwise direction. But, this is impossible, because a magnetic field
cannot do work on an electric charge. (See Section 2.2.4.)

Let us look at the problem from the point of view of a charge q traversing the moving rod. In
the frame of reference of the rod, the charge only moves very slowly, so the magnetic force acting
on it is negligible. In fact, only an electric field can exert a significant force on a slowly moving
charge. In order to account for the motional emf generated around the circuit, we need the charge
to experience an upward force of magnitude q v B. The only way in which this is possible is if the
charge sees an upward pointing electric field of magnitude

E = v B. (2.400)
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Figure 2.32: An alternating current generator.

In other words, although there is no electric field in the laboratory frame, there is an electric field
in the frame of reference of the moving rod, and it is this field that does the necessary amount of
work on charges moving around the circuit in order to account for the existence of the motional
emf, V = B l v.

More generally, if a conductor moves in the laboratory frame with velocity v in the presence of
a magnetic field B then a charge q inside the conductor experiences a magnetic force f = q v × B.
In the frame of the conductor, in which the charge is essentially stationary, the same force takes
the form of an electric force f = q E, where E is the electric field in the frame of reference of the
conductor. Thus, if a conductor moves with velocity v through a magnetic field B then the electric
field E that appears in the rest frame of the conductor is given by

E = v × B. (2.401)

(See Section 3.4.1.) This electric field is the ultimate origin of the motional emfs that are generated
whenever circuits move with respect to magnetic fields.

2.3.10 Alternating Current Generators
An electric generator, or dynamo, is a device that converts mechanical energy into electrical en-
ergy. The simplest practical generator consists of a rectangular coil rotating in a uniform magnetic
field. The magnetic field is usually supplied by a permanent magnet. This setup is illustrated in
Figure 2.32.

Let l be the length of the coil along its axis of rotation, and w the width of the coil perpendicular
to this axis. Suppose that the coil rotates at constant angular velocity ω in a uniform magnetic field
of strength B. The velocity v with which the two long sides of the coil (i.e., sides ab and cd)
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move through the magnetic field is simply the product of the angular velocity of rotation ω and the
distance w/2 of each side from the axis of rotation, so v = ωw/2. The motional emf induced in
each side is given by V = B⊥ l v, where B⊥ is the component of the magnetic field perpendicular
to instantaneous direction of motion of the side in question. If the direction of the magnetic field
subtends an angle θ with the normal direction to the coil, as shown in the figure, then B⊥ = B sin θ.
Thus, the magnitude of the motional emf generated in sides ab and cd is

Vab =
Bw lω sin θ

2
=

B Aω sin θ
2

, (2.402)

where A = w l is the area of the coil. The emf is zero when θ = 0◦ or 180◦, because the direction
of motion of sides ab and cd is parallel to the direction of the magnetic field in these cases. The
emf attains its maximum value when θ = 90◦ or 270◦, because the direction of motion of sides ab
and cd is perpendicular to the direction of the magnetic field in these cases. Incidentally, it is clear,
from symmetry, that no net motional emf is generated in sides bc and da of the coil.

Suppose that the direction of rotation of the coil is such that side ab is moving into the page in
Figure 2.32 (side view), whereas side cd is moving out of the page. The motional emf induced in
side ab acts from a to b. Likewise, the motional emf induce in side cd acts from c to d. It can be
seen that both emfs act in the clockwise direction around the coil. [The direction of the emf is the
same as the direction of the electric field seen in the rest frame of the sides. See Equation (2.401).]
Thus, the net emf V acting around the coil is 2 Vab. If the coil has N turns then the net emf becomes
2 N Vab. Hence, the general expression for the emf generated around a steadily-rotating, multi-turn
coil in a uniform magnetic field is

V = N B Aω sin(ω t), (2.403)

where we have written θ = ω t for a steadily rotating coil (assuming that θ = 0 at t = 0). This
expression can also be written

V = Vmax sin(2π f t), (2.404)

where
Vmax = 2πN B A f (2.405)

is the peak emf produced by the generator, and f = ω/2π is the number of complete rotations the
coils executes per second. Thus, the peak emf is directly proportional to the area of the coil, the
number of turns in the coil, the rotation frequency of the coil, and the magnetic field-strength.

Figure 2.33 shows the emf specified in Equation (2.404) plotted as a function of time. It can be
seen that the variation of the emf with time is sinusoidal in nature. The emf attains its peak values
when the plane of the coil is parallel to the plane of the magnetic field, passes through zero when
the plane of the coil is perpendicular to the magnetic field, and reverses sign every half period of
revolution of the coil. The emf is periodic (i.e., it continually repeats the same pattern in time),
with period T = 1/ f (which is, of course, the rotation period of the coil).

Suppose that some electrical load (e.g., a light-bulb, or an electric heating element) of resistance
R is connected across the terminals of the generator. In practice, this is achieved by connecting the
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Figure 2.33: Emf generated by a steadily rotating AC generator.

two ends of the coil to rotating rings that are then connected to the external circuit by means of
metal brushes. According to Ohm’s law, the current I that flows in the load is given by

I =
V
R

=
Vmax

R
sin(2π f t). (2.406)

(See Section 2.1.11.) Note that this current is constantly changing direction, just like the emf of
the generator. Hence, the type of generator described previously is usually termed an alternating
current, or AC, generator.

The current I that flows through the load must also flow around the coil. Because the coil
is situated in a magnetic field, this current gives rise to a torque acting on the coil which, as is
easily demonstrated, acts to slow down its rotation. Suppose, as before, that side ab is moving
into the page in Figure 2.32 (side view), whereas side cd is moving out of the page, and the
current is circulating in a clockwise sense. Side ab experiences a magnetic force per unit length
Fab = I × B = I B sin θ that acts to oppose its motion. (See Section 2.2.2.) Hence, the braking
force acting on the side is fab = Fab l = I B sin θ l. Thus, the braking torque acting on the side
is τab = fab w/2 = I B sin θ lw/2 = I B sin θ A/2, where A = lw is the area of the coil. Side cd
experiences an equal torque. So, taking into account the fact that the coils has N turns, the net
braking torque τ acting on the coil is given by

τ = N I B A sin θ. (2.407)

It follows from Equation (2.403) that

τ =
V I
ω
, (2.408)

because V = N B Aω sin θ. An external torque that is equal and opposite to the breaking torque
must be applied to the coil if it is to rotate uniformly, as was initially assumed above. The rate
P at which this external torque does work is equal to the product of the torque τ and the angular
velocity ω of the coil. (See Section 1.7.4.) Thus,

P = τω = V I. (2.409)
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Figure 2.34: The braking torque in a steadily rotating AC generator.

Not surprisingly, the rate at which the external torque performs works exactly matches the rate V I
at which electrical energy is generated in the circuit comprising the rotating coil and the load.

Equations (2.403), (2.406), and (2.408) yield

τ = τmax sin2(2π f t), (2.410)

where τmax = (Vmax)2/(2π f R). Figure 2.34 shows the braking torque τ plotted as a function of
time t, according to Equation (2.410). It can be seen that the torque is always of the same sign
(i.e., it always acts in the same direction, so as to continually oppose the rotation of the coil), but
is not constant in time. Instead, it pulsates periodically with period T . The braking torque attains
its maximum value whenever the plane of the coil is parallel to the plane of the magnetic field,
and is zero whenever the plane of the coil is perpendicular to the magnetic field. It is clear that
the external torque needed to keep the coil rotating at a constant angular velocity must also pulsate
in time with period T . A constant external torque would give rise to a non-uniformly rotating
coil, and, hence, to an alternating emf that varies with time in a more complicated manner than
sin(2π f t).

Virtually all commercial power stations generate electricity using AC generators. The external
power needed to turn the generating coil is usually supplied by a steam turbine (steam blasting
against fan-like blades that are forced into rotation). Water is vaporized to produce high pressure
steam by burning coal, or by using the energy released inside a nuclear reactor. Of course, in
hydroelectric power stations, the power needed to turn the generator coil is supplied by a water
turbine (which is similar to a steam turbine, except that falling water plays the role of the steam).
More recently, a new type of power station has been developed in which the power needed to rotate
the generating coil is supplied by a gas turbine (basically, a large jet engine that burns natural gas).
In the U.S. and Canada, the alternating electrical signal generated by power stations and fed into
ordinary households, which is known as mains electricity, oscillates at f = 60Hz, which implies
that the generator coils in power stations rotate exactly sixty times a second. In Europe and Asia,
the oscillation frequency of mains electricity is f = 50Hz.
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2.3.11 Alternating Current Circuits
Alternating current (AC) circuits are made up of voltage sources and three different types of passive
elements. These are resistors, inductors (i.e., small solenoids), and capacitors. Resistors satisfy
Ohm’s law,

V = I R, (2.411)

where R is the resistance, I the current flowing through the resistor, and V the voltage drop across
the resistor (in the direction in which the current flows). (See Section 2.1.11.) Inductors satisfy

V = L
dI
dt
, (2.412)

where L is the inductance. [See Equation (2.325).] Finally, capacitors obey

V =
q
C

=

∫ t

0
I dt
/

C, (2.413)

where C is the capacitance, q is the charge stored on the plate with the most positive potential, and
I = 0 for t < 0. (See Section 2.1.13.) Note that any passive component of a real electrical circuit
can always be represented as a combination of ideal resistors, inductors, and capacitors.

Let us consider the classic LCR circuit, which consists of an inductor, L, a capacitor, C, and a
resistor, R, all connected in series with an voltage source, V . See Figure 2.35. The circuit equation
is obtained by setting the input voltage V equal to the sum of the voltage drops across the three
passive elements in the circuit. Thus,

V = I R + L
dI
dt

+

∫ t

0
I dt
/

C. (2.414)

This is an integro-differential equation which, in general, is quite difficult to solve. Suppose,
however, that both the voltage and the current oscillate at some fixed angular frequency, ω, so that

V(t) = V0 exp(iω t), (2.415)

I(t) = I0 exp(iω t), (2.416)

where i =
√−1, and the physical solution is understood to be the real part of the previous expres-

sions. The assumed behavior of the voltage and current is clearly relevant to electrical circuits
powered by mains electricity (which oscillates at 60 hertz in the U.S. and Canada).

Equations (2.414)–(2.416) yield

V0 exp(iω t) = I0 exp(iω t) R + L iω I0 exp(iω t) +
I0 exp(iω t)

iωC
, (2.417)

giving

V0 = I0

(
iω L +

1
iωC

+ R
)
. (2.418)
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Figure 2.35: An LCR circuit.

It is helpful to define the impedance of the circuit:

Z =
V
I

= iω L +
1

iωC
+ R. (2.419)

Impedance is a generalization of the concept of resistance. In general, the impedance of an AC
circuit is a complex quantity.

The average power output of the voltage source is

P = 〈V(t) I(t)〉, (2.420)

where the average is taken over one period of the oscillation. Let us, first of all, calculate the power
using real (rather than complex) voltages and currents. We can write

V(t) = |V0| cos(ω t), (2.421)

I(t) = |I0| cos(ω t − θ), (2.422)

where θ is the phase-lag of the current with respect to the voltage. It follows that

P = |V0| |I0|
∫ ω t=2π

ω t=0
cos(ω t) cos(ω t − θ) d(ω t)

2π

= |V0| |I0|
∫ ω t=2π

ω t=0
cos(ω t) [cos(ω t) cos θ + sin(ω t) sin θ]

d(ω t)
2π

, (2.423)

giving

P =
1
2
|V0| |I0| cos θ, (2.424)

because 〈cos(ω t) sin(ω t)〉 = 0 and 〈cos(ω t) cos(ω t)〉 = 1/2. Here, 〈· · · 〉 ≡ ∫ ω t=2π
ω t=0 (· · · ) d(ω t)/(2π).

In complex representation, the voltage and the current are written

V(t) = |V0| exp(iω t), (2.425)
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I(t) = |I0| exp[i (ω t − θ)]. (2.426)

Now,
1
2

(V I∗ + V∗ I) = |V0| |I0| cos θ. (2.427)

It follows from Equation (2.424) that

P =
1
4

(V I∗ + V∗ I) =
1
2

Re(V I∗). (2.428)

Making use of Equation (2.419), we find that

P =
1
2

Re(Z) |I|2 =
1
2

Re(Z) |V |2
|Z|2 . (2.429)

Note that power dissipation is associated with the real part of the impedance. For the specific case
of an LCR circuit,

P =
1
2

R |I0| 2. (2.430)

[See Equation (2.419).] We conclude that only the resistor dissipates energy in this circuit. The
inductor and the capacitor both store energy, but they eventually return it to the circuit without
dissipation.

According to Equation (2.419), the amplitude of the current that flows in an LCR circuit, for a
given amplitude of the input voltage, is given by

|I0| = |V0|
|Z| =

|V0|√
(ω L − 1/ωC)2 + R2

. (2.431)

As can be seen from Figure 2.36, the response of the circuit is resonant, peaking at ω = 1/
√

L C,
and reaching 1/

√
2 of the peak value at ω = 1/

√
L C ± R/(2 L) (assuming that R � √L/C). For

this reason, LCR circuits are used in analog radio tuners to filter out signals whose frequencies fall
outside a given band.

The phase-lag of the current with respect to the voltage is given by

θ = arg(Z) = tan−1
(
ω L − 1/ωC

R

)
. (2.432)

[See Equation (2.419).] As can be seen from Figure 2.36, the phase-lag varies from −90◦ for
frequencies significantly below the resonant frequency, to zero at the resonant frequency (ω =

1/
√

L C), to +90◦ for frequencies significantly above the resonant frequency.
It is clear that, in conventional AC circuits, the circuit equation reduces to a simple algebraic

equation, and that the behavior of the circuit is summed up by the complex impedance, Z. The real
part of Z tells us the power dissipated in the circuit, the magnitude of Z gives the ratio of the peak
current to the peak voltage, and the argument of Z gives the phase-lag of the current with respect
to the voltage.
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Figure 2.36: The characteristics of an LCR circuit. The left-hand and right-hand panes show the
amplitude and phase-lag of the current versus frequency, respectively. Here, ωc = 1/

√
L C and

Z0 =
√

L/C. The solid, short-dashed, long-dashed, and dot-dashed curves correspond to R/Z0 = 1,
1/2, 1/4, and 1/8, respectively.

2.3.12 Alternating Current Motors
The first electric dynamo was constructed in 1831 by Michael Faraday. An electric dynamo is,
of course, a device that transforms mechanical energy into electrical energy. An electric motor,
on the other hand, is a device that transforms electrical energy into mechanical energy. In other
words, an electric motor is an electric dynamo run in reverse. It took a surprisingly long time for
scientists in the nineteenth century to realize this. In fact, the message only really sank home after a
fortuitous accident during the 1873 Vienna World Exposition. A large hall was filled with modern
gadgets. One of these gadgets, a steam engine driven dynamo, was producing electric power when
a workman unwittingly connected the output leads from another dynamo to the energized circuit.
Almost immediately, the latter dynamo started to whirl around at great speed. The dynamo was, in
effect, transformed into an electric motor.

An AC electric motor consists of the same basic elements as an AC electric generator; that is,
a multi-turn coil that is free to rotate in a constant magnetic field. Furthermore, the rotating coil
is connected to the external circuit in just the same manner as in an AC generator; that is, via two
slip-rings attached to metal brushes. Suppose that an external voltage source of emf V is connected
across the motor. It is assumed that V is an alternating emf, so that

V = Vmax sin(2π f t), (2.433)

where Vmax is the peak voltage, and f is the alternation frequency. Such an emf could be obtained
from mains electricity. In this case, Vmax = 110V and f = 60Hz in the U.S. and Canada, whereas
Vmax = 220V and f = 50Hz in Europe and Asia. The external emf drives an alternating current

I = Imax sin(2π f t) (2.434)
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Figure 2.37: Circuit diagram for an AC motor connected to an external AC emf source.

around the external circuit, and through the motor. As this current flows around the coil, the
magnetic field exerts a torque on the coil, which causes it to rotate. The motor eventually attains
a steady state in which the rotation frequency of the coil matches the alternation frequency of the
external emf. In other words, the steady-state rotation frequency of the coil is f . Now a coil
rotating in a magnetic field generates an emf, E. It is easily demonstrated that this emf acts to
oppose the circulation of the current around the coil; that is, the induced emf acts in the opposite
direction to the external emf. For an N-turn coil of cross-sectional area A, rotating with frequency
f in a magnetic field B, the back-emf, E, is given by

E = Emax sin(2π f t), (2.435)

where
Emax = 2πN B A f , (2.436)

and use has been made of the results of Section 2.3.10.
Figure 2.37 shows the circuit in question. A circle with a wavy line inside is the conventional

way of indicating an AC voltage source. The motor is modeled as a resistor R, that represents the
internal resistance of the motor, in series with the back-emf, E. Of course, the back-emf acts in the
opposite direction to the external emf, V . Application of Ohm’s law (see Section 2.1.11) around
the circuit gives

V = I R + E, (2.437)

or
Vmax sin(2π f t) = Imax R sin(2π f t) + Emax sin(2π f t), (2.438)

which reduces to
Vmax = Imax R + Emax. (2.439)
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The rate P at which the motor gains electrical energy from the external circuit is given by

P = E I = Pmax sin2(2π f t), (2.440)

where
Pmax = Emax Imax =

Emax (Vmax − Emax)
R

. (2.441)

By conservation of energy, P is also the rate at which the motor performs mechanical work. Note
that the rate at which the motor does mechanical work is not constant in time, but, instead, pulsates
at the rotation frequency of the coil. It is possible to construct a motor that performs work at a
more uniform rate by employing more than one coil rotating about the same axis.

As long as Vmax > Emax, the rate at which the motor performs mechanical work is positive (i.e.,
the motor does useful work). However, if Vmax < Emax then the rate at which the motor performs
work becomes negative. This means that we must perform mechanical work on the motor in order
to keep it rotating, which is another way of saying that the motor does not perform useful work.
Clearly, in order for an AC motor to perform useful work, the external emf, V , must be able to
overcome the back-emf, E, induced in the motor (i.e., Vmax > Emax).

2.3.13 Transformers
A transformer is a device for stepping-up, or stepping-down, the voltage of an alternating elec-
tric signal. Without efficient transformers, the transmission and distribution of AC electric power
over long distances would be impossible. Figure 2.38 shows the circuit diagram of a typical trans-
former. There are two circuits. Namely, the primary circuit, and the secondary circuit. There is
no direct electrical connection between the two circuits, but each circuit contains a coil that links
it inductively to the other circuit. In real transformers, the two coils are wound onto the same iron
core. The purpose of the iron core is to channel the magnetic flux generated by the current flowing
around the primary coil, so that as much of it as possible also links the secondary coil. The com-
mon magnetic flux linking the two coils is conventionally denoted in circuit diagrams by a number
of parallel straight-lines drawn between the coils.

Let us consider a particularly simple transformer in which the primary and secondary coils are
solenoids that share the same air-filled core. Suppose that l is the length of the core, and A is its
cross-sectional area. Let N1 be the total number of turns in the primary coil, and let N2 be the total
number of turns in the secondary coil. Suppose that an alternating voltage

v1 = V1 cos(ω t) (2.442)

is fed into the primary circuit from some external AC power source. Here, V1 is the peak voltage in
the primary circuit, and ω is the alternation frequency (in radians per second). The current driven
around the primary circuit is written

i1 = I1 sin(ω t), (2.443)

where I1 is the peak current. This current generates a changing magnetic flux, in the core of the
solenoid, that links the secondary coil, and, thereby, inductively generates the alternating emf

v2 = V2 cos(ω t) (2.444)
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Figure 2.38: Circuit diagram of a transformer.

in the secondary circuit, where V2 is the peak voltage. Suppose that this emf drives an alternating
current

i2 = I2 sin(ω t) (2.445)

around the secondary circuit, where I2 is the peak current.
The circuit equation for the primary circuit is written

v1 − L1
di1

dt
− M

di2

dt
= 0, (2.446)

assuming that there is negligible resistance in this circuit. The first term in the previous equation is
the externally generated emf. The second term is the back-emf due to the self inductance L1 of the
primary coil. (See Section 2.3.5.) The final term is the emf due to the mutual inductance M of the
primary and secondary coils. (See Section 2.3.7.) In the absence of any significant resistance in the
primary circuit, these three emfs must add up to zero. Equations (2.442)–(2.446) can be combined
to give

V1 = ω (L1 I1 + M I2), (2.447)

because
d sin(ω t)

dt
= ω cos(ω t). (2.448)

The alternating emf generated in the secondary circuit consists of the emf generated by the
self inductance, L2, of the secondary coil, plus the emf generated by the mutual inductance of the
primary and secondary coils. Thus,

v2 = L2
di2

dt
+ M

di1

dt
. (2.449)

Equations (2.443)–(2.445), (2.448), and (2.449) yield

V2 = ω (L2 I2 + M I1). (2.450)
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Now, the instantaneous power output of the external AC power source that drives the primary
circuit is

P1 = i1 v1. (2.451)

Likewise, the instantaneous electrical energy per unit time transferred inductively from the primary
to the secondary circuit is

P2 = i2 v2. (2.452)

If resistive losses in the primary and secondary circuits are negligible, as is assumed to be the case,
then, by energy conservation, these two powers must equal one another at all times. Thus,

i1 v1 = i2 v2, (2.453)

which easily reduces to
I1 V1 = I2 V2. (2.454)

Equations (2.447), (2.450), and (2.454) yield

I1 V1 = ω (L1 I 2
1 + M I1 I2) = ω (L2 I 2

2 + M I1 I2) = I2 V2, (2.455)

which gives
ω L1 I 2

1 = ω L2 I 2
2 , (2.456)

and, hence,
I1

I2
=

√
L2

L1
. (2.457)

Equations (2.454) and (2.457) can be combined to give

V1

V2
=

√
L1

L2
. (2.458)

Note that, although the mutual inductance of the two coils is entirely responsible for the transfer of
energy between the primary and secondary circuits, it is the self inductances of the two coils that
determine the ratio of the peak voltages and peak currents in these circuits.

Now, from Section 2.3.5, the self inductances of the primary and secondary coils are given by
L1 = µ0 N 2

1 A/l and L2 = µ0 N 2
2 A/l, respectively. It follows that

L1

L2
=

(
N1

N2

)2

, (2.459)

and, hence, that
V1

V2
=

I2

I1
=

N1

N2
. (2.460)

In other words, the ratio of the peak voltages and peak currents in the primary and secondary
circuits is determined by the ratio of the number of turns in the primary and secondary coils.
This latter ratio is usually called the turns-ratio of the transformer. If the secondary coil contains
more turns than the primary coil then the peak voltage in the secondary circuit exceeds that in the
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primary circuit. This type of transformer is called a step-up transformer, because it steps up the
voltage of an AC signal. Note that, in a step-up transformer, the peak current in the secondary
circuit is less than the peak current in the primary circuit (as must be the case if energy is to be
conserved). Thus, a step-up transformer actually steps down the current. Likewise, if the secondary
coil contains fewer turns than the primary coil then the peak voltage in the secondary circuit is less
than that in the primary circuit. This type of transformer is called a step-down transformer. Note
that a step-down transformer actually steps up the current (i.e., the peak current in the secondary
circuit exceeds that in the primary circuit).

AC electricity is generated in power stations at a fairly low peak voltage (i.e., something like
440V), and is consumed by the domestic user at a peak voltage of 110V (in the U.S.). However,
AC electricity is transmitted from the power station to the location where it is consumed at a very
high peak voltage (typically 50kV). In fact, as soon as an AC signal comes out of a generator
in a power station it is fed into a step-up transformer that boosts its peak voltage from a few
hundred volts to many tens of kilovolts. The output from the step-up transformer is fed into a high
tension transmission line, which typically transports the electricity over many tens of kilometers,
and, once the electricity has reached its point of consumption, it is fed through a series of step-
down transformers, until, by the time it emerges from a domestic power socket, its peak voltage
is only 110V. But, if AC electricity is both generated and consumed at comparatively low peak
voltages, why go to the trouble of stepping up the peak voltage to a very high value at the power
station, and then stepping down the voltage again once the electricity has reached its point of
consumption? Why not generate, transmit, and distribute the electricity at a peak voltage of 110V?
Well, consider an electric power line that transmits a peak electric power P between a power station
and a city. We can think of P, which depends on the number of consumers in the city, and the
nature of the electrical devices that they operate, as essentially a fixed number. Suppose that V and
I are the peak voltage and peak current of the AC signal transmitted along the transmission line,
respectively. We can think of these numbers as being variable, because we can change them using
a transformer. However, because P = I V , the product of the peak voltage and the peak current
must remain constant. Suppose that the resistance of the transmission line is R. The peak rate at
which electrical energy is lost due to ohmic heating in the line is PR = I2 R (see Section 2.1.11),
which can be written

PR =
P2 R
V2 . (2.461)

Thus, if the power, P, transmitted down the line is a fixed quantity, as is the resistance, R, of the
line, then the power lost in the line due to ohmic heating varies like the inverse square of the peak
voltage in the line. It turns out that even at very high voltages, such as 50kV, the ohmic power losses
in transmission lines that run over tens of kilometers can amount to up to 20% of the transmitted
power. It can readily be appreciated that if an attempt were made to transmit AC electric power at
a peak voltage of 110V then the ohmic losses would be so severe that virtually none of the power
would reach its destination. Thus, it is only possible to generate electric power at a central location,
transmit it over long distances, and then distribute it at its point of consumption, if the transmission
is performed at a very high peak voltages (in fact, the higher, the better). Transformers play a vital
role in this process because they allow us to step-up and step-down the voltage of an AC electric
signal very efficiently (a well-designed transformer typically has a power loss that is only a few
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percent of the total power flowing through it).
Of course, transformers do not work for direct current (DC) electricity, because the magnetic

flux generated by the primary coil does not vary in time, and, therefore, does not induce an emf in
the secondary coil. In fact, there is no efficient method of stepping-up or stepping-down the voltage
of a DC electric signal. Thus, it is impossible to efficiently transmit DC electric power over long
distances. This is the main reason why commercially generated electricity is AC, rather than DC.

2.4 Maxwell’s Equations

2.4.1 Displacement Current
Michael Faraday revolutionized physics in 1830 by showing that electricity and magnetism were
interrelated phenomena. (See Section 2.3.1.) He achieved this breakthrough by careful experimen-
tation. Between 1864 and 1873, James Clerk Maxwell achieved a similar breakthrough by pure
thought. Of course, this was only possible because he was able to take the previous experimental
results of Coulomb, Ampère, Faraday, et cetera, as his starting point.

Prior to 1864, the laws of electromagnetism were written in integral form. Thus, Gauss’s law
(in SI units) was expressed as follows; the flux of the electric field, E(r, t), through a closed surface,
S , enclosing a volume, V , is equal to the net enclosed electric charge, divided by ε0; or∮

S
E · dS =

1
ε 0

∫
V
ρ(r, t) dV, (2.462)

where ρ(r, t) is the electric charge density. (See Section 2.1.6.) The no magnetic monopole law
was expressed as follows; the flux of the magnetic field, B(r, t), through any closed surface, S is
zero; or ∮

S
B · dS = 0. (2.463)

(See Section 2.2.9.) Faraday’s law of electromagnetic induction was expressed as follows; the line
integral of the electric field around a closed loop, C, is equal to minus the rate of change of the
magnetic flux passing through any surface, S , attached to the loop; or∮

C
E · dr = − ∂

∂t

∫
S

B · dS. (2.464)

(See Section 2.3.1.) Finally, Ampère’s circuital law was expressed as follows; the line integral of
the magnetic field around a closed loop C is equal the net current passing through any surface, S ,
attached to the loop, multiplied by µ0; or∮

C
B · dr = µ0

∫
S

j(r, t) · dS, (2.465)

where j(r, t) is the electric current density. (See Section 2.2.10.)
Maxwell’s first great achievement was to realize that, with the aid of the divergence theorem

and the curl theorem (see Sections A.20 and A.22), these laws could be re-expressed as a set of
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first-order partial differential equations. Of course, he wrote his equations out in component form,
because modern vector notation did not come into vogue until about the time of the First World
War. In modern notation, Maxwell first wrote:

∇ · E =
ρ

ε0
, (2.466)

∇ · B = 0, (2.467)

∇ × E = −∂B
∂t
, (2.468)

∇ × B = µ0 j. (2.469)

[See Equations (2.54), (2.263), (2.286), and (2.271).] Maxwell’s second great achievement was to
realize that these equations are not mathematically self-consistent.

Consider the integral form of Equation (2.469):∮
C

B · dr = µ0

∫
S

j · dS. (2.470)

This equation states that the line integral of the magnetic field around a closed loop C is equal to
the flux of the current density through the loop, multiplied by µ0. The problem is that the flux of
the current density through a loop is not, in general, a well-defined quantity. In order for the flux
to be well defined, the integral of j · dS over some surface S attached to a loop C must depend on
C, but not on the details of S . This is only the case if

∇ · j = 0. (2.471)

(See Section A.20.) Unfortunately, the previous condition is only satisfied for non-time-varying
fields.

Why do we say that, in general, ∇ · j , 0? Consider the flux of j out of some closed surface, S ,
enclosing a volume, V . This is clearly equivalent to the instantaneous rate at which electric charge
flows out of S . However, because electric charge is a conserved quantity (see Section 2.1.2), the
rate at which charge flows out of S must equal the rate of decrease of the charge contained in
volume V . Thus, ∮

S
j · dS = − ∂

∂t

∫
V
ρ dV. (2.472)

Making use of the divergence theorem (see Section A.20), the previous equation yields

∇ · j = −∂ρ
∂t
. (2.473)

Thus, it is only the case that ∇ · j = 0 in a steady state situation; that is, when ∂/∂t ≡ 0.
The problem with Ampère’s circuital law is well illustrated by the following very famous ex-

ample. Consider a long straight wire interrupted by a parallel plate capacitor. Suppose that C is
some loop that circles the wire. In the time-independent case, the capacitor acts like a break in the
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Figure 2.39: Application of Ampère’s circuital law to a charging, or discharging, capacitor.

wire, so no current flows, and no magnetic field is generated. There is clearly no problem with
Ampère’s circuital law in this case. However, in the time-dependent case, a transient current flows
in the wire as the capacitor charges up, or charges down, and so a transient magnetic field is gen-
erated. Thus, the line integral of the magnetic field around C is (transiently) non-zero. According
to Ampère’s circuital law, the flux of the current density through any surface attached to C should
also be (transiently) non-zero. Let us consider two such surfaces. The first surface, S 1, intersects
the wire. See Figure 2.39. This surface causes us no problem, because the flux of j though the
surface is clearly non-zero (because the surface intersects a current-carrying wire). The second
surface, S 2, passes between the plates of the capacitor, and, therefore, does not intersect the wire at
all. Clearly, the flux of the current density through this surface is zero. The current density fluxes
through surfaces S 1 and S 2 are obviously different. However, both surfaces are attached to the
same loop C, so the fluxes should be the same, according to Ampère’s circuital law, (2.470). Note,
however, that although the surface S 2 does not intersect any electric current, it does pass through
a region containing a strong, time-varying electric field, as it threads between the plates of the
charging (or discharging) capacitor. Perhaps, if we add a term involving ∂E/∂t to the right-hand
side of Equation (2.469) then we can somehow fix up Ampère’s circuital law? This is, essentially,
how Maxwell reasoned one hundred and fifty years ago.

Let us try out this scheme. Suppose that we write

∇ × B = µ0 j + λ
∂E
∂t
, (2.474)

instead of Equation (2.469). Here, λ is some constant. Does this resolve our problem? We require
the flux of the right-hand side of the previous equation through some loop C to be well defined; that
is, the flux should only depend on C, and not the particular surface S (which spans C) upon which
it is evaluated. This is another way of saying that we require the divergence of the right-hand side
of the previous equation to be zero. (See Section A.20.) In fact, we can see that this is necessary
for mathematical self-consistency, because the divergence of the left-hand side is identically zero.
(See Section A.22.) So, taking the divergence of Equation (2.474), we obtain

0 = µ0 ∇ · j + λ
∂∇ · E
∂t

. (2.475)
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But, we know that
∇ · E =

ρ

ε0
(2.476)

[see Equation (2.466)], so combining the previous two equations we arrive at

µ0 ∇ · j +
λ

ε0

∂ρ

∂t
= 0. (2.477)

Now, our charge conservation law, (2.473), can be written

∇ · j +
∂ρ

∂t
= 0. (2.478)

The previous two equations are in agreement provided λ = ε0 µ0. So, if we modify Equation (2.469)
such that it reads

∇ × B = µ0 (j + jd), (2.479)

where
jd = ε0

∂E
∂t
, (2.480)

then we find that the divergence of the right-hand side is zero, as a consequence of charge con-
servation. The additional term, jd, is known as the displacement current density (this name was
invented by Maxwell). In summary, we have shown that, although the flux of the real current
density through a loop is not well defined, if we form the sum of the real current density and the
displacement current density then the flux of this new quantity through a loop is well defined.

Of course, the displacement current is not a current at all. It is, in fact, associated with the
induction of magnetic fields by time-varying electric fields. Maxwell came up with this rather
curious name because many of his ideas regarding electric and magnetic fields were completely
wrong. For instance, Maxwell believed in the aether (a tenuous invisible medium permeating all
space; see Section 3.1.2), and he thought that electric and magnetic fields corresponded to stresses
in this medium. He also thought that the displacement current was associated with a displacement
of the aether (hence, the name). The reason that these misconceptions did not invalidate Maxwell’s
equations is quite simple. Maxwell based his equations on the results of experiments, and he added
in his extra term so as to make these equations mathematically self-consistent. Both of these steps
are valid irrespective of the existence or non-existence of the aether.

The field equations (2.466)–(2.469) are derived directly from the results of famous nineteenth
century experiments. So, if a new term involving the time derivative of the electric field needs to
be added to one of these equations, for the sake of mathematical consistency, why is there is no
corresponding nineteenth century experimental result that demonstrates this fact? Actually, as is
described in the following, the new term corresponds to an effect that is far too small to have been
observed in the nineteenth century.

First, we shall show that it is comparatively easy to detect the induction of an electric field
by a changing magnetic field in a desktop laboratory experiment. The Earth’s magnetic field is
about 1 gauss (that is, 10−4 tesla). Magnetic fields generated by electromagnets (that will fit on
a laboratory desktop) are typically about one hundred times larger than this. Let us, therefore,
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consider a hypothetical experiment in which a 100 gauss magnetic field is switched on suddenly.
Suppose that the field ramps up in one tenth of a second. What electromotive force is generated in
a 10 centimeter square loop of wire located in this field? Faraday’s law is written

V = − ∂
∂t

∮
B · dS ' B A

t
, (2.481)

where B = 0.01 tesla is the magnetic field-strength, A = 0.01 m2 the area of the loop, and t = 0.1
seconds the ramp time. (See Section 2.3.1.) It follows that V ' 1 millivolt, which is easily
detectable. In fact, most hand-held laboratory voltmeters are calibrated in millivolts. It is, thus,
clear that we would have no difficulty whatsoever detecting the magnetic induction of electric fields
in a nineteenth-century-style laboratory experiment.

Let us now consider the electric induction of magnetic fields. Suppose that our electric field is
generated by a parallel plate capacitor of spacing one centimeter that is charged up to 100 volts.
This gives an electric field of 104 volts per meter. Suppose, further, that the capacitor is discharged
in one tenth of a second. The law of electric induction is obtained by integrating Equation (2.479),
and neglecting the first term on the right-hand side. Thus,∮

C
B · dr = ε0 µ0

∂

∂t

∫
S

E · dS. (2.482)

Let us consider a loop that is 10 centimeters square. What is the magnetic field generated around
this loop (which we could try to measure with a Hall probe)? Very approximately, we find that

l B ' ε0 µ0
E l2

t
, (2.483)

where l = 0.1 meters is the dimensions of the loop, B the magnetic field-strength, E = 104 volts
per meter the electric field, and t = 0.1 seconds the decay time of the field. We obtain B ' 10−9

gauss. Modern technology is unable to detect such a small magnetic field, so we cannot really
blame nineteenth century physicists for not discovering electric induction experimentally.

Note, however, that the displacement current is detectable in some modern experiments. Sup-
pose that we take an FM radio signal, amplify it so that its peak voltage is one hundred volts, and
then apply it to the parallel plate capacitor in the previous hypothetical experiment. What size of
magnetic field would this generate? A typical FM signal oscillates at 109 Hz, so t in the previous
example changes from 0.1 seconds to 10−9 seconds. Thus, the induced magnetic field is about 10−1

gauss. This is certainly detectable by modern technology. Hence, we conclude that if the electric
field is oscillating sufficiently rapidly then electric induction of magnetic fields is an observable ef-
fect. In fact, there is a virtually infallible rule for deciding whether or not the displacement current
can be neglected in Equation (2.479). Namely, if electromagnetic radiation is important then the
displacement current must be included. On the other hand, if electromagnetic radiation is unim-
portant then the displacement current can be safely neglected. Clearly, Maxwell’s inclusion of the
displacement current in Equation (2.479) was a vital step in his later realization that his equations
allowed propagating wave-like solutions. These solutions are, of course, electromagnetic waves.
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2.4.2 Maxwell’s Equations
We are now in a position to write out a complete, mathematically self-consistent, set of field equa-
tions that govern electric and magnetic phenomena:

∇ · E =
ρ

ε0
, (2.484)

∇ · B = 0, (2.485)

∇ × E = −∂B
∂t
, (2.486)

∇ × B = µ0 j + ε0 µ0
∂E
∂t
. (2.487)

The equations are known as Maxwell’s equation. The first Maxwell equation describes how elec-
tric fields are induced by electric charges, and is equivalent to Gauss’s law. The second Maxwell
equation states that there is no such thing as a magnetic monopole. The third Maxwell equation
describes the induction of electric fields by changing magnetic fields, and is equivalent to Fara-
day’s law of electromagnetic induction. The fourth Maxwell equation describes the generation
of magnetic fields by electric currents, and the induction of magnetic fields by changing electric
fields, and incorporates Ampère’s circuital law.

As an example of a calculation involving the displacement current, let us find the current and
displacement current densities associated with the decaying charge distribution

ρ(r, t) =
ρ0 exp(−t/τ)

r2 + a2 , (2.488)

where r is a spherical polar coordinate (see Section A.23), ρ0 is a constant, and τ and a are positive
constants. Now, according to charge conservation,

∇ · j = −∂ρ
∂t
. (2.489)

[See Equation (2.473).] By symmetry, we expect j = j(r, t). Hence, it follows that j = jr(r, t) er

[because only a radial current has a non-zero divergence when j = j(r)]. [See Equation (A.173).]
Thus, the previous two equations yield.

1
r2

∂(r2 jr)
∂r

= −∂ρ
∂t

=
ρ0 exp(−t/τ)
τ (r2 + a2)

. (2.490)

The previous expression can be integrated, subject to the sensible boundary condition jr(0) = 0, to
give

jr(r) =
ρ0

τ
e−t/τ

[
r − a tan−1(r/a)

r2

]
. (2.491)

Now, the electric field generated by the decaying charge distribution satisfies

∇ · E =
ρ

ε0
. (2.492)
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[See Equation (2.466).] Because ∂ρ/∂t = −ρ/τ, it can be seen, from a comparison of Equa-
tions (2.489) and (2.492), that

E =
τ

ε0
j. (2.493)

However, the displacement current density is given by

jd = ε0
∂E
∂t

= −j, (2.494)

because ∂j/∂t = −j/τ. Hence, we conclude that the displacement current density cancels out the
true current density, so that j + jd = 0. This is just as well, because ∇ × B = µ0 (j + jd). [See
Equation (2.479).] But, if B = B(r, t) then, by symmetry, ∇ × B has no radial component. [See
Equation (A.174).] Thus, if the current and displacement current are constrained, by symmetry, to
be radial, then they must sum to zero, otherwise the fourth Maxwell equation cannot be satisfied.
In fact, no magnetic field is generated in this particular example.

2.4.3 Potential Formulation of Maxwell’s Equations

We saw in Section 2.3.2 that the second and third Maxwell equations, (2.485) and (2.486), are
automatically satisfied if we write the electric and magnetic fields in terms of scalar and vector
potentials; that is,

E = −∇φ − ∂A
∂t
, (2.495)

B = ∇ × A. (2.496)

As was discussed in Section 2.3.3, this prescription is not unique, but we can make it unique by
adopting the following conventions:

φ(r)→ 0 as |r| → ∞, (2.497)

∇ · A = −ε0 µ0
∂φ

∂t
. (2.498)

The previous equation is known as the Lorenz gauge.
The previous equation can be combined with Equation (2.495) and the first Maxwell equation,

(2.484), to give

ε0 µ0
∂2φ

∂t2 − ∇2φ =
ρ

ε0
. (2.499)

Let us now consider the fourth Maxwell equation, (2.487). Substitution of Equations (2.495)
and (2.496) into this equation yields

∇ × ∇ × A ≡ ∇(∇ · A) − ∇2A = µ0 j − ε0 µ0
∂∇φ
∂t
− ε0 µ0

∂2A
∂t2 (2.500)
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(see Section A.24), or

ε0 µ0
∂2A
∂t2 − ∇2A = µ0 j − ∇

(
∇ · A + ε0 µ0

∂φ

∂t

)
. (2.501)

We can now see quite clearly where the Lorenz gauge, (2.498), comes from. The previous equation
is, in general, very complicated, because it involves both the vector and scalar potentials. However,
if we adopt the Lorenz gauge then the last term on the right-hand side becomes zero, and the
equation simplifies considerably, and ends up only involving the vector potential. Thus, we find
that Maxwell’s equations reduce to the following equations:

ε0 µ0
∂2φ

∂t2 − ∇2φ =
ρ

ε0
, (2.502)

ε0 µ0
∂2A
∂t2 − ∇2A = µ0 j. (2.503)

Of course, this is the same (scalar) equation written four times over. In a non-time-varying situation
(i.e., ∂/∂t = 0), the equation in question reduces to Poisson’s equation (see Section 2.1.9), which
we know how to solve. With the ∂2/∂t2 terms included, the equation becomes a slightly more
complicated equation (in fact, it is an inhomogeneous three-dimensional wave equation).

2.4.4 Electromagnetic Waves
Let us demonstrate that Maxwell’s equations possess wave-like solutions that can propagate through
a vacuum. These solutions are known as electromagnetic waves. Let us start from Maxwell’s equa-
tions in free space (i.e., with no charges and no currents):

∇ · E = 0, (2.504)

∇ · B = 0, (2.505)

∇ × E = −∂B
∂t
, (2.506)

∇ × B = ε0 µ0
∂E
∂t
. (2.507)

[See Equations (2.484)–(2.487).]
There is an easy way to show that the previous equations possess wave-like solutions, and a

hard way. The easy way is to assume that the solutions are going to be wave-like beforehand.
Specifically, let us search for plane-wave solutions of the form:

E(r, t) = E0 cos (k · r − ω t), (2.508)

B(r, t) = B0 cos (k · r − ω t − φ). (2.509)

Here, E0 and B0 are constant vectors, k is known as the wavevector, and ω is the angular frequency
of oscillation of the wave. The frequency in hertz, f , is related to the angular frequency via
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Figure 2.40: Wavefronts associated with a plane wave.

ω = 2π f ; this frequency is conventionally defined to be positive. The quantity φ is a phase
difference between the electric and magnetic fields. Actually, it is more convenient to write

E(r, t) = E0 e i (k · r−ω t), (2.510)

B(r, t) = B0 e i (k · r−ω t), (2.511)

where, by convention, the physical solution is the real part of the previous equations. The phase
difference φ is absorbed into the constant vector B0 by allowing it to become complex. Thus,
B0 → B0 e−i φ. In general, the vector E0 is also complex.

Now, assuming (without loss of generality) that E0 is real, a wave maximum of the electric
field satisfies

k · r = ω t + n 2π, (2.512)

where n is an integer. The solution to this equation is a set of equally-spaced parallel planes
(one plane for each possible value of n), whose normals are parallel to the wavevector k, and that
propagate in the direction of k with phase velocity

c =
ω

k
. (2.513)

The spacing between adjacent planes (i.e., the wavelength) is given by

λ =
2π
k
. (2.514)

See Figure 2.40.
Consider a general plane-wave vector field

A(r, t) = A0 e i (k · r−ω t). (2.515)
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What is the divergence of A? This is easy to evaluate. We have

∇ · A ≡ ∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
= (A0 x i kx + A0 y i ky + A0 z i kz) e i (k · r−ωt) = i k · A. (2.516)

(See Section A.20.) How about the curl of A? This is slightly more difficult. We have

(∇ × A)x ≡ ∂Az

∂y
− ∂Ay

∂z
= (i ky Az − i kz Ay) = i (k × A)x (2.517)

(see Section A.22), which easily generalizes to

∇ × A = i k × A. (2.518)

Hence, it is apparent that vector field operations on a plane-wave vector field are equivalent to
replacing the ∇ operator with i k. Of course, the ∂/∂t operator can be replaced by −iω.

The first Maxwell equation, (2.504), reduces to

i k · E0 = 0, (2.519)

using the assumed electric and magnetic fields, (2.510) and (2.511), and Equation (2.516). Thus,
the electric field is perpendicular to the direction of propagation of the wave. (See Section A.6.)
Likewise, the second Maxwell equation, (2.505), gives

i k · B0 = 0, (2.520)

implying that the magnetic field is also perpendicular to the direction of propagation. Clearly,
the wave-like solutions of Maxwell’s equation are a type of transverse wave. The third Maxwell
equation, (2.506), yields

i k × E0 = iωB0, (2.521)

where use has been made of Equation (2.518). Forming the scalar product of this equation with E0

gives

E0 · B0 =
E0 · k × E0

ω
= 0. (2.522)

Thus, the electric and magnetic fields are mutually perpendicular. (See Sections A.6 and A.10.)
Forming the scalar product of Equation (2.521) with B0 yields

B0 · k × E0 = ω B 2
0 > 0. (2.523)

Thus, the vectors E0, B0, and k are mutually perpendicular, and form a right-handed set. (See
Section A.10.) The final Maxwell equation, (2.507), gives

i k × B0 = −i ε0 µ0 ωE0. (2.524)

Combining this equation with Equation (2.521) yields

k × (k × E0) ≡ (k · E0) k − k2 E0 = −k2 E0 = −ε0 µ0 ω
2 E0, (2.525)
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or
k2 = ε0 µ0 ω

2, (2.526)

where use has been made of Equation (2.519). (See Section A.11.) However, we know, from Equa-
tion (2.513), that the phase velocity, c, of the wave is related to the magnitude of the wavevector
and the angular wave frequency via c = ω/k. Thus, we obtain

c =
1√
ε0 µ0

. (2.527)

We have found transverse plane-wave solutions of the free-space Maxwell equations propagat-
ing at some phase velocity c, that is given by a combination of ε0 and µ0, and is, thus, the same
for all frequencies and wavelengths. The constants ε0 and µ0 are easily measurable. The former
is related to the force acting between stationary electric charges, and the latter to the force acting
between steady electric currents. Both of these constants were fairly well known in Maxwell’s
time. Maxwell, incidentally, was the first person to look for wave-like solutions of his equations,
and, thus, to derive Equation (2.527). The modern values of ε0 and µ0 are

ε0 = 8.8542 × 10−12 C2 N−1 m−2, (2.528)

µ0 = 4π × 10−7 N A−2. (2.529)

Let us use these values to find the phase velocity of electromagnetic waves. We obtain

c =
1√
ε0 µ0

= 2.998 × 108 m s−1. (2.530)

Of course, we immediately recognize this as the speed of light in vacuum. Maxwell also made
this connection back in the 1870’s. He conjectured that light, whose nature had previously been
unknown, was a form of electromagnetic radiation. This was a remarkable prediction. After all,
Maxwell’s equations were derived from the results of bench-top laboratory experiments involving
charges, batteries, coils, and currents, that apparently had nothing whatsoever to do with light.

Maxwell was able to make another remarkable prediction. The wavelength of light was well-
known in the late nineteenth century from studies of diffraction through slits, et cetera. Visible
light actually occupies a surprisingly narrow wavelength range. The shortest wavelength blue light
that is visible to the typical human eye has a wavelength of λ = 0.38 microns (one micron is 10−6

meters). The longest wavelength red light that is visible has a wavelength of λ = 0.75 microns.
However, there is nothing in our analysis that suggests that this particular range of wavelengths is
special. Electromagnetic waves can have any wavelength. Maxwell concluded that visible light
was a small part of a vast spectrum of previously undiscovered types of electromagnetic radiation.
Since Maxwell’s time, virtually all of the non-visible parts of the electromagnetic spectrum have
been observed.

Table 1 gives a brief guide to the electromagnetic spectrum. Electromagnetic waves are of
particular importance to us because they are our main source of information regarding the universe
around us. Radio waves and microwaves (which are comparatively hard to scatter) have provided
much of our knowledge about the center of our own galaxy. This is completely unobservable in
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Radiation type Wavelength range (m)
Gamma Rays < 10−11

X-Rays 10−11–10−9

Ultraviolet 10−9–10−7

Visible 10−7–10−6

Infrared 10−6–10−4

Microwave 10−4–10−1

TV-FM 10−1–101

Radio > 101

Table 2.1: The electromagnetic spectrum

visible light, which is strongly scattered by interstellar gas and dust lying in the galactic plane.
For the same reason, the spiral arms of our galaxy can only be mapped out using radio waves.
Infrared radiation is useful for detecting protostars, which are not yet hot enough to emit visible
radiation. Of course, visible radiation is still the mainstay of astronomy. Satellite-based ultraviolet
observations have yielded invaluable insights into the structure and distribution of distant galaxies.
Finally, X-ray and γ-ray astronomy usually concentrates on exotic objects, such as pulsars and
supernova remnants.

Equations (2.519), (2.521), and the relation c = ω/k, imply that

B0 =
E0

c
. (2.531)

Thus, the magnetic field associated with an electromagnetic wave is smaller in magnitude than the
electric field by a factor c. Consider an electrically charged particle interacting with an electro-
magnetic wave. The force exerted on the particle is given by the Lorentz force law,

f = q (E + v × B). (2.532)

(See Section 2.2.4.) The ratio of the electric and magnetic forces is

fmagnetic

felectric
' v B0

E0
' v

c
. (2.533)

So, unless the particle is moving close to the speed of light (i.e., unless the particle is relativis-
tic), the electric force greatly exceeds the magnetic force. Clearly, in most terrestrial situations,
electromagnetic waves are an essentially electrical phenomenon (as far as their interaction with
matter is concerned). For this reason, electromagnetic waves are usually characterized by their
wavevector, k (which specifies the direction of propagation and the wavelength), and the plane of
polarization (i.e., the plane of oscillation) of the associated electric field. For a given wavevector,
k, the electric field can have any direction in the plane normal to k. [See Equation (2.519).] How-
ever, there are only two independent directions in a plane (i.e., we can only define two linearly
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r

Figure 2.41: An arbitrary wave-pulse.

independent vectors in a plane). This implies that there are only two independent polarizations of
an electromagnetic wave, once its direction of propagation is specified.

But, how do electromagnetic waves propagate through a vacuum? After all, most types of
wave require a medium before they can propagate (e.g., sound waves require air). The answer
to this question is evident from Equations (2.506) and (2.507). According to these equations,
the time variation of the electric component of the wave induces the magnetic component, and
the time variation of the magnetic component induces the electric component. In other words,
electromagnetic waves are self-sustaining, and, therefore, require no medium through which to
propagate.

Let us now search for the wave-like solutions of Maxwell’s equations in free-space the hard
way. Suppose that we take the curl of the fourth Maxwell equation, (2.507). We obtain

∇ × ∇ × B ≡ ∇(∇ · B) − ∇2B = −∇2B = ε0 µ0
∂∇ × E
∂t

. (2.534)

[See Equation (A.187).] Here, we have made use of the fact that ∇ ·B = 0, according to the second
Maxwell equation, (2.505). The third Maxwell equation, (2.506), yields(

1
c2

∂2

∂t2 − ∇2
)

B = 0, (2.535)

where use has been made of Equation (2.530). A similar equation can obtained for the electric
field by taking the curl of Equation (2.506):(

1
c2

∂2

∂t2 − ∇2
)

E = 0, (2.536)

We have found that electric and magnetic fields both satisfy equations of the form(
1
c2

∂2

∂t2 − ∇2
)

A = 0 (2.537)
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in free space. As is easily verified, the most general solution to this equation is

Ax = Fx(n · r − c t), (2.538)

Ay = Fy(n · r − c t), (2.539)

Az = Fz(n · r − c t), (2.540)

where n is a unit vector, and Fx(φ), Fy(φ), and Fz(φ) are arbitrary one-dimensional scalar functions.
Looking along the direction of n, so that n · r = r, we find that

Ax = Fx(r − c t), (2.541)

Ay = Fy(r − c t), (2.542)

Az = Fz(r − c t). (2.543)

The x-component of this solution is shown schematically in Figure 2.41. The solution clearly
propagates along the r-axis, at the speed c, without changing shape. If we look along a direction
that is perpendicular to n then n · r = 0, and there is no propagation. Thus, the components of A
are arbitrarily-shaped pulses that propagate, without changing shape, along the direction of n with
speed c. These pulses can be related to the sinusoidal plane-wave solutions which we found earlier
by Fourier transformation; that is,

Fx(r − c t) =
1√
2π

∫ ∞
−∞

F x(k) e i k (r−c t) dk, (2.544)

where
F x(k) =

1√
2π

∫ ∞
−∞

Fx(x) e−i k x dx. (2.545)

(See Section 4.2.4.) Thus, any arbitrary-shaped pulse propagating in the direction of n with speed
c can be broken down into a superposition of sinusoidal oscillations of different wavevectors, k n,
propagating in the same direction with the same speed.

2.4.5 Energy Conservation
We have seen that the energy density of an electric field is given by [see Equation (2.84)]

UE =
ε0 E2

2
, (2.546)

whereas the energy density of a magnetic field takes the form [see Equation (2.377)]

UB =
B2

2 µ0
. (2.547)

This suggests that the energy density of a general electromagnetic field is

U =
ε0 E2

2
+

B2

2 µ0
. (2.548)
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Let us now demonstrate that Maxwell’s equations conserve energy. We have already come
across one conservation law in electromagnetism; namely,

∂ρ

∂t
+ ∇ · j = 0. (2.549)

(See Equation (2.473).] The previous expression described the conservation of electric charge.
Thus, integrating over some volume V , bounded by a surface S , and making use of the divergence
theorem (see Section A.20), we obtain

− ∂
∂t

∫
V
ρ dV =

∮
S

j · dS. (2.550)

In other words, the rate of decrease of the electric charge contained in volume V is equal to the net
flux of charge out of surface S . This suggests that an energy conservation law for electromagnetic
fields should have the form

− ∂
∂t

∫
V

U dV =

∮
S

u · dS. (2.551)

Here, U is the energy density of the electromagnetic field, and u is the flux of electromagnetic
energy (i.e., energy |u| per unit time, per unit cross-sectional area, passes a given point in the
direction of u). According to the previous equation, the rate of decrease of the electromagnetic
energy in volume V is equal to the net flux of electromagnetic energy out of surface S .

Equation (2.551) is actually incomplete, because electromagnetic fields can gain or lose energy
by interacting with matter. We need to incorporate this fact into our analysis. We saw earlier (see
Section 2.1.11) that the rate of heat dissipation per unit volume in a conductor (the so-called ohmic
heating rate) is E · j. This energy is extracted from electromagnetic fields, so the rate of energy loss
of the fields in a volume V due to interaction with matter is

∫
V E · j dV . Thus, Equation (2.551)

generalizes to give

− ∂
∂t

∫
V

U dV =

∮
S

u · dS +

∫
V

E · j dV. (2.552)

From the divergence theorem (see Section A.20), the previous equation is equivalent to

∂U
∂t

+ ∇ · u = −E · j. (2.553)

Let us now see if we can derive an expression of this form from Maxwell’s equations.
We start from the differential form of Ampère’s law (including the displacement current),

(2.487):

∇ × B = µ0 j + ε0 µ0
∂E
∂t
. (2.554)

The scalar product of the electric field with this equation yields

−E · j = −E · ∇ × B
µ0

+ ε0 E · ∂E
∂t
. (2.555)
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The previous expression can be rewritten

−E · j = −E · ∇ × B
µ0

+
∂

∂t

(
ε0 E2

2

)
. (2.556)

However (see Section A.24),

∇ · (E × B) ≡ B · ∇ × E − E · ∇ × B, (2.557)

so

−E · j = ∇·
(

E × B
µ0

)
− B · ∇ × E

µ0
+
∂

∂t

(
ε0 E2

2

)
. (2.558)

The differential form of Faraday’s law, (2.486), yields

∇ × E = −∂B
∂t
, (2.559)

so

−E · j = ∇·
(

E × B
µ0

)
+ µ−1

0 B · ∂B
∂t

+
∂

∂t

(
ε0 E2

2

)
, (2.560)

which can be rewritten as

−E · j = ∇·
(

E × B
µ0

)
+
∂

∂t

(
ε0 E2

2
+

B2

2 µ0

)
. (2.561)

Thus, we obtain the desired conservation law,

∂U
∂t

+ ∇ · u = −E · j, (2.562)

where

U =
ε0 E2

2
+

B2

2 µ0
(2.563)

is the electromagnetic energy density, and

u =
E × B
µ0

(2.564)

is the electromagnetic energy flux. The latter quantity is usually called the Poynting flux, after John
Poynting who derived it in 1884.

Let us see whether our expression for the electromagnetic energy flux makes physical sense.
We know that if we stand in the Sun then we get hot. This occurs because we absorb electromag-
netic radiation emitted by the Sun. So, radiation must transport energy. The electric and magnetic
fields in electromagnetic radiation are mutually perpendicular, and are also perpendicular to the
direction of propagation, k̂ (which is a unit vector). Furthermore, B = E/c. (See Section 2.4.4.)
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Equation (2.521) can easily be transformed into the following relation between the electric and
magnetic fields of an electromagnetic wave:

E × B =
E2

c
k̂. (2.565)

Thus, the Poynting flux for electromagnetic radiation is

u =
E2

µ0 c
k̂ = ε0 c E2 k̂. (2.566)

The previous expression states that electromagnetic waves transport energy along their direction
of propagation, which seems to make sense.

The energy density of electromagnetic radiation is

U =
ε0 E2

2
+

B2

2 µ0
=
ε0 E2

2
+

E2

2 µ0 c2 = ε0 E2, (2.567)

where use has been made of B = E/c, and c = 1/
√
ε0 µ0. Note that the electric and magnetic

components of an electromagnetic wave have equal energy densities. Because electromagnetic
waves travel at the speed of light in vacuum, we would expect the energy flux through one square
meter in one second to equal the energy contained in a volume of length c, and unit cross-sectional
area; that is, c multiplied by the electromagnetic energy density. Thus,

|u| = c U = ε0 c E2, (2.568)

which is in accordance with the previous two equations.

2.4.6 Electromagnetic Momentum
We have seen that electromagnetic waves carry energy. It turns out that they also carry momentum.
Consider the following argument, due to Einstein. Suppose that we have a railroad car of mass M
and length L that is free to move in one dimension. See Figure 2.42. Suppose that electromagnetic
radiation of total energy E is emitted from one end of the car, propagates along the length of the
car, and is then absorbed at the other end. The effective mass of this radiation is m = E/c2 (from
Einstein’s famous relation E = m c2). (See Section 3.3.4.) At first sight, the process described pre-
viously appears to cause the center of mass of the system to spontaneously shift. This violates the
law of momentum conservation (assuming the railway car is subject to no net horizontal external
force). (See Section 1.4.4.) The only way in which the center of mass of the system can remain
stationary is if the railway car moves in the opposite direction to the direction of propagation of
the radiation. In fact, if the car moves by a distance x then the center of mass of the system is the
same before and after the radiation pulse provided that

M x = m L =
E
c2 L. (2.569)
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Figure 2.42: Einstein’s thought experiment regarding electromagnetic momentum.

Incidentally, it is assumed that m � M in this derivation.
But, what actually causes the car to move? If the radiation possesses momentum, p, then the

car will recoil with the same momentum when the radiation is emitted. When the radiation hits
the other end of the car then the car acquires momentum p in the opposite direction, which halts
the motion. The time of flight of the radiation is L/c. So, the distance traveled by a mass M with
momentum p in this time is

x = v t =
p
M

L
c
, (2.570)

giving

p = M x
c
L

=
E
c
. (2.571)

Thus, the momentum carried by electromagnetic radiation is equal to its energy divided by the
speed of light. The same result can be obtained from the well-known relativistic formula

E2 = p2c2 + m2c4 (2.572)

relating the energy E, momentum p, and mass m of a particle. (See Section 3.3.5.) According to
quantum theory, electromagnetic radiation is made up of massless particles called photons. (See
Section 3.3.8.) Thus,

p =
E
c

(2.573)

for individual photons, so the same must be true of electromagnetic radiation as a whole.
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It follows from Equation (2.571) that the momentum density, g, of electromagnetic radiation is
equal to its energy density divided by c, so that

g =
U
c

=
ε0 E2

c
=
|u|
c2 , (2.574)

where use has been made of Equations (2.566) and (2.567). It is reasonable to suppose that the
momentum is directed along the direction of the energy flow (this is obviously the case for pho-
tons), so the vector momentum density (which gives the direction, as well as the magnitude, of the
momentum per unit volume) of electromagnetic radiation is

g =
u
c2 . (2.575)

Thus, the momentum density of electromagnetic fields is equal to the associated energy flux di-
vided by c2.

Of course, the electric field associated with an electromagnetic wave oscillates rapidly in time,
which implies that the previous expressions for the energy density, energy flux, and momentum
density of electromagnetic radiation also oscillate rapidly. It is convenient to average over many
periods of the oscillation (this average is denoted 〈 〉). Thus, from Equations (2.566), (2.567), and
(2.575),

〈U〉 =
ε0 E 2

0

2
, (2.576)

〈u〉 =
c ε0 E 2

0

2
k̂ = c 〈U〉 k̂, (2.577)

〈g〉 =
ε0 E 2

0

2 c
k̂ =
〈U〉

c
k̂, (2.578)

where the factor 1/2 comes from averaging cos2(ω t). Here, E0 is the peak amplitude of the electric
field associated with the wave.

If electromagnetic radiation possesses momentum then it must exert a force on bodies that
absorb (or emit) radiation. Suppose that a body is placed in a beam of perfectly collimated ra-
diation, that it completely absorbs. The amount of momentum absorbed per unit time, per unit
cross-sectional area, is simply the amount of momentum contained in a volume of length c, and
unit cross-sectional area; that is, c multiplied by the momentum density, g. An absorbed momen-
tum per unit time, per unit area, is equivalent to a pressure. In other words, the radiation exerts a
pressure c g on the body. Thus, the radiation pressure is given by

p =
ε0 E2

2
= 〈U〉. (2.579)

So, the pressure exerted by collimated electromagnetic radiation is equal to its average energy
density.

Consider a cavity filled with electromagnetic radiation. What is the radiation pressure exerted
on the walls? In this situation, the radiation propagates in all directions with equal probability.
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Consider radiation propagating at an angle θ to the local normal to the wall. The amount of such
radiation hitting the wall per unit time, per unit area, is proportional to cos θ. Moreover, the com-
ponent of momentum normal to the wall that the radiation carries is also proportional to cos θ.
Thus, the pressure exerted on the wall is the same as in Equation (2.579), except that it is weighted
by the average of cos2 θ over all solid angles, in order to take into account the fact that obliquely
propagating radiation exerts a pressure that is cos2 θ times that of normal radiation. The average of
cos2 θ over all solid angles is 1/3, so for isotropic radiation

p =
〈U〉

3
. (2.580)

Clearly, the pressure exerted by isotropic radiation is one third of its average energy density. Ra-
diation pressure is unimportant in the Sun, but makes a significant contribution to counteracting
gravitational collapse in larger, hotter stars.

The power incident on the surface of the Earth, due to radiation emitted by the Sun, is about
1300 Wm−2. So, what is the radiation pressure? Because,

〈|u|〉 = c 〈U〉 = 1300 W m−2, (2.581)

then
p = 〈U〉 ' 4 × 10−6 N m−2. (2.582)

Here, the radiation is assumed to be perfectly collimated. Thus, the radiation pressure exerted on
the Earth is minuscule (for comparison, the pressure of the atmosphere is about 105 Nm−2). Nev-
ertheless, this small pressure due to radiation is important in outer space, because it is responsible
for continuously sweeping dust particles out of the solar system. It is quite common for comets to
exhibit two separate tails. One, known as the gas tail, consists of ionized gas, and is swept along
by the solar wind (a stream of charged particles and magnetic field-lines emitted by the Sun). The
other, known as the dust tail, consists of uncharged dust particles, and is swept radially outward
(because light travels in straight-lines) from the Sun by radiation pressure. Two separate tails are
observed if the local direction of the solar wind is not radially outward from the Sun (which is
quite often the case).

The radiation pressure from sunlight is very weak. However, that produced by laser beams
can be enormous (far higher than any conventional pressure which has ever been produced in a
laboratory). For instance, the lasers used in inertial confinement fusion (e.g., the National Ignition
Facility at Lawrence Livermore National Laboratory) typically have energy fluxes of 1018 Wm−2.
This translates to a radiation pressure of about 104 atmospheres.
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Chapter 3

Special Relativity

3.1 Experimental Basis of Special Relativity

3.1.1 Sound Waves in a Gas
A sound wave in a gas is a longitudinal disturbance of the gas’s pressure and density that propagates
at the fixed speed

c =

√
γ p
ρ
, (3.1)

(See Section 5.2.9.) Here, γ is the gas’s ratio of specific heats (which is approximately 1.4 for the
atmosphere), p the gas’s undisturbed pressure, and ρ the gas’s undisturbed mass density. Note that
a sound wave is a non-dispersive wave, which means that a transient wave pulse propagates at the
same speed as an infinite wave train. (See Section 4.2.6.) However, a sound wave only propagates
at the speed (3.1) in the rest frame of the gas.

Let c be the phase velocity of a sound wave in a stationary frame of reference in which the gas
is at rest. Thus, |c| = c, is the speed of sound, (3.1). Consider a moving frame of reference that
moves at constant velocity v, where v < c, with respect to the stationary frame. Incidentally, if the
stationary frame is inertial then so is the moving frame. (See Section 1.5.4.) The gas appears to
flow with uniform velocity −v in the moving reference frame. Furthermore, it is an experimentally
verified fact that the sound wave appears to propagate with the phase velocity

c′ = c − v (3.2)

in the moving frame. Note that, in general, both the speed and the direction of the sound wave
are different in the stationary and the moving frames. Note, further, that the previous equation is
a direct consequence of the Galilean transformation, (1.106)–(1.108). (See Section 3.2.6.) The
previous equation yields

c′ =
(
c2 − 2 c′ · v − v2

)1/2
. (3.3)

Hence, we deduce, from the previous two equations, that if the sound wave propagates in the same
direction as v in the moving frame then it propagates at the speed

u− = c − v, (3.4)

205
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source

c

c

c

c c + v c− v
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Figure 3.1: Sound waves propagating in a stationary and in a moving reference frame.

but if the sound wave propagates in the opposite direction to v in the moving frame then it propa-
gates at the speed

u+ = c + v (3.5)

and, finally, if the sound wave propagates in a direction perpendicular to v in the moving frame
then it propagates at the speed

u⊥ =
(
c2 − v2

)1/2
. (3.6)

Of course, the sound wave propagates at the speed c in all directions in the stationary frame. These
ideas are illustrated in Figure 3.1.

We could imagine performing an experiment in the moving reference frame in order to measure
its velocity, v, with respect to the stationary frame. See Figure 3.2. Suppose that we have a sound
wave source that emits a transient sound wave pulse isotropically in all directions. Suppose that we
place two small sound-wave reflectors (which are stationary in the moving frame) at equal distances
l0 from the source. The displacement of the first reflector from the source is in the direction of v,
whereas the displacement of the second reflector is in a direction that is perpendicular to v. The
travel time of the pulse from the source to the first reflector, and back again, is

t1 =
l0

u−
+

l0

u+

=
l0

c − v +
l0

c + v
=

2 l0 c
c2 − v2 '

2 l0

c

(
1 +

v2

c2

)
, (3.7)

where we have assumed that v � c. The travel time of the pulse from the source to the second
reflector, and back again, is

t2 =
2 l0

u⊥
=

2 l0

(c2 − v2)1/2 '
2 l0

c

(
1 +

v2

2 c2

)
. (3.8)

Thus, if we measure the two travel times, and take the difference between them, then we obtain

t1 − t2 =
l0 v

2

c3 . (3.9)
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Figure 3.2: Experiment to detect motion of moving inertial reference frame.

Hence, assuming that we know l0 and c, we can determine v. We can also determine the direction of
v because the time difference is maximized when the two legs of the apparatus shown in Figure 3.2
are aligned parallel and perpendicular to this direction.

3.1.2 Light Waves in a Vacuum
A light wave is a transverse disturbance of electric and magnetic fields that is able to propagate
through a vacuum (unlike a sound wave), and does so at the fixed speed

c =
1√
ε0 µ0

, (3.10)

where ε0 = 8.854×10−12 F m−1 is the electrical permittivity of free space, and µ0 = 4π ×10−7 H m−1

the magnetic permeability of free space. (See Section 2.4.4.) It follows that

c =
1

[(8.854 × 10−12) (4π × 10−7)]1/2 = 2.998 × 108 m s−1. (3.11)

Note that ε0 and µ0 can be determined from simple experiments involving measurements of the
forces exerted by electric charges and current loops on one another.

The classical theory of electromagnetism (i.e., Maxwell’s equations) does not explicitly men-
tion a medium through which electromagnetic disturbances propagate. (See Section 2.4.2.) Nev-
ertheless, prior to the 20th century, most physicists assumed that such a medium existed, because
they could not conceive of a wave that propagated in the absence of a medium. The medium in
question was known as the aether (from the ancient Greek αἰθήρ, which is the fifth element of
Aristotelian philosophy), and was thought to permeate all space, including vacuums. Thus, by
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Figure 3.3: Orbital motion of the Earth about the Sun.

analogy with a sound wave, the phase velocity of a light wave in a frame of reference moving at
fixed velocity v with respect to the rest frame of the aether was assumed to be

c′ = c − v, (3.12)

where c is the phase velocity of the light wave in the rest frame of the aether, and |c| = c is the
speed of light, (3.10).

3.1.3 Aberration of Starlight and Stellar Parallax
Prior to the 20th century, one of the strongest arguments in favor of the existence of the aether was
thought to be the aberration of light. This is a phenomenon that produces an apparent motion of
distant stars about their true positions, due to a combination of the finite velocity of light and the
Earth’s orbital motion about the Sun. Aberration is closely related to another phenomenon, known
as parallax, that also produces an apparent motion of distant stars about their true positions; in this
case, due to the Earth’s shifting position about the Sun. It is convenient to discuss these two effects
together.

The Earth moves around the Sun in a planar orbit whose plane includes the Sun. (See Sec-
tion 1.9.2.) The orbit is approximately circular in shape, and has a radius ae = 1.496×1011 m. (See
Sections 1.9.6, and Table 1.4.) The plane that contains the Earth’s orbit is known as the ecliptic
plane. (See Section 1.10.6.) Let us set up a Cartesian coordinate system in the ecliptic plane whose
origin coincides with the Sun, whose z-axis is directed toward the northern ecliptic pole (i.e., the
direction that is normal to the ecliptic plane in a northern sense), and whose x-axis is directed
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toward the vernal equinox (i.e., the point in the sky at which the Sun annually passes through the
projection of the Earth’s equatorial plane in a northward sense). See Figure 3.3. The angle, λe,
shown in the figure, is known as the Earth’s ecliptic longitude, and serves to locate the Earth on its
orbit. Let re be the displacement of the Earth from the Sun. It is clear from simple geometry that
the components of re are

re = ae (cos λe, sin λe, 0). (3.13)

Thus, the Earth’s orbital velocity becomes

ve = ae
dλe

dt
(− sin λe, cos λe, 0), (3.14)

where
dλe

dt
=

(
G Ms

a 3
e

)1/2

(3.15)

is the Earth’s mean orbital angular velocity about the Sun. (See Section 1.9.7.) Here, Ms =

1.989 × 1030 kg is the Sun’s mass. Let λs be the apparent ecliptic longitude of the Sun, as seen on
the Earth. It is clear that λs = π − λe. Hence, we deduce that

re = −ae er, (3.16)

ve = −ve eθ, (3.17)

er = (cos λs, sin λs, 0), (3.18)

eθ = (− sin λs, cos λs, 0). (3.19)

Here, er is a unit vector directed from the Earth to the Sun, whereas eθ is a unit vector that is
parallel to the Sun’s apparent orbital velocity about the Earth. Finally,

ve =

(
G Ms

ae

)1/2

= 2.977 × 104 m s−1 (3.20)

is the Earth’s mean orbital velocity about the Sun.
Suppose that a light ray from a distant star is observed on the Earth. Let the phase velocity of

the ray in the aether rest frame, in which the Sun is assumed to be stationary, be c, where |c| = c is
the speed of light in vacuum. Because the Earth is actually moving with respect to the aether rest
frame, the observed phase velocity of the light ray is

c′ = c − ve. (3.21)

[See Equation (3.12).] Let θ be the angle subtended between ve and −c, and let θ′ be the angle
subtended between ve and −c′. See Figure 3.4. Thus, θ corresponds to the true angular location of
the star (i.e., the location seen by an observer in the Sun’s rest frame), whereas θ′ corresponds to
the apparent location of the star seen on the moving Earth. Simple trigonometry reveals that

sin(θ − θ′)
ve

=
sin θ′

c
. (3.22)
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Figure 3.4: Aberration of starlight.

However, sin(θ′ − θ) = sin θ′ cos θ − cos θ′ sin θ, so we get

tan θ′ =
sin θ

cos θ + κ
, (3.23)

where
κ =

ve

c
= 9.930 × 10−5 (3.24)

is known as the constant of aberration.
Let us write

c = −c n, (3.25)

c′ = −c′ n′, (3.26)

where the unit vectors n and n′ are directed toward the true position of the star (in the Sun’s
rest frame), and the apparent position seen on the moving Earth, respectively. It is clear from
Equations (3.17), (3.21), and (3.24) that

n′ =
n − κ eθ
|n − κ eθ| ' n − κ [eθ − (n · eθ) n], (3.27)

to first order in κ. Let us write

n = (cos β cos λ, cos β sin λ, sin β), (3.28)

n′ = (cos β′ cos λ′, cos β′ sin λ′, sin β′). (3.29)

Here, β and λ are the true ecliptic latitude and ecliptic longitude of the star, respectively, whereas
β′ and λ′ are the apparent latitude and longitude seen on the moving Earth. (Ecliptic latitude and
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longitude parameterize position on the celestial sphere, and are similar to terrestrial latitude and
longitude, except that the equator corresponds to the Earth’s orbital plane, and ecliptic longitude
increases in the opposite direction to terrestrial longitude.) It is clear from Equations (3.19) and
(3.28) that

n · eθ = − cos β sin(λs − λ). (3.30)

Hence, Equations (3.27)–(3.29) yield

cos β′ cos λ′ = cos β cos λ − κ cos2 β cos λ sin(λs − λ) + κ sin λs, (3.31)

cos β′ sin λ′ = cos β sin λ − κ cos2 β sin λ sin(λs − λ) − κ cos λs, (3.32)

sin β′ = sin β − κ cos β sin β sin(λs − λ). (3.33)

Equations (3.31) and (3.32) can be combined to give

cos β′ sin(λ′ − λ) = −κ cos(λs − λ). (3.34)

Finally, writing β′ = β + δβ and λ′ = λ + δλ, Equations (3.33) and (3.34) yield

δβ = −κ sin β sin(λs − λ), (3.35)

δλ = − κ

cos β
cos(λs − λ), (3.36)

to first order in κ. If x = δλ cos β represents angular displacement on the celestial sphere in a
direction parallel to the ecliptic plane (in the sense of the Sun’s apparent motion with respect to the
stars), and y = δβ represents angular displacement in a direction perpendicular to the ecliptic (in a
northern sense), then the previous two equations give

x = −κ cos(λs − λ), (3.37)

y = −κ sin β sin(λs − λ). (3.38)

This is clearly the parametric equation of an ellipse. Hence, we deduce that, as a consequence of
the aberration of light, during the course of a year, our star appears to describe an ellipse on the
celestial sphere. The major radius, κ, is parallel to the ecliptic plane, whereas the minor radius,
κ sin β, is perpendicular to the ecliptic. The angular displacement of the star from its mean position
is greatest when λs − λ = 0◦, or 180◦ (i.e., when the ecliptic longitude of the star matches that of
the Sun, or differs from it by 180◦, which maximizes the Earth’s transverse velocity with respect
to the star). The magnitude of the greatest angular displacement, κ, is 20.48 arc seconds. This is
about the same as the angular size of Saturn’s disk.

Let us now consider parallax. Let d be the displacement of the Sun from a distant star, let d′ be
the corresponding displacement of the Earth, and let re be the displacement of the Earth from the
Sun. It is evident that

d′ = d + re. (3.39)

See Figure 3.5. Let θ be the angle subtended between re and −d, and let θ′ be the angle subtended
between re and −d′. Thus, θ corresponds to the true location of the star (i.e., the location seen by
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Figure 3.5: Stellar parallax.

an observer on the Sun), whereas θ′ corresponds to the apparent location of the star seen on the
displaced Earth. Simple trigonometry reveals that

sin(θ′ − θ)
ae

=
sin θ′

d
. (3.40)

However, sin(θ′ − θ) = sin θ′ cos θ − cos θ′ sin θ, so we get

tan θ′ =
sin θ

cos θ − Π , (3.41)

where
Π =

ae

d
(3.42)

is known as the star’s parallax. If we measure the star’s distance from the Sun, d, in units of
parsecs (pc) then, by definition, the parallax in arc seconds is

Π =
1
d
. (3.43)

It follows that
1 pc =

60 × 60 × 180 ae

π
= 3.087 × 1016 m. (3.44)

Given that the nearest star to the Sun, Proxima Centauri, is 1.302 parsecs away, it is clear that all
stellar parallaxes are less than 1 arc second. This implies that stellar aberration is a much larger
effect than stellar parallax.

We can write d = −d n and d′ = −d′ n′. Making use of very similar analysis to that used to
calculate aberration, we obtain

n′ =
n + Π er

|n + Π er| ' n + Π [er − (n · er) n], (3.45)
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n · er = cos β cos(λs − λ), (3.46)

cos β′ cos λ′ = cos β cos λ − Π cos2 β cos λ cos(λs − λ) + Π cos λs, (3.47)

cos β′ sin λ′ = cos β sin λ − Π cos2 β sin λ cos(λs − λ) + Π sin λs, (3.48)

sin β′ = sin β − Π cos β sin β sin(λs − λ). (3.49)

Equations (3.47) and (3.48) can be combined to give

cos β′ sin(λ′ − λ) = Π sin(λs − λ). (3.50)

Hence, Equations (3.49) and (3.50) yield

δβ = −Π sin β cos(λs − λ), (3.51)

δλ =
Π

cos β
sin(λs − λ), (3.52)

to first order in Π . If we again let x = δλ cos β represent angular displacement on the celestial
sphere in a direction parallel to the ecliptic plane, and y = δβ represent angular displacement in a
direction perpendicular to the ecliptic, then the previous two equations give

x = Π sin(λs − λ), (3.53)

y = −Π sin β cos(λs − λ). (3.54)

This is again the parametric equation of an ellipse. Hence, we deduce that, as a consequence paral-
lax, during the course of a year, our star appears to describe an ellipse on the celestial sphere. The
major radius, Π , is parallel to the ecliptic plane, whereas the minor radius, Π sin β, is perpendic-
ular to the ecliptic. The angular displacement of the star from its mean position is greatest when
λs − λ = 90◦, or 270◦ (i.e., when the ecliptic longitude of the star differs from that of the Sun by
90◦ or 270◦, which maximizes the Earth’s transverse displacement with respect to the star). The
greatest angular displacement, Π , when measured in arc seconds, is equal to one over the distance
of the star from the Sun measured in parsecs. [See Equation (3.43).]

Between 1725 and 1727, the astronomers James Bradley and Samuel Molyneux measured the
position of the circumpolar star γ Draconis in an attempt to observe its parallax. They found that
the angular position of the star underwent small annual variations, but that the deviation from the
mean was greatest when the ecliptic longitude of the Sun matched that of the star, which is not
the behavior expected from parallax. In 1728, Bradley correctly explained the observed variations
in terms of the aberration of light. Note that this explanation depends crucially on the fact that
the speed of light observed in a frame of reference that moves with respect to the rest frame of
the aether is different to that observed in the rest frame. Incidentally, stellar parallax is so small
an effect that it was not successfully measured until 1838, when Frederich Bessel measured the
parallax of the star 61 Cygni.
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3.1.4 Fizeau and Airy Experiments
Light can also propagate through transparent dielectric media, such as air and water, but does so
at the reduced phase velocity, c/n, where c is the speed of light in vacuum, and n is the medium’s
refractive index. Prior to the mid-nineteenth century, it was suppose that the aether was entrained
by a moving medium, so that if v is the speed of the medium then the phase velocity of light is

u+ =
c
n

+ v (3.55)

when it propagates in the same direction as the medium, and

u− =
c
n
− v (3.56)

when it propagates in the opposite direction [c.f. Equations (3.4) and (3.5).] However, in 1951,
Hippolyte Fizeau measured the speed of light in moving water, and found that

u+ =
c
n

+ v

(
1 − 1

n2

)
, (3.57)

u− =
c
n
− v
(

1 − 1
n2

)
. (3.58)

He concluded that the aether is only partially dragged by a moving medium. In particular, air,
which has a refractive index of 1.0003, hardly drags the aether at all. This is a good thing because
a strong aether drag through air would contradict Bradley’s explanation of stellar aberration. On
the other hand, water, which has a refractive index of 1.33, drags the aether by 43% of its velocity.
Unfortunately, in 1871, George Airy demonstrated that measured stellar aberration is the same
when the observing telescope is filled with water as when it is filled with air. This completely
contradicts the partial aether drag hypothesis.

3.1.5 Michelson-Morley Experiment
The aberration of stellar light can be thought of as an indirect measurement of the velocity of
the Earth with respect to the aether. In 1887, Albert Michelson and Edward Morley attempted
to measure this velocity directly in the laboratory. Their apparatus was an optical version of the
hypothetical sound-wave experiment shown in Figure 3.2. The apparatus sends light through a
half-silvered mirror that is used to split it into two beams that travel at right angles to one another.
The two beams travel out to the ends of long arms of equal length where they are reflected back
into the middle by small mirrors. The beams then recombine on the far side of the splitter in an
eyepiece, producing a pattern of interference fringes whose transverse displacement depends on the
difference in time it takes light to transit the longitudinal and the transverse arms of the apparatus.
By analogy with Equation (3.9), this time difference is

∆t =
l0 v

2
e

c3 , (3.59)
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where l0 is the length of the arms, ve the orbital velocity of the Earth, and c the velocity of light
in vacuum. (Henceforth, c refers exclusively to the velocity of light in vacuum.) By turning their
apparatus through 90◦, the experimentalists expected to reverse the time difference, and, thus, to
generate a shift in the interference fringes. The magnitude of this shift is 2 c∆t/λ fringes, where
λ = 5 × 10−7 m is a typical wavelength of light. Thus, given that the lengths of the arms in the
experiment were (effectively) 10 m, the expected shift is 0.39 fringes. Such a shift should have
been easily measurable. However, no such shift was observed. One possible explanation for this
null result is that the Earth completely drags the aether in its immediate vicinity. However, this
explanation is in conflict with Bradley and Airy’s observations of stellar aberration, as well as
Fizeau’s experiment.

3.1.6 Lorentz-Fitzgerald Contraction
In 1989, George FitzGerald, followed by Hendrik Lorentz in 1892, suggested that an object moving
with speed v with respect to the aether suffers a contraction in length by a factor

√
1 − v2/c2 in the

direction parallel to the motion, but suffer no contraction in the perpendicular directions. This so-
called length contraction hypothesis explains the null result in the Michelson-Morley experiment.
To be more exact, and referring to Figure 3.2, when the light traverses the leg of the apparatus that
is parallel to its velocity with respect to the aether then it takes a time

t1 =
l0
√

1 − v 2
e /c2

c − ve
+

l0
√

1 − v 2
e /c2

c + ve
=

2 l0

c
1√

1 − v 2
e /c2

, (3.60)

where l0 is the uncontracted length of the leg. On the other hand, when the light traverses the leg
of the apparatus that is perpendicular to its velocity with respect to the aether then it takes a time

t2 =
2 l0√
c2 − v 2

e

=
2 l0

c
1√

1 − v 2
e /c2

. (3.61)

It can be seen that t1 = t2, which explains the null result of the Michelson-Morley experiment.

3.1.7 Kennedy-Thorndike Experiment
Suppose that we were to perform a version of the Michelson-Morley experiment in which the two
legs of the apparatus are of unequal (uncontracted) lengths l1 and l2. Taking length contraction into
account, the time required for light to traverse the first leg of the apparatus is

t1 =
2 l1

c
1√

1 − v2/c2
, (3.62)

where v is the speed of the laboratory with respect to the aether rest frame. Likewise, the time
required for light to traverse the second leg of the apparatus is

t2 =
2 l2

c
1√

1 − v2/c2
. (3.63)
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Hence, the difference between these two times is

t2 − t1 =
2 (l2 − l1)

c
1√

1 − v2/c2
' 2 (l2 − l1)

c
+

l2 − l1

c
v2

c2 . (3.64)

Note that the time difference depends on v. Suppose that the laboratory is located on the Earth’s
equator. In this case, the actual speed of the laboratory with respect to the aether rest frame varies
from v = ve − vΩ to v = ve + vΩ, throughout the course of a day, where ve = 2.977 × 104 m s−1 is the
Earth’s mean orbital velocity, specified in Equation (3.20), whereas

vΩ = ΩRe = 4.650 × 102 m s−1 (3.65)

is the speed of the Earth’s surface due its axial rotation. Here,Ω = 7.292×10−5 rad s−1 is the Earth’s
diurnal angular velocity [see Equation (1.351)], and Re = 6.378×103 m its equatorial radius. Thus,
v varies by about 3% during the course of the day. This variation leads to a variation in the time
difference, (3.64), that should be easily measurable. However, when Roy Kennedy and Edward
Thorndike performed this experiment in 1932 they observed no variation in the time difference.

3.2 Theoretical Basis of Special Relativity

3.2.1 Postulates of Special Relativity
We have seen that experimental observations of stellar aberration and the speed of light in moving
refractive media, together with the results of the Michelson-Morley and the Kennedy-Thorndike
experiments, cannot be reconciled within a theoretical framework in which light is assumed to
propagate at a fixed speed with respect to an aether.

In 1905, Albert Einstein reconciled all of the aforementioned results within a new theoretical
framework known as special relativity. The two postulates of this framework are:

1. The laws of physics are invariant (i.e., take equivalent forms) in all inertial frames of refer-
ence.

2. The speed of light in vacuum is the same in all inertial frames of reference, irrespective of
the motion of the source or the receiver.

Postulate 1 is motivated by the observation that Newton’s laws of motion take equivalent forms
in all inertial reference frames. (See Section 1.5.4.) One corollary of this observation is that no
identical experiment in Newtonian dynamics, preformed in various different inertial frames, can
provided a way to distinguish one frame from another. Einstein simply generalized this equiva-
lence principle by assuming that it applies to all laws of physics. Thus, according to Einstein, all
laws of physics take equivalent forms in all inertial reference frames, implying that no identical
experiment, of any kind, performed in various different inertial frames, can provided a way to dis-
tinguish one frame from another. Incidentally, the nomenclature ‘relativity’ derives from the fact
that it is impossible to determine that any given inertial frame constitutes an absolute standard of
rest; in this respect, all motion is relative.
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Postulate 2 follows from Einstein’s rejection of the idea of an aether. Einstein assumed that
an electromagnetic wave is a self-perpetuating disturbance of electric and magnetic fields that is
capable of propagating through a vacuum without the need for a medium. Suppose that we measure
the speed of light in vacuum in various different inertial reference frames. If the results of these
identical experiments give different speeds then we have found a way of distinguishing the various
reference frames from one another. In fact, we could provide a distinct label for each reference
frame in terms of its associated speed of light in vacuum. However, this state of affairs is forbidden
by Einstein’s first postulate. Hence, the speed of light in vacuum must be the same in all of the
reference frames.

The speed of light cannot depend on the motion of the source, because, if it did, then we could
place a stationary source in each possible inertial reference frame, and then distinguish different
frames from one another on the basis of the different speeds of the light emitted by these sources,
and measured by a stationary receiver in a particular reference frame. However, this state of affairs
is forbidden by Einstein’s first postulate. Furthermore, the speed of light cannot depend on the
motion of the receiver, because, if it did, then we could place a stationary source in a particular
inertial reference frame, and then distinguish different inertial frames from one another on the basis
of the different speeds of the light emitted by this source, and measured by stationary receivers in
the latter frames.

Incidentally, if light waves propagate through a vacuum with the same speed in all directions
in one inertial reference frame then they must do so in all inertial reference frames, otherwise we
could distinguish the former reference frame from the others, which is contrary to Einstein’s first
postulate. However, Maxwell’s equations predict that light waves propagate with the same speed
in all directions in the (presumably inertial) frame of reference in which they are formulated. (See
Section 2.4.4.) Hence, a more precise version of Einstein’s second postulate is that light waves
propagate with an invariant speed in all directions in all inertial frames of reference, irrespective
of the motion of the source or the receiver.

Let us consider whether Einstein’s first postulate also demands that the speed of sound is the
same in all inertial reference frames. Suppose that we measure the speed of sound, in the same
gas, in various different inertial reference frames. In general, the measured speed will be different
in different reference frames. [See Equation (3.2).] However, this does not violate Einstein’s first
postulate, because we are not performing the same experiment in the various different reference
frames, because each reference frame has a different velocity with respect to the rest frame of the
gas. The essential difference between light waves and sound waves is that, because the medium
(i.e., aether) with respect to which light waves in a vacuum propagate does not exist, this non-
existent medium does not have an identifiable rest frame, whereas the gas through which sound
waves propagate always has an identifiable rest frame.

Incidentally, because the Michelson-Morley and Kennedy-Thorndike experiments are, in effect,
trying to measure the difference between the speeds of light in vacuum in two different inertial
frames, Einstein’s second postulate guarantees that they should both give null results.
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Figure 3.6: Time dilation.

3.2.2 Invariance of Transverse Lengths
Suppose that we recruit a number of observers, and provide each one with an identical meter stick.
Next, let us place the different observers on trolleys that move at different velocities with respect
to one another. Each time any given pair of observers make a close approach to one another,
suppose that they hold up their meter sticks, orientated such that the sticks are parallel to one
another, but perpendicular to their relative velocity, and then make a simultaneous measurement of
the relative heights of the two top ends, and the two bottom ends, of the sticks. This is equivalent
to a comparison of the lengths of the two sticks. If the two lengths are different then we have found
a way of distinguishing one inertial frame from another. In fact, we can provide a unique label for
each reference frame in terms of the length of its associated observer’s meter stick. However, this
state of affairs is forbidden by Einstein’s first postulate. Hence, all meter sticks must have the same
length. In other words, two observers in two inertial reference frames, moving with respect to one
another, will always agree on measurements of lengths orientated perpendicular to their relative
motion.

3.2.3 Time Dilation
Consider a clock that is synchronized by bouncing a light ray, that propagates through a vacuum,
off a reflector that is located a distance l0 from the clock. Thus, the time taken for the light ray to
travel from the clock to the reflector, and back again,

t0 =
2 l0

c
, (3.66)

corresponds to one tick of the clock.
Suppose that we observe the aforementioned clock in a frame of reference that moves with

velocity v with respect to the clock’s rest frame, where the direction of v is perpendicular to the
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path of the light ray in the rest frame. See Figure 3.6. Let t1 be the time required for a light ray to
travel from the clock to the reflector, and back again, in the moving frame. In the moving frame, the
clock moves a parallel (to −v) distance v1 t in this time interval. Note that the transverse distance,
l0, of the reflector from the clock is the same in both reference frames. (See Section 3.2.2.) It is
clear, by symmetry, that in traveling from the clock to the reflector, the light ray in the moving
frame has moved a transverse distance l0 and a parallel (to −v) distance v t1/2. Moreover, the ray
travels the same transverse and parallel distances in traveling from the reflector back to the clock.
Hence, the net path-length of the light ray is

L = 2
(
v2 t 2

1

4
+ l 2

0

)1/2

. (3.67)

Now, because the light ray travels at the speed c in the moving frame, according to Einstein’s
second postulate, we have

t1 =
L
c
, (3.68)

which implies that

t1 =
2
c

(
v2 t 2

1

4
+ l 2

0

)1/2

, (3.69)

or

t 2
1 =

v2 t 2
1

c2 +
4 l 2

0

c2 =
v2 t 2

1

c2 + t 2
0 , (3.70)

where use has been made of Equation (3.66). The previous expression can be rearranged to give

t1 =
t0√

1 − v2/c2
. (3.71)

Thus, we conclude that t1 > t0. Given that a tick of our clock corresponds to the time required for
a light ray to travel from the clock to the reflector, and back again, we conclude that the clock ticks
more slowly in the moving reference frame than it does in its rest frame. This effect is known as
time dilation.

We can also conclude that any type of clock, not just a light-clock, will tick more slowly in a
moving reference frame than in its rest frame, by the same factor as our light clock, otherwise the
same experiment (i.e., measuring the time it takes a light ray to travel a distance 2 l0 in vacuum
using the former type of clock) would produced different results in different inertial frames, which
is forbidden by Einstein’s first postulate.

Let us define the so-called Lorentz factor,

γ =
1√

1 − v2/c2
. (3.72)

Note that γ ≥ 1. The time dilation law, (3.71), can be written

t1 = γ t0. (3.73)
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Figure 3.7: Length contraction.

In other words, time is dilated by the Lorentz factor in a moving frame of reference.
Muons are unstable particles that have measured lifetimes of 2.917 µs in their rest frame. How-

ever, when the Earth’s atmosphere is struck by cosmic-ray particles, very energetic muons that
move at 98% of the speed of light are produced. The measured lifetimes of these cosmic-ray
muons is indeed about five times longer than the rest-frame lifetime of a muon, in accordance with
the previous two equations.

3.2.4 Length Contraction
Let us again consider the light-clock introduced in Section 3.2.3. As before, let l0 be the distance
between the clock and the reflector in the clock’s rest frame. Thus, each tick of the clock in its rest
frame corresponds to the time interval

t0 =
2 l0

c
. (3.74)

[See Equation (3.66).]
Suppose that we observe the aforementioned clock in a frame of reference that moves with

velocity v with respect to the clock’s rest frame, where the direction of v is parallel to the path
of the light ray in the rest frame. See Figure 3.7. Let l1 be the distance between the clock and
the reflector in the moving frame. In the moving frame, both the reflector and the clock appear to
move at velocity −v (because they are both at rest in the clock’s rest frame, and −v is the velocity
of this frame relative to the moving frame). Suppose that, in the moving frame, the light ray takes
a time ta to travel from the clock to the reflector. The distance traveled by the ray is l1− v ta. Hence,
because the light ray travels at speed c in the moving frame (irrespective of the motion of the clock
or the reflector), according to Einstein’s second postulate, we can write

ta =
l1 − v ta

c
, (3.75)
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which implies that

ta =
l1

c + v
. (3.76)

Suppose that, in the moving frame, the light ray takes a time tb to travel from the reflector back to
the clock. The distance traveled by the ray is l + v tb. Hence, we can write

tb =
l1 + v tb

c
, (3.77)

which implies that

tb =
l1

c − v . (3.78)

The net time needed for the light ray to travel from the clock to the reflector, and back again, in the
moving frame, is

t1 = ta + tb = l1

(
1

c − v +
1

c + v

)
=

2 l1

c
1

1 − v2/c2 =
l1

l0

t0

1 − v2/c2 , (3.79)

where use has been made of Equation (3.74). This time corresponds to the time interval of the
clock’s tick in the moving frame. However, we established in Section 3.2.3 that, as a consequence
of time dilation,

t1 =
t0√

1 − v2/c2
. (3.80)

Note that if our light clock does not suffer exactly the same time dilation as the clock in Sec-
tion 3.2.3 then we could distinguish between different inertial frames in terms of the different time
dilations suffered by light-clocks in which the light rays traveled parallel and perpendicular to
the relative velocities of the frames. However, this state of affairs is prohibited by Einstein’s first
postulate. The previous two equations yield

l1 = l0

√
1 − v2/c2 =

l0

γ
, (3.81)

where γ is the Lorentz factor introduced in Equation (3.72). In other words, the distance between
the clock and the reflector appears contracted by the Lorentz factor when viewed in the moving
frame. Given that we could have placed the clock and the reflector at any two points in space,
we conclude that a stationary and a moving observer will not agree on measurements of lengths
orientated parallel to their relative motion. In fact, all such lengths will appear contracted by the
Lorentz factor to the moving observer. This effect is known as length contraction, and is equivalent
to the Lorentz-Fitzgerald contraction discussed in Section 3.1.6.

Incidentally, we saw, in Sections 3.1.6 and 3.1.7, that length contraction alone is sufficient
to explain the null result of the Michelson-Morley experiment, but not the Kennedy-Thorndike
experiment. Hence, we conclude that both length contraction and time dilation are needed to
explain the null result of the Kennedy-Thorndike experiment. Another way of saying this is that
the null result of the Michelson-Morley experiment can be regarded as experimental verification of
length contraction, whereas the null result of the Kennedy-Thorndike experiment can be regarded
as experimental validation of time dilation. It should be noted that both of these experiments have
been repeated many times, over the years, and that the null results of the experiments are now
established to very great accuracy.
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Figure 3.8: Clock error.

3.2.5 Clock Error

Consider two clocks, A and B, that are located a distance l0 apart in their mutual rest frame.
Suppose that the clocks are synchronized using light pulses emitted from a source that lies half-
way between them. Let us observe the clocks in a reference frame that moves with velocity v with
respect to the clocks’ rest frame in a direction that is parallel to their mutual displacement. See
Figure 3.8. In the moving frame, the contracted distance between the two clocks is l0/γ, but the
source is still located half-way between the clocks. Moreover, the two clocks appear to move with
the same velocity, −v. Consider a light pulse that is emitted by the source and travels to the two
clocks. Suppose that, in the moving frame, it takes a time ta for the pulse to travel from the source
to clock A. The pulse travels a distance l0/(2 γ)+v ta. Thus, given that the pulse travels at the speed
c, according to Einstein’s second postulate, we have

ta =
l0/(2 γ) + v ta

c
, (3.82)

or

ta =
l0

2 γ (c − v) . (3.83)

Suppose that, in the moving frame, it takes a time tb for the pulse to travel from the source to clock
B. The pulse travels a distance l0/(2 γ) − v tb. Thus, given that the pulse travels at the speed c, we
have

tb =
l0/(2 γ) − v tb

c
, (3.84)

or

tb =
l0

2 γ (c + v)
. (3.85)
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Figure 3.9: Inertial reference frames.

Now, in the clocks’ rest frame, the pulse arrives at clocks A and B simultaneously. However, in
the moving frame, the pulse arrives at clock B prior to its arrival at clock A (because tb < ta). In
other words, two events, a spatial distance l0 apart, that take place simultaneously in a particular
reference frame, do not appear to take place simultaneously in a reference frame that moves with
velocity v in the direction of the mutual displacement of the two events. This phenomenon is
known as clock error. The time difference between the two events in the moving frame is

∆t = ta − tb =
l0

2 γ

(
1

c − v −
1

c + v

)
=

l0

2 γ
2 v

c2 − v2 . (3.86)

which reduces to
∆t =

γ v l0

c2 . (3.87)

3.2.6 Galilean Transformation
Consider two inertial frames of reference, S and S ′. Let frame S ′ move at velocity v with respect
to frame S . Let us set up right-handed Cartesian coordinate systems in both frames. Suppose
that the coordinate systems are in the so-called standard configuration in which the corresponding
coordinate axes are parallel, the x-axis in each system is parallel to v, and the origins of the systems
coincide at time t = 0. See Figure 3.9. Consider an instantaneous ‘event’ with a definite spatial
location, such as the flashing of a light-bulb. Suppose that the event occurs at time t and has
displacement (x, y, z) in frame S . Suppose that the event occurs at time t′ and has displacement
(x′, y′, z′) in frame S ′. What is the relationship between (x, y, z, t) and (x′, y′, z′, t′). Well,
according to standard Newtonian physics, the “common sense” relationship between the two sets
of coordinates is

x′ = x − v t, (3.88)
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y′ = y, (3.89)

z′ = z, (3.90)

t′ = t. (3.91)

(See Section 1.5.4.) As we have already mentioned, this transformation of coordinates is known as
the Galilean transformation. Consider, now, a moving event whose coordinates in S are x = x(t),
y = y(t), and z = z(t). The Cartesian components of the instantaneous velocity of our event in S are
ux = dx/dt, uy = dy/dt, uz = dz/dt, whereas the corresponding components in S ′ are u′x = dx′/dt′,
u′y = dy′/dt′, u′z = dz′/dt′. Hence, we can derive the following Galilean velocity transformation
from Equations (3.88)–(3.91):

u′x = ux − v, (3.92)

u′y = uy, (3.93)

u′z = uz. (3.94)

However, if the event in question is the path of a light ray that moves with velocity c ex in S then,
according to the Galilean velocity transform, the light ray moves with velocity (c − v) ex in S ′. In
other words, the light ray travels at difference speeds in the two frames of reference. However,
this state of affairs is forbidden by Einstein’s first postulate. Hence, we deduce that the Galilean
transformation, (3.88)–(3.91), is actually inconsistent with the theory of relativity.

3.2.7 Lorentz Transformation
Let us see if we can derive the a transformation of coordinates that is consistent with relativity. In
frame S , at time t, the origin of the x′-axis is located a perpendicular distance v t from the origin
of the x-axis. Moreover, in S , our event is located a perpendicular distance x′/γ from the origin of
the x′-axis, because of length contraction. [See Equation (3.81).] Thus,

x = v t +
x′

γ
, (3.95)

which yields
x′ = γ (x − v t). (3.96)

Because there is no motion between the two frames in the y-direction or the z-direction, and be-
cause there is no contraction of lengths perpendicular to the x-axis, we deduce that

y′ = y, (3.97)

z′ = z. (3.98)

Finally, in S ′, a clock located at the origin reads γ t when a clock at the origin of S reads t, as a
consequence of time dilation (note that, in S ′, a clock in S appears to run slowly by a factor γ).
[See Equation (3.73).] Furthermore, a second clock in S ′, displaced from the origin a distance x
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(measured in S ) in the x-direction, appears to read γ t − γ v x/c2 as a consequence of clock error.
[See Equation (3.87).] Hence,

t′ = γ t − γ v x
c2 = γ

(
t − v x

c2

)
. (3.99)

We deduce that the transformation of coordinates that is consistent with the theory of relativity
is

x′ = γ (x − v t), (3.100)

y′ = y, (3.101)

z′ = z, (3.102)

t′ = γ
(

t − v x
c2

)
. (3.103)

This transformation is know as the Lorentz transformation. Note that, in the limit in which the
relative velocity of frames S and S ′ is non-relativistic (i.e., much smaller in magnitude than the
speed of light in vacuum), so that v/c � 1, and γ → 1, the Lorentz transformation morphs into the
Galilean transformation, (3.88)–(3.91). Thus, the common sense transformation, (3.88)–(3.91),
holds as long as the relative velocity between the two frames of reference is much smaller than the
velocity of light in vacuum. Incidentally, it is easily shown from Equations (3.100)–(3.103) that

x = γ (x′ + v t′), (3.104)

y = y′, (3.105)

z = z′, (3.106)

t = γ

(
t′ +

v x′

c2

)
. (3.107)

In the Galilean transformation, (3.88)–(3.91), the transformation of time is completely indepen-
dent from that of space. This is no longer the case in the Lorentz transformation, (3.100)–(3.103).
In fact, the transformations of space and time are mixed together in special relativity in such a
manner that, rather than thinking of space and time as separate concepts, it makes more sense to
talk about a generalized concept that Einstein called spacetime.

3.2.8 Spacetime Interval
Consider two events, 1 and 2, whose spacetime coordinates in some inertial frame S are (x1, y1,
z1, t1) and (x2, y2, z2, t2), respectively. Let us form the differences between these coordinates,
∆x = x2 − x1, ∆y = y2 − y1, ∆z = z2 − z1, and ∆t = t2 − t1. The spatial distance, ∆d, between the
two events is written

(∆d)2 = (∆x)2 + (∆y)2 + (∆z)2. (3.108)

Suppose that we shift the origin of our coordinate system in S . It is obvious that this process
does not change the distance between our two events. In other words, ∆d is invariant under a shift
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of the origin of the coordinate system, as is easily verified. Suppose that we rotate our coordinate
axes in S . (See Section A.5.) Such a process is length-preserving. In other words, ∆d is invariant
under a rotation of the coordinate axes, as is easily verified. However, it is evident, by inspection,
that ∆d is not invariant under a Lorentz transformation. Let us try to find a quantity that is invariant.

Consider a second inertial frame, S ′, that moves with velocity v = v ex with respect to S , and is
also in a standard configuration with respect to S . Let events 1 and 2 have spacetime coordinates
(x′1, y′1, z′1, t′1) and (x′2, y′2, z′2, t′2), respectively, in S ′. Let us again form the differences between
these coordinates, ∆x′ = x′2 − x′1, ∆y′ = y′2 − y′1, ∆z′ = z′2 − z′1, and ∆t′ = t′2 − t′1. The spacetime
interval between events 1 and 2 in S is defined

(∆s)2 = c2 (∆t)2 − (∆x)2 − (∆y)2 − (∆z)2. (3.109)

The Lorentz transformation, (3.100)–(3.103), yields

∆x′ = γ (∆x − v ∆t), (3.110)

∆y′ = ∆y, (3.111)

∆z′ = ∆z, (3.112)

∆t′ = γ

(
∆t − v ∆x

c2

)
. (3.113)

Hence, the spacetime interval between the two events in S ′ is

(∆s′)2 = c2 (∆t′)2 − (∆x′)2 − (∆y′)2 − (∆z′)2

= γ2
[

c2 (∆t)2 − 2 v ∆x∆t +
v2

c2 (∆x)2
]
− γ2

[
(∆x)2 − 2 v ∆x∆t + v2 (∆t)2

]
− (∆y)2 − (∆z)2

= c2 (∆t)2 γ2
(

1 − v
2

c2

)
− (∆x)2 γ2

(
1 − v

2

c2

)
− (∆y)2 − (∆z)2

= c2 (∆t)2 − (∆x)2 − (∆y)2 − (∆z)2

= (∆s)2, (3.114)

where use has been made of Equation (3.72). Thus, we conclude that the spacetime interval be-
tween two events is invariant under a Lorentz transformation. In other words, the interval is the
same in all inertial reference frames. What is the significance of this result? Suppose that a light
ray travels in a straight-line from event 1 to event 2. The speed of the light ray in S is

∆d
∆t

= c
[

1 − (∆s)2

(c∆t)2

]1/2

, (3.115)

where use has been made of Equations (3.108) and (3.109). However, we know, from Einstein’s
second postulate, that this speed is equal to c. Hence, we deduce that

∆s = 0. (3.116)
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In other words, if a light ray travels between two events in spacetime then the interval between
these two events is zero. This implies that the interval between the two events is zero in all inertial
frames of reference. In particular, the interval in S ′ is ∆s′ = 0. Now, the speed of the light ray in
S ′ is

∆d′

∆t′
= c
[

1 − (∆s′)2

(c∆t′)2

]1/2

= c. (3.117)

Hence, we deduce that the invariance of the spacetime interval under Lorentz transformation guar-
antees that light travels through a vacuum at the speed c in all inertial frames of reference.

3.2.9 Transformation of Velocity
Consider a particle in some inertial reference frame, S , that moves at the fixed (subluminal) veloc-
ity u = (ux, uy, uz). Suppose that the particle is located at the origin at time t = 0. It follows that, at
time t, the particle is located at point r = (ux t, uy t, uz t). Let us observe the motion of the particle
in a second inertial frame, S ′, that moves with (subluminal) velocity v = v ex with respect to S ,
and is in a standard configuration with respect to S . It follows from Equations (3.100)–(3.103) that
the particle is located at the origin of S ′ at t′ = 0. The location of the particle in S ′, at time t′, can
be written r′ = (u′x t′, u′y t′, u′z t′), where u′ = (u′x, u′y, u′z) is the particle’s velocity in S ′. It follows
from Equations (3.100)–(3.103) that

u′x t′ = γ (ux t − v t) , (3.118)

u′y t′ = uy t, (3.119)

u′z t′ = uz t, (3.120)

t′ = γ
(

t − v ux t
c2

)
, (3.121)

which yields

u′x =
ux − v

1 − ux v/c2 , (3.122)

u′y =
uy

γ (1 − ux v/c2)
, (3.123)

u′z =
uz

γ (1 − ux v/c2)
. (3.124)

This result is known as the transformation of velocity.
Let u = (u 2

x + u 2
y + u 2

z )1/2 and u′ = (u′ 2x + u′ 2y + u′ 2z )1/2 be the speeds of the particle in frames S
and S ′, respectively. It is easily demonstrated, from the transformation of velocity, that

c2 − u′ 2 =
c2 (c2 − u2) (c2 − v2)

(c2 + ux v)2 . (3.125)

If |u| < c and |v| < c then the right-hand side is positive, implying that |u′| < c. In other words, the
resultant of two subluminal velocities is another subluminal velocity. It is evident that a particle can
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never attain the velocity of light relative to a given inertial frame, no matter how many subluminal
velocity increments it is given. It follows that no inertial frame can ever appear to propagate with a
superluminal velocity with respect to any other inertial frame (because we can track a given inertial
frame in terms of a particle that remains at rest at the origin of that frame). Of course, if |u| = c
then |u′| = c. In other words, a particle traveling at the speed of light in one inertial frame does so
in all inertial frames.

It is evident from Equation (3.125) that there is only a single speed—namely, u = c—that is the
same in all inertial frames of reference. Now, according to Einstein’s first postulate, any wave that
propagates in the absence of a physical medium must propagate at the same speed in all inertial
frames of reference, otherwise the different wave speeds in different reference frames could be used
to distinguish between the frames. Hence, we deduce that all waves that propagate in the absence
of a physical medium (e.g., a gas, liquid, or solid) must propagate at the common speed c in all
inertial reference frames. Thus, gravitational waves, which are ripples in the fabric of spacetime,
must travel at the same speed, c, as electromagnetic waves, because both waves propagate in the
absence of media. Thus, we could just as well designate c as the speed of gravitational waves.

Note, finally, that the Lorentz transformation is the only (linear) transformation of coordinates
that preserves the speed c, and morphs into the tried and tested Galilean transformation in the limit
that v/c � 1. In fact, it is possible to guess the form of the Lorentz transformation by searching
for a (linear) coordinate transformation that has these two properties.

3.2.10 Causality
Let events 1 and 2 have spacetime coordinates (x1, 0, 0, t1) and (x2, 0, 0, t2) in some inertial
reference frame, S . Suppose that event 1 causes event 2. It follows that t1 < t2. In other words,
event 1 necessarily precedes event 2 in time. Let

u =
x2 − x1

t2 − t1
(3.126)

be the velocity with which information flows from event 1 to event 2 in order to allow the former
event to cause the latter. Let us observe the two events in a second inertial frame, S ′, that moves at
velocity v = v ex with respect to S , and is in a standard configuration with respect to S . According
to Equation (3.103),

t′2 − t′1 = γ
(

t2 − v x2

c2

)
− γ
(

t1 − v x1

c2

)
, (3.127)

or
t′2 − t′1 = γ (t2 − t1)

(
1 − u v

c2

)
. (3.128)

Now, irrespective of the value of v, whose magnitude can never exceed c, event 2 can never occur
prior to event 1 in S ′, otherwise we could classify inertial frames into two groups; those in which
event 1 appears to cause event 2, and those in which event 2 appears to cause event 1. However,
this state of affairs is forbidden by Einstein’s first postulate. Thus, we require t′2 − t′1 > 0 for all
|v| < c. It is clear from Equation (3.128) that this is only possible if |u| < c. Hence, we deduce that
information can never propagate faster than the speed of light in vacuum, in any inertial reference
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Figure 3.10: Relativistic aberration of light.

frame, otherwise it is possible to find other inertial reference frames in which causality appears to
be violated.

3.2.11 Relativistic Aberration of Light
Consider a light ray that travels from a distant source to an observer located at the origin of some
inertial frame, S . Let c be the phase velocity of the light ray. Of course, |c| = c, where c is the
speed of light in vacuum. Suppose that c lies in the x-y plane, such that its direction subtends an
angle θ with the −x-direction, as shown in Figure 3.10. It is clear from the figure that cx = −c cos θ
and cy = −c sin θ. Suppose that a second observer, moving with velocity v = v ex with respect to
the first, observes the light ray. Let c′ be the phase velocity of the light ray in the second observer’s
frame, S ′, which is in a standard configuration with respect to frame S . Of course, |c′| = c. Suppose
that c′ lies in the x′-y′ plane, such that its direction subtends an angle θ′ with the −x′-direction, as
shown in Figure 3.10. It is clear from the figure that c′x = −c cos θ′ and cy = −c sin θ′. The
transformation of velocity, (3.122)–(3.124), yields

tan θ′ =
−u′y
−u′x

=
−uy

−γ (ux − v) =
c sin θ

−γ (−c cos θ − v) , (3.129)

or

tan θ′ =
sin θ

γ (cos θ + v/c)
. (3.130)

Thus, the direction of the light ray, and, hence the angular position of the source, appears different
to the two observers.

In particular, suppose that the first observer is located in the rest frame of the Sun, and the
second is located on the Earth, whose instantaneous orbital velocity about the Sun is v = ve ex,
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Figure 3.11: Relativistic beaming of light.

where ve = 2.977 × 104 m s−1. In this case, the previous equation yields

tan θ′ =
sin θ

γ (cos θ + κ)
, (3.131)

where

κ =
ve

c
= 9.930 × 10−5, (3.132)

γ =
1√

1 − v 2
e /c2

= 1.000000005. (3.133)

It can be seen that formula (3.131) is almost indistinguishable from the classical aberration for-
mula, (3.23). Thus, it is clear that special relativity is capable of accounting for Bradley’s ob-
servation of the aberration of starlight. (See Section 3.1.3.) Furthermore, it is obvious that the
relativistic aberration of light is associated with the properties of the Lorentz transformation be-
tween two frames of reference, moving with respect to one another, rather than the velocity of
light with respect to any particular medium. It follows that special relativity is also capable of
accounting for Airy’s observation of the aberration of starlight. (See Section 3.1.4.)

3.2.12 Relativistic Beaming of Light
Consider a point source that emits light isotropically in all directions in its rest frame, S Let us
observe this source in a frame of reference, S ′, that moves with velocity v = −v ex, and is in a
standard configuration, with respect to frame S . Thus, the source appears to move with velocity
v ex in frame S ′. See Figure 3.11. Now, half of the emitted radiation in S emerges in the region
ABC, bounded by the rays A and C shown in the figure. Likewise, half the emitted radiation in
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S ′ emerges in the region A′B′C′, bounded by the rays A′ and C′ shown in the figure. Ray A has
the phase velocity (0, c, 0). Likewise, ray A′ has the phase velocity (c cos θ, c sin θ, 0), where the
angle θ is shown in the figure. By symmetry, the angle subtended between A′ and B′ is the same as
that subtended between C′ and B′. The transformation of velocity, (3.122)–(3.124), yields

c cos θ = v, (3.134)

c sin θ =
c
γ
, (3.135)

or
sin θ =

1
γ
. (3.136)

It follows, that in a frame of reference in which the source moves with velocity v, half of the
emitted radiation is beamed into a cone whose axis is v, and whose half-angle is sin−1(1/γ). If the
source is moving very close to the velocity of light then γ � 1, and θ ' 1/γ � 1. In other words,
the emitted radiation is beamed very strongly in the direction of motion of the source.

3.2.13 Light Propagation through Dielectric Media
Consider a transparent dielectric medium, such as air, water, or glass. Let n be the refractive
index of the medium. Thus, in the rest frame, S , of the medium, light propagates at the phase
velocity c/n. Let us transform to a frame of reference, S ′, that moves at velocity ∓v ex, and is in a
standard configuration, with respect to frame S . Thus, the medium appears to flow at the velocity
±v ex in frame S ′. According to Equation (3.122), the phase velocity of light propagating in the
+x-direction in frame S ′, in which the medium flows at velocity ±v ex, is

u± =
c/n ± v

1 ± v/(c n)
=

c
n
± v (1 − 1/n2)

1 ± v/(c n)
. (3.137)

In the limit in which the flow velocity of the medium is much smaller than the velocity of light in
vacuum, v/c � 1, the previous equation reduces to

u± ' c
n
± v
(

1 − 1
n2

)
. (3.138)

However, this is identical to the phase velocity in dielectric media measured by Fizeau. (See
Section 3.1.4.) Thus, we can now appreciate that special relativity is capable of accounting for all
of the experimental observations discussed in Section 3.1.

3.3 Relativistic Dynamics

3.3.1 Transformation of Acceleration
Consider a particle that moves with constant acceleration a′ = a0 ex in its instantaneous rest frame,
S ′. Let the particle be located at the origin of S ′ at time t′ = 0. It follows that a very short time, δt,
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later, the particle’s spacetime coordinates in S ′ are

x′ =
1
2

a0 δt 2, (3.139)

y′ = 0, (3.140)

z′ = 0, (3.141)

t′ = δt. (3.142)

Consider a second frame of reference, S , that moves with velocity -v ex with respect to S ′, and is
also in a standard configuration with respect to S ′. Thus, the particle’s instantaneous velocity in
S is v = v ex. In S , the particle moves from the origin at time t = 0, to a point whose spacetime
coordinates are

x = γ (x′ + v t′) = γ

(
1
2

a0 δt 2 + v δt
)
, (3.143)

y = 0, (3.144)

z = 0, (3.145)

t = γ

(
t′ +

v x′

c2

)
= γ

(
δt +

v a0 δt 2

2 c2

)
, (3.146)

where γ = (1 − v2/c2)−1/2, a very short time later. Here, use has been made of Equations (3.104)–
(3.107), as well as Equations (3.139)–(3.142). If a = a ex is the particle’s instantaneous accelera-
tion in S ′ then we expect the relation

x = v t +
1
2

a t 2 (3.147)

to hold for a short time interval (i.e., in the limit δt → 0). It follows from Equations (3.143) and
(3.146) that

γ

(
1
2

a0 δt 2 + v δt
)

= v γ

(
δt +

v a0 δt 2

2 c2

)
+

1
2

a γ2
(
δt +

v a0 δt 2

2 c2

)2

. (3.148)

Note that the terms in the previous equation that are first order in δt cancel one another. Equating
the terms that are second order in δt, we obtain

γ a0 = γ
v2

c2 a0 + γ2 a, (3.149)

or

a =
a0 (1 − v2/c2)

γ
, (3.150)

which reduces to
a =

a0

γ3 . (3.151)
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Thus, we conclude that the particle’s instantaneous acceleration in a frame of reference in which it
has a finite speed is always less that that in its instantaneous rest frame.

Given that, by definition,
dv
dt

= a, (3.152)

the particle’s equation of motion in S , which is assumed to be an inertial frame, is

dv
dt

=
a0

γ3 = a0

(
1 − v

2

c2

)3/2

. (3.153)

If v = 0 at t = 0 then the previous equation can be integrated to give

v

(1 − v2/c2)1/2 = a0 t, (3.154)

or
v =

a0 t
(1 + a 2

0 t2/c2)1/2 . (3.155)

Thus, as seen by an observer at rest in frame S , our particle initially (i.e., for t � c/a0) accelerates
such that

v ' a0 t, (3.156)

in accordance with Newtonian dynamics. However, when the speed of the particle becomes com-
parable with the speed of light in vacuum, the linear increase in speed with time specified in the
previous equation breaks down, and, instead,

v→ c as t → ∞. (3.157)

Thus, despite the particle’s constant acceleration, a0, in its instantaneous rest frame, the particle
never appears to move faster than the speed of light to a stationary observer.

3.3.2 Relativistic Equation of Motion

Suppose that the particle discussed in the previous section has a mass m0 in its instantaneous rest
frame. Given that the particle’s acceleration in its instantaneous rest frame is a0 ex, the particle is
clearly subject to a force f = f ex, where

f = m0 a0. (3.158)

Thus, according to Equation (3.153), the particle’s equation of motion in an inertial reference frame
in which its instantaneous velocity is v = v ex is

dv
dt

=
f

m0

(
1 − v

2

c2

)3/2

(3.159)
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However, the previous equation can be rearranged to give

f =
d
dt

[
m0 v

(1 − v2/c2)1/2

]
=

d(γm0 v)
dt

. (3.160)

Let us define the relativistic mass of the particle as

m = γm0, (3.161)

and its relativistic momentum as
p = m v. (3.162)

Thus, Equation (3.160) implies that the relativistic equation of motion of the particle is

f =
dp
dt
, (3.163)

which is analogous in form to Newton’s second law of motion, (1.17). Thus, we conclude that the
reason that a particle of rest mass (i.e., mass in its instantaneous rest frame) m0, subject to a constant
force f, never achieves a speed greater than the speed of light is that the particle’s relativistic mass,
γm0, increases as it moves faster, and tends to infinity as its speed approaches the speed of light.

3.3.3 Work and Energy
Suppose that the force f = f ex, that acts on the particle discussed in the previous section, causes
the particle to displace a distance dr = dx ex. The net work done on the particle is clearly

dW = f · dr = f dx =
d(m v)

dt
dx = v d(m v), (3.164)

because, by definition, v = dx/dt. (See Section 1.3.2.) Here, use has been made of Equa-
tions (3.160) and (3.161). However,

m = γm0 =

(
1 − v

2

c2

)−1/2

m0, (3.165)

so

v = c
(

1 − m 2
0

m2

)1/2

. (3.166)

The previous equation can be combined with Equation (3.164) to give

dW = c2
(

1 − m 2
0

m2

)1/2

d

[
m
(

1 − m 2
0

m2

)1/2
]

= c2
(

1 − m 2
0

m2

)1/2

d
(√

m2 − m 2
0

)
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= c2
(

1 − m 2
0

m2

)1/2 m dm√
m2 − m 2

0

= c2 dm. (3.167)

Suppose that the particle is initially at rest, so that its initial relativistic mass is m0. Let the
force perform net work W on the particle, in the process causing its relativistic mass to increase to
m. It is clear from the previous equation that

W = (m − m0) c2. (3.168)

However, we know that the net work that a force does on a particle causes the particle’s kinetic
energy, K, to increase by a corresponding amount. (See Section 1.3.2.) Thus, given that the
particle’s initial kinetic energy is zero, we deduce that its kinetic energy is

K = (m − m0) c2 (3.169)

when its relativistic mass is m.
Equation (3.169) can be combined with Equation (3.165) to give

K = m0 c2

[(
1 − v

2

c2

)−1/2

− 1

]
. (3.170)

In the limit that the particle is moving at a non-relativistic speed, such that v/c � 1, the previous
equation reduces to

K ' m0 c2
[(

1 +
1
2
v2

c2 + · · ·
)
− 1
]
, (3.171)

or
K =

1
2

m0 v
2. (3.172)

This is consistent with the Newtonian definition of kinetic energy, as long as we identify the rest
mass of the particle with its mass in Newtonian dynamics. (See Section 1.3.2.)

3.3.4 Relativistic Energy
Equation (3.169) can be written

m c2 = K + m0 c2. (3.173)

Let us define the relativistic energy, E, of our particle as

E = m c2. (3.174)

The previous two equations suggest that the particle possesses two types of energy. First, the
particle possesses kinetic energy, K, by virtue of its motion. Second, the particle possesses rest
mass energy,

E0 =
1
2

m0 c2, (3.175)

by virtue of its rest mass. The conjecture that mass is a form of energy was first made by Einstein
in 1905. Incidentally, Equation (3.174) implies that conservation of energy in relativistic dynamics
is equivalent to conservation of relativistic mass.
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3.3.5 Relativistic Energy-Momentum Relation
According to Equations (3.162), (3.165), and (3.174), a particle of rest mass m0, moving at velocity
v, has a relativistic momentum

p =
m0 v√

1 − v2/c2
, (3.176)

and a relativistic energy

E =
m0 c2

√
1 − v2/c2

. (3.177)

Thus,
E2

c2 − |p|2 =
m2

0 c2

1 − v2/c2 −
m 2

0 c2 (v2/c2)
1 − v2/c2 = m 2

0 c2, (3.178)

which leads to the relativistic energy-momentum relation,

E2

c2 − |p|2 = m 2
0 c2. (3.179)

Now, given that the rest mass is independent of the particle’s motion (i.e., it is the same in all
inertial frames of reference), we deduce that E2/c2 − |p|2 takes the same value in all inertial frames
of reference.

3.3.6 Transformation of Energy and Momentum
Consider two inertial reference frames, S and S ′. Let S ′ move with velocity v = v ex, and be in a
standard configuration, with respect to S . Let p and E be some particle’s momentum and energy,
respectively, in S . Likewise, let p′ and E′ be the particle’s momentum and energy, respectively, in
S ′. We have seen that the transformation of spacetime coordinates, (3.110)–(3.113), implies that
the spacetime interval, (c∆t)2−|∆r|2, takes the same value in all inertial frames of reference. Given
that (E/c)2 − |p|2 also takes the same value in all inertial frames of reference, it seems reasonable
to assume, by analogy, that the components of p and E in our two inertial reference frames are
related as follows:

p′x = γ

(
p′ − v E

c2

)
, (3.180)

p′y = py, (3.181)

p′z = pz, (3.182)

E′ = γ (E − v px). (3.183)

We can easily test out the previous transformation rule. Suppose that the particle is at rest in S .
It follows that E = m0 c2 and px = py = pz = 0. Hence, Equations (3.180)–(3.183) yield

p′x = −γm0 v = −m v, (3.184)

p′y = 0, (3.185)
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Figure 3.12: Relativistic inelastic collision.

p′z = 0, (3.186)

E′ = γm0 c2 = m c2 (3.187)

in S ′. In other words, in the frame S ′, in which the particle moves with velocity −v, we have
p′ = −m v and E′ = m c2. Of course, these are the correct results. (See Sections 3.3.2 and 3.3.4.)

3.3.7 Relativistic Momentum Conservation
Given that energy and momentum are clearly very closely related concepts in relativistic dynamics,
we conjecture that conservation of energy also implies conservation of momentum.

Consider the situation illustrated in Figure 3.12. In the laboratory frame, a particle of rest mass
m0, moving with speed v, collides with another particle of rest mass m0 that is stationary. After the
collision, the two particles stick together, and the composite particle, whose relativistic mass is M,
moves off in the same direction as the originally moving particle at speed V . Now, the relativistic
mass of the originally moving particle is

m =
m0√

1 − v2/c2
. (3.188)

Thus, if mass/energy is conserved in the collision then the net relativistic mass before the collision
must match that after the collision. In other words,

m + m0 = M, (3.189)
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which implies that

M =

(
1 +

1√
1 − v2/c2

)
m0. (3.190)

On the other hand, if momentum is also conserved in the collision then the net relativistic momen-
tum before the collision must match that after the collision. In other words,

m v = M V, (3.191)

which yields
m0√

1 − v2/c2
=

(
1 +

1√
1 − v2/c2

)
m0 V, (3.192)

where use has been made of Equations (3.188) and (3.190). The previous equation implies that

V =
v

1 +
√

1 − v2/c2
, (3.193)

which can be rearranged to give

V =
v − V

1 − vV/c2 . (3.194)

However, there is another way of obtaining the previous equation. Let us transform to a frame
of reference that moves, with respect to the laboratory frame, with speed V parallel to the motion
of the original moving particle. The composite particle appears stationary in this reference frame.
Now, if momentum is conserved, then the new reference frame is the center-of-mass frame. (See
Section 1.6.1.) Consequently, our two particles must approach one another with equal and opposite
velocities, V , before the collision, as shown in the figure. However, when the transformation of
velocity, (3.122), is applied to the originally moving particle, we obtain

V =
v − V

1 − vV/c2 , (3.195)

which is identical to Equation (3.194). Note that we obtained Equation (3.194) from considera-
tions of energy and momentum conservation, whereas we obtained the previous equation from a
consideration of momentum conservation alone. Hence, we deduce that momentum conservation
in relativistic dynamics implies energy conservation, and vice versa.

3.3.8 Photons
The general energy-momentum relation, (3.179), implies that a particle with zero rest mass has the
simplified energy-momentum relation

E = p c. (3.196)

Consider a photon. The photoelectric effect demonstrates that the energy of a photon is related to
its angular frequency, ω, according to

E = ~ω, (3.197)
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where ~ is Planck’s constant divided by 2π. (See Section 4.1.2.) However, we also know that a
photon travels at the speed of light in all inertial reference frames. Thus, the relativistic energy,
(3.177), of a photon can only be finite if the photon is a massless particle. In other words, a
photon’s rest mass must be zero. Hence, the previous two equations suggest that the momentum
of a photon has the magnitude

p =
~ω

c
. (3.198)

But, the dispersion relation of electromagnetic radiation in a vacuum, and, hence, of a photon
moving through a vacuum, is

ω = k c. (3.199)

Here, k is the wavevector of the radiation, and, hence, of the photon. Note that the direction of k
corresponds to the direction of motion of the photon. It is, thus, plausible that the momentum of
our photon is written

p = ~k. (3.200)

Consider the two inertial reference frames, S and S ′, discussed in the Section 3.3.6. Let ω and
k be the angular frequency and wavevector, respectively, of our photon in S . Likewise, let ω′ and
k′ be the angular frequency and wavevector, respectively, of our photon in S ′. Equations (3.180)–
(3.183), (3.197), and (3.200) suggest that

k′x = γ
(

kx − v ωc2

)
, (3.201)

k′y = ky, (3.202)

k′z = kz, (3.203)

ω′ = γ (ω − v kx). (3.204)

3.3.9 Relativistic Doppler Effect
Consider the two inertial reference frames, S and S ′, discussed in Section 3.3.6. Suppose that we
place a radiation source at the origin of reference frame S . Let the source emit plane waves of
angular frequency ω that travel in the positive x-direction. It follows that the wavevector of the
radiation in S is k = (kx, 0, 0), where

ω = kx c. (3.205)

[See Equation (3.199).]
Consider an observer located at the origin of frame S ′. To this observer, the radiation source

appears to move at the speed v = −v ex. Let k′ = (k′x, 0, 0) and ω′ be the wavevector and angular
frequency of the radiation measured by our observer. It follows from Equations (3.201), (3.204),
and (3.205) that

k′x = γ
(

kx − v ωc2

)
= γ

(
1 − v

c

)
kx, (3.206)

ω′ = γ (ω − v kx) = γ
(

1 − v
c

)
ω. (3.207)
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Let f = ω/(2π) and λ = 2π/kx be the frequency (in hertz) and wavelength, respectively, of the
radiation emitted by the source in its rest frame, and let f ′ = ω′/(2π) and λ′ = 2π/k′x be the
frequency (in hertz) and wavelength, respectively, of the radiation measured by an observer in the
frame S ′, in which the source recedes directly away from the observer at the speed v. Given that
γ = (1 − v2/c2)−1/2, we deduce that

λ′ =

(
1 + v/c
1 − v/c

)1/2

λ, (3.208)

f ′ =

(
1 − v/c
1 + v/c

)1/2

f . (3.209)

It follows that if a radiation source recedes from an observer (or vice versa, because, in the absence
of a medium through which electromagnetic waves propagate, all motion of sources and observers
is relative) then the wavelength and frequency of the radiation measured by the observer will
be larger and smaller, respectively, than the corresponding values measured in the rest frame of
the source. This shift in the wavelength and frequency of electromagnetic radiation due to the
relative motion of the observer and source is known as the relativistic Doppler effect. [Note that
the non-relativistic Doppler effect for sound waves takes a different form to Equations (3.208) and
(3.209) because motion of the source and the observer can be distinguished from one another in
the presence of a medium though which the waves travel.]

By analogy with the previous two formulae, if the source moves directly toward the observer
with the speed v then

λ′ =

(
1 − v/c
1 + v/c

)1/2

λ, (3.210)

f ′ =

(
1 + v/c
1 − v/c

)1/2

f . (3.211)

In this case, the wavelength and frequency of the radiation measured by the observer are smaller
and larger, respectively, than the corresponding values measured in the rest frame of the source.
Thus, we can write the composite formulae

λ′ =

(
1 ± v/c
1 ∓ v/c

)1/2

λ, (3.212)

f ′ =

(
1 ∓ v/c
1 ± v/c

)1/2

f , (3.213)

where the upper/lower signs correspond to the source moving directly away from/toward the ob-
server (or vice versa).

3.3.10 Transverse Doppler Effect
Consider the situation illustrated in Figure 3.13. A radiation source that is located at the origin
of reference frame S emits electromagnetic radiation of angular frequency ω, whose direction
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Figure 3.13: Relativistic Doppler effect.

of propagation lies in the x-y plane and subtends an angle θ with the x-axis. It follows that the
wavevector of the radiation has the non-zero components

kx =
ω

c
cos θ, (3.214)

ky =
ω

c
sin θ. (3.215)

Suppose that the radiation is observed in a frame S ′ that moves with velocity v = v ex, and is in a
standard configuration, with respect to S . In S ′, let ω′ be the angular frequency of the radiation,
and let θ′ be the angle subtended by its direction of propagation and the x′-axis. It follows that, in
S ′, the wavevector of the radiation has the non-zero components

k′x =
ω′

c
cos θ′, (3.216)

k′y =
ω′

c
sin θ′. (3.217)

The previous four equations can be combined with Equations (3.201)–(3.204) to give

ω′ cos θ′ = γ
(

cos θ − v
c

)
ω, (3.218)

ω′ sin θ′ = ω sin θ, (3.219)

ω′ = γ
(

1 − v
c

cos θ
)
ω. (3.220)

Given that ω ∝ f , we deduce that

f ′ = γ
(

1 − v
c

cos θ
)

f , (3.221)
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which is the generalization of formula (3.209) to the case where the radiation is not propagating
parallel to the relative velocity of the source and the observer. In particular, if θ = π/2, so that the
radiation is propagating in a direction that is perpendicular to the relative velocity of the source
and the observer, then

f ′ = γ f . (3.222)

In other words, in this case, the observer always measures an increased frequency of the radiation,
relative to the frequency measured in the rest frame of the source. This effect is known as the
transverse Doppler effect, and is a purely relativistic effect (i.e., it has no concomitant in Newtonian
dynamics). The transverse Doppler effect was experimentally verified by Ives and Stilwell in 1938.

Finally, Equations (3.218) and (3.219) can be combined to give

tan θ′ =
sin θ

γ (cos θ + v/c)
. (3.223)

However, this formula is identical to the relativistic aberration formulae, (3.131), that we derived
previously.

3.3.11 Compton Scattering
Compton scattering occurs when X-rays scatter off electrons in ordinary matter. The result is an
increase in the wavelength of the scattered X-rays. This increase is inexplicable within the context
of classical physics, which predicts that radiation that scatters off a stationary target should suffer
no change in wavelength. In fact, as we shall explain, this effect can be explained in terms of the
scattering of individual X-ray photons by individual electrons.

Consider the situation, illustrated in Figure 3.14, in which an X-ray photon of momentum pγ
collides with a stationary electron of rest mass me. After the collision, the momentum of the photon
is p′γ, and the recoil momentum of the electron is p′e. Conservation of momentum in the collision
requires that

pγ = p′γ + p′e. (3.224)
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However, we know that

pγ = ~k, (3.225)

p′γ = ~k′, (3.226)

p′e = γme v, (3.227)

where k and k′ are the photon’s initial and final wavevector, respectively, v is the electron’s recoil
speed, and γ = (1 − v2/c2)−1/2. [See Equations (3.162) and (3.200).] Thus, we obtain

k − k′ =
me c
~

γ
v

c
. (3.228)

The previous equation yields

|k − k′|2 =
(me c
~

)2
γ2 v

2

c2 =
(me c
~

)2 (
γ2 − 1

)
, (3.229)

or
k2 − 2 k k′ cos θ + k′ 2 =

(me c
~

)2 (
γ2 − 1

)
. (3.230)

Here, θ is the angle through which the photon is scattered (i.e., the angle subtended between k and
k′). See Figure 3.14.

Let Eγ, E′γ, Ee, and E′e be the initial photon energy, the final photon energy, the initial electron
energy, and the final electron energy, respectively. Energy conservation in the collision requires
that

Eγ + Ee = E′γ + E′e. (3.231)

However, we know that

Eγ = ~ c k, (3.232)

E′γ = ~ c k′, (3.233)

Ee = me c2, (3.234)

E′e = γme c2. (3.235)

[See Equations (3.174), (3.197), and (3.199).] Hence, we get

γ =
k − k′ + me c/~

me c/~
. (3.236)

Equations (3.230) and (3.236) can be combined to give

k2 − 2 k k′ cos θ + k′ 2 =
(

k − k′ +
me c
~

)2
−
(me c
~

)2
, (3.237)

or
k2 − 2 k k′ cos θ + k′ 2 = k2 − 2 k k′ + k′ 2 + 2 (k − k′)

me c
~
, (3.238)
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Figure 3.15: Pair creation.

which can be rearranged to produce

1
k′
− 1

k
=
~

me c
(1 − cos θ). (3.239)

Finally, if λ = 2π/k and λ′ = 2π/k′ are the initial and final wavelengths of the photon then we
obtain

λ′ − λ =
h

me c
(1 − cos θ). (3.240)

The previous equation relates the increase in wavelength of the scattered photon to its scattering
angle in a simple manner. Here, h/(me c) = 2.43 × 10−12 m is known as the Compton wavelength
of the electron. The previous formula was verified experimentally by Arthur Compton in 1923.

3.3.12 Relativistic Inelastic Scattering
Finally, consider the situation, illustrated in Figure 3.15, in which a moving proton collides with a
stationary proton, and a proton/anti-proton pair is created during the collision. We wish to deter-
mine the minimum energy of the incident proton required to create the pair. Let mp be the proton
rest mass. As is clear from the figure, in the center of mass frame, the minimum energy state corre-
sponds to the case in which the particles are all at rest after the collision. (Additional energy would
just causes the particles to move away from one another, in this frame, after the collision.) Thus,
in the laboratory frame, the particles must all move with a common velocity after the collision.
However, given that the particles all have the same mass, each particle in the laboratory frame
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must have momentum P/4, after the collision, where P is the total momentum of the system, and
must have energy E/4, where E is the total energy of the system. Thus, the energy-momentum
relation [see Equation (3.179)] for one of the particles after the collision yields(

E
4

)2

= m 2
p c4 +

(
P c
4

)2

, (3.241)

or
E2 = 16 m 2

p c4 + P2 c2. (3.242)

Let E0 be the initial laboratory-frame energy of the moving proton before the collision. Energy
conservation requires that

E0 + mp c2 = E. (3.243)

The previous two equations can be combined to give

(E0 + mp c2)2 = 16 m 2
p c4 + P 2 c2, (3.244)

or
E 2

0 + 2 E0 mp c2 = 15 m 2
p c4 + P 2 c2. (3.245)

However, the initial momentum of the moving proton in the laboratory frame is P (because the
proton possesses all of the system’s initial momentum, and the total momentum must be the same
before and after the collision). Hence, the moving proton’s initial energy-momentum relation [see
Equation (3.179)] is

E 2
0 = m 2

p c4 + P 2 c2. (3.246)

The previous two equations yield

2 E0 mp c2 = 14 m 2
p c4, (3.247)

or
E0 = 7 mp c2. (3.248)

Thus, the minimum kinetic energy of the incident proton required to generate a proton/anti-proton
pair is 6 times its rest mass energy. This corresponds to a Lorentz factor of 7, which implies a
speed of about 99% of the speed of light in vacuum.

3.4 Relativity and Electromagnetism

3.4.1 Transformation of Electromagnetic Fields
In this section, we shall investigate how electromagnetic fields transform when viewed in different
inertial frames of reference. Our investigation is premised on two assumptions. First, Maxwell’s
equations (see Section 2.4.2) take equivalent forms in all inertial frames of reference. Of course,
this is just a special case of the equivalence principle discussed in Section 3.2.1. Second, the
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Figure 3.16: Parallel plate capacitor.

electric charge of an elementary particle is the same in all inertial reference frames. Our second
assumption is an experimentally verifiable fact.

Consider three inertial reference frames, S 0, S , and S ′, that are all in standard configurations
with respect to one another. (See Section 3.2.6.) Let frame S move parallel to the x-axis at speed
v0 with respect to frame S 0. Let frame S ′ move parallel to the x-axis at speed v′ with respect to
frame S 0, and with speed vwith respect to frame S . See Figure 3.16. It follows from the relativistic
transformation of velocity (see Section 3.2.9) that

v′ =
v0 + v

1 + v0 v/c2 . (3.249)

Let us define the Lorentz factors

γ0 =

(
1 − v

2
0

c2

)−1/2

, (3.250)

γ =

(
1 − v

2

c2

)−1/2

, (3.251)

γ′ =

(
1 − v

′ 2

c2

)−1/2

. (3.252)

The previous four equations yield

γ′ =

[
1 − 1

c2

(
v0 + v

1 + v0 v/c2

)2
]−1/2

=
(

1 +
v0 v

c2

)[(
1 +

v0 v

c2

)2
−
(v0

c
+
v

c

)2
]−1/2

=
(

1 +
v0 v

c2

)(
1 − v

2
0

c2 −
v2

c2 +
v 2

0 v
2

c4

)−1/2
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=
(

1 +
v0 v

c2

)(
1 − v

2
0

c2

)−1/2(
1 − v

2

c2

)−1/2

= γ0 γ
(

1 +
v0 v

c2

)
. (3.253)

Suppose that frame S 0 contains a parallel plate capacitor that is at rest. Let the capacitor plates
be parallel to the x-z plane. Furthermore, let the lower (in y) plate have the uniform electric charge
density σ0, and let the upper plate have the uniform charge density −σ0. See Figure 3.16. In frame
S , the capacitor plates appear to move in the −x-direction with speed v0. Thus, the lengths of the
plates (in the x-direction) are contracted by a factor γ0, whereas the widths of the plates (in the
z-direction) are unchanged. (See Section 3.2.7.) Moreover, according to our second assumption,
the net electric charges on the two capacitor plates in frame S are the same as those in frame S 0. It
follows that, in frame S , the charge densities on the two plates are ±σ, where

σ = γ0 σ0. (3.254)

Analogous reasoning reveals that the charge densities on the two capacitor plates in frame S ′ are
±σ′, where

σ′ = γ′ σ0. (3.255)

All of the electric charges in frame S 0 are stationary, so the associated current density is zero.
However, in frames S and S ′, the charges on the capacitor plates appear to move in the −x-direction
with speeds v0 and v′, respectively. Thus, in frame S , the current per unit width (in the z-direction)
flowing on the lower (in y) capacitor plate takes the form J = Jx ex, where

Jx = −σ v0 = −γ0 v0 σ0. (3.256)

There is an equal and opposite current per unit width flowing on the upper plate. Likewise, in
frame S ′, the current per unit width flowing on the lower plate takes the form J′ = J′x ex, where

J′x = −σ′ v′ = −γ′ v′ σ0. (3.257)

Again, there is an equal and opposite current per unit width flowing on the upper plate.
The integral form of the Maxwell equation (2.484) is∮

S
E · dS =

1
ε0

∫
V
ρ dV, (3.258)

where S is some surface enclosing a volume V , and where use has been made of the divergence
theorem. (See Section A.20.) As described in Sections 2.1.12 and 2.1.13, if the previous equation
is applied to a Gaussian pill-box in frame S that encloses one or other of the capacitor plates, and
co-moves with the plates, then it is easily demonstrated that the electric field in the region between
the plates is uniform, taking the form E = Ey ey, where

Ey =
σ

ε0
= γ0

σ0

ε0
. (3.259)
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Note, incidentally, that there is nothing in Equation (3.258) that precludes volume V from being a
moving volume. Analogous reasoning reveals that the electric field between the capacitor plates in
frame S ′ is uniform, taking the value E′ = E′y ey, where

E′y =
σ′

ε0
= γ′

σ0

ε0
. (3.260)

The integral form of the Maxwell equation (2.487) is∮
C

B · dr =

∫
S

(
µ0 j + ε0 µ0

∂E
∂t

)
· dS, (3.261)

where S is a surface bounded by a loop C, and where use has been made of the curl theorem. (See
Section A.22.) However, the electric field between the capacitor plates is constant in time in all
three of our reference frames, so the previous equation simplifies to give∮

C
B · dr = µ0

∫
S

j · dS, (3.262)

If the previous equation is applied to an Ampèrian loop in the y-z plane of frame S that straddles
one or other of the capacitor plates, and co-moves with the plates, then it is easily demonstrated
that the magnetic field in the region between the plates is uniform, taking the form B = Bz ez, where

Bz = µ0 Jx = −γ0 v0 µ0 σ0. (3.263)

Again, there is nothing in Equation (3.262) that prohibits surface S from being a moving surface.
Likewise, in frame S ′, the magnetic field between the plates is uniform, taking the form B = Bz ez,
where

B′z = µ0 J′x = −γ′ v′ µ0 σ0. (3.264)

According to Equations (3.253), (3.259), (3.260), and (3.263),

E′y = γ0 γ
(

1 +
v0 v

c2

) σ0

ε0

= γ

(
γ0
σ0

ε0
+ v γ0 v0 µ0 σ0

)
= γ (Ey − v Bz), (3.265)

where use has been made of c = 1/
√
ε0 µ0. Likewise, Equation (3.249), (3.253), (3.259), (3.263),

and (3.264) yield

B′z = −γ0 γ
(

1 +
v0 v

c2

)( v0 + v

1 + v0 v/c2

)
µ0 σ0

= γ

(
−γ0 v0 µ0 σ0 − v

c2 γ0
σ0

ε0

)
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Figure 3.17: Parallel plate capacitor.

= γ
(

Bz − v

c2 Ey

)
. (3.266)

If we repeat the previous exercise with capacitor plates that are parallel to the x-y plane, instead
of the x-z plane, then it is easily demonstrated that

E′z = γ (Ez + v By), (3.267)

B′y = γ
(

By +
v

c2 Ez

)
. (3.268)

In order to determine the transformation rule for Ex, consider the situation shown in Fig-
ure 3.17. Here, a parallel plate capacitor is stationary in frame S , and is aligned such that its
plates are parallel to the y-z plane. Frame S ′ is in a standard configuration, and moves with ve-
locity v = v ex, with respect to frame S . The cross-sectional areas of the plates are the same in
reference frames S and S ′. (See Section 3.2.7.) Furthermore, the electric charges on the plates are
identical in both frames. Hence, we deduce that the electric charge densities on the plates are the
same in the two reference frames. In other words,

σ′ = σ. (3.269)

Now, the parallel distance between the two plates is contracted by a factor γ in frame S ′, compared
to frame S . However, the electric field generated between the capacitor plates only depends on
the charge density residing on the plates, and is independent of the inter-plate spacing. In fact, the
electric fields in frames S and S ′ are E = Ex ex and E′ = E′x ex, respectively, where

Ex =
σ

ε0
, (3.270)

E′x =
σ′

ε0
. (3.271)

Hence, we deduce from the previous three equations that

E′x = Ex. (3.272)
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In order to determine the transformation for Bx, consider a long, thin, solenoid whose axis runs
parallel to the x-direction. Let the solenoid have N turns per unit length, and carry a current I, in
frame S , and let the solenoid have N′ turns per unit length, and carry a current I′, in frame S ′.
Frame S ′ is in a standard configuration, and moves with velocity v = v ex, with respect to frame S .
Because of relativistic length contraction (see Section 3.2.4),

N′ = γ N. (3.273)

On the other hand, because current is electric charge per unit time, and electric charge is invariant
between different inertial frames, whereas time is dilated in frame S ′, relative to frame S , we have

I′ =
I
γ
. (3.274)

According to Section 2.2.11, the magnetic fields generated inside the solenoid in frames S and S ′

are B = Bx ex and B′ = B′x ex, respectively, where

Bx = µ0 N I, (3.275)

B′x = µ0 N′ I′. (3.276)

The previous four equations imply that
B′x = Bx. (3.277)

Thus, we can now state the complete set of transformation laws for the components of the
electric and magnetic field between an inertial reference frame S , and a second inertial reference
frame, S ′, that is in a standard configuration, and moves at velocity v = v ex, with respect to the
first. The transformation laws are as follows:

E′x = Ex, (3.278)

E′y = γ (Ey − v Bz), (3.279)

E′z = γ (Ez + v By), (3.280)

and

B′x = Bx, (3.281)

B′y = γ
(

By +
v

c2 Ez

)
, (3.282)

B′z = γ
(

Bz − v

c2 Ey

)
. (3.283)

Here, γ = (1 − v2/c2)−1/2.
It is easily demonstrated from the transformation rules (3.278)–(3.283) that

E′ · B′ = E · B, (3.284)

E′ 2 − c2 B′ 2 = E 2 − c2 B2. (3.285)

Thus, if electric and magnetic fields in one inertial frame of reference are in the configuration of
an electromagnetic wave traveling through a vacuum—in other words, if E · B = 0 and E = c B
(see Section 2.4.4)—then they are in this configuration in all inertial frames of reference.
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3.4.2 Electromagnetic Fields of a Moving Charge
Consider an electric charge, q, that is at rest at the origin of an inertial reference frame S ′. The
electric and magnetic fields generated by the charge at displacement r′ in frame S ′ are

E′ =
q

4π ε0

r′

r′ 3
, (3.286)

B′ = 0, (3.287)

respectively. (See Sections 2.1.2 and 2.2.7.) Thus,

E′x =
q

4π ε0

x′

(x′ 2 + y′ 2 + z′ 2)3/2 , (3.288)

E′y =
q

4π ε0

y′

(x′ 2 + y′ 2 + z′ 2)3/2 , (3.289)

E′z =
q

4π ε0

z′

(x′ 2 + y′ 2 + z′ 2)3/2 , (3.290)

B′x = B′y = B′z = 0. (3.291)

Let us transform to an inertial reference frame, S , that is in a standard configuration, and moves
with velocity −v ex, with respect to frame S ′. Thus, in frame S , the charge appears to move with
velocity v = v ex. Making use of the field transformation relations, (3.278)–(3.283), with primed
and unprimed fields swapped, and v→ −v, we obtain

Ex = E′x =
q

4π ε0

x′

(x′ 2 + y′ 2 + z′ 2)3/2 , (3.292)

Ey = γ (E′y + v B′z) =
q

4π ε0

γ y′

(x′ 2 + y′ 2 + z′ 2)3/2 , (3.293)

Ez = γ (E′z − v B′y) =
q

4π ε0

γ z′

(x′ 2 + y′ 2 + z′ 2)3/2 , (3.294)

Bx = B′x = 0, (3.295)

By = γ
(

B′y −
v

c2 E′z
)

=
q

4π ε0

γ z′

(x′ 2 + y′ 2 + z′ 2)3/2

(
− v

c2

)
, (3.296)

Bz = γ
(

B′z +
v

c2 E′y
)

=
q

4π ε0

γ y′

(x′ 2 + y′ 2 + z′ 2)3/2

(
+
v

c2

)
. (3.297)

Consider the electric and magnetic fields generated by the charge at some point P in frame S
whose displacement is r = (x, y, z). See Figure 3.18. The displacement of the charge in frame S is
r′ = (v t, 0, 0). Let

s = r − r′ = (x − v t, y, z) (3.298)

be a vector that is directed from the instantaneous position of the charge in frame S to point P. A
Lorentz transformation (see Section 3.2.7) between frames S and S ′ reveals that

x′ = γ (x − v t) = γsx, (3.299)
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Figure 3.18: Observing the field of a moving charge.

y′ = y = sy, (3.300)

z′ = z = sz. (3.301)

Let us write

sx = s cos θ, (3.302)

sy = s sin θ cosϕ, (3.303)

sz = s sin θ sinϕ, (3.304)

where θ is the angle subtended between s and v, and ϕ is an azimuthal angle. See Figure 3.18. It is
easily demonstrated from the previous six equations that

x′ 2 + y′ 2 + z′ 2 = γ2 s 2
x + s 2

y + s 2
z

=
(
γ2 cos2 θ + sin2 θ

)
s2 =

[
(γ2 − 1) cos2 θ + 1

]
s2

=

(
γ2 v 2

r

c2 + 1
)

s2, (3.305)

where vr = v cos θ is the component of v that is directed from the instantaneous position of the
charge to the point P. Thus, making use of Equations (3.292)–(3.297) and Equations (3.299)–
(3.301), we obtain

Ex =
q

4π ε0

γ

(1 + γ2 v 2
r /c2)3/2

sx

s3 , (3.306)

Ey =
q

4π ε0

γ

(1 + γ2 v 2
r /c2)3/2

sy
s3 , (3.307)

Ez =
q

4π ε0

γ

(1 + γ2 v 2
r /c2)3/2

sz

s3 , (3.308)
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v

Figure 3.19: Electric field-lines of a stationary (left) and a moving (right) electric charge.

Bx = 0, (3.309)

By =
q

4π ε0

γ

(1 + γ2 v 2
r /c2)3/2

sz

s3

(
− v

c2

)
, (3.310)

Bz =
q

4π ε0

γ

(1 + γ2 v 2
r /c2)3/2

sy
s3

(
+
v

c2

)
. (3.311)

Note that the electric field-lines generated by a moving electric charge are straight-lines that are
directed from the instantaneous position of the charge to the point of observation. At low velocities
(i.e., v � c), the field-lines are equally spaced around the charge. However, as v → c, the field-
lines become increasingly bunched in the plane transverse to the charge’s direction of motion that
passes through the charge. This is illustrated schematically in Figure 3.19. The magnetic field
generated by a moving charge is

B =
v × E

c2 , (3.312)

where v is the charge’s velocity, and E is the electric field generated by the charge.
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Chapter 4

Quantum Mechanics

4.1 Experimental Basis of Quantum Mechanics

4.1.1 Wave-Particle Duality
According to classical physics (i.e., physics prior to the 20th century), particles and waves are dis-
tinct classes of physical entities that possess markedly different properties. For instance, particles
are discrete, which implies that they cannot be arbitrarily divided. In other words, it makes sense to
talk about one electron, or two electrons, but not about a third of an electron. Waves, on the other
hand, are continuous, which implies that they can be arbitrarily divided. In other words, given
a wave whose amplitude has a certain value, it makes sense to talk about a similar wave whose
amplitude is one third, or any other fraction whatsoever, of this value. Particles are also highly
localized in space. For example, atomic nuclei have very small radii of order 10−15 m, whereas
electrons act like point particles (i.e., they have no discernible spatial extent). Waves, on the other
hand, are non-localized in space. In fact, a wave is defined as a disturbance that is periodic in
space, with some finite periodicity length (i.e., wavelength). Hence, it is fairly meaningless to talk
about a disturbance being a wave unless it extends over a region of space that is at least a few
wavelengths in size.

The classical scenario, just described, in which particles and waves are distinct phenomena, had
to be significantly modified in the early decades of the 20th century. During this time period, physi-
cists discovered, much to their surprise, that, under certain circumstances, waves act as particles,
and particles act as waves. This bizarre behavior is known as wave-particle duality. For instance,
the photoelectric effect (see Section 4.1.2) shows that electromagnetic waves sometimes act like
swarms of massless particles called photons. Moreover, the phenomenon of electron diffraction by
atomic lattices (see Section 4.1.6) implies that electrons sometimes possess wave-like properties.

Wave-particle duality usually only manifests itself on atomic and sub-atomic lengthscales (i.e.,
on lengthscales less than, or of order, 10−10 m; see Section 4.1.6.) The classical picture remains
valid on significantly longer lengthscales. Thus, on macroscopic lengthscales, waves only act
like waves, particles only act like particles, and there is no wave-particle duality. However, on
atomic lengthscales, classical mechanics, which governs the macroscopic behavior of massive par-
ticles, and classical electrodynamics, which governs the macroscopic behavior of electromagnetic

255
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fields—neither of which take wave-particle duality into account—must be replaced by new the-
ories. The theories in question are called quantum mechanics and quantum electrodynamics, re-
spectively. In this section, we shall discuss a simple version of quantum mechanics in which the
microscopic dynamics of massive particles (i.e., particles with finite mass) is described entirely in
terms of wavefunctions. This particular version of quantum mechanics is known as wave mechan-
ics. But, first, let us discuss the experimental evidence for wave-particle duality in more detail.

4.1.2 Photoelectric Effect
The so-called photoelectric effect, by which a polished metal surface emits electrons when illumi-
nated by visible or ultra-violet light, was discovered by Heinrich Hertz in 1887. The following facts
regarding this effect can be established via careful observation. First, a given surface only emits
electrons when the frequency of the light with which it is illuminated exceeds a certain threshold
value that is a property of the metal. Second, the current of photoelectrons, when it exists, is pro-
portional to the intensity of the light falling on the surface. Third, the energy of the photoelectrons
is independent of the light intensity, but varies linearly with the light frequency. These facts are
inexplicable within the framework of classical physics.

In 1905, Albert Einstein proposed a radical new theory of light in order to account for the
photoelectric effect. According to this theory, light of fixed angular frequency ω consists of a
collection of indivisible discrete packages, called quanta,1 whose energy is

E = ~ω. (4.1)

Here,
~ = 1.055 × 10−34 J s (4.2)

is a new constant of nature, known as Planck’s constant. (Strictly speaking, it is Planck’s constant,
h, divided by 2π.) Incidentally, ~ is called Planck’s constant, rather than Einstein’s constant, be-
cause Max Planck first introduced the concept of the quantization of light, in 1900, while trying to
account for the electromagnetic spectrum of a black body (i.e., a perfect emitter and absorber of
electromagnetic radiation). (See Section 5.6.2.)

Suppose that the electrons at the surface of a piece of metal lie in a potential well of depth
W. In other words, the electrons have to acquire an energy W in order to be emitted from the
surface. Here, W is generally called the workfunction of the surface, and is a property of the metal.
Suppose that an electron absorbs a single quantum of light, otherwise known as a photon. Its
energy therefore increases by ~ω. If ~ω is greater than W then the electron is emitted from the
surface with the residual kinetic energy

K = ~ω −W. (4.3)

Otherwise, the electron remains trapped in the potential well, and is not emitted. Here, we are
assuming that the probability of an electron absorbing two or more photons is negligibly small
compared to the probability of it absorbing a single photon (as is, indeed, the case for relatively

1Plural of quantum: Latin neuter of quantus: how much?
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Figure 4.1: Variation of the kinetic energy, K, of photoelectrons with the wave angular frequency,
ω.

low intensity illumination). Incidentally, we can determine Planck’s constant, as well as the work-
function of the metal, by plotting the kinetic energy of the emitted photoelectrons as a function
of the wave frequency, as shown in Figure 4.1. This plot is a straight line whose slope is ~, and
whose intercept with the ω axis is W/~. Finally, the number of emitted electrons increases with
the intensity of the light because, the more intense the light, the larger the flux of photons onto
the surface. Thus, Einstein’s quantum theory of light is capable of accounting for all three of the
previously mentioned observational facts regarding the photoelectric effect.

Of course, an electromagnetic wave of angular frequency ω propagates though a vacuum at
the speed of light in vacuum, c. However, if such a wave actually consists of a swarm of photons
then it seems reasonable to suppose that these photons also move through a vacuum at the speed
c. As discussed in Section 3.3.8, if photons move at the speed c then Einstein’s special theory of
relativity demands that they be massless particles with momenta

p = ~k, (4.4)

where k is the wavenumber of the associated electromagnetic wave.

4.1.3 Compton Scattering

As described in Section 3.3.11, formulae (4.1) and (4.4) for the energy and momentum, respec-
tively, of a photon were directly verified experimentally when the phenomenon of Compton scat-
tering was discovered in 1923.
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4.1.4 Photon Polarization

In 1924, Frank Bubb discovered that if plane-polarized light is used to eject photo-electrons then
there is a preferred direction of emission of the electrons. Clearly, the polarization properties
of light, which are usually associated with its wave-like behavior, also extend to its particle-like
behavior. In particular, a polarization can be ascribed to each individual photon in a beam of light.

Consider the following well-known experiment. A beam of plane polarized light is passed
through a thin polarizing film whose plane is normal to the beam’s direction of propagation, and
which has the property that it is only transparent to light whose direction of polarization lies per-
pendicular to its optic axis (which is assumed to lie in the plane of the film). Classical electromag-
netic wave theory tells us that if the beam is polarized perpendicular to the optic axis then all of
the light is transmitted, if the beam is polarized parallel to the optic axis then none of the light is
transmitted, and if the light is polarized at an angle α to the axis then a fraction sin2 α of the beam
energy is transmitted; the latter result is known as Malus’s law, after Étienne-Louis Malus who
discovered it in 1808. Let us try to account for these observations at the individual photon level.

A beam of light that is plane polarized in a certain direction is presumably made up of a stream
of photons that are each plane polarized in that direction. This picture leads to no difficulty if the
direction of polarization lies parallel or perpendicular to the optic axis of the polarizing film. In
the former case, none of the photons are transmitted, and, in the latter case, all of the photons are
transmitted. But, what happens in the case of an obliquely polarized incident beam?

The previous question is not very precise. Let us reformulate it as a question relating to the
result of some experiment that we could perform. Suppose that we were to fire a single photon at
a polarizing film, and then look to see whether or not it emerges on the other side. The possible
results of the experiment are that either a whole photon (whose energy is equal to the energy of
the incident photon) is observed, or no photon is observed. Any photon that is transmitted though
the film must be polarized perpendicular to the film’s optic axis. Furthermore, it is impossible
to imagine (in physics) finding part of a photon on the other side of the film. If we repeat the
experiment a great number of times then, on average, a fraction sin2 α of the photons are transmitted
through the film, and a fraction cos2 α are absorbed. Thus, given that the trials are statistically
independent of one another, we must conclude that an individual photon has a probability sin2 α
of being transmitted as a photon polarized in the plane perpendicular to the optic axis, and a
probability cos2 α of being absorbed. These values for the probabilities lead to the correct classical
limit for a beam containing a large number of photons.

Note that we have only been able to preserve the individuality of photons, in all cases, by aban-
doning the determinacy of classical theory, and adopting a fundamentally probabilistic approach.
We have no way of knowing whether a given obliquely-polarized photon is going to be absorbed by,
or transmitted through, the polarizing film. We only know the probability of each event occurring.
This is a fairly sweeping statement. Recall, however, that the state of a photon is fully specified
once its energy, direction of propagation, and polarization are known. If we imagine performing
experiments using monochromatic light, normally incident on a polarizing film, with a particular
oblique polarization, then the state of each individual photon in the beam is completely specified,
and nothing remains to uniquely determine whether the photon is transmitted or absorbed by the
film.
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The previous discussion about the possible results of an experiment with a single obliquely
polarized photon incident on a polarizing film answers all that can be legitimately asked about
what happens to the photon when it reaches the film. Questions as to what determines whether
the photon is transmitted or not, or how it changes its direction of polarization, are illegitimate,
because they do not relate to the outcome of a possible experiment. Nevertheless, some further
description is needed, in order to allow the results of this experiment to be correlated with the
results of other experiments that can be performed using photons.

The further description provided by quantum mechanics is as follows. It is supposed that a
photon polarized obliquely to the optic axis can be regarded as being partly in a state of polariza-
tion parallel to the axis, and partly in a state of polarization perpendicular to the axis. In other
words, the oblique polarization state is some sort of superposition of two states of parallel and
perpendicular polarization. Because there is nothing special about the orientation of the optic axis
in our experiment, we deduce that any photon polarization state can be regarded as a superposition
of two mutually perpendicular polarization states. (Recall, from Section 2.4.4, that there are only
two independent polarizations of an electromagnetic wave.) When we cause a photon to encounter
a polarizing film, we are subjecting it to an observation. In fact, we are observing whether it is
polarized parallel or perpendicular to the film’s optic axis. The effect of making this observation is
to force the photon entirely into a state of parallel or perpendicular polarization. In other words, the
photon has to jump suddenly from being partly in each of these two states to being entirely in one
or the other of them. Which of the two states it will jump into cannot be predicted, but is governed
by probability laws. If the photon jumps into a state of parallel polarization then it is absorbed.
Otherwise, it is transmitted. Note that, in this example, the introduction of indeterminacy into the
problem is clearly connected with the act of observation. In other words, the indeterminacy is
related to the inevitable disturbance of the system associated with the act of observation.

4.1.5 Double-Slit Interference of Light
As was first described by Thomas Young in 1801, if a monochromatic light source illuminates a
plate pierced by two parallel slits, and the light passing through the slits is observed on a screen
located behind the plate, then bright and dark bands appear on the screen. This experiment is
usually thought of as a demonstration that light is a wavelike phenomenon. In fact, the conventional
explanation is that incident light waves pass through both slits, and then travel slightly different
distances to a given point on the screen, where they interfere with one another to produce a bright
band if the path difference is an integer multiple of a wavelength, and a dark band if the path
difference is a half-integer multiple of a wavelength.

How do we account for double-slit interference at the individual photon level? In fact, in 1909,
Geoffrey I. Taylor showed that an interference pattern is generated in a double-slit experiment even
when the incident light intensity is so low that only a single photon could be in the apparatus at a
given time. The only way in which to account for this result is to assume that an individual photon
incident on the apparatus passes though both slits, and then interferes with itself when it reaches the
screen. In other words, a photon in the apparatus is partly in a state in which it passed through one
slit, and partly in a state in which it passed through the other. Moreover, the interference between
these two states at the screen can only determine the probability of the photon being observed at a
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given point on the screen.

4.1.6 Electron Diffraction
In 1927, George P. Thomson discovered that if a beam of electrons is made to pass through a
thin gold foil then the regular atomic array in the foil acts as a sort of diffraction grating, so that,
when a photographic film placed behind the foil is developed, an interference pattern is discernible.
Independently, Clinton Davisson and Lester Germer found that electrons scattered by the surface
of a nickel metal crystal display a diffraction pattern. Both these experimental results imply that
electrons have wave-like properties. The electron wavelength, λ, or, alternatively, the wavenumber,
k = 2π/λ, can be deduced from the spacing of the maxima in the interference pattern. Thomson,
Davisson, and Germer found that the momentum, p, of an electron is related to its wavevector, k,
according to the following simple relation:

p = ~k. (4.5)

The associated wavelength, λ = 2π/k, is known as the de Broglie wavelength, because the previous
relation was first hypothesized by Louis de Broglie in 1926. (See Section 4.1.9.)

It turns out that wave-particle duality only manifests itself on lengthscales less than, or of
order, the de Broglie wavelength. Under normal circumstances, this wavelength is fairly small.
For instance, the de Broglie wavelength of an electron is

λe = 1.2 × 10−9 [E(eV)]−1/2 m, (4.6)

where the electron energy is conveniently measured in units of electron-volts (eV). (An electron
accelerated from rest through a potential difference of 1000 V acquires an energy of 1000 eV, and
so on. Electrons in atoms typically have energies in the range 10 to 100 eV.)

4.1.7 Helium Diffraction
In 1930, Immanuel Estermann and Otto Stern obtained a diffraction pattern from a beam of room
temperature helium atoms scattered off a lithium fluoride crystal. Estermann and Stern were able
to demonstrate that Equation (4.5) applies to helium atoms—and, by implication, to protons and
neutrons—as well as to electrons. The de Broglie wavelength of a proton is

λp = 2.9 × 10−11 [E(eV)]−1/2 m. (4.7)

4.1.8 Two-Source Particle Interference
In 1961, Claus Jönsson performed a double-slit experiment with electrons and obtained the ex-
pected interference pattern. In 1974, Pier G. Merli, Gian F. Missiroli, and Giulio Pozzi performed
a more advanced double-slit experiment with electrons, in which only one electron was in the ap-
paratus at a given time, and also obtained the expected interference pattern. These experiments
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demonstrate that the behavior of electrons in double-slit experiments is analogous to those of pho-
tons described in Section 4.1.5. The only way in which to account for the results of the Merli-
Missiroli-Pozzi experiment is to assume that an individual electron incident on a double-slit appa-
ratus passes though both slits, and then interferes with itself when it reaches the detection screen.
In other words, an electron in the apparatus is partly in a state in which it passed through one slit,
and partly in a state in which it passed through the other. Moreover, the interference between these
two states at the screen can only determine the probability of the electron being observed at a given
point on the screen.

4.1.9 de Broglie’s Hypothesis
In 1926, Louis de Broglie hypothesized that massive particles have wave-like properties, and that
the angular frequency, ω, and wavenumber, k, of a particle wave is related to the energy, E, and
momentum, p, of its constituent particles according to

E = ~ω, (4.8)

p = ~k. (4.9)

Obviously, these relations are the same as the relations between the angular frequency and wave-
number of an electromagnetic wave and the energy and momentum of its constituent photons. (See
Section 4.1.2.) As discussed in Sections 4.1.6 and 4.1.7, relation (4.9) can be verified experimen-
tally. On the other hand, relation (4.8) is adopted on the basis of an analogy drawn between massive
particles and photons.

4.2 Wave Mechanics

4.2.1 Wavefunctions
The basic premise of wave mechanics is that a massive particle of energy E and linear momentum
p, moving in the x-direction (say), can be represented by a one-dimensional wavefunction of the
form

ψ(x, t) = ψ0 e i (k x−ω t), (4.10)

where the complex amplitude, ψ0, is arbitrary, while the angular frequency, ω, and the wavenum-
ber, k, are related to the particle energy, E, and momentum, p, via the fundamental relations

E = ~ω, (4.11)

p = ~ k. (4.12)

(See Section 4.1.9.)
The one-dimensional wavefunction (4.10) is the solution of a one-dimensional wave equation

that determines how the wavefunction evolves in time. As described in the next section, we can
guess the form of this wave equation by drawing an analogy with classical physics.
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4.2.2 Schrödinger’s Equation
A classical particle of mass m, moving in a one-dimensional potential U(x), satisfies the energy
conservation equation

E = K + U, (4.13)

where

K =
p2

2 m
(4.14)

is the particle’s kinetic energy. (See Sections 1.3.2 and 1.3.5.) Hence,

E ψ = (K + U)ψ (4.15)

is a valid, but not obviously useful, wave equation.
However, it follows from Equations (4.10) and (4.11) that

∂ψ

∂t
= −iωψ0 e i (k x−ω t) = −i

E
~
ψ, (4.16)

which can be rearranged to give

E ψ = i ~
∂ψ

∂t
. (4.17)

Likewise, from Equations (4.10) and (4.12),

∂ψ

∂x
= i kψ0 e i (k x−ω t) = i

p
~
ψ, (4.18)

which can be rearranged to give

pψ = −i ~
∂ψ

∂x
. (4.19)

It immediately follows that

p2 ψ = −~2 ∂
2ψ

∂x 2 . (4.20)

Hence,

K ψ =
p2

2 m
ψ = − ~

2

2 m
∂2ψ

∂x2 . (4.21)

Thus, combining Equations (4.15), (4.17), and (4.21), we obtain

i ~
∂ψ

∂t
= − ~

2

2 m
∂2ψ

∂x2 + U(x)ψ. (4.22)

This equation, which is known as Schrödinger’s equation—because it was first formulated by
Erwin Schrödinder in 1926—is the fundamental equation of wave mechanics.

For a massive particle moving in free space (i.e., U = 0), the complex wavefunction (4.10) is a
solution of Schrödinger’s equation, (4.22), provided

ω =
~

2 m
k2. (4.23)
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The previous expression can be thought of as the dispersion relation for matter waves in free space.
(See Section 4.2.6.) The associated phase velocity (i.e., propagation speed of a wave maximum) is

vp =
ω

k
=
~ k
2 m

=
p

2 m
, (4.24)

where use has been made of Equation (4.12). However, this phase velocity is only half the classical
velocity, v = p/m, of a massive (non-relativistic) particle.

4.2.3 Probability Interpretation of Wavefunction
After many false starts, physicists in the early 20th century eventually came to the conclusion
that the only physical interpretation of a particle wavefunction that is consistent with experimental
observations is probabilistic in nature. To be more exact, if ψ(x, t) is the complex wavefunction
of a given particle, moving in one dimension along the x-axis, then the probability of finding the
particle between x and x + dx at time t is

P(x, t) = |ψ(x, t)|2 dx. (4.25)

A probability is a real number lying in the range 0 to 1. An event that has a probability 0 is
impossible. On the other hand, an event that has a probability 1 is certain to occur. An event that
has a probability 1/2 (say) is such that in a very large number of identical trials the event occurs in
half of the trials. (See Section 5.1.1.)

We can interpret

P(t) =

∫ ∞
−∞
|ψ(x, t)|2 dx (4.26)

as the probability of the particle being found anywhere between x = −∞ and x = +∞ at time t.
This follows, via induction, from the fundamental result in probability theory that the probability
of the occurrence of one or other of two mutually exclusive events (such as the particle being found
in two non-overlapping regions) is the sum (or integral) of the probabilities of the individual events.
(For example, the probability of throwing a 1 on a six-sided die is 1/6. Likewise, the probability of
throwing a 2 is 1/6. Hence, the probability of throwing a 1 or a 2 is 1/6 + 1/6 = 1/3.) Assuming
that the particle exists, it is certain that it will be found somewhere between x = −∞ and x = +∞ at
time t. Because a certain event has probability 1, our probability interpretation of the wavefunction
is only tenable provided ∫ ∞

−∞
|ψ(x, t)|2 dx = 1 (4.27)

at all times. A wavefunction that satisfies the previous condition—which is known as the normal-
ization condition—is said to be properly normalized.

Suppose that we have a wavefunction, ψ(x, t), which is such that it satisfies the normalization
condition (4.27) at time t = 0. Furthermore, let the wavefunction evolve in time according to
Schrödinger’s equation, (4.22). Our probability interpretation of the wavefunction only makes
sense if the normalization condition remains satisfied at all subsequent times. This follows because
if the particle is certain to be found somewhere on the x-axis (which is the interpretation put on
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the normalization condition) at time t = 0 then it is equally certain to be found somewhere on the
x-axis at a later time (because we are not considering any physical process by which particles can
be created or destroyed). Thus, it is necessary for us to demonstrate that Schrödinger’s equation
preserves the normalization of the wavefunction.

Taking Schrödinger’s equation, and multiplying it by ψ∗ (the complex conjugate of the wave-
function), we obtain

i ~
∂ψ

∂t
ψ∗ = − ~

2

2 m
∂2ψ

∂x2 ψ
∗ + U(x) |ψ|2. (4.28)

The complex conjugate of the previous expression yields

−i ~
∂ψ∗

∂t
ψ = − ~

2

2 m
∂2ψ∗

∂x2 ψ + U(x) |ψ|2. (4.29)

Here, use has been made of the readily demonstrated results (ψ∗)∗ = ψ and i∗ = −i, as well as the
fact that U(x) is real. Taking the difference between the previous two expressions, we obtain

i ~
(
∂ψ

∂t
ψ∗ +

∂ψ∗

∂t
ψ

)
= − ~

2

2 m

(
∂2ψ

∂x2 ψ
∗ − ∂

2ψ∗

∂x2 ψ

)
, (4.30)

which can be written

i ~
∂|ψ|2
∂t

= − ~
2

2 m
∂

∂x

(
∂ψ

∂x
ψ∗ − ∂ψ

∗

∂x
ψ

)
. (4.31)

Integrating in x, we get

i ~
d
dt

∫ ∞
−∞
|ψ|2 dx = − ~

2

2 m

[
∂ψ

∂x
ψ∗ − ∂ψ

∗

∂x
ψ

]∞
−∞
. (4.32)

Finally, assuming that the wavefunction is localized in space; that is,

|ψ(x, t)| → 0 as |x| → ∞, (4.33)

we obtain
d
dt

∫ ∞
−∞
|ψ|2 dx = 0. (4.34)

It follows, from the preceding analysis, that if a localized wavefunction is properly normalized at
t = 0 (i.e., if

∫ ∞
−∞ |ψ(x, 0)|2 dx = 1) then it will remain properly normalized as it evolves in time

according to Schrödinger’s equation.
A wavefunction that is not localized cannot be properly normalized, because its normalization

integral
∫ ∞
−∞ |ψ|2 dx is necessarily infinite. For such a wavefunction, |ψ(x, t)|2 dx gives the relative,

rather than the absolute, probability of finding the particle between x and x + dx at time t. In other
words, [cf., Equation (4.25)]

P(x, t) ∝ |ψ(x, t)|2 dx. (4.35)
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4.2.4 Wave Packets
As we have seen, the wavefunction of a massive particle of momentum p and energy E, moving in
free space along the x-axis, can be written

ψ(x, t) = ψ̄ e i (k x−ω t), (4.36)

where k = p/~, ω = E/~, and ψ̄ is a complex constant. Here, ω and k are linked via the matter-
wave dispersion relation (4.23). Expression (4.36) represents a plane wave that propagates in the
x-direction with the phase velocity vp = ω/k. However, it follows from Equation (4.24) that this
phase velocity is only half of the classical velocity of a massive particle.

According to the discussion in the previous section, the most reasonable physical interpretation
of the wavefunction is that |ψ(x, t)|2 dx is proportional to (assuming that the wavefunction is not
properly normalized) the probability of finding the particle between x and x+dx at time t. However,
the modulus squared of the wavefunction (4.36) is |ψ̄|2, which is a constant that depends on neither
x nor t. In other words, the previous wavefunction represents a particle that is equally likely to
be found anywhere on the x-axis at all times. Hence, the fact that this wavefunction propagates
at a phase velocity that does not correspond to the classical particle velocity has no observable
consequences.

How can we write the wavefunction of a particle that is localized in x? In other words, a particle
that is more likely to be found at some positions on the x-axis than at others. It turns out that we
can achieve this goal by forming a linear combination of plane waves of different wavenumbers;
that is,

ψ(x, t) =
1√
2π

∫ ∞
−∞
ψ̄(k) e i (k x−ω t) dk. (4.37)

Here, ψ̄(k) represents the complex amplitude of plane waves of wavenumber k within this combi-
nation. In writing the previous expression, we are relying on the assumption that matter waves are
superposable. In other words, it is possible to add two valid wave solutions to form a third valid
wave solution. The ultimate justification for this assumption is that matter waves satisfy the linear
wave equation (4.22).

There is a fundamental mathematical theorem, known as Fourier’s theorem, that states that if

f (x) =
1√
2π

∫ ∞
−∞

f̄ (k) e i k x dk, (4.38)

then

f̄ (k) =
1√
2π

∫ ∞
−∞

f (x) e−i k x dx. (4.39)

Here, f̄ (k) is known as the Fourier transform of the function f (x). We can use Fourier’s theorem to
find the k-space function ψ̄(k) that generates any given x-space wavefunction ψ(x) at a given time.

For instance, suppose that at t = 0 the wavefunction of our particle takes the form

ψ(x, 0) =
1

[2π (∆x)2]1/4 exp
[

i k0 x − (x − x0) 2

4 (∆x) 2

]
. (4.40)
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Figure 4.2: A one-dimensional Gaussian probability distribution.

Thus, the initial probability distribution for the particle’s x-coordinate is

|ψ(x, 0)|2 =
1

[2π (∆x)2]1/2 exp
[
− (x − x0)2

2 (∆x)2

]
. (4.41)

This particular distribution is called a Gaussian distribution (see Section 5.1.7), and is plotted in
Figure 4.2. It can be seen that a measurement of the particle’s position is most likely to yield
the value x0, and very unlikely to yield a value which differs from x0 by more than 3∆x. Thus,
Equation (4.40) is the wavefunction of a particle that is initially localized in some region of x-
space, centered on x = x0, whose width is of order ∆x. This type of wavefunction is known as a
wave packet.

It is easily demonstrated that the wavefunction (4.40) is properly normalized. In fact,∫ ∞
−∞
|ψ(x, 0)|2 dx =

1
[2π (∆x)2]1/2

∫ ∞
−∞

exp
[
− (x − x0)2

2 (∆x)2

]
dx

=
21/2 (∆x)

[2π (∆x)2]1/2

∫ ∞
−∞

e−y
2
dy =

1√
π

∫ ∞
−∞

e−y
2
dy = 1. (4.42)

Here, y = (x − x0)/(21/2∆x), and use has been made of the standard result∫ ∞
−∞

e−y
2
dy = π1/2. (4.43)



Quantum Mechanics 267

According to Equation (4.37),

ψ(x, 0) =
1√
2π

∫ ∞
−∞
ψ̄(k) e i k x dk. (4.44)

Hence, we can employ Fourier’s theorem to invert this expression to give

ψ̄(k) =
1√
2π

∫ ∞
−∞
ψ(x, 0) e−i k x dx. (4.45)

Making use of Equation (4.40), we obtain

ψ̄(k) =
1

(2π)3/4 (∆x)1/2

∫ ∞
−∞

exp
[
−i (k − k0) x − (x − x0)2

4 (∆x)2

]
dx

=
1

(2π)3/4 (∆x)1/2 exp
[
−i (k − k0) x0 − (k − k0)2

4 (∆k)2

] ∫ ∞
−∞

exp
{
−
[ x − x0

2∆x
+ i∆x (k − k0)

]2
}

dx

=
2∆x

(2π)3/4 (∆x)1/2 exp
[
−i (k − k0) x0 − (k − k0)2

4 (∆k)2

] ∫ ∞
−∞

e−y
2
dy

=
1

[2π (∆k)2]1/4 exp
[
−i (k − k0) x0 − (k − k0)2

4 (∆k)2

]
, (4.46)

where y = (x − x0)/(2∆x) + i∆x (k − k0),

∆k =
1

2∆x
, (4.47)

and use has been made of Equation (4.43).
If |ψ(x, 0)|2 dx is the probability that a measurement of the particle’s position yields a value in

the range x to x + dx at time t = 0 then it stands to reason that |ψ̄(k)|2 dk is the probability that
a measurement of the particle’s wavenumber yields a value in the range k to k + dk. (Recall that
p = ~ k, so a measurement of the particle’s wavenumber, k, is equivalent to a measurement of the
particle’s momentum, p.) According to Equation (4.46),

|ψ̄(k)|2 =
1

[2π (∆k)2]1/2 exp
[
− (k − k0)2

2 (∆k)2

]
. (4.48)

This probability distribution is a Gaussian in k-space. [See Equation (4.41) and Figure 4.2.] Hence,
a measurement of k is most likely to yield the value k0, and very unlikely to yield a value that differs
from k0 by more than 3∆k. Note that the probability distribution (4.48) is properly normalized;
that is,

∫ ∞
−∞ |ψ̄(k)|2 dk = 1.

We have just seen that a wave packet with a Gaussian probability distribution of character-
istic width ∆x in x-space [see Equation (4.41)] is equivalent to a wave packet with a Gaussian
probability distribution of characteristic width ∆k in k-space [see Equation (4.48)], where

∆x∆k =
1
2
. (4.49)
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This illustrates an important property of wave packets. Namely, in order to construct a packet that
is highly localized in x-space (i.e., with small ∆x) we need to combine plane waves with a very
wide range of different k-values (i.e., with large ∆k). Conversely, if we only combine plane waves
whose wavenumbers differ by a small amount (i.e., if ∆k is small) then the resulting wave packet
is highly extended in x-space (i.e., ∆x is large).

4.2.5 Group Velocity
We have seen that Equation (4.40) is the wavefunction of a particle whose most probable position
at time t = 0 is x = x0. According to Equations (4.37) and (4.46), the wavefunction evolves in time
as

ψ(x, t) =
1

(2π)3/4 (∆k)1/2

∫ ∞
−∞

exp
[

i k x − iω t − i (k − k0) x0 − (k − k0)2

4 (∆k)2

]
dk. (4.50)

Here, ω is related to k via the dispersion relation (4.23); in other words, ω = ω(k). Now, the
integrand on the right-hand side of the previous expression is strongly peaked at k = k0. It follows
that the only significant contribution to the corresponding integral comes from a small region of
k-space centered on k = k0. Let us Taylor expand the dispersion relation, ω = ω(k), about k = k0.
Neglecting second-order terms in the expansion, we obtain

ω ' ω0 + vg (k − k0), (4.51)

where

ω0 = ω(k0), (4.52)

vg =
dω(k0)

dk
. (4.53)

Thus, we get

ψ(x, t) =
1

(2π)3/4 (∆k)1/2 exp[ i (k0 x − ω0 t)]
∫ ∞
−∞

[
i (k − k0) (x − x0 − vg t) − (k − k0)2

4 (∆k)2

]
dk

=
2∆k

(2π)3/4 (∆k)1/2 exp
[

i (k0 x − ω0 t) − (x − x0 − vg t) 2

4 (∆x) 2

] ∫ ∞
−∞

e−y
2
dy, (4.54)

where y = (k − k0)/(2∆k) − i∆k (x − x0 − vg t), and use has been made of Equation (4.49). The
previous equation reduces to

ψ(x, t) =
1

[2π (∆x)2]1/4 exp
[

i (k0 x − ω0 t) − (x − x0 − vg t) 2

4 (∆x) 2

]
, (4.55)

where use has been made of Equations (4.43) and (4.49). Hence, the probability of finding the
particle between x and x + dx at time t is |ψ(x, t)|2 dx, where

|ψ(x, t)|2 =
1

[2π (∆x)2]1/2 exp
[
− (x − x0 − vg t) 2

2 (∆x) 2

]
. (4.56)
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It can be seen that the particle’s most probable location at time t is

x = x0 + vg t. (4.57)

If, as seems reasonable, we identify the velocity of the particle with the velocity of its most proba-
ble location then we deduce that the particle effectively moves at the so-called group velocity,

vg =
dω
dk
, (4.58)

rather than the phase velocity,
vp =

ω

k
. (4.59)

Incidentally, the distinction between these two velocities is as follows. The phase velocity is the
propagation velocity of an individual wave maximum, whereas the group velocity is the propaga-
tion velocity of an interference peak.

We have seen that a spatially localized particle moves at the group velocity, (4.58), rather than
the phase velocity, (4.59). Making use of the matter-wave dispersion relation, (4.23), the group
velocity is

vg =
~ k
m

=
p
m
, (4.60)

where use has been made of Equation (4.12). This velocity is identical to the classical velocity of
a (non-relativistic) massive particle. We conclude that the matter-wave dispersion relation (4.23)
is perfectly consistent with classical physics, as long as we recognize that particles must be iden-
tified with wave packets (which propagate at the group velocity) rather than plane waves (which
propagate at the phase velocity).

4.2.6 Wave Dispersion
Equation (4.56) indicates that, as a wave packet propagates, its envelope remains the same shape.
Actually, this result is misleading, and is only obtained because of the neglect of second-order
terms in the expansion (4.51). If we keep more terms in this expansion then we can show that
the wave packet does actually change shape as it propagates. However, this demonstration is most
readily effected by means of the following simple argument. The packet extends in Fourier space
from k0 − ∆k/2 to k0 + ∆k/2. Thus, part of the packet propagates at the velocity vg(k0 − ∆k/2), and
part at the velocity vg(k0 + ∆k/2). Consequently, the packet spreads out as it propagates, because
some parts of it move faster than others. Roughly speaking, the spatial extent of the packet in real
space grows as

∆x ∼ (∆x)0 +
[
vg(k0 + ∆k/2) − vg(k0 − ∆k/2)

]
t ∼ (∆x)0 +

dvg(k0)
dk

∆k t, (4.61)

where (∆x)0 ∼ (∆k)−1 is the extent of the packet at t = 0. Hence, from Equation (4.53),

∆x ∼ (∆x)0 +
d2ω(k0)

dk2

t
(∆x)0

. (4.62)
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We, thus, conclude that the spatial extent of the packet grows linearly in time, at a rate proportional
to the second derivative of ω(k) with respect to k (evaluated at the packet’s central wavenumber).
This effect is known as wave dispersion. Furthermore, it is clear that the relation ω = ω(k) governs
the degree of wave dispersion, which explains why it is called a dispersion relation.

Note that electromagnetic wave packets, which are governed by the linear dispersion relation
ω = k c, do not disperse as they propagate, because d2ω/dk2 = 0. Particle wave packets, on the
other hand, are governed by the quadratic dispersion relation (4.23) and, therefore, disperse as they
propagate. In fact, it follows from Equations (4.23) and (4.62) that the width of a particle wave
packet grows in time as

∆x ' (∆x)0 +
~

m
t

(∆x)0
. (4.63)

For example, if an electron wave packet is initially localized in a region of atomic dimensions (i.e.,
∆x ∼ 10−10 m) then the width of the packet doubles in about 10−16 s.

4.2.7 Heisenberg’s Uncertainty Principle
According to the analysis contained in Section 4.2.4, a particle wave packet that is initially local-
ized in x-space, with characteristic width ∆x, is also localized in k-space, with characteristic width
∆k = 1/(2∆x). However, as time progresses, the width of the wave packet in x-space increases
[see Equation (4.63)], while that of the packet in k-space stays the same [because ψ̄(k) is given by
Equation (4.45) at all times]. Hence, in general, we can say that

∆x∆k &
1
2
. (4.64)

Furthermore, we can interpret ∆x and ∆k as characterizing our uncertainty regarding the values of
the particle’s position and wavenumber, respectively.

A measurement of a particle’s wavenumber, k, is equivalent to a measurement of its momentum,
p, because p = ~ k. Hence, an uncertainty in k of order ∆k translates to an uncertainty in p of order
∆p = ~∆k. It follows, from the previous inequality, that

∆x∆p &
~

2
. (4.65)

This result is known as the Heisenberg uncertainty principle, and was first proposed by Werner
Heisenberg in 1927. According to this principle, it is impossible to simultaneously measure the
position and momentum of a particle (exactly). Indeed, a good knowledge of the particle’s position
implies a poor knowledge of its momentum, and vice versa. The uncertainty principle is a direct
consequence of representing particles as waves.

It is apparent, from Equation (4.63), that a particle wave packet of initial spatial extent (∆x)0

spreads out in such a manner that its spatial extent becomes

∆x ∼ ~ t
m (∆x)0

(4.66)
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at large t. It is readily demonstrated that this spreading of the wave packet is a consequence of the
uncertainty principle. Indeed, because the initial uncertainty in the particle’s position is (∆x)0, it
follows that the uncertainty in its momentum is of order ~/(∆x)0. This translates to an uncertainty
in velocity of ∆v = ~/[m (∆x)0]. Thus, if we imagine that part of the wave packet propagates at
v0 + ∆v/2, and another part at v0 − ∆v/2, where v0 is the mean propagation velocity, then it follows
that the wave packet will spread out as time progresses. Indeed, at large t, we expect the width of
the wave packet to be

∆x ∼ ∆v t ∼ ~ t
m (∆x)0

, (4.67)

which is identical to Equation (4.66). Evidently, the spreading of a particle wave packet, as time
progresses, should be interpreted as representing an increase in our uncertainty regarding the par-
ticle’s position, rather than an increase in the spatial extent of the particle itself.

4.2.8 Wavefunction Collapse

Consider a spatially extended wavefunction, ψ(x, t). According to our standard interpretation,
|ψ(x, t)|2 dx is proportional to the probability of a measurement of the particle’s position yielding
a value in the range x to x + dx at time t. Thus, if the wavefunction is extended then there is a
wide range of likely values that such a measurement could give. Suppose, however, that we make
a measurement of the particle’s position, and obtain the value x0. We now know that the particle
is located at x = x0. If we make another measurement, immediately after the first one, then what
value would we expect to obtain? Common sense tells us that we should obtain the same value,
x0, because the particle cannot have shifted position appreciably in an infinitesimal time interval.
Thus, immediately after the first measurement, a measurement of the particle’s position is certain to
give the value x0, and has no chance of giving any other value. This implies that the wavefunction
must have collapsed to some sort of “spike” function, centered on x = x0. This idea is illustrated
in Figure 4.3. As soon as the wavefunction collapses, it starts to expand again, as described in
Section 4.2.6. Thus, the second measurement must be made reasonably quickly after the first one,
otherwise the same result will not necessarily be obtained.

The preceding discussion illustrates an important point in wave mechanics. That is, the wave-
function of a massive particle changes discontinuously (in time) whenever a measurement of the
particle’s position is made. We conclude that there are two types of time evolution of the wave-
function in wave mechanics. First, there is a smooth evolution that is governed by Schrödinger’s
equation. This evolution takes place between measurements. Second, there is a discontinuous
evolution that takes place each time a measurement is made.

4.2.9 Stationary States

Consider separable solutions to Schrödinger’s equation of the form

ψ(x, t) = ψ(x) e−iω t. (4.68)
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Figure 4.3: Collapse of the wavefunction upon measurement of x.

According to Equation (4.17), such solutions have definite energies E = ~ω. For this reason, they
are usually written

ψ(x, t) = ψ(x) e−i (E/~) t. (4.69)

The probability of finding the particle between x and x + dx at time t is

P(x, t) = |ψ(x, t)|2 dx = |ψ(x)|2 dx. (4.70)

This probability is time independent. For this reason, states whose wavefunctions are of the form
(4.69) are known as stationary states. Moreover, ψ(x) is called a stationary wavefunction. Substi-
tuting (4.69) into Schrödinger’s equation, (4.22), we obtain the following differential equation for
ψ(x);

− ~
2

2 m
d2ψ

dx2 + U(x)ψ = E ψ. (4.71)

This equation is called the time-independent Schrödinger equation.
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4.3 One-Dimensional Wave Mechanics

4.3.1 Particle in Infinite Square Potential Well
Consider a particle trapped in a one-dimensional square potential well, of infinite depth, which is
such that

U(x) =

{
0 0 ≤ x ≤ a
∞ otherwise

. (4.72)

The particle is excluded from the region x < 0 or x > a, so ψ = 0 in this region (i.e., there is zero
probability of finding the particle outside the well). Within the well, a particle of definite energy E
has a stationary wavefunction, ψ(x), that satisfies

− ~
2

2 m
d2ψ

dx2 = E ψ. (4.73)

[See Equation (4.71).] The boundary conditions are

ψ(0) = ψ(a) = 0. (4.74)

This follows because ψ = 0 in the region x < 0 or x > a, and ψ(x) must be continuous [because
a discontinuous wavefunction would generate a singular term (i.e., the term involving d2ψ/dx2) in
the time-independent Schrödinger equation, (4.71), that could not be balanced, even by an infinite
potential].

Let us search for solutions to Equation (4.73) of the form

ψ(x) = ψ0 sin(k x), (4.75)

where ψ0 is a constant. It follows that
~2 k2

2 m
= E. (4.76)

The solution (4.75) automatically satisfies the boundary condition ψ(0) = 0. The second boundary
condition, ψ(a) = 0, leads to a quantization of the wavenumber; that is,

k = n
π

a
, (4.77)

where n = 1, 2, 3, et cetera. (A “quantized” quantity is one that can only take certain discrete
values.) According to Equation (4.76), the energy is also quantized. In fact, E = En, where

En = n2 ~
2 π2

2 m a2 . (4.78)

Thus, the allowed wavefunctions for a particle trapped in a one-dimensional square potential well
of infinite depth are

ψn(x, t) = An sin
(

n π
x
a

)
exp

(
−i n2 E1

~
t
)
, (4.79)
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where n is a positive integer, and An a constant. We cannot have n = 0, because, in this case, we
obtain a null wavefunction—that is, ψ = 0, everywhere—which corresponds to a non-existent state.
Furthermore, if n takes a negative integer value then it generates exactly the same wavefunction as
the corresponding positive integer value (assuming A−n = −An).

The constant An, appearing in the previous wavefunction, can be determined from the constraint
that the wavefunction be properly normalized. For the case under consideration, the normalization
condition (4.27) reduces to ∫ a

0
|ψ(x)| 2 dx = 1. (4.80)

It follows from Equation (4.79) that |An|2 = 2/a. Hence, the properly normalized version of the
wavefunction (4.79) is

ψn(x, t) =

(
2
a

)1/2

sin
(

n π
x
a

)
exp

(
−i n2 E1

~
t
)
. (4.81)

Figure 4.4 shows the first four properly normalized stationary wavefunctions for a particle trapped
in a one-dimensional square potential well of infinite depth; that is, ψn(x) = (2/a)1/2 sin(n π x/a),
for n = 1 to 4.

At first sight, it seems rather strange that the lowest possible energy for a particle trapped in
a one-dimensional potential well is not zero, as would be the case in classical mechanics, but
rather E1 = ~2 π2/(2 m a2). In fact, as explained in the following, this residual energy is a direct
consequence of Heisenberg’s uncertainty principle. A particle trapped in a one-dimensional well
of width a is likely to be found anywhere inside the well. Thus, the uncertainty in the particle’s
position is ∆x ∼ a. It follows from the uncertainty principle, (4.65), that

∆p &
~

2∆x
∼ ~

a
. (4.82)

In other words, the particle cannot have zero momentum. In fact, the particle’s momentum must be
at least p ∼ ~/a. However, for a free particle, E = p2/2 m. Hence, the residual energy associated
with the particle’s residual momentum is

E ∼ p2

m
∼ ~

2

m a2 ∼ E1. (4.83)

This type of residual energy, which often occurs in quantum mechanical systems, and has no
equivalent in classical mechanics, is called zero-point energy.

The most general wavefunction for a particle trapped in a one-dimensional square potential
well, of infinite depth, is a superposition of all of the possible stationary states. That is,

ψ(x, t) =
∑

n=1,∞
an ψn(x, t), (4.84)

where the an are complex numbers, and the ψn(x, t) are specified in Equation (4.81). Consider∫ a

0
|ψ(x, t)|2 dx =

∑
n,m=1,∞

an a∗m

∫ a

0
ψn(x, t)ψ∗m(x, t) dx



Quantum Mechanics 275

−1

−0.5

0

0.5

1
ψ
1/
(2
/a

)1
/2

0 0.5 1

x/a

−1

−0.5

0

0.5

1

ψ
2/
(2
/a

)1
/2

0 0.5 1

x/a

−1

−0.5

0

0.5

1

ψ
3/
(2
/a

)1
/2

0 0.5 1

x/a

−1

−0.5

0

0.5

1

ψ
4/
(2
/a

)1
/2

0 0.5 1

x/a

Figure 4.4: First four stationary wavefunctions for a particle trapped in a one-dimensional square
potential well of infinite depth.

=
∑

n,m=1,∞
an a∗m

2
a

∫ a

0
sin
(

n π
x
a

)
sin
(

m π
x
a

)
dx

=
∑

n,m=1,∞
an a∗m

2
π

∫ π

0
sin(n θ) sin(n θ) dθ. (4.85)

However,
2
π

∫ π

0
sin(n θ) sin(n θ) dθ = δnm, (4.86)

where δnm, which is known as a Kronecker delta, takes the value 1 if n = m, and 0 otherwise.
Hence, we deduce that ∫ a

0
|ψ(x, t)|2 dx =

∑
n=1,∞

|an|2. (4.87)
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Thus, the wavefunction (4.84) is properly normalized provided∑
n=1,∞

|an|2 = 1. (4.88)

Suppose that we make a measurement of the energy of a particle whose wavefunction is speci-
fied by Equation (4.84). Given that the wavefunction is a superposition of stationary states associ-
ated with the quantized energies En [see Equation (4.78)], it seems reasonable to assume that the
measurement will result in one of these energies. In fact, according to quantum mechanics, the
probability that a measurement of the particle’s energy will give the result En is |an|2. Thus, we
can see that the normalization condition (4.88) ensures that the sum of all of these probabilities is
unity. This must be the case, because a measurement of the particle’s energy is certain to give one
of the allowed energies. Suppose that we make a measurement of the particle’s energy, and obtain
the result En. A second measurement, made immediately after the first, must yield the same result.
In other words, immediately after the first measurement, the particle’s wavefunction must be such
that a measurement of its energy is certain to give the result En, and has no chance of giving the
result Em, where m , n. This implies that |an|2 = 1 and |am|2 = 0, where m , n. We conclude that,
after the first measurement, the particle’s wavefunction is ψn(x, t). This is another example of the
collapse of a wavefunction consequent on a measurement. (See Section 4.2.8.)

4.3.2 Particle in Finite Square Potential Well
Consider a particle of mass m trapped in a one-dimensional, square, potential well of width a and
finite depth V > 0. Suppose that the potential takes the form

U(x) =

{ −V |x| ≤ a/2
0 otherwise

. (4.89)

Here, we have adopted the standard convention that U(x) → 0 as |x| → ∞. This convention is
useful because, just as in classical mechanics, a particle whose overall energy, E, is negative is
bound in the well (i.e., it cannot escape to infinity), whereas a particle whose overall energy is
positive is unbound. (See Section 1.3.6.) Because we are interested in bound particles, we shall
assume that E < 0. We shall also assume that E + V > 0, in order to allow the particle to have a
positive kinetic energy inside the well.

Let us search for a stationary state

ψ(x, t) = ψ(x) e−i (E/~) t, (4.90)

whose stationary wavefunction, ψ(x), satisfies the time-independent Schrödinger equation, (4.71).
Solutions to Equation (4.71) in the symmetric [i.e., U(−x) = U(x)] potential (4.89) are either
totally symmetric [i.e., ψ(−x) = ψ(x)] or totally antisymmetric [i.e., ψ(−x) = −ψ(x)]. Moreover,
the solutions must satisfy the boundary condition

ψ→ 0 as |x| → ∞, (4.91)
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otherwise they would not correspond to bound states.
Let us, first of all, search for a totally-symmetric solution. In the region to the left of the

well (i.e., x < −a/2), the solution of the time-independent Schrödinger equation that satisfies the
boundary condition ψ→ 0 as x→ −∞ is

ψ(x) = A e q x, (4.92)

where

q =

√
2 m (−E)
~2 , (4.93)

and A is a constant. By symmetry, the solution in the region to the right of the well (i.e., x > a/2)
is

ψ(x) = A e−q x. (4.94)

The solution inside the well (i.e., |x| ≤ a/2) that satisfies the symmetry constraint ψ(−x) = ψ(x) is

ψ(x) = B cos(k x), (4.95)

where

k =

√
2 m (V + E)
~2 , (4.96)

and B is a constant. The appropriate matching conditions at the edges of the well (i.e., x = ±a/2)
are that ψ(x) and dψ(x)/dx both be continuous [because a discontinuity in the wavefunction, or its
first derivative, would generate a singular term in the time-independent Schrödinger equation (i.e.,
the term involving d2ψ/dx2) that could not be balanced]. The matching conditions yield

q = k tan(k a/2). (4.97)

Let y = k a/2. It follows that
E = E0 y

2 − V, (4.98)

where

E0 =
2 ~2

m a2 . (4.99)

Moreover, Equation (4.97) becomes √
λ − y2

y
= tan y, (4.100)

with
λ =

V
E0
. (4.101)

Here, y must lie in the range 0 < y < λ1/2, in order to ensure that E lies in the range −V < E < 0.
The solutions of Equation (4.100) correspond to the intersection of the curve (λ− y2)1/2/y with

the curve tan y. Figure 4.5 shows these two curves plotted for a particular value of λ. In this case,
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Figure 4.5: The curves tan y (solid) and (λ−y2)1/2/y (dashed), calculated for λ = 1.5 π 2. The latter
curve takes the value 0 when y > λ1/2.

the curves intersect twice, indicating the existence of two totally-symmetric bound states in the
well. It is apparent, from the figure, that as λ increases (i.e., as the well becomes deeper) there
are more and more bound states. However, it is also apparent that there is always at least one
totally-symmetric bound state, no matter how small λ becomes (i.e., no matter how shallow the
well becomes). In the limit λ � 1 (i.e., the limit in which the well is very deep), the solutions to
Equation (4.100) asymptote to the roots of tan y = ∞. This gives y = (2 n − 1) π/2, where n is a
positive integer, or

k = (2 n − 1)
π

a
. (4.102)

These solutions are equivalent to the odd-n infinite-depth potential well solutions specified by
Equation (4.77).

For the case of a totally-antisymmetric bound state, similar analysis to the preceding yields

− y√
λ − y2

= tan y. (4.103)

The solutions of this equation correspond to the intersection of the curve tan y with the curve
−y/(λ − y2)1/2. Figure 4.6 shows these two curves plotted for the same value of λ as that used
in Figure 4.5. In this case, the curves intersect once, indicating the existence of a single totally-
antisymmetric bound state in the well. It is, again, apparent, from the figure, that as λ increases (i.e.,
as the well becomes deeper) there are more and more bound states. However, it is also apparent
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Figure 4.6: The curves tan y (solid) and −y/(λ − y2)1/2 (dashed), calculated for λ = 1.5 π 2.

that when λ becomes sufficiently small [i.e., λ < (π/2)2] then there is no totally antisymmetric
bound state. In other words, a very shallow potential well always possesses a totally-symmetric
bound state, but does not generally possess a totally-antisymmetric bound state. In the limit λ � 1
(i.e., the limit in which the well becomes very deep), the solutions to Equation (4.103) asymptote
to the roots of tan y = 0. This gives y = n π, where n is a positive integer, or

k = 2 n
π

a
. (4.104)

These solutions are equivalent to the even-n infinite-depth potential well solutions specified by
Equation (4.77).

Probably the most surprising aspect of the bound states that we have just described is the
possibility of finding the particle outside the well; that is, in the region |x| > a/2 where U(x) > E.
This follows from Equation (4.94) and (4.95) because the ratio A/B = exp(q a/2) cos(k a/2) is not
necessarily zero. Such behavior is strictly forbidden in classical mechanics, according to which a
particle of energy E is restricted to regions of space where E > U(x). (See Section 1.3.6.) In fact,
in the case of the ground state (i.e., the lowest energy symmetric state) it is possible to demonstrate
that the probability of a measurement finding the particle outside the well is

Pout ' 1 − 2 λ (4.105)

for a shallow well (i.e., λ � 1), and

Pout ' π2

4
1
λ3/2 (4.106)
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for a deep well (i.e., λ � 1). It follows that the particle is very likely to be found outside a shallow
well, and there is a small, but finite, probability of it being found outside a deep well. In fact, the
probability of finding the particle outside the well only goes to zero in the case of an infinitely deep
well (i.e., λ→ ∞).

4.3.3 Square Potential Barrier
Consider a particle of mass m and energy E > 0 interacting with the simple, one-dimensional,
potential barrier

U(x) =

{
V for 0 ≤ x ≤ a
0 otherwise

, (4.107)

where V > 0. In the regions to the left and to the right of the barrier, the stationary wavefunction,
ψ(x), satisfies

d2ψ

dx2 = −k2 ψ, (4.108)

where

k =

√
2 m E
~2 . (4.109)

Let us adopt the following solution of the previous equation to the left of the barrier (i.e., x < 0):

ψ(x) = e i k x + R e−i k x. (4.110)

This solution consists of a plane wave of unit amplitude traveling to the right [because the full
wavefunction is multiplied by a factor exp(−i E t/~)], and a plane wave of complex amplitude R
traveling to the left. We interpret the first plane wave as an incident particle, and the second as a
particle reflected by the potential barrier. Hence, |R|2 is the probability of reflection.

Let us adopt the following solution to Equation (4.108) to the right of the barrier (i.e. x > a):

ψ(x) = T e i k x. (4.111)

This solution consists of a plane wave of complex amplitude T traveling to the right. We interpret
the plane wave as a particle transmitted through the barrier. Hence, |T |2 is the probability of
transmission.

Let us, first of all, consider the situation in which E > V . In this case, according to classical
mechanics, the particle slows down as it passes through the barrier, but is otherwise unaffected. In
other words, the classical probability of reflection is zero, and the classical probability of trans-
mission is unity. However, this is not necessarily the case in wave mechanics. In fact, inside the
barrier (i.e., 0 ≤ x ≤ a), ψ(x) satisfies

d2ψ

dx2 = −q2 ψ, (4.112)

where

q =

√
2 m (E − V)
~2 . (4.113)
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The general solution to Equation (4.112) takes the form

ψ(x) = A e i q x + B e−i q x. (4.114)

Continuity of ψ and dψ/dx at the left edge of the barrier (i.e., x = 0) yields

1 + R = A + B, (4.115)

k (1 − R) = q (A − B). (4.116)

Likewise, continuity of ψ and dψ/dx at the right edge of the barrier (i.e., x = a) gives

A e i q a + B e−i q a = T e i k a, (4.117)

q
(
A e i q a − B e−i q a

)
= k T e i k a. (4.118)

After considerable algebra, the previous four equations yield

|T |2 = 1 − |R|2 =
4 k2 q2

4 k2 q2 + (k2 − q2)2 sin2(q a)
. (4.119)

The fact that |R|2 + |T |2 = 1 ensures that the probabilities of reflection and transmission sum to
unity, as must be the case, because reflection and transmission are the only possible outcomes for
a particle incident on the barrier.

The reflection and transmission probabilities obtained from Equation (4.119) are plotted in
Figures 4.7 and 4.8. It can be seen, from Figure 4.7, that the classical result, |R|2 = 0 and |T |2 = 1,
is obtained in the limit where the height of the barrier is relatively small (i.e., V � E). However,
if V is of order E then there is a substantial probability that the incident particle will be reflected
by the barrier. According to classical physics, reflection is impossible when V < E.

It can also be seen, from Figure 4.8, that at certain barrier widths the probability of reflection
goes to zero. It turns out that this is true irrespective of the energy of the incident particle. It is
evident, from Equation (4.119), that these special barrier widths correspond to

q a = n π, (4.120)

where n = 1, 2, 3, · · · . In other words, the special barrier widths are integer multiples of half the
de Broglie wavelength of the particle inside the barrier. There is no reflection at the special barrier
widths because, at these widths, the backward traveling wave reflected from the left edge of the
barrier interferes destructively with the similar wave reflected from the right edge of the barrier to
give zero net reflected wave.

Let us now consider the situation in which E < V . In this case, according to classical mechan-
ics, the particle is unable to penetrate the barrier, so the coefficient of reflection is unity, and the
coefficient of transmission zero. However, this is not necessarily the case in wave mechanics. In
fact, inside the barrier (i.e., 0 ≤ x ≤ a), ψ(x) satisfies

d2ψ

dx2 = q2 ψ, (4.121)
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Figure 4.7: Transmission (solid curve) and reflection (dashed curve) probabilities for a square
potential barrier of width a = 1.25 λ, where λ is the free-space de Broglie wavelength, as a function
of the ratio of the height of the barrier, V , to the energy, E, of the incident particle.

where

q =

√
2 m (V − E)
~2 . (4.122)

The general solution to Equation (4.121) takes the form

ψ(x) = A e q x + B e−q x. (4.123)

Continuity of ψ and dψ/dx at the left edge of the barrier (i.e., x = 0) yields

1 + R = A + B, (4.124)

i k (1 − R) = q (A − B). (4.125)

Likewise, continuity of ψ and dψ/dx at the right edge of the barrier (i.e., x = a) gives

A e q a + B e−q a = T e i k a, (4.126)

q
(
A e q a − B e−q a

)
= i k T e i k a. (4.127)

After considerable algebra, the preceding four equations yield

|T |2 = 1 − |R|2 =
4 k2 q2

4 k2 q2 + (k2 + q2) 2 sinh2(q a)
. (4.128)
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Figure 4.8: Transmission (solid curve) and reflection (dashed curve) probabilities for a particle of
energy E incident on a square potential barrier of height V = 0.75 E as a function of the ratio of
the width of the barrier, a, to the free-space de Broglie wavelength, λ.

The fact that |R|2 + |T |2 = 1 again ensures that the probabilities of reflection and transmission sum
to unity, as must be the case, because reflection and transmission are the only possible outcomes
for a particle incident on the barrier.

The reflection and transmission probabilities obtained from Equation (4.128) are plotted in
Figures 4.9 and 4.10. It can be seen, from these two figures, that the classical result, |R|2 = 1 and
|T |2 = 0, is obtained for relatively thin barriers (i.e., q a ∼ 1) in the limit where the height of the
barrier is relatively large (i.e., V � E). However, if V is of order E then there is a substantial
probability that the incident particle will be transmitted by the barrier. According to classical
physics, transmission is impossible when V > E.

It can also be seen, from Figure 4.10, that the transmission probability decays exponentially
as the width of the barrier increases. Nevertheless, even for very wide barriers (i.e., q a � 1),
there is a small but finite probability that a particle incident on the barrier will be transmitted. This
phenomenon, which is inexplicable within the context of classical physics, is called tunneling. For
the case of a very high barrier, such that V � E, the tunneling probability reduces to

|T |2 ' 4 E
V

e−2 a/λ, (4.129)

where λ = (~2/2 m V)1/2 is the de Broglie wavelength inside the barrier. Here, it is assumed that
a � λ. Thus, even in the limit that the barrier is very high, there is an exponentially small, but
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Figure 4.9: Transmission (solid curve) and reflection (dashed curve) probabilities for a square
potential barrier of width a = 0.5 λ, where λ is the free-space de Broglie wavelength, as a function
of the ratio of the energy, E, of the incoming particle to the height, V , of the barrier.

nevertheless non-zero, tunneling probability. Quantum mechanical tunneling plays an important
role in the physics of electron field emission and α-decay. (See Sections 4.3.5 and 4.3.6.)

4.3.4 WKB Approximation
Consider a particle of mass m and energy E > 0 moving through some slowly-varying potential,
U(x). The particle’s wavefunction satisfies

d2ψ(x)
dx2 = −k2(x)ψ(x), (4.130)

where
k2(x) =

2 m [E − U(x)]
~2 . (4.131)

Let us try a solution to Equation (4.130) of the form

ψ(x) = ψ0 exp
(∫ x

0
i k(x′) dx′

)
, (4.132)

where ψ0 is a complex constant. Note that this solution represents a particle propagating in the
positive x-direction [because the full wavefunction is multiplied by exp(−iω t), where ω = E/~ >
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Figure 4.10: Transmission (solid curve) and reflection (dashed curve) probabilities for a particle of
energy E incident on a square potential barrier of height V = (4/3) E as a function of the ratio of
the width of the barrier, a, to the free-space de Broglie wavelength, λ.

0] with the continuously-varying wavenumber k(x). It follows that

dψ(x)
dx

= i k(x)ψ(x), (4.133)

and
d2ψ(x)

dx2 = i k′(x)ψ(x) − k2(x)ψ(x), (4.134)

where k′ ≡ dk/dx. A comparison of Equations (4.130) and (4.134) reveals that Equation (4.132)
represents an approximate solution to Equation (4.130) provided that the first term on the right-
hand side of Equation (4.134) is negligible compared to the second. This yields the validity crite-
rion |k′| � k2, or

k
|k′| � k −1. (4.135)

In other words, the variation lengthscale of k(x), which is approximately the same as the variation
lengthscale of U(x), must be much greater than the particle’s de Broglie wavelength (which is
of order k −1). Let us suppose that this is the case. Incidentally, the approximation involved in
dropping the first term on the right-hand side of Equation (4.134) is generally known as the WKB
approximation, after G. Wentzel, H.A. Kramers, and L. Brillouin. Similarly, Equation (4.132) is
termed a WKB solution.
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According to the WKB solution, (4.132), the probability density remains constant; that is,

|ψ(x)|2 = |ψ0|2; (4.136)

as long as the particle moves through a region in which E > U(x), and k(x) is consequently real
(i.e., an allowed region according to classical physics). Suppose, however, that the particle en-
counters a potential barrier (i.e., a region from which the particle is excluded according to classical
physics). By definition, E < U(x) inside such a barrier, and k(x) is consequently imaginary. Let
the barrier extend from x = x1 to x2, where 0 < x1 < x2. The WKB solution inside the barrier is
written

ψ(x) = ψ1 exp
(
−
∫ x

x1

|k(x′)| dx′
)
, (4.137)

where

ψ1 = ψ0 exp
(∫ x1

0
i k(x′) dx′

)
. (4.138)

Here, we have neglected the unphysical exponentially-growing solution.
According to the WKB solution, (4.137), the probability density decays exponentially inside

the barrier; that is,

|ψ(x)|2 = |ψ1|2 exp
(
−2
∫ x

x1

|k(x′)| dx′
)
, (4.139)

where |ψ1| 2 is the probability density at the left-hand side of the barrier (i.e., x = x1). It follows
that the probability density at the right-hand side of the barrier (i.e., x = x2) is

|ψ2|2 = |ψ1|2 exp
(
−2
∫ x2

x1

|k(x′)| dx′
)
. (4.140)

Note that |ψ2|2 < |ψ1|2. Of course, in the region to the right of the barrier (i.e., x > x2), the
probability density takes the constant value |ψ2|2.

We can interpret the ratio of the probability densities to the right and to the left of the potential
barrier as the probability, |T |2, that a particle incident from the left will tunnel through the barrier
and emerge on the other side; that is,

|T |2 =
|ψ2|2
|ψ1|2 = exp

(
−2
∫ x2

x1

|k(x′)| dx′
)
. (4.141)

It is easily demonstrated that the probability of a particle incident from the right tunneling through
the barrier is the same.

Note that the criterion (4.135) for the validity of the WKB approximation implies that the
previous transmission probability is very small. Hence, the WKB approximation only applies to
situations in which there is very little chance of a particle tunneling through the potential barrier in
question. Unfortunately, the validity criterion (4.135) breaks down completely at the edges of the
barrier (i.e., at x = x1 and x2), because k(x) = 0 at these points. However, it can be demonstrated
that the contribution of those regions, around x = x1 and x2, in which the WKB approximation
breaks down to the integral in Equation (4.141) is fairly negligible. Hence, the previous expression
for the tunneling probability is a reasonable approximation provided that the incident particle’s de
Broglie wavelength is much smaller than the spatial extent of the potential barrier.
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Figure 4.11: The potential barrier for an electron in a metal surface subject to an external electric
field.

4.3.5 Cold Emission
Suppose that an unheated metal surface is subject to a large uniform external electric field, of
strength E, which is directed such that it accelerates electrons away from the surface. We have
already seen (in Section 4.1.2) that electrons just below the surface of a metal can be regarded as
being in a potential well of depth W, where W is called the workfunction of the surface. Adopting a
simple one-dimensional treatment of the problem, let the metal lie at x < 0, and the surface at x = 0.
Now, the applied electric field is shielded from the interior of the metal. (See Section 2.1.12.)
Hence, the energy, E, say, of an electron just below the surface is unaffected by the field. In the
absence of the electric field, the potential barrier just above the surface is simply U(x) − E = W.
The electric field modifies this to U(x) − E = W − eE x, where e is the magnitude of the electron
charge. The potential barrier is sketched in Figure 4.11.

It can be seen, from Figure 4.11, that an electron just below the surface of the metal is confined
by a triangular potential barrier that extends from x = x1 to x2, where x1 = 0 and x2 = W/(eE).
Making use of the WKB approximation (see Section 4.3.4), the probability of such an electron
tunneling through the barrier, and consequently being emitted from the surface, is

|T |2 = exp
(
−2
√

2 me

~

∫ x2

x1

√
U(x) − E dx

)
, (4.142)

or

|T |2 = exp
(
−2
√

2 me

~

∫ W/eE

0

√
W − eE x dx

)
, (4.143)
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where me is the electron mass. This reduces to

|T |2 = exp
(
−2
√

2
m1/2

e W 3/2

~ eE
∫ 1

0

√
1 − y dy

)
, (4.144)

or

|T |2 = exp

(
−4
√

2
3

m1/2
e W 3/2

~ eE

)
. (4.145)

The previous result is known as the Fowler–Nordheim formula, after Ralph Fowler and Lothar
Nordheim who derived it in 1928. Note that the probability of emission increases exponentially as
the electric field-strength above the surface of the metal increases.

The cold emission of electrons from a metal surface is the basis of an important device known
as a scanning tunneling microscope, or an STM. An STM consists of a very sharp conducting
probe that is scanned over the surface of a metal (or any other solid conducting medium). A large
voltage difference is applied between the probe and the surface. Now, the surface electric field-
strength immediately below the probe tip is proportional to the applied potential difference, and
inversely proportional to the spacing between the tip and the surface. Electrons tunneling between
the surface and the probe tip give rise to a weak electric current. The magnitude of this current
is proportional to the tunneling probability, (4.145). It follows that the current is an extremely
sensitive function of the surface electric field-strength, and, hence, of the spacing between the tip
and the surface (assuming that the potential difference is held constant). An STM can, thus, be
used to construct a very accurate contour map of the surface under investigation. In fact, STMs are
capable of achieving sufficient resolution to image individual atoms.

4.3.6 Alpha Decay
Many types of heavy atomic nuclei spontaneously decay to produce daughter nuclei via the emis-
sion of α-particles (i.e., helium nuclei) of some characteristic energy. This process is known as
α-decay. Let us investigate the α-decay of a particular type of atomic nucleus of radius R, charge-
number Z, and mass-number A. Such a nucleus thus decays to produce a daughter nucleus of
charge-number Z1 = Z − 2 and mass-number A1 = A − 4, and an α-particle of charge-number
Z2 = 2 and mass-number A2 = 4. Let the characteristic energy of the α-particle be E. Incidentally,
nuclear radii are found to satisfy the empirical formula

R = 1.5 × 10−15 A1/3 m = 2.0 × 10−15 Z 1/3
1 m (4.146)

for Z � 1.
In 1928, George Gamov proposed a very successful theory of α-decay, according to which

the α-particle moves freely inside the nucleus, and is emitted after tunneling through the potential
barrier between itself and the daughter nucleus. In other words, the α-particle, whose energy is E,
is trapped in a potential well of radius R by the potential barrier

U(r) =
Z1 Z2 e2

4π ε0 r
(4.147)
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for r > R. (See Section 2.1.4.) Here, e is the magnitude of the electron charge.
Making use of the WKB approximation (and neglecting the fact that r is a radial, rather than a

Cartesian, coordinate), the probability of the α-particle tunneling through the barrier is

|T |2 = exp

(
−2
√

2 m
~

∫ r2

r1

√
U(r) − E dr

)
, (4.148)

where r1 = R and r2 = Z1 Z2 e2/(4π ε0 E). Here, m = 4 mp is the α-particle mass, and mp is the
proton mass. The previous expression reduces to

|T |2 = exp

[
−2
√

2 β
∫ Ec/E

1

(
1
y
− E

Ec

)1/2

dy

]
, (4.149)

where

β =

(
Z1 Z2 e2 m R

4π ε0 ~2

)1/2

= 0.74 Z 2/3
1 (4.150)

is a dimensionless constant, and

Ec =
Z1 Z2 e2

4π ε0 R
= 1.44 Z 2/3

1 MeV (4.151)

is the characteristic energy the α-particle would need in order to escape from the nucleus without
tunneling. Of course, E � Ec. It is easily demonstrated that∫ 1/ε

1

(
1
y
− ε
)1/2

dy ' π

2
√
ε
− 2 (4.152)

when ε � 1. Hence.

|T |2 ' exp

[
−2
√

2 β

(
π

2

√
Ec

E
− 2

)]
. (4.153)

Now, the α-particle moves inside the nucleus at the characteristic velocity v =
√

2 E/m. It
follows that the particle bounces backward and forward within the nucleus at the frequency ν '
v/R, giving

ν ' 2 × 1028 yr−1 (4.154)

for a 1 MeV α-particle trapped inside a typical heavy nucleus of radius 10−14 m. Thus, the α-
particle effectively attempts to tunnel through the potential barrier ν times a second. If each of
these attempts has a probability |T |2 of succeeding then the probability of decay per unit time is
ν |T |2. Hence, if there are N(t) � 1 intact nuclei at time t then there are only N + dN at time t + dt,
where

dN = −N ν |T |2 dt. (4.155)

This expression can be integrated to give

N(t) = N(0) exp
(−ν |T |2 t

)
. (4.156)
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The half-life, τ, is defined as the time which must elapse in order for half of the nuclei originally
present to decay. It follows from the previous formula that

τ =
ln 2
ν |T |2 . (4.157)

Note that the half-life is independent of N(0).
Finally, making use of the previous results, we obtain

log10[τ(yr)] = −C1 −C2 Z 2/3
1 + C3

Z1√
E(MeV)

, (4.158)

where

C1 = 28.5, (4.159)

C2 = 1.83, (4.160)

C3 = 1.73. (4.161)

The half-life, τ, the daughter charge-number, Z1 = Z − 2, and the α-particle energy, E, for
atomic nuclei that undergo α-decay are indeed found to satisfy a relationship of the form (4.158).
See Figure 4.12. The best fit to the data shown in the figure is obtained using

C1 = 28.9, (4.162)

C2 = 1.60, (4.163)

C3 = 1.61. (4.164)

It can be seen that these values are remarkably similar to those calculated previously.

4.3.7 Simple Harmonic Oscillator
Consider the motion of a particle of mass m in the simple harmonic oscillator potential

U(x) =
1
2
κ x 2, (4.165)

where κ > 0 is the so-called force constant of the oscillator. According to classical physics, a
particle trapped in this potential executes simple harmonic motion at the angular frequency ω =√
κ/m. (See Section 1.3.6.) The time-independent Schrödinger equation for a particle of mass m

and energy E moving in a simple harmonic potential becomes

d2ψ

dx2 =
2 m
~2

(
1
2
κ x2 − E

)
ψ. (4.166)

[See Equation (4.71).] Let

y =

√
mω

~
x, (4.167)
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Figure 4.12: The experimentally determined half-life, τex, of various atomic nuclei that decay via
α-emission versus the best-fit theoretical half-life log10(τth) = −28.9 − 1.60 Z 2/3

1 + 1.61 Z1/
√

E.
Both half-lives are measured in years. Here, Z1 = Z − 2, where Z is the charge-number of the
nucleus, and E the characteristic energy of the emitted α-particle in MeV. In order of increasing
half-life, the points correspond to the following nuclei: Rn 215, Po 214, Po 216, Po 197, Fm 250,
Ac 225, U 230, U 232, U 234, Gd 150, U 236, U 238, Pt 190, Gd 152, Nd 144. (Data obtained
from International Atomic Energy Agency, Nuclear Data Center.)
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and
ε =

2 E
~ω

. (4.168)

Equation (4.166) reduces to
d2ψ

dy2 − (y2 − ε)ψ = 0. (4.169)

We need to find solutions to the previous equation that are bounded at infinity; that is, solutions
that satisfy the boundary condition ψ→ 0 as |y| → ∞.

Consider the behavior of the solution to Equation (4.169) in the limit |y| � 1. As is easily seen,
in this limit the equation simplifies somewhat to give

d2ψ

dy2 − y2 ψ ' 0. (4.170)

The approximate solutions to the previous equation are

ψ(y) ' A(y) e±y
2/2, (4.171)

where A(y) is a relatively slowly varying function of y. Clearly, if ψ(y) is to remain bounded as
|y| → ∞ then we must chose the exponentially decaying solution. This suggests that we should
write

ψ(y) = h(y) e−y
2/2, (4.172)

where we would expect h(y) to be an algebraic, rather than an exponential, function of y.
Substituting Equation (4.172) into Equation (4.169), we obtain

d2h
dy2 − 2 y

dh
dy

+ (ε − 1) h = 0. (4.173)

Let us attempt a power-law solution of the form

h(y) =
∑
i=0,∞

ci y
i. (4.174)

Inserting this test solution into Equation (4.173), and equating the coefficients of y i, we obtain the
recursion relation

ci+2 =
(2 i − ε + 1)
(i + 1) (i + 2)

ci. (4.175)

Consider the behavior of h(y) in the limit |y| → ∞. The previous recursion relation simplifies to

ci+2 ' 2
i

ci. (4.176)

Hence, at large |y|, when the higher powers of y dominate, we have

h(y) ∼ C
∑

j

y 2 j

j!
∼ C e y

2
. (4.177)
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It follows that ψ(y) = h(y) exp(−y2/2) varies as exp( y2/2) as |y| → ∞. This behavior is unaccept-
able, because it does not satisfy the boundary condition ψ→ 0 as |y| → ∞. The only way in which
we can prevent ψ from blowing up as |y| → ∞ is to demand that the power series (4.174) terminate
at some finite value of i. This implies, from the recursion relation (4.175), that

ε = 2 n + 1, (4.178)

where n is a non-negative integer. Note that the number of terms in the power series (4.174) is
n + 1. Finally, using Equation (4.168), we obtain

E =

(
1
2

+ n
)
~ω, (4.179)

for n = 0, 1, 2, · · · .
Hence, we conclude that a particle moving in a harmonic potential has quantized energy levels

that are equally spaced. The spacing between successive energy levels is ~ω, where ω is the
classical oscillation frequency. Furthermore, the lowest energy state (n = 0) possesses the finite
energy (1/2) ~ω. This is another example of zero-point energy. (See Section 4.3.1.) It is easily
demonstrated that the (normalized) wavefunction of the lowest energy state takes the form

ψ0(x) =
e−x2/2 d2

π1/4
√

d
, (4.180)

where d =
√
~/mω.

4.4 Three-Dimensional Wave Mechanics

4.4.1 Three-Dimensional Wave Mechanics
Up to now, we have only discussed wave mechanics for a particle moving in one dimension.
However, the generalization to a particle moving in three dimensions is fairly straightforward. A
massive particle moving in three dimensions has a complex wavefunction of the form [cf., Equa-
tion (4.10)]

ψ(x, y, z, t) = ψ0 ei (k·r−ω t), (4.181)

where ψ0 is a complex constant, and r = (x, y, z). Here, the wavevector, k, and the angular
frequency, ω, are related to the particle momentum, p, and energy, E, according to [cf., Equa-
tion (4.9)]

p = ~k, (4.182)

and [cf., Equation (4.8)]
E = ~ω, (4.183)

respectively. Generalizing the analysis of Section 4.2.2, the three-dimensional version of Schrödinger’s
equation is [cf., Equation (4.22)]

i ~
∂ψ

∂t
= − ~

2

2 m
∇2ψ + U(r)ψ, (4.184)
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where the differential operator

∇2 ≡ ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (4.185)

is known as the Laplacian. (See Section A.21.) The interpretation of a three-dimensional wave-
function is that the probability of simultaneously finding the particle between x and x+dx, between
y and y + dy, and between z and z + dz, at time t is [cf., Equation (4.25)]

P(x, y, z, t) = |ψ(x, y, z, t)|2 dx dy dz. (4.186)

Moreover, the normalization condition for the wavefunction becomes [cf., Equation (4.27)]∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|ψ(x, y, z, t)|2 dx dy dz = 1. (4.187)

It can be demonstrated that Schrödinger’s equation, (4.184), preserves the normalization condi-
tion, (4.187), of a localized wavefunction. Heisenberg’s uncertainty principle generalizes to [cf.,
Equation (4.65)]

∆x∆px &
~

2
, (4.188)

∆y∆py &
~

2
, (4.189)

∆z∆pz &
~

2
. (4.190)

Finally, a stationary state of energy E is written [cf., Equation (4.69)]

ψ(x, y, z, t) = ψ(x, y, z) e−i (E/~) t, (4.191)

where the stationary wavefunction, ψ(x, y, z), satisfies [cf., Equation (4.71)]

− ~
2

2 m
∇2ψ + U(r)ψ = E ψ. (4.192)

4.4.2 Particle in Box
As an example of a three-dimensional problem in wave mechanics, consider a particle trapped in
a square potential well of infinite depth, such that

U(x, y, z) =

{
0 0 ≤ x ≤ a, 0 ≤ y ≤ a, 0 ≤ z ≤ a
∞ otherwise

. (4.193)

Within the well, the stationary wavefunction, ψ(x, y, z), satisfies

− ~
2

2 m
∇2ψ = E ψ, (4.194)
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subject to the boundary conditions

ψ(0, y, z) = ψ(x, 0, z) = ψ(x, y, 0) = 0, (4.195)

and
ψ(a, y, z) = ψ(x, a, z) = ψ(x, y, a) = 0, (4.196)

because ψ = 0 outside the well. Let us try a separable wavefunction of the form

ψ(x, y, z) = ψ0 sin(kx x) sin(ky y) sin(kz z). (4.197)

This expression automatically satisfies the boundary conditions (4.195). The remaining boundary
conditions, (4.196), are satisfied provided

kx = nx
π

a
, (4.198)

ky = ny
π

a
, (4.199)

kz = nz
π

a
, (4.200)

where nx, ny, and nz are (independent) positive integers. (Note that a negative value of nx does
not give rise to a physical state that is distinct from the corresponding positive value, et cetera.)
Substitution of the wavefunction (4.197) into Equation (4.194) yields

E =
~ 2 k2

2 m
=
~2

2 m
(k2

x + k2
y + k2

z ). (4.201)

Thus, it follows from Equations (4.198)–(4.200) that the particle energy is quantized, and that the
allowed energy levels are

Elx,ly,lz =
~2

2 m a2 (n 2
x + n 2

y + n 2
z ). (4.202)

The properly normalized [see Equation (4.187)] stationary wavefunctions corresponding to these
energy levels are

ψlx,ly,lz(x, y, z) =

(
2
a

)3/2

sin
(

nx π
x
a

)
sin
(

ny π
y

a

)
sin
(

nz π
z
a

)
. (4.203)

As is the case for a particle trapped in a one-dimensional potential well, the lowest energy level
for a particle trapped in a three-dimensional well is not zero, but rather

E1,1,1 = 3 E1. (4.204)

Here,

E1 =
~2

2 m a2 . (4.205)
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is the ground state (i.e., the lowest energy state) energy in the one-dimensional case. It follows
from Equation (4.202) that distinct permutations of nx, ny, and nz that do not alter the value of
n2 = n 2

x + n 2
y + n 2

z also do not alter the energy. In other words, in three dimensions, it is possible
for distinct wavefunctions to be associated with the same energy level. In this situation, the energy
level is said to be degenerate.The ground-state energy level, 3 E1, is non-degenerate, because the
only combination of (nx, ny, nz) that gives this energy is (1, 1, 1). However, the next highest energy
level, 6 E1, is degenerate, because it is obtained when (nx, ny, nz) take the values (2, 1, 1), or (1,
2, 1), or (1, 1, 2). In fact, a non-degenerate energy level corresponds to a case where the three
quantum numbers (i.e., nx, ny, and nz) all have the same value, whereas a threefold degenerate
energy level corresponds to a case where only two of the quantum numbers have the same value,
and, finally, a sixfold degenerate energy level corresponds to a case where the quantum numbers
are all different.

4.4.3 Degenerate Electron Gas
Consider N electrons trapped in a cubic box of dimension a. Let us treat the electrons as essentially
non-interacting particles. The total energy of a system consisting of many non-interacting particles
is simply the sum of the single-particle energies of the individual particles. Furthermore, because
the electrons are indistinguishable fermions (i.e., half-integer spin particle), they are subject to the
so-called Pauli exclusion principle. The exclusion principle states that no two electrons in our
system can occupy the same single-particle energy level. Now, from Section 4.4.2, the single-
particle energy levels for a particle in a box are characterized by the three quantum numbers, nx,
ny, and nz. Thus, we conclude that no two electrons in our system can have the same set of values of
nx, ny, and nz. It turns out that this is not quite true, because electrons possess an intrinsic angular
momentum called spin. The spin states of an electron are governed by an additional quantum
number that can take one of two different values. Hence, when spin is taken into account, we
conclude that a maximum of two electrons (with different spin quantum numbers) can occupy a
single-particle energy level corresponding to a particular set of values of nx, ny, and nz. It is clear,
from Equation (4.202), that the associated particle energy is proportional to n2 = n 2

x + n 2
y + n 2

z .
Suppose that our electrons are cold; that is, they have comparatively little thermal energy. In

this case, we would expect them to fill the lowest single-particle energy levels available to them.
We can imagine the single-particle energy levels as existing in a sort of three-dimensional quantum
number space whose Cartesian coordinates are nx, ny, and nz. Thus, the energy levels are uniformly
distributed in this space on a cubic lattice. Moreover, the distance between nearest-neighbor energy
levels is unity. This implies that the number of energy levels per unit volume is also unity. Finally,
the energy of a given energy level is proportional to its distance, n2 = n 2

x + n 2
y + n 2

z , from the origin.
Because we expect cold electrons to occupy the lowest energy levels available to them, but

only two electrons can occupy a given energy level, it follows that if the number of electrons, Ne,
is very large then the filled energy levels will be approximately distributed in a sphere centered
on the origin of quantum number space. The number of energy levels contained in a sphere of
radius n is approximately equal to the volume of the sphere, because the number of energy levels
per unit volume is unity. It turns out that this is not quite correct, because we have forgotten that
the quantum numbers nx, ny, and nz can only take positive values. Hence, the filled energy levels
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actually only occupy one octant of a sphere. The radius, nF , of the octant of filled energy levels
in quantum number space can be calculated by equating the number of energy levels it contains to
the number of electrons, Ne. Thus, we can write

Ne = 2 × 1
8
× 4π

3
n 3

F . (4.206)

Here, the factor 2 is to take into account the two spin states of an electron, and the factor 1/8 is to
take account of the fact that nx, ny, and nz can only take positive values. Thus,

nF =

(
3 Ne

π

)1/3

. (4.207)

According to Equation (4.202), the energy of the most energetic electrons—which is known as the
Fermi energy—is given by

EF =
n 2

F π
2 ~2

2 me a2 =
π2 ~2

2 me a2

(
3 Ne

π

)2/3

, (4.208)

where me is the electron mass. This expression can also be written as

EF =
π2 ~2

2 me

(
3 ne

π

)2/3

, (4.209)

where ne = Ne/a3 is the number of electrons per unit volume (in real space). Note that the Fermi
energy only depends on the number density of the confined electrons.

The mean energy of the electrons is given by

〈E〉 = EF

∫ nF

0
n2 4π n2 dn

/
4
3
π n 5

F =
3
5

EF , (4.210)

because E ∝ n2, and the energy levels are uniformly distributed in quantum-number space within
an octant of radius nF . According to classical physics, the mean thermal energy of the electrons is
(3/2) kB T , where T is the electron temperature, and kB the Boltzmann constant. Thus, if kB T �
EF then our original assumption that the electrons are cold is valid. Note that, in this case, the
electron energy is much larger than that predicted by classical physics; electrons in this state are
termed degenerate. On the other hand, if kB T � EF then the electrons are hot, and are essentially
governed by classical physics; electrons in this state are termed non-degenerate.

The total energy of a degenerate electron gas is

Etotal = Ne 〈E〉 =
3
5

Ne EF . (4.211)

Hence, the gas pressure takes the form

P = −∂Etotal

∂V
=

2
5

n EF , (4.212)
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because EF ∝ a−2 = V −2/3. [See Equation (4.208).] Now, the pressure predicted by classical
physics is P = n kB T . Thus, a degenerate electron gas has a much higher pressure than that which
would be predicted by classical physics. This is an entirely quantum mechanical effect, and is due
to the fact that identical fermions cannot get significantly closer together than a de Broglie wave-
length without violating the Pauli exclusion principle. Note that, according to Equation (4.209),
the mean spacing between degenerate electrons is

d ∼ n−1/3
e ∼ h√

me E
∼ h

p
∼ λ, (4.213)

where λ is the de Broglie wavelength. Thus, an electron gas is non-degenerate when the mean spac-
ing between the electrons is much greater than the de Broglie wavelength, and becomes degenerate
as the mean spacing approaches the de Broglie wavelength.

In turns out that the conduction (i.e., free) electrons inside metals are highly degenerate (be-
cause the number of electrons per unit volume is very large, and EF ∝ n 2/3

e ). Indeed, most metals
are hard to compress as a direct consequence of the high degeneracy pressure of their conduction
electrons. To be more exact, resistance to compression is usually measured in terms of a quantity
known as the bulk modulus, which is defined

κ = −V
∂P
∂V

(4.214)

Now, for a fixed number of electrons, P ∝ V −5/3 [see Equations (4.208) and (4.212)]. Hence,

κ =
5
3

P =
π3 ~2

9 me

(
3 ne

π

)5/3

. (4.215)

For example, the number density of free electrons in magnesium is ne ∼ 8.6× 1028 m−3. This leads
to the following estimate for the bulk modulus; κ ∼ 6.4 × 1010 N m−2. The actual bulk modulus is
κ = 4.5 × 1010 N m−2.

4.4.4 White-Dwarf Star
A main-sequence hydrogen-burning star, such as the Sun, is maintained in equilibrium via the
balance of the gravitational attraction tending to make it collapse, and the thermal pressure tending
to make it expand. Of course, the thermal energy of the star is generated by nuclear reactions
occurring deep inside its core. Eventually, however, the star will run out of burnable fuel, and,
therefore, start to collapse, as it radiates away its remaining thermal energy. What is the ultimate
fate of such a star?

A burnt-out star is basically a gas of electrons and ions. As the star collapses, its density
increases, and so the mean separation between its constituent particles decreases. Eventually, the
mean separation becomes of order of the de Broglie wavelength of the electrons, and the electron
gas becomes degenerate. Note that the de Broglie wavelength of the ions is much smaller than that
of the electrons (because the ions are much more massive), so the ion gas remains non-degenerate.
Now, even at zero temperature, a degenerate electron gas exerts a substantial pressure, because
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the Pauli exclusion principle prevents the mean electron separation from becoming significantly
smaller than the typical de Broglie wavelength. (See Section 4.4.3.) Thus, it is possible for a burnt-
out star to maintain itself against complete collapse under gravity via the degeneracy pressure of
its constituent electrons. Such stars are termed white-dwarfs. Let us investigate the physics of
white-dwarfs in more detail.

The total energy of a white-dwarf star can be written

E = K + U, (4.216)

where K is the kinetic energy of the degenerate electrons (the kinetic energy of the ions is negligi-
ble), and U is the gravitational potential energy. Let us assume, for the sake of simplicity, that the
density of the star is uniform. In this case, the gravitational potential energy takes the form

U = −3
5

G M2

R
, (4.217)

where G is the gravitational constant, M is the stellar mass, and R is the stellar radius. The previous
equation follows by analogy with Equation (2.90).

From the previous section, the kinetic energy of a degenerate electron gas is simply

K = Ne 〈E〉 =
3
5

N EF =
3
5

Ne
π2 ~2

2 me

(
3 Ne

πV

)2/3

, (4.218)

where NE is the number of electrons, V the volume of the star, and me the electron mass.
The interior of a white-dwarf star is composed of atoms like C12 and O16 which contain equal

numbers of protons, neutrons, and electrons. Thus,

M = 2 Ne mp, (4.219)

where mp is the proton mass.
Equations (4.216)–(4.219) can be combined to give

E =
A
R2 −

B
R
, (4.220)

where

A =
3

20

(
9π
8

)2/3
~2

me

(
M
mp

)5/3

, (4.221)

B =
3
5

G M2. (4.222)

The equilibrium radius of the star, R∗, is that which minimizes the total energy E. In fact, it is
easily demonstrated that

R∗ =
2 A
B
, (4.223)
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which yields

R∗ =
(9π)2/3

8
~2

G me m 5/3
p M1/3

. (4.224)

The previous formula can also be written

R∗
R�

= 0.010
(

M�
M

)1/3

, (4.225)

where R� = 7 × 105 km is the solar radius, and M� = 2 × 1030 kg the solar mass. It follows
that the radius of a typical solar-mass white-dwarf is about 7000 km; that is, about the same as
the radius of the Earth. The first white-dwarf to be discovered (in 1862) was the companion of
Sirius. Nowadays, thousands of white-dwarfs have been observed, all with properties similar to
those described previously.

Note from Equations (4.218), (4.219), and (4.225) that 〈E〉 ∝ M4/3. In other words, the mean
energy of the electrons inside a white-dwarf increases as the stellar mass increases. Hence, for
a sufficiently massive white-dwarf, the electrons can become relativistic. It turns out that the
degeneracy pressure for relativistic electrons only scales as R−1, rather that R−2, and, thus, is
unable to balance the gravitational pressure (which also scales as R−1). It follows that electron
degeneracy pressure is only able to halt the collapse of a burnt-out star provided that the stellar
mass does not exceed some critical value, known as the Chandrasekhar limit, because it was first
derived by Subrahmanyan Chandrasekhar in 1930, which turns out to be about 1.4 times the mass
of the Sun. Stars whose mass exceeds the Chandrasekhar limit inevitably collapse to produce
extremely compact objects, such as neutron stars (which are held up by the degeneracy pressure of
their constituent neutrons), or black holes.



Chapter 5

Thermal Physics

5.1 Probability Theory

5.1.1 Probability
Consider some physical system A. Suppose that a measurement of a given property of this system
can result in a number of distinct outcomes. If we wish to determine the probability of obtaining a
given outcome at an arbitrary time then we can take one of two approaches. First, we can observe
system A at many distinct times; this approach is known as a time average. Second, we can observe
many systems that are identical to A at an arbitrary time; this approach is known as an ensemble
average. An ensemble average is the most convenient theoretical approach, and the one that we
shall adopt in the following discussion, whereas a time average is more directly related to real
experiments.

Suppose that there are N systems in our ensemble (i.e., collection of identical systems) and that
Nr of these systems exhibit the outcome r. The probability of occurrence of outcome r is defined

Pr = lim N→∞
Nr

N
. (5.1)

It is clear that Pr is a number that lies between 0 and 1. If Pr = 0 then no systems in the ensemble
exhibit the outcome r, even in the limit that the number of systems tends to infinity. This is another
way of saying that outcome r is impossible. If Pr = 1 then all systems in the ensemble exhibit the
outcome r, even in the limit that the number of systems tends to infinity. This is another way of
saying that outcome r is certain to occur.

Suppose that a measurement of a given property of some physical system A can lead to any one
of R mutually exclusive outcomes. Let the total number of systems in the ensemble be N, and let
the number of systems that exhibit the outcome r be Nr. It follows that∑

r=1,R

Nr = N. (5.2)

However, if we divide both sides of the previous equation by N, and then take the limit that N → ∞,

301
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then we obtain the so-called normalization condition,∑
r=1,R

Pr = 1, (5.3)

where use has been made of Equation (5.1). The normalization condition states that the sum of
the probabilities of all of the possible outcomes of a measurement of a given property of system
A is unity. This condition is equivalent to the self-evident proposition that a measurement of the
property is bound to result in one of the possible outcomes of this measurement.

Let us determine the probability of occurrence of outcome r or outcome s when an observation
is made of our system. Here, r and s are distinct outcomes. There are Nr + Ns systems in our
ensemble that exhibit either the outcome r or the outcome s, so

Pr|s = lim N→∞
Nr + Ns

N
= Pr + Ps, (5.4)

where use has been made of Equation (5.1). In other words, the probability of observing the
outcome r or the outcome s is the sum of the probabilities of occurrence of these two outcomes.
For example, the probability of throwing a 1 on a six-sided die is 1/6. Likewise, the probability of
throwing a 2 is 1/6. Hence, the probability of throwing a 1 or a 2 is 1/6 + 1/6 = 1/3. The previous
result can easily be extended to deal with more that two alternative outcomes.

Suppose that our system can exhibit two different types of outcome. Type-1 outcomes are
labeled r = 1, · · · ,R. Type-2 outcomes are labeled s = 1, · · · , S . Let there be N systems in our
ensemble, and let Nr of them exhibit the type-1 outcome r, and let Ns of them exhibit the type-2
outcome s. The probability of outcome s is

Ps =
Ns

N
, (5.5)

which implies that
Ns = Ps N. (5.6)

[Here, the limit N → ∞ is taken as read; see Equation (5.1).] By analogy, the number of systems
that exhibit the type-1 outcome r and the type-2 outcome s is

Nr⊗s = Ps Nr. (5.7)

Hence, the probability of obtaining both the type-1 outcome r and the type-2 outcome s simulta-
neously is

Pr⊗s = lim N→∞
Nr⊗s

N
= Ps lim N→∞

Nr

N
= Pr Ps, (5.8)

where use has been made of Equation (5.1). However, the previous result is only valid provided
outcomes r and s are statistically independent of one another. In other words, obtaining the out-
come r must not affect the probability of obtaining the outcome s. As an example of the previous
result, consider a system consisting of two six-sided dies. The probability of throwing a 1 on either
die is 1/6. Hence, the probability of simultaneously throwing a 1 on both dies is 1/6×1/6 = 1/36.
The previous result can easily be extended to deal with more than two types of outcome.
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5.1.2 Binomial Probability Distribution
Consider a system that can only exhibit two possible outcomes. Let us label the outcomes P and
Q, and let p and q be the respective probabilities of these outcomes. It follows from Equation (5.3)
that

p + q = 1. (5.9)

Consider an ensemble of N two-outcome systems like the one just discussed. Let n be the
number of systems in the ensemble that exhibit outcome P, and let n′ be the number of systems
that exhibit outcome Q. It is evident that

n + n′ = N. (5.10)

Let us determine the probability, PN(n), that n systems in our ensemble exhibit outcome P.
Making use of a straightforward extension of Equation (5.8), the probability that n systems in the
ensemble exhibit outcome P, and that n′ exhibit outcome Q, is

p p p p · · · p︸           ︷︷           ︸
n

q q q q q · · · q︸            ︷︷            ︸
n′

= pn qn′ . (5.11)

However, a situation in which n systems in the ensemble exhibit the outcome P can be achieved in
many alternative ways. Let CN(n) be the number of distinct configurations of N systems by which
n of these systems exhibit outcome P. Making use of a straightforward extension of Equation (5.4),
as well as Equations (5.10) and (5.11), we deduce that

P(n) = CN(n) pn qN−n. (5.12)

Consider n systems exhibiting the outcome P. The number of ways that these systems can be
distributed between N systems is

N (N − 1) (N − 2) · · · [N − (n − 1)] =
N!

(N − n)!
. (5.13)

This follows, by induction from Equation (5.8), because we can choose any one of the N systems
to exhibit the first outcome P, then we can choose any one of the remaining N − 1 systems to
exhibit the second outcome P, and so on. However, some of the N!/(N − n)! distributions will just
be permutations of the systems exhibiting outcome P among themselves. Such permutations do
not correspond to distinct distributions. Now, the number of permutations of n quantities among n
places is n!. Hence, we deduce that

CN(n) =
N!

n! (N − n)!
. (5.14)

It follows from Equation (5.12) that

PN(n) =
N!

n! (N − n)!
pn qN−n. (5.15)
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The well-known algebraic expansion of a binomial of the form (p + q)N is

(p + q)N =
∑
n=1,N

N!
n! (N − n)!

pn qN−n. (5.16)

For this reason, the probability distribution (5.15) is known as the binomial probability distribution.
From Equation (5.9), p + q = 1, which implies that (p + q)N = 1. Thus, the previous two equations
yield ∑

n=0,N

PN(n) = 1, (5.17)

in accordance with Equation (5.3).
Suppose that outcomes P and Q represent steps to the right and steps to the left taken by a

drunken man. The net number of steps to the right taken is m = n − n′ = 2 n − N, where use has
been made of Equation (5.10). Thus,

n =
N + m

2
, (5.18)

which implies that the probability, P′N(m), that m assumes a certain value after N steps is equal to
the probability that n assumes the value (N + m)/2. In other words,

P′N(m) = PN

(
N + m

2

)
. (5.19)

Suppose, finally, that some physical system A can exhibit many possible outcomes, r, s, t, et
cetera. If we are only interested in outcome r then we could label all of the other outcomes ‘not
r’ or r̄. In this case, we have recovered a system to which the binomial probability distribution
applies.

5.1.3 Mean, Variance, and Standard Deviation
Consider some physical system A. Suppose that a measurement of a particular physical property
of this system, x, can result in one of R distinct outcomes. Let outcome r be associated with x
taking the value xr. Consider an ensemble of N systems that are identical to system A. Let Nr

be the number of systems in the ensemble that exhibit the outcome r. The mean value of x is, by
definition, the average of a very large number of measurements of x. In other words,

〈x〉 = lim N→∞
∑
r=1,R

Nr xr

N
, (5.20)

which implies that
〈x〉 =

∑
r=1,R

Pr xr, (5.21)

where use has been made of Equation (5.1).
Let

∆x = x − 〈x〉 (5.22)
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measure the deviation of an individual measurement of x from the mean value. Obviously,

〈∆x〉 = 〈x〉 − 〈〈x〉〉 = 〈x〉 − 〈x〉 = 0. (5.23)

In other words, the mean deviation from the mean value is zero.
Consider 〈(∆x)2〉. This quantity, which is known as the variance of x, is positive definite. It

can only take the value 0 if all measurement of x result in the mean value. Thus, the variance of x
measures the degree of scatter about the mean value. It follows that〈

(∆x)2
〉

=
〈
(x − 〈x〉)2〉 =

〈
x2 − 2 〈x〉 x + 〈x〉2〉 =

〈
x2
〉 − 2 〈x〉2 + 〈x〉2, (5.24)

or 〈
(∆x)2

〉
=
〈

x2
〉 − 〈x〉2. (5.25)

Finally, the quantity
σx =

[〈
(∆x)2

〉]1/2 (5.26)

is known as the standard deviation of x. The standard deviation is essentially the width of the
range of probable values over which x is distributed around its mean value, 〈x〉.

5.1.4 Application to Binomial Probability Distribution
Let us now apply what we have just learned about the mean, variance, and standard deviation of a
general probability distribution to the specific case of the binomial probability distribution. Recall,
from Section 5.1.2, that if a simple system has just two possible outcomes, denoted P and Q, with
respective probabilities p and q = 1− p, then the probability of obtaining n occurrences of outcome
P in N observations is

PN(n) =
N!

n! (N − n)!
pn qN−n. (5.27)

Thus, making use of Equation (5.21), the mean number of occurrences of outcome P in N obser-
vations is given by

〈n〉 =
∑
n=0,N

PN(n) n =
∑
n=0,N

N!
n! (N − n)!

pn qN−n n. (5.28)

We can see that if the final factor n were absent on the right-hand side of the previous expression
then it would just reduce to the binomial expansion, which we know how to sum. [See Equa-
tion (5.16).] We can take advantage of this fact using a rather elegant mathematical sleight of
hand. Observe that because

n pn ≡ p
∂

∂p
pn, (5.29)

the previous summation can be rewritten as

∑
n=0,N

N!
n! (N − n)!

pn q N−n n ≡ p
∂

∂p

[∑
n=0,N

N!
n! (N − n)!

pn qN−n

]
. (5.30)
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The term in square brackets is now the familiar binomial expansion, and can be written more
succinctly as (p + q)N . Thus,∑

n=0,N

N!
n! (N − n)!

pn q N−n n = p
∂

∂p
(p + q)N = p N (p + q)N−1. (5.31)

However, p + q = 1 for the case in hand [see Equation (5.9)], so

〈n〉 = N p. (5.32)

In fact, we could have guessed the previous result. By definition, the probability, p, is the number
of occurrences of the outcome P divided by the number of observations, in the limit as the number
of observations goes to infinity:

p = lim N→∞
n
N
. (5.33)

[See Equation (5.1).] If we think carefully, however, we can appreciate that taking the limit as the
number of observations goes to infinity is equivalent to taking the mean value, so that

p =
〈 n

N

〉
=
〈n〉
N
. (5.34)

But, this is just a simple rearrangement of Equation (5.32).
Let us now calculate the variance of n. Recall, from Equation (5.25), that〈

(∆n)2
〉

=
〈
n2
〉 − 〈n〉2 (5.35)

We already know 〈n〉, so we just need to calculate
〈
n2
〉
. This average is written

〈
n2
〉

=
∑
n=0,N

N!
n! (N − n)!

pn qN−n n2. (5.36)

The sum can be evaluated using a simple extension of the mathematical trick that we used previ-
ously to evaluate 〈n〉. Because

n2 p n ≡
(

p
∂

∂p

)2

pn, (5.37)

we can write∑
n=0,N

N!
n! (N − n)!

pn qN−n n2 ≡
(

p
∂

∂p

)2 ∑
n=0,N

N!
n! (N − n)!

pnqN−n

=

(
p
∂

∂p

)2

(p + q)N

=

(
p
∂

∂p

)[
p N (p + q)N−1

]
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= p
[
N (p + q)N−1 + p N (N − 1) (p + q)N−2

]
. (5.38)

Using p + q = 1, we obtain〈
n2
〉

= p
[
N + p N (N − 1)

]
= N p (1 + p N − p)

= (N p)2 + N p q = 〈n〉2 + N p q, (5.39)

because 〈n〉 = N p. [See Equation (5.32).] It follows that the variance of n is given by〈
(∆n)2

〉
=
〈
n2
〉 − 〈n〉2 = N p q. (5.40)

The standard deviation of n is the square root of the variance [see Equation (5.26)], so that

σn =
√

N p q. (5.41)

Now, the standard deviation is essentially the width of the range of probable values over which n
is distributed around its mean value, 〈n〉. The relative width of the distribution is characterized by

σn

〈n〉 =

√
N p q
N p

=

√
q
p

1√
N
. (5.42)

It is clear, from the previous formula, that the relative width decreases with increasing N like N−1/2.
So, the greater the number of observations, the more likely it is that an observation of n will yield
a result that is relatively close to the mean value, 〈n〉.

5.1.5 Random Walk
The so-called random walk is a stochastic process that governs, for example, the path traced by a
molecule as it travels through a liquid or a gas, while constantly colliding with the other molecules
in the medium. (See Section 5.3.9.)

Consider a random walk in one dimension. Suppose that a molecule takes steps of equal length
l along the x-axis. Suppose, further, that the steps are taken to the left (i.e., in the negative x-
direction) or to the right, at random, with equal probabilities. Let xn be the molecule’s x coordinate
after n steps. It is assumed that x0 = 0. In other words, the molecule is initially at the origin. We
can write

xn = xn−1 ± l. (5.43)

Hence,
x 2

n = x 2
n−1 ± 2 xn l + l 2, (5.44)

which implies that 〈
x 2

n

〉
=
〈

x 2
n−1

〉
+ l 2. (5.45)

Thus, by induction, after N steps, we obtain〈
x2
〉

= N l 2 (5.46)
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Suppose that the steps are taken at a mean frequency f . It follows that N = f t, where x = 0 at
t = 0. Hence, 〈

x2
〉

= 2 D t, (5.47)

where

D =
1
2

f l 2 (5.48)

is known as the diffusivity. According to Equation (5.47), the molecule’s mean square distance
from its starting point grows linearly in time. This type of motion is known as diffusion. (See
Section 5.3.9.)

Consider a random walk in three dimensions. Let r be the displacement of our molecule from
the origin (which is its starting point). Suppose that the molecule takes steps of uniform length l,
in a random direction, f times a second. Let l be the displacement associated with a given step.
Let rn be the molecule’s displacement after n steps. We can write

rn = rn−1 + l. (5.49)

Thus,
r 2

n = (rn−1 + l) · (rn−1 + l) = r 2
n−1 + 2 rn−1 · l + l 2. (5.50)

However, if l is in a random direction then 〈rn−1 · l〉 = 0, because the cosine of the angle subtended
between rn−1 and l is just as likely to be positive as to be negative. Hence, the average of the
previous equation yields 〈

r 2
n

〉
=
〈
r 2

n−1

〉
+ l 2. (5.51)

By induction, after N steps, we obtain 〈
r2
〉

= N l 2, (5.52)

which implies that 〈
r2
〉

= 2 D t, (5.53)

where D = (1/2) f l 2. Thus, the motion of the molecule is again diffusive in nature.

5.1.6 Continuous Probability Distribution
Consider some physical system A. Suppose that a measurement of a particular physical property
of this system, x, can result in a continuous range of different outcomes such that −∞ < x < ∞.
Now, we would expect the probability that a measurement of x yields a result in the range x to
x + dx to be proportional to dx, in the limit that dx→ 0. (See Section 5.1.7.) Hence, we can define
the probability density, P(x), such that the probability of a measurement of x yielding a result in
the range x to x + dx is P(x) dx. A simple extension of the result (5.3) yields the normalization
condition, ∫ ∞

−∞
P(x) dx = 1. (5.54)
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It follows, from a straightforward extension of the results in Section 5.1.3 that the mean value of x
is

〈x〉 =

∫ ∞
−∞

P(x) x dx, (5.55)

the mean value of x2 is 〈
x2
〉

=

∫ ∞
−∞

P(x) x2 dx, (5.56)

and the variance of x is again 〈
(∆x)2

〉
=
〈

x2
〉 − 〈x〉2. (5.57)

If X(x) is some function of x then

〈X〉 =

∫ ∞
−∞

P(x) X(x) dx. (5.58)

Moreover, if X(x) and Y(x) are independent functions of x then

〈X + Y〉 =

∫ ∞
−∞

P(x) [X(x) + Y(x)] dx =

∫ ∞
−∞

P(x) X(x) dx +

∫ ∞
−∞

P(x) Y(x) dx = 〈X〉+ 〈Y〉 . (5.59)

Finally, in some situations it is convenient to use a probability density, P(x), that does not
satisfy the normalization condition (5.54). In such situations,

〈X〉 =

∫ ∞
−∞ P(x) X(x) dx∫ ∞
−∞ P(x) dx

. (5.60)

5.1.7 Gaussian Probability Distribution

Consider a very large number of observations, N � 1, made on a system with two possible out-
comes. (See Sections 5.1.2 and 5.1.4.) Suppose that the probability of outcome P is sufficiently
large that the average number of occurrences after N observations is much greater than unity; that
is,

〈n〉 = N p � 1. (5.61)

In this limit, the standard deviation of n is also much greater than unity,

σn =
√

N p q � 1, (5.62)

implying that there are very many probable values of n scattered about the mean value, 〈n〉. This
suggests that the probability of obtaining n occurrences of outcome P does not change significantly
in going from one possible value of n to an adjacent value. In other words,

|PN(n + 1) − PN(n)|
PN(n)

� 1. (5.63)
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In this situation, it is useful to regard the probability as a smooth function of n. Let n now be a
continuous variable that is interpreted as the number of occurrences of outcome P (after N obser-
vations) whenever it takes on a positive integer value. The probability that n lies between n and
n + dn is defined

P(n, n + dn) = P(n) dn, (5.64)

where P(n) is a probability density (see Section 5.1.6), and is independent of dn. The probability
can be written in this form because P(n, n + dn) can always be expanded as a Taylor series in dn,
and must go to zero as dn→ 0. We can write∫ n+1/2

n−1/2
P(n) dn = PN(n), (5.65)

which is equivalent to smearing out the discrete probability PN(n) over the range n ± 1/2. Given
Equations (5.27) and (5.63), the previous relation can be approximated as

P(n) ' PN(n) =
N!

n! (N − n)!
pn qN−n. (5.66)

For large N, the relative width of the probability distribution function is small; that is,

σn

〈n〉 =

√
q
p

1√
N
� 1. (5.67)

This suggests that P(n) is strongly peaked around the mean value, 〈n〉. Suppose that ln P(n) attains
its maximum value at n = ñ (where we expect ñ ∼ 〈n〉). Let us Taylor expand ln P(n) around n = ñ.
Note that we are expanding the slowly-varying function ln P(n), rather than the rapidly-varying
function P(n), because the Taylor expansion of P(n) does not converge sufficiently rapidly in the
vicinity of n = ñ to be useful. We can write

ln P(ñ + η) ' ln P(ñ) + η B1 +
η2

2
B2 + · · · , (5.68)

where

Bk =
dk ln P

dnk

∣∣∣∣
n=ñ

. (5.69)

By definition,

B1 = 0, (5.70)

B2 < 0, (5.71)

if n = ñ corresponds to the maximum value of ln P(n).
It follows from Equation (5.66) that

ln P = ln N! − ln n! − ln (N − n)! + n ln p + (N − n) ln q. (5.72)
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If n is a large integer, such that n � 1, then ln n! is almost a continuous function of n, because ln n!
changes by only a relatively small amount when n is incremented by unity. Hence,

d ln n!
dn

' ln (n + 1)! − ln n!
1

= ln
[

(n + 1)!
n!

]
= ln (n + 1), (5.73)

giving
d ln n!

dn
' ln n, (5.74)

for n � 1. The integral of this relation

ln n! ' n ln n − n + O(1), (5.75)

valid for n � 1, is called Stirling’s approximation, after James Stirling, who first obtained it in
1730.

According to Equations (5.69), (5.72), and (5.74),

B1 = − ln ñ + ln (N − ñ) + ln p − ln q. (5.76)

Hence, if B1 = 0 then
(N − ñ) p = ñ q, (5.77)

giving
ñ = N p = 〈n〉, (5.78)

because p + q = 1. [See Equations (5.9) and (5.32).] Thus, the maximum of ln P(n) occurs exactly
at the mean value of n.

Further differentiation of Equation (5.76) yields [see Equation (5.69)]

B2 = −1
ñ
− 1

N − ñ
= − 1

N p
− 1

N (1 − p)
= − 1

N p q
, (5.79)

because p + q = 1. Note that B2 < 0, as required. According to Equation (5.62), the previous
relation can also be written

B2 = − 1
σ 2

n
. (5.80)

It follows, from the previous analysis, that the Taylor expansion of ln P(n) can be written

ln P(〈n〉 + η) ' ln P(〈n〉) − η2

2σ 2
n

+ · · · . (5.81)

Taking the exponential of both sides, we obtain

P(n) ' P(〈n〉) exp
[
− (n − 〈n〉)2

2σ 2
n

]
. (5.82)
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The constant P(〈n〉) is most conveniently fixed by making use of the normalization condition,∫ N

0
P(n) dn ' 1, (5.83)

for a continuous distribution function. [See Equation (5.54). Note that n cannot take a negative
value.] Because we only expect P(n) to be significant when n lies in the relatively narrow range
〈n〉±σ 2

n , the limits of integration in the previous expression can be replaced by ±∞ with negligible
error. Thus,

P(〈n〉)
∫ ∞
−∞

exp
[
− (n − 〈n〉)2

2σ 2
n

]
dn = P(〈n〉)

√
2σn

∫ ∞
−∞

e−x2
dx ' 1. (5.84)

As is well known, ∫ ∞
−∞

e−x2
dx =

√
π. (5.85)

It follows from the normalization condition (5.84) that

P(〈n〉) ' 1√
2πσn

. (5.86)

Finally, we obtain

P(n) ' 1√
2πσn

exp
[
− (n − 〈n〉)2

2σ 2
n

]
. (5.87)

This is probability distribution is known as Gaussian probability distribution, after the Carl F.
Gauss, who discovered in 1809 it while investigating the distribution of errors in measurements.
The Gaussian distribution is only valid in the limits N � 1 and 〈n〉 � 1. According to this
distribution, at one standard deviation away from the mean value—that is n = 〈n〉 ± σn—the
probability density is about 61% of its peak value. At two standard deviations away from the mean
value, the probability density is about 13.5% of its peak value. Finally, at three standard deviations
away from the mean value, the probability density is only about 1% of its peak value. We conclude
that there is very little chance that n lies more than about three standard deviations away from its
mean value. In other words, n is almost certain to lie in the relatively narrow range 〈n〉 ± 3σn.

Consider the drunken walk discussed at the end of Section 5.1.2. Suppose that the drunken man
is equally likely to take a step to the right as to take a step to the left. In other words, p = q = 1/2.
Thus, according to Equations (5.32) and (5.41),

〈n〉 =
N
2
, (5.88)

σn =

√
N

2
. (5.89)

Equations (5.18) and (5.19) state that the probability of the drunken man taking m net steps to the
right after N total steps is

P′N(m) = PN(n), (5.90)
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where
n =

N + m
2

. (5.91)

In the limit of very many steps, we can treat m and n as continuous variables. Let P′(m) dm be the
probability that m lies between m and m + dm. Likewise, let P(n) dn be the probability that n lies
between n and n + dn. It follows that

P′(m) dm = P(n) dn, (5.92)

where m and n satisfy Equation (5.91). Hence,

P′(m) =
1
2

P
(

N + m
2

)
=

1√
2πN

exp
(
− m2

2 N

)
, (5.93)

where use has been made of Equations (5.87), (5.88), (5.89), and (5.91). Suppose that each step
is of length l, and that the man takes f steps per second. It follows that the man’s displacement
from his starting point is x = m l. Moreover, N = f t. Let P(x, t) dx be the probability that the
man’s displacement from his starting point after t seconds lies between x and x + dx. We have
P(x, t) dx = P′(m) dm, which implies that P(x) = P′(m)/l. Hence, we obtain

P(x) =
1√

4πD t
exp

(
− x2

4 D t

)
, (5.94)

where
D =

1
2

f l 2 (5.95)

is the diffusivity. It is easily demonstrated that〈
x2
〉

= 2 D t. (5.96)

Thus, it is evident from the analysis of Section 5.1.5 that the probability density distribution (5.94)
corresponds to that of a random walk in one dimension. Equation (5.94) can also be thought of as
describing the diffusion of probability density along the x-axis. (See Section 5.3.9.)

5.2 Ideal Gas

5.2.1 Ideal Gas Law
An ideal gas consists of molecules of negligible spatial extent that do not exert forces on one
another, except when they collide. At sufficiently large temperatures, and sufficiently low mass
densities, most gases in nature can be approximated as ideal gases.

According to Boyle’s law, which is an experimental result that was first reported by Robert
Boyle in 1660, the pressure of an ideal gas is inversely proportional to its volume, at fixed tem-
perature. According to Charles’s law, which is another experimental result that was obtained by
Jacques Charles in 1787, the volume of an ideal gas is proportional to its absolute temperature, at
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fixed pressure. Finally, according to Avogadro’s law, which was first proposed by Amedeo Avo-
gadro in 1812, equal volumes of all ideal gases, at the same temperature and pressure, contain the
same number of molecules. These three laws imply that an ideal gas is governed by the following
equation of state:

p V = νR T. (5.97)

Here, p is the gas pressure, V the volume, T the absolute temperature, ν the number of moles of
molecules in the gas, and

R = 8.3145 J K−1 mol−1 (5.98)

is a constant of proportionality known as the ideal gas constant. Equation (5.97) is called the ideal
gas law. Note that V and ν are extensive quantities. That is, if we double the size of the system
(by combining two identical systems) then we double the values of these quantities. On the other
hand, p and T are intensive quantities. That is, if we double the size of the system then the values
of these quantities are left unchanged.

Absolute temperature is measured in degrees kelvin (K) on a scale in which absolute zero (i.e.,
the lowest possible temperature) is 0 K, and the triple point of water (i.e., the unique temperature
at which all three phases of water coexist) is 273.16 K.

One mole of molecules contains Avogadro’s number of molecules; that is,

NA = 6.0221 × 1023 (5.99)

molecules. Finally, the Boltzmann constant, kB, is defined

kB =
R
NA

= 1.3806 × 10−23 J K−1. (5.100)

5.2.2 First Law of Thermodynamics
Let U be the internal energy of an ideal gas. Internal energy is the energy that the gas possesses
by virtue of the random motions of its constituent molecules. Consider a process by which an
infinitesimal amount of heat, dQ, is absorbed by the gas, and an infinitesimal amount of work, dW,
is performed on the gas. According to the first law of thermodynamics, which is a statement of
energy conservation that was first explicitly formulated by Rudolf Clausius in 1850,

dU = dQ + dW. (5.101)

In reality, dQ cannot be directly measured, and is, instead, inferred to be the difference between
the change in the gas’s internal energy and the work performed on the gas, both of which can be
directly measured, according to the previous equation.

Consider an ideal gas in a cylindrical container of cross-sectional area A. Suppose that the
top of the container is a movable piston, and that the gas pushes the piston upward a distance
dx. Now, from the definition of pressure, the gas exerts a force p A on the piston. Thus, the
gas does work p A dx on the piston. (See Section 1.3.2.) Hence, the work done on the gas is
dW = −p A dx = −p dV , where dV = A dx is the change in volume of the gas. This is a general
result. Hence, Equation (5.101) becomes

dU = dQ − p dV. (5.102)
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5.2.3 Specific Heat Capacity
Suppose that we add an amount of heat dQ to an ideal gas causing its temperature to rise by dT .
The specific heat capacity of the gas is defined

C =
dQ
dT

. (5.103)

In fact, an ideal gas possesses a number of different specific heat capacities depending on what
is held constant as heat is added to the system. Suppose that the volume is held constant. It follows
from Equation (5.102) that dQ = dU. Hence, the specific heat capacity at constant volume of the
gas is

CV =

(
∂Q
∂T

)
V

=

(
∂U
∂T

)
V
. (5.104)

However, according to Joule’s second law, which was established experimentally by James Joule
in 1843, the internal energy of an ideal gas depends on its temperature alone, and is independent
of the volume or pressure. We also expect CV to be an extensive quantity. It follows that

dU = ν cV(T ) dT, (5.105)

where cV = CV/ν is termed the molar specific heat capacity at constant volume, and is an intensive
quantity. In fact, cV is constant for an idea gas. For a monatomic gas,

cV =
3
2

R, (5.106)

whereas for a diatomic gas,

cV =
5
2

R. (5.107)

(See Sections 5.3.6 and 5.5.8.) In both cases, Equation (5.105) can be integrated to give

U(T ) = ν cV T. (5.108)

Consider the specific heat capacity of an ideal gas at constant pressure. Making use of Equa-
tions (5.102) and (5.105),

dQ = ν cV dT + p dV. (5.109)

However, at constant pressure, the ideal gas law, (5.97), yields

p dV = νR dT. (5.110)

The previous two equations give
dQ = ν (cV + R) dT. (5.111)

Now, the molar specific heat capacity at constant pressure of an ideal gas is

cp =
1
ν

(
∂Q
∂T

)
p
. (5.112)
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Hence, we deduce that
cp = cV + R. (5.113)

Note that the specific heat capacity at constant pressure is greater than that at constant volume,
because some of the heat energy added to a gas held at constant pressure is consumed by the work
that the gas does on its surroundings, in order to expand its volume slightly, and, therefore, does
not lead to an increase in the internal energy (i.e., temperature) of the gas. On the other hand, for
a gas held at constant volume, all of the added heat energy goes to increase its internal energy.

5.2.4 Isothermal and Adiabatic Expansion
Suppose that the temperature of an ideal gas is held constant by keeping the gas in thermal con-
tact with a heat reservoir. If the gas is allowed to expand quasi-statically under these so-called
isothermal conditions then the ideal gas law, (5.97), tells us that

p V = constant. (5.114)

This result is known as the isothermal gas law.
Suppose, now, that the gas is thermally isolated from its surroundings. If the gas is allowed to

expand quasi-statically under these so-called adiabatic conditions then it does work on its environ-
ment, and, hence, its internal energy is reduced, and its temperature decreases. Let us calculate the
relationship between the pressure and volume of the gas during adiabatic expansion. According to
Equation (5.109),

dQ = ν cV dT + p dV = 0, (5.115)

in an adiabatic process (in which no heat is absorbed). The ideal gas law, (5.97), can be differenti-
ated, yielding

p dV + V dp = νR dT. (5.116)

The temperature increment, dT , can be eliminated between the previous two expressions to give

0 =
cV

R
(p dV + V dp) + p dV =

(cV

R
+ 1
)

p dV +
cV

R
V dp, (5.117)

which reduces to
(cV + R) p dV + cV V dp = 0. (5.118)

Dividing through by cV p V yields

γ
dV
V

+
dp
p

= 0, (5.119)

where
γ ≡ cp

cV
=

cV + R
cV

(5.120)

is termed the ratio of specific heats. [See Equation (5.113).] Given that cV is a constant in an ideal
gas, the ratio of specific heats, γ, is also a constant. In fact, Equations (5.106), (5.107), and the
previous equation, imply that

γ =
5
3

(5.121)
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for a monatomic gas, and

γ =
7
5

(5.122)

for a diatomic gas.
Because γ is a constant for an ideal gas, we can integrate Equation (5.119) to give

γ ln V + ln p = constant, (5.123)

or
p Vγ = constant. (5.124)

This result is known as the adiabatic gas law. It is straightforward to obtain analogous relationships
between V and T , and between p and T , during adiabatic expansion or contraction. In fact, because
p = νR T/V , the previous formula also implies that

T Vγ−1 = constant, (5.125)

and
p1−γ T γ = constant. (5.126)

Equations (5.124)–(5.126) are all completely equivalent.

5.2.5 Hydrostatic Equilibrium of Atmosphere
The gas that we are most familiar with in everyday life is, of course, the Earth’s atmosphere. It
turns out that we can use the isothermal and adiabatic gas laws to explain most of the observed
features of the atmosphere.

Let us, first of all, consider the hydrostatic equilibrium of the atmosphere. Consider a thin
vertical slice of the atmosphere, of cross-sectional area A, that starts at height z above ground
level, and extends to height z + dz. The upward force exerted on this slice by the gas below it is
p(z) A, where p(z) is the pressure at height z. Likewise, the downward force exerted by the gas
above the slice is p(z + dz) A. The net upward force is [p(z) − p(z + dz)] A. In equilibrium, this
upward force must be balanced by the downward force due to the weight of the slice, which is
ρ A dz g, where ρ is the mass density of the gas, and g the acceleration due to gravity. It follows
that the force balance condition can be written

[p(z) − p(z + dz)] A = ρ A dz g, (5.127)

which reduces to
dp
dz

= −ρ g. (5.128)

This result is known as the equation of hydrostatic equilibrium for the atmosphere.
We can express the mass density of a gas in the following form,

ρ =
ν µ

V
, (5.129)
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where µ is the molecular weight of the gas, and is equal to the mass of one mole of gas particles.
For instance, the molecular weight of nitrogen gas is 28 × 10−3 kg. The previous formula for the
mass density of a gas, combined with the ideal gas law, p V = νR T , yields

ρ =
p µ
R T

. (5.130)

It follows that the equation of hydrostatic equilibrium can be rewritten

dp
p

= − µ g
R T

dz. (5.131)

5.2.6 Isothermal Atmosphere
As a first approximation, let us assume that the temperature of the atmosphere is uniform. In such
an isothermal atmosphere, we can directly integrate the previous equation to give

p = p0 exp
(
− z

z0

)
. (5.132)

Here, p0 is the pressure at ground level (z = 0), which is generally about 1 bar (10 5 Nm−2 in SI
units). The quantity

z0 =
R T
µ g

(5.133)

is known as the isothermal scale-height of the atmosphere. At ground level, the atmospheric
temperature is, on average, about 15◦C, which is 288K on the absolute scale. The mean molecular
weight of air at sea level is 29×10−3 kg (i.e., the molecular weight of a gas made up of 78% nitrogen,
21% oxygen, and 1% argon). The mean acceleration due to gravity is 9.81 m s−2 at ground level.
Also, the molar ideal gas constant is 8.314 joules/mole/degree. Combining all of this information,
the isothermal scale-height of the atmosphere comes out to be about 8.4 kilometers.

We have discovered that, in an isothermal atmosphere, the pressure decreases exponentially
with increasing height. Because the temperature is assumed to be constant, and ρ ∝ p/T [see
Equation (5.130)], it follows that the density also decreases exponentially with the same scale-
height as the pressure. According to Equation (5.132), the pressure, or the density, of the atmo-
sphere decreases by a factor 10 every ln10 z0, or 19.3 kilometers, increase in altitude above sea
level. Clearly, the effective height of the atmosphere is very small compared to the Earth’s radius,
which is about 6, 400 kilometers. In other words, the atmosphere constitutes a relatively thin layer
covering the surface of the Earth. Incidentally, this justifies our neglect of the decrease of g with
increasing altitude.

One of the highest points in the United States of America is the peak of Mount Elbert in
Colorado. This peak lies 14, 432 feet, or about 4.4 kilometers, above sea level. At this altitude,
Equation (5.132) predicts that the air pressure should be about 0.6 atmospheres. Surprisingly
enough, after a few days acclimatization, humans can survive quite comfortably at this sort of
pressure. In the highest inhabited regions of the Andes and Tibet, the air pressure falls to about 0.5
atmospheres. Humans can just about survive at such pressures. However, humans cannot survive
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for any extended period in air pressures below half an atmosphere. This sets an upper limit on the
altitude of permanent human habitation, which is about 19, 000 feet, or 5.8 kilometers, above sea
level.

The highest point in the world is, of course, the peak of Mount Everest in Nepal. This peak
lies at an altitude of 29, 028 feet, or 8.85 kilometers, above sea level, where we expect the air
pressure to be a mere 0.35 atmospheres. This explains why Mount Everest was only conquered
after lightweight portable oxygen cylinders were invented. Admittedly, some climbers have subse-
quently ascended Mount Everest without the aid of additional oxygen, but this is a very foolhardy
venture, because, above 19, 000 feet, the climbers are slowly dying.

Commercial airliners fly at a cruising altitude of 32, 000 feet. At this altitude, we expect the air
pressure to be only 0.3 atmospheres, which explains why airline cabins are pressurized. In fact, the
cabins are only pressurized to 0.85 atmospheres (which accounts for the “popping” of passengers
ears during air travel). The reason for this partial pressurization is quite simple. At 32, 000 feet,
the pressure difference between the air in the cabin and the air outside the aircraft is about half
an atmosphere. Clearly, the walls of the cabin must be strong enough to support this pressure
difference, which implies that they must be of a certain thickness, and, hence, that the aircraft must
be of a certain weight. If the cabin were fully pressurized then the pressure difference at cruising
altitude would increase by about 30%, which implies that the cabin walls would have to be much
thicker, and, hence, the aircraft would have to be substantially heavier. So, a fully pressurized
aircraft would be more comfortable to fly in (because your ears would not “pop”), but it would
also be far less economical to operate.

5.2.7 Adiabatic Atmosphere
Of course, we know that the atmosphere is not isothermal. In fact, air temperature falls quite
noticeably with increasing altitude. In ski resorts, the general rule of thumb is that the temperature
drops by about 1 degree per 100 meters increase in altitude. Many people cannot understand why
the atmosphere gets colder with increasing height. They reason that because higher altitudes are
closer to the Sun they ought to be hotter. In fact, the explanation is quite simple. It depends on
three important properties of air. The first property is that air is transparent to most, but by no
means all, of the electromagnetic spectrum. In particular, most infrared radiation, which carries
heat energy, passes straight through the lower atmosphere, and heats the ground. In other words,
the lower atmosphere is heated from below, not from above. The second important property of
air is that it is constantly in motion. In fact, the lower 20 kilometers of the atmosphere (the so-
called troposphere) are fairly thoroughly mixed. You might think that this would imply that the
atmosphere is isothermal. However, this is not the case because of the final important property
of air; namely, it is a very poor conductor of heat. (See Section 5.3.10.) This, of course, is why
woolly sweaters work; they trap a layer of air close to the body, and, because air is such a poor
conductor of heat, you stay warm.

Imagine a packet of air that is swirling around in the atmosphere. We would expect it to always
remain at the same pressure as its surroundings, otherwise it would be mechanically unstable. It
is also plausible that the packet moves around too quickly to effectively exchange heat with its
surroundings, because air is very a poor heat conductor, and heat flow is consequently quite a slow



320 INTERMEDIATE COLLEGE PHYSICS

process. So, to a first approximation, the air in the packet is adiabatic. In a steady-state atmosphere,
we expect that, as the packet moves upwards, expands due to the reduced pressure, and cools
adiabatically, its temperature always remains the same as that of its immediate surroundings. This
implies that we can use the adiabatic gas law to characterize the cooling of the atmosphere with
increasing altitude. In this particular case, the most useful manifestation of the adiabatic law is

p1−γ T γ = constant, (5.134)

giving
dp
p

=
γ

γ − 1
dT
T
. (5.135)

Combining the previous expression with the equation of hydrostatic equilibrium, (5.131), we ob-
tain

γ

γ − 1
dT
T

= − µ g
R T

dz, (5.136)

or
dT
dz

= −γ − 1
γ

µ g

R
. (5.137)

Now, the ratio of specific heats for air (which is effectively a diatomic gas) is about 1.4. [See
Equation (5.122).] Hence, given that µ = 29 × 10−3 kg and g = 9.81m s−2, we deduce, from
the previous expression, that the temperature of the atmosphere decreases with increasing height
at a constant rate of 9.8◦C per kilometer. This value is called the (dry) adiabatic lapse rate of
the atmosphere. Our calculation accords well with the “1 degree colder per 100 meters higher”
rule of thumb used in ski resorts. The basic reason that air is colder at higher altitudes is that it
expands as its pressure decreases with height. It, therefore, does work on its environment, without
absorbing any heat (because of its low thermal conductivity), so its internal energy, and, hence, its
temperature decreases.

According to the adiabatic lapse rate calculated previously, the air temperature at the cruising
altitude of airliners (32, 000 feet) should be about −80◦C (assuming a sea level temperature of
15◦C). In fact, this is somewhat of an underestimate. A more realistic value is about −60◦C.
The explanation for this discrepancy is the presence of water vapor in the atmosphere. As air
rises, expands, and cools, water vapor condenses out, releasing latent heat, which prevents the
temperature from falling as rapidly with height as the adiabatic lapse rate would predict. In fact,
in the tropics, where the air humidity is very high, the lapse rate of the atmosphere (i.e., the rate of
decrease of temperature with altitude) is significantly less than the adiabatic value. The adiabatic
lapse rate is only observed when the humidity is low. This is the case in deserts, in the arctic (where
water vapor is frozen out of the atmosphere), and, of course, in ski resorts.

Suppose that the lapse rate of the atmosphere differs from the adiabatic value. Let us ignore the
complication of water vapor, and assume that the atmosphere is dry. Consider a packet of air that
moves slightly upwards from its equilibrium height. The temperature of the packet will decrease
with altitude according to the adiabatic lapse rate, because its expansion is adiabatic. We shall
assume that the packet always maintains pressure balance with its surroundings. It follows that
because ρT ∝ p, according to the ideal gas law,

(ρT )packet = (ρT )atmosphere. (5.138)
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If the atmospheric lapse rate is less than the adiabatic value then Tatmosphere > Tpacket implying
that ρpacket > ρatmosphere. So, the packet will be denser than its immediate surroundings, and will,
therefore, tend to fall back to its original height. Clearly, an atmosphere whose lapse rate is less
than the adiabatic value is vertically stable. On the other hand, if the atmospheric lapse rate exceeds
the adiabatic value then, after rising a little way, the packet will be less dense than its immediate
surroundings, and will, therefore, continue to rise due to buoyancy effects. Clearly, an atmosphere
whose lapse rate is greater than the adiabatic value is vertically unstable. This effect is of great
importance in meteorology. The normal stable state of the atmosphere is for the lapse rate to be
slightly less than the adiabatic value. Occasionally, however, the lapse rate exceeds the adiabatic
value, and this is always associated with extremely disturbed weather patterns.

Let us consider the temperature, pressure, and density profiles in an adiabatic atmosphere. We
can directly integrate Equation (5.137) to give

T = T0

(
1 − γ − 1

γ

z
z0

)
, (5.139)

where T0 is the ground-level temperature, and

z0 =
R T0

µ g
(5.140)

the isothermal scale-height calculated using this temperature. The pressure profile is easily calcu-
lated from the adiabatic gas law p 1−γ T γ = constant, or p ∝ T γ/(γ−1). It follows that

p = p0

(
1 − γ − 1

γ

z
z0

)γ/(γ−1)

. (5.141)

Consider the limit γ → 1. In this limit, Equation (5.139) yields T independent of height (i.e., the
atmosphere becomes isothermal). We can evaluate Equation (5.141) in the limit as γ → 1 using
the mathematical identity

lt m→0 (1 + m x)1/m ≡ exp(x). (5.142)

We obtain

p = p0 exp
(
− z

z0

)
, (5.143)

which, not surprisingly, is the predicted pressure variation in an isothermal atmosphere. In reality,
the ratio of specific heats of the atmosphere is not unity, but is about 1.4 (i.e., the ratio for diatomic
gases), which implies that in the real atmosphere

p = p0

(
1 − z

3.5 z0

)3.5

. (5.144)

In fact, this formula gives very similar results to the isothermal formula, Equation (5.143), for
heights below one scale-height (i.e., z < z0). For heights above one scale-height, the isothermal
formula tends to predict too high a pressure. See Figure 5.1. So, in an adiabatic atmosphere, the
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Figure 5.1: The solid curve shows the variation of pressure (normalized to the pressure at ground
level) with altitude (normalized to the isothermal scale-height at ground level) in an isothermal
atmosphere. The dashed curve shows the variation of pressure with altitude in an adiabatic atmo-
sphere.

pressure falls off more quickly with altitude than in an isothermal atmosphere, but this effect is
only noticeable at pressures significantly below one atmosphere. In fact, the isothermal formula
is a fairly good approximation below altitudes of about 10 kilometers. Because ρ ∝ p/T , the
variation of density with height is

ρ = ρ0

(
1 − γ − 1

γ

z
z0

)1/(γ−1)

= ρ0

(
1 − z

3.5 z0

)2.5

, (5.145)

where ρ0 is the density at ground level. Thus, the density falls off more rapidly with altitude than
the temperature, but less rapidly than the pressure.

Note that an adiabatic atmosphere has a sharp upper boundary. Above height z1 = [γ/(γ−1)] z0,
the temperature, pressure, and density are all zero. In other words, there is no atmosphere. For real
air, with γ = 1.4, the upper boundary of an adiabatic atmosphere lies at height z1 ' 3.5 z0 ' 29.4
kilometers above sea level. This behavior is quite different to that of an isothermal atmosphere,
which has a diffuse upper boundary. In reality, there is no sharp upper boundary to the atmosphere.
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The adiabatic gas law does not apply above about 20 kilometers (i.e., in the stratosphere) because,
at these altitudes, the air is no longer strongly mixed. Thus, in the stratosphere, the pressure falls
off exponentially with increasing height.

5.2.8 Bulk Modulus
The bulk modulus of an ideal gas is a measure of its resistance to bulk compression, and is defined

κ = −V
(
∂p
∂V

)
. (5.146)

In fact, an ideal gas possesses a number of different bulk moduli depending on what is held constant
as the pressure is varied. The two most important bulk moduli are the isothermal bulk modulus,

κT = −V
(
∂p
∂V

)
T
, (5.147)

and the isentropic bulk modulus,

κS = −V
(
∂p
∂V

)
S
. (5.148)

The former describes situations in which the gas undergoes isothermal compression, whereas the
latter describes situations in which the gas undergoes adiabatic compression. (Note that S actually
denotes entropy. However, a gas that undergoes compression at constant entropy is such that no
heat is added to the gas during the compression.)

According to the isothermal gas law, (5.114),

ln p + ln V = constant, (5.149)

so

− ∂ ln p
∂ ln V

= −V
p

(
∂p
∂V

)
T

= 1, (5.150)

which implies that
κT = p. (5.151)

According to the adiabatic gas law, (5.124),

ln p + γ ln V = constant, (5.152)

− ∂ ln p
∂ ln V

= −V
p

(
∂p
∂V

)
S

= γ, (5.153)

which implies that
κS = γ p. (5.154)

Note that the isentropic bulk modulus of an ideal gas is greater than its isothermal bulk modulus
(because γ > 1). In other words, an ideal gas resists adiabatic compression to a greater degree than
it resists isothermal compression. This is the case because during adiabatic compression the work
done on the gas causes its temperature to rise, leading to a greater increase in the pressure than
would be obtained if the temperature were held constant.
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5.2.9 Sound Waves
A sound wave is a type of longitudinal wave that causes a disturbance in the pressure and density of
an ideal gas through which it passes. Consider a plane sound wave propagating in the x-direction.
Let ξ(x, t) be the longitudinal displacement of the gas associated with the wave. Consider a slab of
gas of cross-sectional area A lying between x − dx/2 and x + dx/2. The mass of the slab is ρ A dx,
where ρ is gas’s mass density. The slab’s equation of longitudinal motion is

ρ A dx
∂2ξ

∂t2 = A
[−p(x + dx/2) + p(x − dx/2)

]
= −A

∂p
∂x

dx, (5.155)

which gives

ρ
∂2ξ

∂t2 = −∂p
∂x
. (5.156)

The change in volume of the slab of gas is

δV = A
[
ξ(x + dx/2) − ξ(x − dx/2)

]
= A

∂ξ

∂x
dx, (5.157)

which yields
δV
V

=
∂ξ

∂x
, (5.158)

because V = A dx. However,
δV
V

= −δp
κ
, (5.159)

where κ is the bulk modulus. [See Equation (5.146).] Hence,

∂ξ

∂x
= −δp

κ
. (5.160)

Equation (5.156) gives

ρ
∂2

∂t2

(
∂ξ

∂x

)
= −∂

2δp
∂x2 , (5.161)

writing p = p0 + δp(x, t), where p0 is a constant background pressure. The previous two equations
can be combined to yield

∂2δp
∂t 2 = v 2

s
∂2δp
∂x 2 , (5.162)

where

vs =

(
κ

ρ

)1/2

. (5.163)

Equation (5.162) is a one-dimensional wave equation that has the standard solution

δp(x, t) = δp0 cos[k (x − vs t)], (5.164)

where δp0 and k are constants. The previous solution corresponds to a wave-like disturbance in
the gas pressure of amplitude δp0, wavenumber k = k ex, and phase velocity vs. In other words,
Equation (5.163) specifies the speed of sound in an ideal gas.
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It remains to determine whether the compression of the gas associated with the passage of a
sound wave is isothermal or isentropic. In fact, because ideal gases are relatively poor conductors
of heat (see Section 5.3.10), the period of vibration of a sound wave is generally much shorter than
the relaxation time necessary for a small element of the gas to exchange energy with the remainder
of the gas by means of heat flow. Hence, the compression of the gas associated with the passage of
a sound wave is isentropic. It follows from Equations (5.154) and (5.163) that the speed of sound
in an ideal gas is

vs =

(
κS

ρ

)1/2

=

(
γ p
ρ

)1/2

. (5.165)

Making use of Equations (5.97) and (5.129), the previous equation becomes

vs =

(
γR T
µ

)1/2

, (5.166)

where µ is the molecular mass. Note that the speed of sound in an ideal gas only depends on the
gas temperature, and is independent of the pressure.

It is a good approximation to treat the Earth’s atmosphere as an ideal gas. The atmosphere is
mostly diatomic, which implies that γ = 1.4. [See Equation (5.122).] Moreover, the molecular
weight of the atmosphere is µ = 29 × 10−3 kg. (See Section 5.2.6.) Hence, the speed of sound in
air at 15◦ C is 340 m s−1.

5.3 Kinetic Theory

5.3.1 Fundamental Assumptions
The purpose of kinetic theory is to deduce the macroscopic properties of an ideal gas from the
motions of its constituent molecules. The fundamental assumptions of kinetic theory are that a
gas held in a container consists of a very large number of molecules that are in ceaseless motion.
Moreover, these molecules are constantly colliding with one another, and also with the walls of
container. Furthermore, the pressure acting on the walls of the container is the resultant of all of
the reaction forces as the molecules strike and rebound from the walls.

We can make a number of simplifying assumptions in our exploration of kinetic theory. First,
the volume of the molecules is assumed to be negligible. Second, the molecules are assumed not to
exert forces on one another, except when they collide. Third, the collisions of the molecules with
the walls are assumed to be specular. The first two assumptions merely ensure that we are dealing
with an ideal gas.

5.3.2 Molecular Flux
Suppose that the molecules in our gas are equally likely to be moving in any direction, and have
a distribution of molecular speeds F(v). (See Section 5.5.9.) In other words, the probability that a
given molecule has a speed in the range v to v+dv is F(v) dv. Let n be the total number of molecules
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per unit volume. Let us calculate how many molecules per unit area, per second, pass through the
x-y plane in the direction of increasing z. This quantity, Φz, is termed the molecular flux.

Let θ and φ be standard spherical polar angles. (See Section A.23.) We can write the Cartesian
components of the velocity of a given molecule, whose molecular speed is v, as v = v (sin θ cos φ,
sin θ sin φ, cos θ). If the molecules are equally likely to move in any direction then the number of
molecules for which θ lies between θ and θ+dθ, and φ lies between φ and φ+dφ, is proportional to
sin θ dθ dφ (i.e., to the amount of solid angle contained in this range of angles). Thus, the number
of molecules for which θ lies between θ and θ + dθ, and φ can take any value in the range 0 to 2π,
is proportional to 2π sin θ dθ. Hence, given that there are 4π steradians in a complete solid angle,
the fraction of molecules for which θ lies between θ and θ + dθ is g(θ) dθ, where

g(θ) =
1
2

sin θ. (5.167)

Consider molecules whose speeds lie between v and v + dv. The number of such molecules
per unit volume is n F(v) dv. The number of such molecules per unit volume whose directions of
motion subtend an angle lying between θ and θ + dθ with the z-axis is [n F(v) dv] [g(θ) dθ]. All
such molecules for which −vz < z < 0 cross the x-y plane in one second. Thus, the number of such
molecules per unit area, per second, that cross the x-y plane is

dΦz = [n F(v) dv] [g(θ) dθ] [vz] = [n F(v) dv]
[

1
2

sin θ dθ
]

[v cos θ]. (5.168)

Hence, the net flux of molecules across the x-y plane in the direction of increasing z (i.e., with
0 ≤ θ ≤ π/2) is

Φz =
1
2

n
∫ π/2

0
sin θ cos θ dθ

∫ ∞
0

F(v) v dv, (5.169)

which reduces to
Φz =

1
4

n 〈v〉, (5.170)

where
〈v〉 =

∫ ∞
0

F(v) v dv. (5.171)

is the mean molecular speed. (See Sections 5.1.6 and 5.5.9.)
For example, if a low-pressure gas is held in a container, the wall of which contains a small

hole of area A, then the number of escaping molecules per second is

.
N =

1
4

n 〈v〉 A. (5.172)

This process of molecular escape is known as molecular effusion. (See Section 5.3.13.) It turns out
that the previous formula is only accurate if the dimensions of the hole are small compared to the
typical distance travelled by a molecule in the gas between collisions (this distance is know as the
mean free path; see Section 5.3.8). In the opposite limit, the gas flows through the hole according
to the laws of continuum fluid dynamics.
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5.3.3 Pressure

Suppose that the x-y plane actually corresponds to a wall of the container. Consider, again,
molecules whose speeds lie between v and v + dv, and whose directions of motion subtend an
angle lying between θ and θ + dθ with the z-axis. Each such molecule that encounters the wall
bounces off it in a specular fashion, and its z-momentum consequently changes by 2 m vz, where m
is the molecular mass. Thus, the normal reaction force per unit area acting on the wall is

dp = [2 m vz] [n F(v) dv] [g(θ) dθ] [vz] = [2 m v cos θ] [n F(v) dv]
[

1
2

sin θ dθ
]

[v cos θ]. (5.173)

[See Equation (5.167).] Hence, the total pressure exerted on the wall is

p = n m
∫ π/2

0
sin θ cos2 θ dθ

∫ ∞
0

F(v) v2 dv, (5.174)

which reduces to

p =
1
3

n m
〈
v2
〉
, (5.175)

where 〈
v2
〉

=

∫ ∞
0

F(v) v2 dv. (5.176)

is the mean square molecular speed. (See Section 5.5.9.)
However, we can write

n =
νNA

V
, (5.177)

where ν is the number of moles of molecules held inside the container, V is the volume of the
container, and NA is Avogadro’s number. Equations (5.175) and (5.177) yield

p V
ν

=
2
3

NA 〈Ktrans〉, (5.178)

where

〈Ktrans〉 =
1
2

m
〈
v2
〉

(5.179)

is the mean translational kinetic energy of a molecule in the gas. Equation (5.178) is consistent
with the ideal gas law, (5.97), provided that

〈Ktrans〉 =
1
2

m
〈
v2
〉

=
3
2

kB T, (5.180)

where kB = R/NA is the Boltzmann constant. [See Equation (5.100).]
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5.3.4 Law of Equipartition of Energy
The law of equipartition of energy is a result in statistical thermodynamics that states that the
mean thermal energy associated with each independent quadratic (i.e., proportional to the square
of a coordinate or a momentum component) contribution to the total energy of a system consisting
of many particles is (1/2) kB T , where T is the temperature of the system. (See Section 5.5.5.) It
turns out, however, that this law only applies if the contribution in question is governed by classical
(as opposed to quantum mechanical) physics. (See Section 5.5.6.)

Consider a particular constituent molecule of an ideal gas whose mass is m, and whose velocity
is v. The contribution of molecule’s translational kinetic energy to the total energy of the whole
gas is

1
2

m v 2
x +

1
2

m v 2
y +

1
2

m v 2
z =

p 2
x

2 m
+

p 2
y

2 m
+

p 2
z

2 m
, (5.181)

where p = m v is the molecular momentum. It can be seen that the contribution of the molecules’s
translational kinetic energy to the total energy consists of three terms that are quadratic in a mo-
mentum component. Hence, according to the law of equipartition of energy, the mean thermal
energy associated with the molecules translational kinetic energy is

〈Ktrans〉 =
1
2

kB T +
1
2

kB T +
1
2

kB T =
3
2

kB T, (5.182)

in accordance with Equation (5.180).

5.3.5 Partial Pressure
Suppose that an ideal gas consists of N distinct types of molecule. Let a molecule of type i have a
number density ni, a mass mi, and a velocity vi. If we repeat the analysis of Section 5.3.3, taking
into account the different types of molecule, then it is easily shown that the total pressure of the
gas is

p =
1
3

∑
i=1,N

ni mi
〈
v 2

i

〉
. (5.183)

However, the law of equipartition of energy (see the previous section) implies that

1
2

mi
〈
v 2

i

〉
=

3
2

kB T. (5.184)

Moreover,

ni =
νi NA

V
, (5.185)

where νi is the number of moles of molecules of type i in the gas, and V is the volume of the gas.
[See Equation (5.177).] The previous three equations yield

p =
∑
i=1,N

pi, (5.186)
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where
pi V = νi R T. (5.187)

We conclude that the total pressure of the gas is the sum of the pressures that a gas of each con-
stituent type of molecule would exert independently. This result is known as Dalton’s law, after
John Dalton, who verified it experimentally in 1802. The quantity pi is known as the partial pres-
sure of type-i molecules. Thus, Dalton’s law is equivalent to the statement that the total pressure of
an ideal gas is the sum of the partial pressures of the individual gases from which it is composed.

5.3.6 Internal Energy
Consider a monatomic gas such as helium. An individual helium atom can only store energy in its
translational motion. As we saw in Section 5.3.4, the mean energy associated with this motion is
(3/2) kB T . Hence, the internal energy of a gas consisting of ν moles of helium atoms is

U = νNA
3
2

kB T = ν
3
2

R T. (5.188)

However, according to Equation (5.108),

U = ν cV T, (5.189)

where cV is the molar specific heat capacity of the gas at constant volume. The previous two
equations imply that the molar specific heat capacity of a helium gas (or any monatomic gas) is

cV =
3
2

R, (5.190)

in accordance with Equation (5.106).
Consider a diatomic gas such as hydrogen. An individual hydrogen molecule can store en-

ergy in its translational motion, but can also store energy in its rotational motion. In principle, a
molecule has three principal axes of rotation about which it could rotate. (See Sections 1.7.2 and
1.7.3.) Hence, the net rotational kinetic energy is

L 2
x

2 Ixx
+

L 2
y

2 Iyy
+

L 2
z

2 Izz
, (5.191)

where Lx is the angular momentum about the x-axis, Ixx is the principal moment of inertia for
rotation about the x-axis, et cetera. Note that the previous expression consists of three terms that
are quadratic in a momentum component. Hence, according to the law of equipartition of energy,
the mean rotational energy of the molecule should be

1
2

kB T +
1
2

kB T +
1
2

kB T =
3
2

kB T. (5.192)

In fact, this is not the case. The reason for the discrepancy is that one of the principal axes of
rotation of a hydrogen molecule corresponds to the axis that passes through the nuclei of the two
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hydrogen atoms that constitute the molecule. The principal moment of inertia for rotation about
this axis is much smaller than the principal moments of inertia for rotation about the other two
principal axes. In fact, the former moment of inertia is of order me d 2, where me is the mass of
an electron, and d the radius of a hydrogen atom (the contribution of the protons to the moment
is negligible), whereas the latter two moments of inertia are of order mp D 2, where mp is the mass
of a proton, and D the length of the atomic bond joining the two hydrogen atoms. Given that
me � mp, while d ∼ D, the former moment of inertia is indeed much smaller than the latter two.
It turns out that quantum mechanical considerations prevent a degree of rotational freedom with
an anomalously small moment of inertia from contributing (1/2) kB T to the mean energy of the
molecule. (See Section 5.5.8.) Hence, the mean rotational energy of a hydrogen molecule (or any
diatomic molecule) is

1
2

kB T +
1
2

kB T = kB T. (5.193)

According to the previous discussion, the mean energy of a hydrogen molecule is

3
2

kB T + kB T =
5
2

kB T, (5.194)

where the former contribution is the molecule’s mean translation kinetic energy, whereas the latter
contribution is the molecule’s mean rotational kinetic energy. Hence, the internal energy of a gas
consisting of ν moles of hydrogen molecules is [see Equation (5.189)]

U = νNA
5
2

kB T = ν
5
2

R T = ν cV T. (5.195)

It follows that the molar specific heat capacity at constant volume of a hydrogen gas (or any di-
atomic gas) is

cV =
5
2

R, (5.196)

in accordance with Equation (5.107).

5.3.7 Brownian Motion
In 1827, Robert Brown was studying pollen grains of the plant Clarkia pulchella suspended in water
under a microscope when he observed minute particles, ejected by the pollen grains, executing a
jittery motion. Let us examine this phenomenon, which is known as Brownian motion.

Consider a particle of mass m that is suspended in a fluid. Let us investigate the motion of
this particle parallel to the x-axis. The particle is subject to two types of force. First, a set of
impulsive forces due to molecular bombardment. Second, a retarding force that is proportional to
the particle’s instantaneous speed through the surrounding fluid. Thus, the particle’s equation of
motion along the x-axis can be written

m
d2x
dt2 = X(t) − α dx

dt
, (5.197)
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where X(t) is the impulsive force due to molecular bombardment, and −α dx/dt the retarding force.
It follows that

m x
d2x
dt2 = x X − α x

dx
dt
, (5.198)

which can also be written

m
d
dt

(
x

dx
dt

)
− m

(
dx
dt

)2

= x X − α
2

dx2

dt
. (5.199)

Taking the ensemble average of the previous equation, we obtain

m
d
dt

(〈
x

dx
dt

〉)
− m

〈(
dx
dt

)2
〉

= 〈x X〉 − α
2

d
〈

x2
〉

dt
. (5.200)

However,
〈x X〉 = 0, (5.201)

because x and X are uncorrelated random variables whose mean values are zero. Furthermore,〈
x

dx
dt

〉
= 0, (5.202)

because x and dx/dt are also uncorrelated random variables whose mean values are zero. Finally,

1
2

m

〈(
dx
dt

)2
〉

=
1
2

kB T, (5.203)

by the law of equipartition of energy, where T is the temperature of the fluid. (See Section 5.3.4.)
It follows from the previous four equations that

d
〈

x2
〉

dt
=

2 kB T
α

, (5.204)

which can be integrated to give 〈
x2
〉

= 2 D t, (5.205)

where
D =

kB T
α

. (5.206)

It can be seen, by comparison with the analysis of Sections 5.1.5 and 5.1.7, that molecular bom-
bardment causes a particle immersed in a fluid to execute a random walk along the x-axis with
diffusivity D.

Suppose that the particle is a sphere of radius a. Furthermore, suppose that the retarding force
acting on the particle is due to fluid viscosity. According to Stokes’s law,

α = 6π η a, (5.207)
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where η is the viscosity of the fluid. It follows that

D =
kB T

6π η a
. (5.208)

This result, which was first obtained by Einstein in 1905, and was verified experimentally by Jean
B. Perrin in 1910, served as the first convincing evidence of the existence of atoms and molecules.
Note that the previous diffusivity scales as the inverse of the particle radius. Hence, only relatively
small particles are likely to exhibit noticable Brownian motion.

5.3.8 Mean Free Path
The mean free path is the average distance a molecule in a gas travels between collisions with
other molecules. Let us crudely approximate the molecules in the gas as hard spheres of diameter
R. Any two molecules whose centers are less than a distance R apart will collide. Suppose that
one molecule is moving with velocity v, whereas the other molecules are stationary. The moving
molecule sweeps out a cylindrical volume πR 2 〈v〉 in one second. Any other molecule whose center
lies in this volume will collide with the moving molecule. There are n πR 2 〈v〉 such molecules,
where n is the number density of molecules. Hence, the number of collisions per second is

f = πR 2 n 〈v〉. (5.209)

Thus, the mean distance that the molecule travels between collisions, which is the mean free path,
is

l =
〈v〉
f

=
1

πR 2 n
. (5.210)

If we now take into account the fact that all of the molecules in the gas are moving then it is
clear that the previous two equation generalize to give

f = πR 2 n 〈V〉, (5.211)

l =
〈v〉

πR 2 n 〈V〉 , (5.212)

where V is the relative velocity between molecules. Consider two molecules of velocities v1 and
v2. The relative velocity of the molecules is

V = v1 − v2. (5.213)

Now,
V 2 = v 2

1 + v 2
2 − 2 v1 · v2, (5.214)

which implies that 〈
V 2
〉

=
〈
v 2

1

〉
+
〈
v 2

2

〉 − 2 〈v1 · v2〉 . (5.215)

However, 〈v1 · v2〉 = 0, because the cosine of the angle subtended between v1 and v2 is just as
likely to be positive as to be negative. Thus, we deduce that〈

V 2
〉

=
〈
v 2

1

〉
+
〈
v 2

2

〉
= 2
〈
v2
〉
. (5.216)
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Assuming, as seems reasonable, that

〈V〉
〈v〉 =

√〈
V 2
〉〈

v2
〉 , (5.217)

we obtain
〈V〉 =

√
2 〈v〉. (5.218)

Hence, Equation (5.212) yields

l =
1√

2 πR 2 n
. (5.219)

Let us estimate the mean free path in air at standard temperature (T = 15◦ C) and pressure
(p = 105 N m−2.) From the idea gas law, (5.97),

n =
νNA

V
=

p
kB T

=
105

(1.381 × 10−23) (288)
= 2.5 × 1025 m−3. (5.220)

Now, R = 2 × 10−10 m is a typical diameter of an air molecule. Thus, we obtain

l =
1√

2 π (2 × 10−10)2 (2.5 × 1025)
= 2 × 10−7 m. (5.221)

Consider a molecule moving along the x-axis. The molecule is subject to random collisions.
Thus, the probability that the molecule undergoes a collision between moving a distance x and
moving a distance x + dx is α dx, where α is a constant. Let P(x) be the probability that the
molecule moves a distance x without undergoing a collision. It is evident that the probability
that the molecule’s first collision occurs between moving a distance x and a distance x + dx is
−(dP/dx) dx. However, this probability is also equal to the probability that the molecule does
not undergo a collision in moving a distance x, and then undergoes a collision between moving a
distance x and a distance x + dx. In other words,

−dP
dx

dx = [P(x)] [α dx], (5.222)

or
dP
dx

= −α P. (5.223)

The previous equation can be integrated to give

P(x) = p0 e−α x, (5.224)

where p0 is an arbitrary constant. However, P(0) = 0, because the molecule has no chance of
undergoing a collision in moving zero distance. Hence, the probability that the molecule moves a
distance x without undergoing a collision is

P(x) = e−α x. (5.225)
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Moreover, the probability that the molecule undergoes its first collision between moving a distance
x and moving a distance x + dx is f (x) dx = [P(x)] [α dx] (i.e., the molecule needs to not undergo
a collision in moving a distance x, and then undergo a collision between moving a distance x and
a distance x + dx), so

f (x) = α e−α x. (5.226)

The mean distance that the molecule travels before undergoing its first collision is (see Sec-
tion 5.1.6)

〈x〉 =

∫ ∞
0

f (x) x dx =

∫ ∞
0
α e−α x x dx =

1
α

∫ ∞
0
y e−y dy =

1
α
. (5.227)

However, 〈x〉 is equivalent to the mean free path, l. Hence, the probability density for a molecule
to move a distance x between collisions is

f (x) =
e−x/l

l
. (5.228)

Moreover, the probability that the molecule moves a distance x without undergoing a collision is

P(x) = e−x/l. (5.229)

5.3.9 Diffusion
Consider an ideal gas of uniform temperature, T , that has a number density gradient along the
z-axis, such that

n(z) = n0 +
∂n
∂z

dz. (5.230)

Let F(v) be the distribution of molecular speeds. Repeating the analysis of Section 5.3.2, the
number of molecules per unit area, per second, whose speeds lie between v and v + dv, and whose
directions of motion subtend an angle lying between θ and θ+ dθ with the z-axis, that cross the x-y
plane is

dJz = [n′ F(v) dv] [g(θ) dθ] [vz] =
[
n′ F(v) dv

] [1
2

sin θ dθ
]

[v cos θ], (5.231)

where n′ is the number density where the molecules last made a collision. [See Equation (5.167).]
On average, the molecules move a distance l (i.e., the mean free path) between collisions. Hence,
dz = −l cos θ, and

n′ = n0 − ∂n
∂z

l cos θ. (5.232)

Thus, the net flux of molecules across the x-y plane is

Jz =
1
2

∫ π

0

[
n0 − ∂n

∂z
l cos θ

]
cos θ sin θ dθ

∫ ∞
0

F(v) dv, (5.233)

which gives

Jz = −D
∂n
∂z
, (5.234)
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where
D =

1
3

l 〈v〉. (5.235)

Here, 〈v〉 is the mean molecular speed. (See Section 5.5.9.) Thus, we conclude that the flux of
molecules in the z-direction is proportional to minus the local number density gradient along the
z-axis. This result is known as Fick’s law, after Adolf Fick who discovered in experimentally in
1855.

Consider a slab of gas lying between z and z+dz. The rate of change of the number of molecules
contained in the slab is the difference between the flux of molecules into the slab and the flux of
molecules out of the slab. In other words,

∂(n A dz)
∂t

=
[
Jz(z, t) − Jz(z + dz, t)

]
A, (5.236)

where A is the cross-sectional area of the slab. The previous equation implies that

∂n
∂t

= −∂Jz

∂z
. (5.237)

However, making use of Fick’s law, (5.234), we obtain

∂n
∂t

= D
∂2n
∂z2 . (5.238)

The previous equation is known as the diffusion equation, and the constant D is known as the
diffusivity.

It can be seen, by inspection, that one solution of the diffusion equation is

n(z, t) = n0 +
δn0√
4πD t

exp
(
− z2

4 D t

)
, (5.239)

where n0 and δn0 are arbitrary constants. Note that at t = 0,

n(z, 0) = n0 + δn0 δ(z), (5.240)

where δ(z) is a delta function. (See Section 2.1.6.) Moreover, at large times,

n(z, t → ∞) = n0. (5.241)

Thus, our solution describes an initially localized Gaussian (see Section 5.1.7) density perturbation
that gradually spreads out, and eventually disperses entirely. It is easily demonstrated that the width
(i.e., standard deviation) of the density perturbation, σz, grows in time as

σz =
√

2 D t. (5.242)

On the other hand, the maximum height of the perturbation decays in time as

hz =
δn0√
4πD t

. (5.243)
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Moreover, the area under the perturbation remains fixed as it evolves in time, which implies that the
number of molecules associated with the density perturbation also remains fixed, as has to be the
case (because we have not discussed any processes that create or destroy molecules). It is clear,
from Sections 5.1.5 and 5.1.7, that the spreading of the density perturbation is due to a random
walk of the excess molecules along the z-axis, under the action of molecular collisions.

Let us estimate the particle diffusivity in air at standard temperature (T = 15◦ C) and pressure
(p = 105 N m−2). The mean thermal speed of molecules of mass m in an ideal gas of temperature
T is

〈v〉 =

√
8
π

kB T
m

. (5.244)

(See Section 5.5.9.) Hence, it follows from Equations (5.219), (5.220), and (5.235) that

D =
2

3 π3/2

1
R 2 p

√
(kB T )3

m
, (5.245)

where R is the molecular diameter. Thus, the diffusivity scales as 1/p at constant temperature, as
T 3/2 at constant pressure, and as T 1/2 at constant volume. Given that m = 29 mp for air, where mp

is the proton mass, and R = 2 × 10−10 m, we deduce that

D = 3 × 10−5 m2 s−1. (5.246)

This is a very small diffusivity. According to Equation (5.242), it takes about 4.6 hours for a
molecule to diffuse a distance of 1 meter in air.

5.3.10 Thermal Conductivity
Consider a gas of uniform number density, n, that has a temperature gradient along the z-axis, such
that

T (z) = T0 +
∂T
∂z

dz. (5.247)

Let each molecule in the gas have a mean thermal energy ε(T ) (under most circumstances this
energy is the sum of the molecule’s translational and rotational kinetic energy). Slightly modify-
ing the analysis of the previous section, the thermal energy per unit area, per second, carried by
molecules whose speeds lie between v and v+ dv, and whose directions of motion subtend an angle
lying between θ and θ + dθ with the z-axis, that cross the x-y plane, is

dqz = [ε′] [n F(v) dv]
[

1
2

sin θ dθ
]

[v cos θ], (5.248)

where F(v) is the distribution of molecular speeds, and ε′ = ε(T ′), where T ′ is the temperature
where the molecules last made a collision. On average, the molecules move a distance l (i.e., the
mean free path) between collisions. Hence, dz = −l cos θ, and

T ′ = T0 − ∂T
∂z

l cos θ. (5.249)
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which implies that

ε′ ' ε0 − C ∂T
∂z

l cos θ, (5.250)

where

C =
∂ε

∂T
(5.251)

is the specific heat per molecule. Thus, the net heat flux across the x-y plane is

qz =
n
2

∫ π

0

[
ε0 − C ∂T

∂z
l cos θ

]
cos θ sin θ dθ

∫ ∞
0

F(v) dv, (5.252)

which gives

qz = −κ ∂T
∂z
, (5.253)

where
κ =

1
3

n lC 〈v〉 (5.254)

is termed the thermal conductivity. Here, 〈v〉 is the mean molecular speed. (See Section 5.5.9.)
Thus, we conclude that the heat flux in the z-direction is proportional to minus the local temperature
gradient along the z-axis. This is another example of Fick’s law.

Equations (5.219), (5.244), and (5.253) yield

κ =
2

3 π3/2

C
R 2

√
kB T

m
, (5.255)

where R is the molecular diameter, and m the molecular mass. Moreover, for a diatomic gas,
such as air, C = (5/2) kB. (See Section 5.3.6.) It can be seen that the thermal conductivity of an
ideal gas scales as T 1/2, and is independent of the pressure at constant temperature. The previous
formula yields the following estimate for the thermal conductivity of air (assuming that T = 15◦

C, R = 2 × 10−10 m, and m = 29 mp),

κ = 3 × 10−2 W m−1 K−1, (5.256)

which turns out to be fairly accurate
Consider a slab of gas lying between z and z + dz. The rate of change of the thermal energy

contained in the slab is the difference between the flux of heat into the slab and the flux of heat out
of the slab. In other words,

∂(n A dzCT )
∂t

=
[
qz(z, t) − qz(z + dz, t)

]
A, (5.257)

where A is the cross-sectional area of the slab. It follows that

∂T
∂t

= − 1
nC

∂qz

∂z
. (5.258)
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Making use of Equations (5.253) and (5.254), we obtain

∂T
∂t

= Dκ

∂2T
∂z2 , (5.259)

where
Dκ =

κ

nC =
1
3

l 〈v〉. (5.260)

Of course, Equation (5.259) is the diffusion equation, and Dκ is the associated diffusivity. Thus,
we conclude, by comparison with the analysis in the previous section, that heat diffuses through
an ideal gas at the same very slow rate at which molecules diffuse. Moreover, it is clear, from
Sections 5.1.5 and 5.1.7, that heat diffusion is due to a random walk of molecules with excess
energy under the action of molecular collisions.

5.3.11 Viscosity
Consider a gas of uniform number density, n, that has a gradient in the x-component of its mean
flow velocity, Vx, along the z-axis, such that

Vx(z) = Vx 0 +
∂Vx

∂z
dz. (5.261)

It is assumed that the mean flow velocity is much less than the mean molecular speed. Slightly
modifying the analysis of the previous two sections, the x-momentum per unit area, per second,
carried by molecules whose speeds lie between v and v+dv, and whose directions of motion subtend
an angle lying between θ and θ + dθ with the z-axis, that cross the x-y plane, is

dPxz =
[
m V ′x

]
[n F(v) dv]

[
1
2

sin θ dθ
]

[v cos θ], (5.262)

where F(v) is the distribution of molecular speeds, m the molecular mass, and V ′x the x-component
of flow velocity where the molecules last made a collision. On average, the molecules move a
distance l (i.e., the mean free path) between collisions. Hence, dz = −l cos θ, and

V ′x = Vx 0 − ∂Vx

∂z
l cos θ. (5.263)

Thus, the net flux of x-momentum across the x-y plane is

Pxz =
m n
2

∫ π

0

[
Vx 0 − ∂Vx

∂z
l cos θ

]
cos θ sin θ dθ

∫ ∞
0

F(v) dv, (5.264)

which gives

Pxz = −η ∂Vx

∂z
, (5.265)

where
η =

1
3

m n l 〈v〉 (5.266)
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is termed the viscosity. Here, 〈v〉 is the mean molecular speed. (See Section 5.5.9.) Thus, we
conclude that the flux of x-momentum in the z-direction is proportional to minus the gradient of
the x-component of the flow velocity with respect to z. This is yet another example of Fick’s law.

Equations (5.219), (5.244), and (5.266) imply that yield

η =
2

3 π3/2

1
R 2

√
kB T m, (5.267)

where R is the molecular diameter, and T the gas temperature. It can be seen that the viscosity
of an ideal gas scales as T 1/2, and is independent of the pressure at constant temperature. The
previous formula yields the following estimate for the viscosity of air (assuming that T = 15◦ C,
R = 2 × 10−10 m, and m = 29 mp),

η = 4 × 10−5 N s m−2, (5.268)

which turns out to be too large by a factor 2 (because of the approximate nature of our calculation).
Consider a slab of gas lying between z and z + dz. The rate of change of the x-momentum

contained in the slab is the difference between the flux of momentum into the slab and the flux of
momentum out of the slab. In other words,

∂(n A dz m Vx)
∂t

=
[
Pxz(z, t) − Pxz(z + dz, t)

]
A, (5.269)

where A is the cross-sectional area of the slab. It follows that

∂Vx

∂t
= − 1

n m
∂Pxz

∂z
. (5.270)

Making use of Equations (5.265) and (5.266), we get

∂Vx

∂t
= Dη

∂2Vx

∂z2 , (5.271)

where
Dη =

η

n m
=

1
3

l 〈v〉. (5.272)

Of course, Equation (5.271) is the diffusion equation, and Dη is the associated diffusivity. Thus, we
conclude, by comparison with the analysis in the previous two sections, that momentum diffuses
through an ideal gas at the same very slow rate at which molecules and heat diffuse. Moreover,
it is clear, from Sections 5.1.5 and 5.1.7, that momentum diffusion is due to a random walk of
molecules with excess momentum under the action of molecular collisions.

Equations (5.235), (5.260), and (5.272) lead to the prediction that

D =
κ

nC =
η

n m
(5.273)

for an ideal gas, where D is the molecular diffusivity, κ the thermal conductivity, η the viscosity, n
the number density of molecules, m the molecular mass, and C the molecular heat capacity. It turns
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out that this prediction is only approximately true due to additional factors, such as intermolecular
forces, that have not been incorporated into our highly simplified analysis. For example, the ratio
κm/(ηC), which should be unity according to simple kinetic theory, actually takes the values 2.40,
2.49, 1.91, 1.91, and 1.90 for helium, argon, hydrogen, nitrogen, and oxygen, respectively, at
standard temperature and pressure.

The prediction that the thermal conductivity and viscosity of an ideal gas are both independent
of the gas pressure, at constant temperature, breaks down when the pressure becomes sufficiently
low that the mean free path between collisions becomes comparable with the size of the gas’s
container. Under these circumstances, the thermal conductivity and viscosity both become approx-
imately proportional to the pressure, at constant temperature.

5.3.12 Molecular Flow
Consider the flow of an ideal gas down a uniform pipe of circular cross-section in the limit that
the gas pressure is sufficiently low that the mean free path between collisions greatly exceeds the
diameter of the pipe. This type of flow is known as molecular flow.

Suppose that the pipe runs along the z-axis, and that a pressure difference, ∆p, is established
between the two ends of the pipe, in order to drive the flow. The temperature of the gas is assumed
to be uniform along the pipe. Finally, the length of the pipe, L, is assumed to be much greater
than its diameter, d. Making use of Equation (5.170), the net flux of molecules down the pipe at
position z is

Φz(z) =
1
4
〈v〉 [n(z − d) − n(z + d)] , (5.274)

where 〈v〉 is the mean molecular speed [which is constant because it only depends on the temper-
ature; see Equation (5.433)], and n(z) the molecular number density. The right-hand side of the
previous equation represents the difference between the particle flux in the +z-direction and that
in the −z-direction. The former flux is characterized by the value the number density calculated at
the position at which the molecules moving in the +z direction last collided with the wall of the
pipe, which is estimated to be z−d. Likewise, the latter flux is characterized by the number density
calculated at the position at which the molecules moving in the −z direction last collided with the
wall of the pipe, which is estimated to be z + d. According to Equation (5.175), the pressure of the
gas in the pipe is

p(z) =
1
3

n(z) m
〈
v2
〉
, (5.275)

where m is the molecular mass, and
〈
v2
〉

is the mean square molecular speed (which is also constant
because it only depends on the temperature). [See Equation (5.434).] The previous two equations
yield

Φz(z) =
3
4
〈v〉

m
〈
v2
〉 [p(z − d) − p(z + d)

]
' −3

2
d 〈v〉

m
〈
v2
〉 dp

dz
. (5.276)
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In a steady state, Φz must be uniform along the pipe, which implies that dp/dz is also uniform.
Hence, we can write

−dp
dz

=
∆p
L
, (5.277)

which yields

Φz =
3
2
〈v〉〈
v2
〉 d

m L
∆p. (5.278)

Now, the cross-sectional area of the pipe is A = π d 2/4. Hence, the rate of mass flow down the
pipe is

.
M = Φz A m =

3π
8
〈v〉〈
v2
〉 d 3

L
∆p. (5.279)

However, in a ideal gas,

〈v〉2 =
8

3π
〈
v2
〉
. (5.280)

(See Section 5.5.9.) Thus, we obtain
.

M =
d 3

〈v〉 L
∆p. (5.281)

Given that 〈v〉 ∝ T 1/2 [see Equation (5.244)], where T is the temperature of the gas, we deduce
that the mass flow rate due to molecular flow of an ideal gas down a pipe, when a given pressure
difference is established between the two ends of the pipe, is proportional to the cube of the pipe
diameter, inversely proportional to the length of the pipe, and inversely proportional to the square-
root of the temperature.

Now, the standard formula for the mass flow rate of a viscous fluid down a pipe of circular
cross-section, which applies to the case under discussion when the mean free path between colli-
sions is much less than the diameter of the pipe, is

.
M =

π

128
d 4 n m
η L

∆p. (5.282)

Making use of Equation (5.266), we deduce that the mass flow rate of an ideal gas down a pipe of
circular cross-section, in the short mean free path limit, is

.
M =

3π
128

d 4

〈v〉 l L
∆p, (5.283)

where l is the mean free path. Thus, Equation (5.281) holds when l � d, and Equation (5.283)
holds when l � d.

5.3.13 Molecular Effusion
Consider an ideal gas held in a container that is divided in two by a partition. Let the gas to the left
of the partition have temperature T1, pressure p1, and number density n1. Likewise, let the gas to
the right of the partition have temperature T2, pressure p2, and number density n2. Suppose that the
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partition contains a small hole of cross-sectional area A. Suppose that the dimension of the hole is
much less than the mean free path between collisions for the gases on either side of the partition.
In this case, as described in Section 5.3.2, the gases effuse through the hole, rather than flowing
through it in a hydrodynamical fashion.

According to Equations (5.172), (5.244), and the ideal gas law, which states that p1 = n1 kB T1,
the number of molecules per unit time that effuse from the left partition to the right partition is

.
N12 =

A√
2πm

p1√
kB T1

, (5.284)

where m is the molecular mass. Likewise, the number of molecules per unit time that effuse from
the right partition to the left partition is

.
N21 =

A√
2πm

p2√
kB T2

. (5.285)

In a steady state, we require
.

N12 =
.

N21. Hence, we deduce that

p1

p2
=

(
T1

T2

)1/2

. (5.286)

Thus, in equilibrium, a higher pressure prevails in the part of the container held at a higher temper-
ature. This result is different to that we would obtain in limit in which the mean free path is much
less than the size of the hole. In this limit, the gases on either side of the hole flow through it in a
hydrodynamical fashion, and an equilibrium state is achieved when

p1 = p2. (5.287)

5.4 Statistical Mechanics

5.4.1 Specification of State of Many-Particle System
Let us consider how we might specify the state of a system constisting of a great many particles,
such as an ideal gas. Consider the simplest possible dynamical system, which consists of a sin-
gle spinless particle moving classically in one dimension. Assuming that we know the particle’s
equation of motion, the state of the system is fully specified once we simultaneously measure the
particle’s displacement, q, and momentum, p. In fact, if we know q and p then we can calculate
the state of the system at all subsequent times using the equation of motion. In practice, it is im-
possible to specify q and p exactly, because there is always an intrinsic error in any experimental
measurement.

Consider the time evolution of q and p. This can be visualized by plotting the point (q, p) in
the q-p plane. This plane is generally known as phase-space. In general, as time progresses, the
point (q, p) will trace out some very complicated pattern in phase-space. Suppose that we divide
phase-space into rectangular cells of uniform dimensions δq and δp. Here, δq is the intrinsic error
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in the position measurement, and δp the intrinsic error in the momentum measurement. The area
of each cell is

δq δp = h0, (5.288)

where h0 is a small constant having the dimensions of angular momentum. The coordinates q and
p can now be conveniently specified by indicating the cell in phase-space into which they plot at
any given time. This procedure automatically ensures that we do not attempt to specify q and p to
an accuracy greater than our experimental error, which would clearly be pointless.

Let us now consider a single spinless particle moving in three dimensions. In order to specify
the state of the system, we now need to know three q-p pairs; that is, qx-px, qy-py, and qz-pz.
Incidentally, the number of q-p pairs needed to specify the state of the system is usually called
the number of degrees of freedom of the system. Thus, a single particle moving in one dimension
constitutes a one degree of freedom system, whereas a single particle moving in three dimensions
constitutes a three degree of freedom system.

Consider the time evolution of q and p, where q = (qx, qy, qz), et cetera. This can be visual-
ized by plotting the point (q, p) in the six-dimensional q-p phase-space. Suppose that we divide
the qx-px plane into rectangular cells of uniform dimensions δq and δp, and do likewise for the
qy-py and qz-pz planes. Here, δq and δp are again the intrinsic errors in our measurements of
position and momentum, respectively. This is equivalent to dividing phase-space up into regular
six-dimensional cells of volume h 3

0 . The coordinates q and p can now be conveniently specified
by indicating the cell in phase-space into which they plot at any given time. Again, this procedure
automatically ensures that we do not attempt to specify q and p to an accuracy greater than our
experimental error.

Finally, let us consider a system consisting of N spinless particles moving classically in three
dimensions. In order to specify the state of the system, we need to specify a large number of q-p
pairs. The requisite number is simply the number of degrees of freedom, f . For the present case,
f = 3N, because each particle needs three q-p pairs. Thus, phase-space (i.e., the space of all the q-
p pairs) now possesses 2 f = 6N dimensions. Consider a particular pair of phase-space coordinates,
qi and pi. As before, we divide the qi-pi plane into rectangular cells of uniform dimensions δq and
δp. This is equivalent to dividing phase-space into regular 2 f dimensional cells of volume h f

0 . The
state of the system is specified by indicating which cell it occupies in phase-space at any given
time.

In principle, we can specify the state of the system to arbitrary accuracy, by taking the limit
h0 → 0. In reality, we know from Heisenberg’s uncertainty principle (see Section 4.2.7) that it is
impossible to simultaneously measure a coordinate, qi, and its associated momentum, pi, to greater
accuracy than δqi δpi = ~/2. Here, ~ is Planck’s constant divided by 2π. This implies that

h0 ≥ ~/2. (5.289)

In other words, the uncertainty principle sets a lower limit on how finely we can chop up classical
phase-space.

In quantum mechanics, we can specify the state of the system by giving its wavefunction at
time t,

ψ(q1, · · · , q f , s1, · · · , sg, t), (5.290)
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where f is the number of translational degrees of freedom, and g the number of internal (e.g., spin)
degrees of freedom. For instance, if the system consists of N spin-one-half particles then there
will be 3N translational degrees of freedom, and N spin degrees of freedom (because the spin of
each particle can either be directed up or down along the z-axis). Alternatively, if the system is in
a stationary state (see Section 4.2.9) then we can just specify f + g quantum numbers. Either way,
the future time evolution of the wavefunction is fully determined by Schrödinger’s equation. In
reality, this approach is not practical because Schrödinger’s equation for the system is only known
approximately. Typically, we are dealing with a system consisting of many weakly-interacting
particles. We usually know Schrödinger’s equation for completely non-interacting particles, but the
component of the equation associated with particle interactions is either impossibly complicated,
or not very well known. We can define approximate stationary eigenstates using the Schrödinger’s
equation for non-interacting particles. The state of the system is then specified by the quantum
numbers identifying these eigenstates. In the absence of particle interactions, if the system starts
off in a stationary state then it stays in that state for ever, so its quantum numbers never change.
The interactions allow the system to make transitions between different “stationary” states, causing
its quantum numbers to change in time.

5.4.2 Principle of Equal A Priori Probabilities
We now know how to specify the instantaneous state of a many-particle system. In principle, such
a system is completely deterministic. If we know the initial state, and the equations of motion, then
we can evolve the system forward in time, and, thereby, determine all future states. In reality, it is
quite impossible to specify the initial state, or the equations of motion, to sufficient accuracy for
this method to have any chance of working. Furthermore, even if it were possible, it would still not
be a practical proposition to evolve the equations of motion. We are typically dealing with systems
containing Avogadro’s number of particles; that is, about 10 24 particles. We cannot evolve 10 24

simultaneous differential equations. Even if we could, we would not want to. After all, we are not
particularly interested in the motions of individual particles. What we really require is statistical
information regarding the motions of all particles in the system.

Clearly, what is needed here is a statistical treatment of the problem. Instead of focusing on a
single system, let us proceed, in the usual manner, and consider a statistical ensemble consisting of
a large number of identical systems. (See Section 5.1.1.) In general, these systems are distributed
over many different states at any given time. In order to evaluate the probability that the system
possesses a particular property, we merely need to find the number of systems in the ensemble
that exhibit this property, and then divide by the total number of systems, in the limit as the latter
number tends to infinity.

We can usually place some general constraints on the system. Typically, we know the total
internal energy, U, the total volume, V , and the total number of particles, N. To be more exact,
we can only really say that the total internal energy lies between U and U + δU, et cetera, where
δU is an experimental error. Thus, we need only concern ourselves with those systems in the
ensemble exhibiting states that are consistent with the known constraints. We shall call these the
states accessible to the system. In general, there are a great many such states.

We now need to calculate the probability of the system being found in each of its accessible
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states. In fact, the only way that we could calculate these probabilities would be to evolve all of the
systems in the ensemble in time, and observe how long, on average, they spend in each accessible
state. But, as we have already discussed, such a calculation is completely out of the question.
Instead, we shall effectively guess the probabilities.

Let us consider an isolated system in equilibrium. In this situation, we would expect the prob-
ability of the system being found in one of its accessible states to be independent of time. This
implies that the statistical ensemble does not evolve with time. Individual systems in the ensemble
will constantly change state, but the average number of systems in any given state should remain
constant. Thus, all macroscopic parameters describing the system, such as the internal energy and
the volume, should also remain constant. There is nothing in the laws of mechanics that would
lead us to suppose that the system will be found more often in one of its accessible states than in
another. We assume, therefore, that the system is equally likely to be found in any of its accessi-
ble states. This assumption is called the principle of equal a priori probabilities, and lies at the
heart of statistical mechanics. In fact, we use assumptions like this all of the time without really
thinking about them. Suppose that we were asked to pick a card at random from a well-shuffled
pack of ordinary playing cards. Most people would accept that we have an equal probability of
picking any card in the pack. There is nothing that would favor one particular card over all of the
others. Hence, because there are fifty-two cards in a normal pack, we would expect the probability
of picking the ace of spades, say, to be 1/52. We could now place some constraints on the system.
For instance, we could only count red cards, in which case the probability of picking the ace of
hearts, say, would be 1/26, by the same reasoning. In both cases, we have used the principle of
equal a priori probabilities. In statistical mechanics, we treat a many-particle system a little like an
extremely large pack of cards. Each accessible state corresponds to one of the cards in the pack.
The interactions between particles cause the system to continually change state. This is equivalent
to constantly shuffling the pack. Finally, an observation of the state of the system is like picking
a card at random from the pack. The principle of equal a priori probabilities then boils down to
saying that we have an equal chance of choosing any particular card.

5.4.3 Probability Calculations

The principle of equal a priori probabilities is fundamental to all of statistical mechanics, and
allows a complete description of the properties of macroscopic systems in equilibrium. Consider a
system in equilibrium that is isolated, so that its total internal energy is known to have a constant
value lying somewhere in the range U to U + δU. In order to make statistical predictions, we focus
attention on an ensemble of such systems, all of which have their internal energy in this range. Let
Ω(U) be the total number of different states in the ensemble with internal energies in the specified
range. Suppose that, among these states, there are a number Ω(U; xk) for which some parameter,
x, of the system assumes the discrete value xk. (This discussion can easily be generalized to deal
with a parameter that can assume a continuous range of values.) The principle of equal a priori
probabilities tells us that all of the Ω(U) accessible states of the system are equally likely to occur
in the ensemble. It follows that the probability, P(xk), that the parameter x of the system assumes
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the value xk is simply

P(xk) =
Ω(U; xk)
Ω(U)

. (5.291)

Clearly, the mean value of x for the system is given by

〈x〉 =

∑
k Ω(U; xk) xk

Ω(U)
, (5.292)

where the sum is over all possible values that x can assume.

5.4.4 Number of Accessible States of Ideal Gas
Consider an ideal gas, made up of spinless monatomic particles, whose volume is V , and whose
internal energy lies in the range U to U + δU. Let Ω(U,V) be the total number of microscopic
states that satisfy these constraints. This is a particularly simple example, because, for such a gas,
the particles possess translational, but no internal (e.g., vibrational, rotational, or spin), degrees
of freedom. By definition, interatomic forces are negligible in an ideal gas. In other words, the
individual particles move in an approximately uniform potential. It follows that the internal energy
of the gas is just the total translational kinetic energy of its constituent particles, so that

U =
1

2 m

∑
i=1,N

p 2
i , (5.293)

where m is the particle mass, N the total number of particles, and pi the vector momentum of the
ith particle.

Consider the system in the limit in which the internal energy, U, of the gas is much greater
than the ground-state energy, so that all of the quantum numbers are large. The classical version of
statistical mechanics, in which we divide up phase-space into cells of equal volume, is valid in this
limit. (See Section 5.4.1.) The number of states, Ω(U,V), lying between the internal energies U
and U +δU is simply equal to the number of cells in phase-space contained between these energies.
In other words, Ω(U,V) is proportional to the volume of phase-space between these two energies:

Ω(U,V) ∝
∫ U+δU

U
d3r1 · · · d3rN d3p1 · · · d3pN. (5.294)

Here, the integrand is the element of volume of phase-space, with

d3ri ≡ dxi dyi dzi, (5.295)

d3pi ≡ dpx i dpy i dpz i, (5.296)

where (xi, yi, zi) and (px i, py i, pz i) are the Cartesian coordinates and momentum components of the
ith particle, respectively. The integration is over all coordinates and momenta such that the total
internal energy of the system lies between U and U + δU.

For an ideal gas, the total internal energy U does not depend on the positions of the particles.
[See Equation (5.293).] This implies that the integration over the position vectors, ri, can be
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performed immediately. Because each integral over ri extends over the volume of the container
(the particles are, of course, not allowed to stray outside the container),

∫
d3ri = V . There are N

such integrals, so Equation (5.294) reduces to

Ω(U,V) ∝ V Nχ(U), (5.297)

where

χ(U) ∝
∫ U+δU

U
d3p1 · · · d3pN (5.298)

is a momentum-space integral that is independent of the volume.
The internal energy of the system can be written

U =
1

2 m

∑
i=1,N

∑
α=1,3

p 2
α i, (5.299)

because p 2
i = p 2

1 i + p 2
2 i + p 2

3 i, denoting the (x, y, z) components by (1, 2, 3), respectively. The
previous sum contains 3N square terms. For U = constant, Equation (5.299) describes the locus of
a sphere of radius R(U) = (2 m U)1/2 in the 3N-dimensional space of the momentum components.
Hence, χ(U) is proportional to the volume of momentum phase-space contained in the region lying
between the sphere of radius R(U), and that of slightly larger radius R(U + δU). This volume is
proportional to the area of the inner sphere multiplied by δR ≡ R(U + δU) − R(U). Because the
area varies like R3N−1, and δR ∝ δU/U1/2, we have

χ(U) ∝ R3N−1/U1/2 ∝ U3N/2−1. (5.300)

Combining this result with Equation (5.297), we obtain

Ω(U,V) ' B VNU3N/2, (5.301)

where B is a constant independent of V or U, and we have also made use of the fact that N � 1 for
a typical ideal gas. Note that Ω(U,V) is a very strongly increasing function of U because N � 1.

5.4.5 Thermal Interaction
Consider a purely thermal interaction between two systems, A and A′, that contain a large number
of particles. Suppose that the internal energies of these two systems are U and U′, respectively.
The external parameters are held fixed, so that systems A and A′ cannot do work on one another.
However, we shall assume that the systems are free to exchange heat energy (i.e., they are in
thermal contact). It is convenient to divide the energy scale into small subdivisions of width δU.
The number of accessible states of A (i.e., states in which the internal energy of the whole system
lies between U and U + δU) is denoted Ω(U). Likewise, the number of accessible states of A′ is
denoted Ω′(U′).

The combined system A(0) = A + A′ is assumed to be isolated (i.e., it neither does work on,
nor exchanges heat with, its surroundings). It follows the total internal energy, U (0), is constant.
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When speaking of thermal contact between two distinct systems, we usually assume that the mutual
interaction is sufficiently weak for the internal energies to be additive. Thus,

U + U′ ' U (0) = constant. (5.302)

According to Equation (5.302), if the internal energy of A lies in the range U to U +δU then the
internal energy of A′ must lie between U (0) −U − δU and U (0) −U. Thus, the number of accessible
states for each system is given by Ω(U) and Ω′(U (0) − U), respectively. Because every possible
state of A can be combined with every possible state of A′ to form a distinct state, the total number
of distinct states accessible to A(0) when the energy of A lies in the range U to U + δU is

Ω(0)(U) = Ω(U)Ω′(U (0) − U). (5.303)

Consider an ensemble of pairs of thermally interacting systems, A and A′, that are left undis-
turbed, so that they can attain thermal equilibrium. The principle of equal a priori probabilities
is applicable to this situation. (See Section 5.4.2.) According to this principle, the probability of
occurrence of a given macroscopic state is proportional to the number of accessible microscopic
states, because all microscopic states are equally likely. Thus, the probability that the system A has
an energy lying in the range U to U + δU can be written

P(U) = CΩ(U)Ω′(U (0) − U), (5.304)

where C is a constant that is independent of U.
We know, from Section 5.4.4, that the typical variation of the number of accessible states with

energy is of the form
Ω ∝ U3N/2, (5.305)

where N is the number of molecules. For a macroscopic system, N is an exceedingly large number.
It follows that the probability, P(U), in Equation (5.304) is the product of an extremely rapidly
increasing function of U, and an extremely rapidly decreasing function of U. Hence, we would
expect the probability to exhibit a very pronounced maximum at some particular value of the
energy, U f .

5.4.6 Thermodynamic Temperature
Suppose that the systems A and A′ are initially thermally isolated from one another, with respective
internal energies Ui and U′i . If the two systems are subsequently placed in thermal contact, so that
they are free to exchange heat energy, then, in general, the resulting state is an extremely improba-
ble one [i.e., P(Ui) is much less than the peak probability]. The configuration will, therefore, tend
to evolve in time until the two systems attain final energies, U f and U′f , which are such that P(U f )
is maximized. In the special case where the initial energies, Ui and U′i , lie very close to the final
energies, U f and U′f , respectively, there is no change in the two systems when they are brought into
thermal contact, because the initial state already corresponds to a state of maximum probability.

It follows from energy conservation that

U f + U′f = Ui + U′i . (5.306)
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The energy change in each system is simply the net heat absorbed, so that

Q = U f − Ui, (5.307)

Q′ = U′f − U′i . (5.308)

The conservation of energy then reduces to

Q + Q′ = 0. (5.309)

In other words, the heat given off by one system is equal to the heat absorbed by the other. (In our
notation, absorbed heat is positive, and emitted heat is negative.)

It is clear that if the systems A and A′ are suddenly brought into thermal contact then they will
only exchange heat, and evolve towards a new equilibrium state, if the final state is more probable
than the initial one. In other words, the system will evolve if

P(U f ) > P(Ui), (5.310)

or
ln P(U f ) > ln P(Ui), (5.311)

because the logarithm is a monotonic function. The previous inequality can be written

lnΩ(U f ) + lnΩ′(U′f ) > lnΩ(Ui) + lnΩ′(U′i ), (5.312)

with the aid of Equation (5.304). Taylor expansion to first order yields

∂ lnΩ(Ui)
∂U

(U f − Ui) +
∂ lnΩ′(U′i )

∂U′
(U′f − U′i ) > 0, (5.313)

which finally gives
[β(Ui) − β′(Ui)] Q > 0, (5.314)

where

β =
lnΩ
∂U

, (5.315)

β′ =
lnΩ′

∂U
, (5.316)

and use has been made of Equations (5.307)–(5.309).
It is clear, from the previous analysis, that the parameter β has the following properties:

1. If two systems separately in equilibrium have the same value of β then the systems will
remain in equilibrium when brought into thermal contact with one another.

2. If two systems separately in equilibrium have different values of β then the systems will
not remain in equilibrium when brought into thermal contact with one another. Instead, the
system with the higher value of β will absorb heat from the other system until the two β
values are the same. [See Equation (5.314).]
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Let us define the dimensionless parameter, T , such that

1
kB T

≡ β =
∂ lnΩ
∂E

, (5.317)

where kB is the Boltzmann constant. The parameter T is termed the thermodynamic temperature,
and controls heat flow in much the same manner as a conventional temperature. Thus, if two
isolated systems in equilibrium possess the same thermodynamic temperature then they will remain
in equilibrium when brought into thermal contact. However, if the two systems have different
thermodynamic temperatures then heat will flow from the system with the higher temperature (i.e.,
the “hotter” system) to the system with the lower temperature, until the temperatures of the two
systems are the same. In addition, suppose that we have three systems, A, B, and C. We know
that if A and B remain in equilibrium when brought into thermal contact then their temperatures
are the same, so that TA = TB. Similarly, if B and C remain in equilibrium when brought into
thermal contact, then TB = TC. But, we can then conclude that TA = TC, so systems A and C will
also remain in equilibrium when brought into thermal contact. Thus, we arrive at the following
statement, which is sometimes called the zeroth law of thermodynamics:

If two systems are separately in thermal equilibrium with a third system then they must
also be in thermal equilibrium with one another.

Let us test our scheme out on a monatomic ideal gas. We saw in Section 5.4.4 that the number
of accessible states of an ideal monatomic gas consisting of N particles is

Ω(U,V) = B V NU 3N/2, (5.318)

where U is the internal energy, V the volume, and B is a constant that is independent of U and V .
According to the previous two equations, the thermodynamic temperature of such a gas is

1
kB T

=
3 N
2 U

. (5.319)

However, N = νNA, where ν is the number of moles of molecules in the gas, and NA is Avogadro’s
number. The previous equation can be rearranged to give

U =
3
2
νR T, (5.320)

because R = kB NA. However, this is the correct expression for the internal energy of a monatomic
ideal gas. (See Section 5.2.3.) Hence, it is clear that the thermodynamic temperature defined in
Equation (5.317) corresponds to the more familiar absolute temperature associated with an ideal
gas.

5.4.7 Boltzmann Probability Distribution
We have gained some understanding of the macroscopic properties of the air in a classroom (say).
For instance, we know something about its internal energy and specific heat capacity. How can we
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obtain information about the statistical properties of the molecules that make up this air? Consider
a specific molecule. It constantly collides with its immediate neighbor molecules, and occasionally
bounces off the walls of the room. These interactions “inform” it about the macroscopic state of
the air, such as its temperature, pressure, and volume. The statistical distribution of the molecule
over its own particular internal states must be consistent with this macroscopic state. In other
words, if we have a large group of such molecules with similar statistical distributions then they
must be equivalent to air with the appropriate macroscopic properties. So, it ought to be possible
to calculate the probability distribution of the molecule over its internal states from a knowledge
of these macroscopic properties.

We can think of the interaction of a molecule with the air in a classroom as analogous to the
interaction of a small system, A, in thermal contact with a heat reservoir, A′. The air acts like
a heat reservoir because its energy fluctuations due to interactions with the molecule are far too
small to affect any of its macroscopic parameters. Let us determine the probability, Pr, of finding
system A in one particular internal state, r, of energy εr, when it is thermal equilibrium with the
heat reservoir, A′.

As usual, we assume fairly weak interaction between A and A′, so that the energies of these
two systems are additive. The energy of A is not known at this stage. In fact, only the total internal
energy of the combined system, A(0) = A + A′, is known. Suppose that the total internal energy
lies in the range U (0) to U (0) + δU. The overall internal energy is constant in time, because A(0) is
assumed to be an isolated system, so

εr + U′ = U (0), (5.321)

where U′ denotes the internal energy of the reservoir A′. Let Ω′(U′) be the number of accessible
states of the reservoir when its internal energy lies in the range U′ to U′ + δU. Clearly, if system A
has an energy εr then the reservoir A′ must have an energy close to U′ = U (0) − εr. Hence, because
A is in one definite state (i.e., state r), and the total number of states accessible to A′ isΩ′(U (0)−εr),
it follows that the total number of states accessible to the combined system is simply Ω′(U (0) − εr).
The principle of equal a priori probabilities tells us the probability of occurrence of a particular
situation is proportional to the number of accessible states. Thus,

Pr = C′Ω′(U (0) − εr), (5.322)

where C′ is a constant of proportionality that is independent of r. This constant can be determined
by the normalization condition ∑

r

Pr = 1, (5.323)

where the sum is over all possible states of system A, irrespective of their energy. [See Equa-
tion (5.3).]

Let us now make use of the fact that system A is far smaller than system A′. It follows that
εr � U (0), so the slowly-varying logarithm of Pr can be Taylor expanded about U′ = U (0). Thus,

ln Pr = ln C′ + lnΩ′(U (0)) −
[
∂ lnΩ′

∂U′

]
0
εr + · · · . (5.324)
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Note that we must expand ln Pr, rather than Pr itself, because the latter function varies so rapidly
with energy that the radius of convergence of its Taylor series is too small for the series to be of
any practical use. The higher-order terms in Equation (5.324) can be safely neglected, because
εr � U (0). Now, the derivative [

∂ lnΩ′

∂U′

]
0
≡ β (5.325)

is evaluated at the fixed energy U′ = U (0), and is, thus, a constant, independent of the energy,
εr, of A. In fact, we know, from the previous section, that this derivative is just the temperature
parameter β = (kB T )−1 characterizing the heat reservoir A′. Here, T is the absolute temperature of
the reservoir. Hence, Equation (5.324) becomes

ln Pr = ln C′ + lnΩ′(U (0)) − εr

kB T
, (5.326)

giving

Pr = C exp
(
− εr

kB T

)
, (5.327)

where C is a constant independent of r. The parameter C is determined by the normalization
condition, (5.323), which gives

C −1 =
∑

r

exp
(
− εr

kB T

)
. (5.328)

We conclude that the probability of a measurement of the energy of some system A, that is in
thermal equilibrium with a heat reservoir of temperature T , yielding the result εr is

Pr =
exp(−εr/kB T )∑
r exp(−εr/kB T )

. (5.329)

This probability distribution is known as the Boltzmann probability distribution.

5.5 Applications of Statistical Mechanics

5.5.1 Two-State System
Consider a microscopic system (such as an atom) that possesses two quantum states, labelled 1 and
2. Let the lower energy state, 1 (i.e., the ground state), have energy 0, and let the higher energy
state (i.e., the excited state), 2, have energy ∆, where ∆ > 0.

Suppose that the microscopic system is in thermal equilibrium with a heat reservoir of temper-
ature T . According to the Boltzmann distribution, (5.329), the probability the system is found in
state i is

Pi =
exp(εi/kB T )

exp(ε1/kB T ) + exp(−ε2/kB T )
, (5.330)
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where i = 1, 2. In particular, given that ε1 = 0 and ε2 = ∆, we find that

P1 =
1

1 + exp(−∆/kB T )
, (5.331)

P2 =
1

1 + exp(∆/kB T )
. (5.332)

Note that P1 + P2 = 1. Thus, at low temperatures, kB T � ∆, we obtain P1 → 1 and P2 → 0.
In other words, at low temperatures, the system is certain to be found in its ground state, and has
no chance of being found in its excited state. On the other hand, at high temperatures, kB T � ∆,
we obtain P1 = P2 = 1/2. In other words, at high temperatures, the microscopic system is
equally likely to be found in its ground state or in its excited state. Finally, the mean energy of the
microscopic system is (see Section 5.1.3)

〈E〉 = P1 ε1 + P2 ε2 =
∆

1 + exp(∆/kB T )
. (5.333)

Note that there is no temperature at which its is possible to get a population inversion; that is,
P2 > P1. In fact, lasers, which require a population inversion in order to operate, are not in thermal
equilibrium.

Suppose that we have a macroscopic system consisting of N identical two-state microscopic
systems of the type that we have just discussed. The internal energy of the macroscopic system is

U = N 〈ε〉 =
N ∆

1 + exp(∆/kB T )
. (5.334)

Moreover, the specific heat capacity of the macroscopic system at constant volume is (see Sec-
tion 5.2.3)

CV =

(
∂U
∂T

)
V,N

=
N ∆ 2

kB T 2

exp(∆/kB T )
[1 + exp(∆/kB T )]2 . (5.335)

The previous two equations yield

U
N kB Tc

=
exp(−Tc/T )
cosh(Tc/T )

, (5.336)

CV

N kB
=

(Tc/T )2

cosh2(Tc/T )
, (5.337)

where Tc = ∆/(2 kB). Figure 5.2 illustrates how U and CV vary with temperature. The peak
in the heat capacity is known as the Schottky anomaly, and is associated with the absorption of
energy from the heat reservoir as the temperature exceeds the critical temperature required for the
constituent microscopic systems to be excited from their ground states.
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Figure 5.2: Internal energy and specific heat capacity of a two-state system as a function of the
temperature.

5.5.2 Spin-1/2 Paramagnetism

As a specific example of a two-state system, consider a substance whose constituent atoms contain
only one unpaired electron (with zero orbital angular momentum). Such atoms have spin 1/2
[i.e., their spin angular momentum is (1/2) ~], and consequently possess an intrinsic magnetic
moment, µ. According to quantum mechanics, the magnetic moment of a spin-1/2 atom can
point either parallel or antiparallel to an external magnetic field, B. Let us determine the mean
magnetic moment (parallel to B), 〈µ‖〉, of the constituent atoms of the substance when its absolute
temperature is T . We shall assume, for the sake of simplicity, that each atom only interacts weakly
with its neighboring atoms. This enables us to focus attention on a single atom, and to treat the
remaining atoms as a heat reservoir at temperature T .

Our atom can be in one of two possible states. Namely, the (+) state in which its spin points up
(i.e., parallel to B), or the (−) state in which its spin points down (i.e., antiparallel to B). In the (+)
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state, the atomic magnetic moment is parallel to the magnetic field, so that µ‖ = µ. The magnetic
energy of the atom is ε+ = −µ B. In the (−) state, the atomic magnetic moment is antiparallel to
the magnetic field, so that µ‖ = −µ. The magnetic energy of the atom is ε− = µ B.

According to the Boltzmann distribution, (5.329), the probability of finding the atom in the (+)
state is

P+ =
exp(−ε+/kB T )

exp(−ε+/kB T ) + exp(−ε−/kB T )
=

exp(µ B/kB T )
exp(µ B/kB T ) + exp(−µ B/kB T )

, (5.338)

Likewise, the probability of finding the atom in the (−) state is

P− =
exp(−ε−/kB T )

exp(−ε+/kB T ) + exp(−ε−/kB T )
=

exp(−µ B/kB T )
exp(µ B/kB T ) + exp(−µ B/kB T )

. (5.339)

Clearly, the most probable state is the state with the lower energy [i.e., the (+) state]. Thus, the
mean magnetic moment points in the direction of the magnetic field (i.e., the atomic spin is more
likely to point parallel to the field than antiparallel).

It is apparent that the critical parameter in a paramagnetic system is

y =
µ B
kB T

. (5.340)

This dimensionless parameter measures the ratio of the typical magnetic energy of the atom, µ B,
to its typical thermal energy, kB T . If the thermal energy greatly exceeds the magnetic energy then
y � 1, and the probability that the atomic moment points parallel to the magnetic field is about
the same as the probability that it points antiparallel. In this situation, we expect the mean atomic
moment to be small, so that 〈µ‖〉 ' 0. On the other hand, if the magnetic energy greatly exceeds
the thermal energy then y � 1, and the atomic moment is far more likely to be directed parallel to
the magnetic field than antiparallel. In this situation, we expect 〈µ‖〉 ' µ.

Let us calculate the mean atomic moment, 〈µ‖〉. The usual definition of a mean value gives (see
Section 5.1.3)

〈µ‖〉 =
P+ µ + P− (−µ)

P+ + P−
= µ

[
exp(µ B/kB T ) − exp(−µ B/kB T )
exp(µ B/kB T ) + exp(−µ B/kB T )

]
. (5.341)

This can also be written

〈µ‖〉 = µ tanh
(
µ B
kB T

)
. (5.342)

For small arguments, y � 1,

tanh y ' y − y
3

3
+ · · · , (5.343)

whereas for large arguments, y � 1,
tanh y ' 1. (5.344)

It follows that at comparatively high temperatures, kB T � µ B,

〈µ‖〉 ' µ2B
kB T

, (5.345)
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whereas at comparatively low temperatures, kB T � µ B,

〈µ‖〉 ' µ. (5.346)

Suppose that the substance contains N0 atoms per unit volume. The magnetization is defined
as the mean magnetic moment per unit volume, and is given by

〈M‖〉 = N0 〈µ‖〉. (5.347)

At high temperatures, kB T � µ B, the mean magnetic moment, and, hence, the magnetization, is
proportional to the applied magnetic field, so we can write

〈M‖〉 ' χ B
µ0
, (5.348)

where χ is a dimensionless constant of proportionality known as the magnetic susceptibility, and
µ0 the magnetic permeability of free space. It is clear that the magnetic susceptibility of a spin-1/2
paramagnetic substance takes the form

χ =
N0 µ0 µ

2

kB T
. (5.349)

The fact that χ ∝ T −1 is known as Curie’s law, because it was discovered experimentally by Pierre
Curie at the end of the nineteenth century. At low temperatures, kB T � µ B,

〈M‖〉 → N0 µ, (5.350)

so the magnetization becomes independent of the applied field. This corresponds to the maximum
possible magnetization, in which all atomic moments are aligned parallel to the field. The break-
down of the 〈M‖〉 ∝ B law at low temperatures (or high magnetic fields) is known as saturation.

5.5.3 Adiabatic Demagnetization
Suppose that we take the spin-1/2 paramagnetic system discussed in the previous section, and
thermally isolate it from its surroundings. In this case, the numbers of atoms in the spin-up and
spin-down states cannot change, because the system is unable to get rid of excess energy. In other
words, the ratio of the number of atoms in the spin-up state to the number of atoms in the spin-down
state,

N+

N−
=

P+

P−
= exp

(
2 µ B
kB T

)
, (5.351)

is fixed. Under these so-called adiabatic conditions, we find that T ∝ B. This is known as the
magnetocaloric effect.

The magnetocaloric effect is the basis of a method of cooling atomic systems down to very low
temperatures that is known as adiabatic demagnetization. In this scheme, the sample is initially
in thermal contact with liquid helium at 0.8 K. The sample is then magnetized. In the process,
heat is given off by the sample, and is conducted away by the liquid helium. Next, the sample is
thermally isolated by pumping out the liquid helium. Finally, the sample is demagnetized, leading
to a reduction in its temperature via the magnetocaloric effect. Temperatures as low as 10−8 K have
been achieved by this method.
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Figure 5.3: The Lennard-Jones potential.

5.5.4 Thermal Expansion
The interaction of electrically neutral atoms can be modeled using the Lennard-Jones potential,

u(x) = u0

[( x0

x

)12
− 2

( x0

x

)6
]
, (5.352)

where u(x) is the potential energy of a pair of atoms when they are a distance x apart, and u0

and x0 are positive constants. See Figure 5.3. We can think of a given atom in a solid made up
of neutral atoms as a microscopic system interacting with a heat reservoir that consists of all of
the other atoms. Let T be the temperature of the reservoir. Let us treat the problem classically,
which is equivalent to assuming that the temperature is sufficiently high that an atom moving in
the previous potential is distributed over a large number of different quantum states. According to
a straightforward generalization of the Boltzmann distribution, (5.329), the mean value of x is

〈x〉 =

∫ ∞
0 exp[−u(x)/(kB T )] x dx∫ ∞
0 exp[−u(x)/(kB T )] dx

. (5.353)

Let us assume that the temperature is sufficiently low that an atom is only likely to be found
relatively close to the bottom of the potential well, x = x0. We can Taylor expand the potential
about x = x0 to give

u(x) = u0 + u′0 (x − x0) +
1
2

u′′0 (x − x0)2 +
1
6

u′′′0 (x − x0)3 + · · · , (5.354)
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where

u0 = u(x0), (5.355)

u′0 =
du(x0)

dx
= 0, (5.356)

u′′0 =
d2u(x0)

dx2 =
72 u0

x 2
0
, (5.357)

u′′′0 =
d3u(x0)

dx3 = −1512 u0

x 3
0

. (5.358)

Thus, Equation (5.353) gives

〈x〉 =

∫ ∞
−∞ exp[−u′′0 y

2/(2 kB T )] exp[−u′′′0 y3/(6 kB T )] (x0 + y) dy∫ ∞
−∞ exp[−u′′0 y2/(2 kB T )] exp[−u′′′0 y3/(6 kB T )] dy

, (5.359)

where y = x − x0, and we can safely replace the lower limits of integration by −∞, in the integrals
on the right-hand side of the previous expression, because we are assuming that the atom is very
unlikely to be found a large distance from the bottom of the potential. Let us further assume that
|u′′′0 y3/(6 kB T )| � 1. In this case, we can write

〈x〉 ' x0 +

∫ ∞
−∞ exp[−u′′0 y

2/(2 kB T )] [1 − u′′′0 y3/(6 kB T )] y dy∫ ∞
−∞ exp[−u′′0 y2/(2 kB T )] [1 − u′′′0 y3/(6 kB T )] dy

. (5.360)

Now, exp[−u′′0 y
2/(2 kB T )] and y4 are even functions of y, whereas y and y3 are odd functions.

In general, an integral over all y of the product of an even and an odd function averages to zero,
whereas an integral of the product of two even functions does not. Hence, the previous equation
simplifies to give

〈x〉 = x0 − u′′′0

6 kB T

∫ ∞
−∞ y

4 exp[−u′′0 y
2/(2 kB T )] dy∫ ∞

−∞ exp[−u′′0 y2/(2 kB T )] dy

= x0 +

( −u′′′0

6 kB T

)(
2 kB T

u′′0

)2 ∫ ∞
−∞ z4 exp(−z2) dz∫ ∞
−∞ exp(−z2) dz

. (5.361)

However,
∫ ∞
−∞ z4 exp(−z2) dz = (3/4) π1/2, and

∫ ∞
−∞ exp(−z2) dz = π1/2, so we get

〈x〉 = x0 +
(−u′′′0 ) kB T

2 (u′′0 )2 . (5.362)

Note that 〈x〉 increases linearly with increasing temperature.
The coefficient of linear thermal expansion of a solid is defined

α =
1
〈x〉

d〈x〉
dT

, (5.363)
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where 〈x〉 is the mean distance between nearest neighbor atoms. The previous two equations yield

α =
(−u′′′0 ) kB

2 x0 (u′′0 )2 =
7 kB

48 u0
, (5.364)

where use has been made of Equations (5.357) and (5.358).
For solid argon at 80 K, x0 = 3.9 × 10−10 m, and u0 = 0.010 eV. Hence, we deduce that

α = 1.3 × 10−3 K−1. (5.365)

The measured value of α is about 2 × 10−3 K−1.

5.5.5 Equipartition Theorem
The internal energy of a monatomic ideal gas containing N atoms is (3/2) N kB T . (See Sec-
tion 5.2.3.) This implies that each atom possess, on average, (3/2) kB T units of energy. Monatomic
particles have only three translational degrees of freedom, corresponding to their motion in three
dimensions. They possess no internal rotational or vibrational degrees of freedom. Thus, the mean
energy per degree of freedom in a monatomic ideal gas is (1/2) kB T . In fact, this is a special case
of a more general result. Let us now try to prove this result.

Suppose that the energy of a system is determined by f coordinates, qk, and f corresponding
momenta, pk, so that

E = E(q1, · · · , q f , p1, · · · , p f ). (5.366)

Suppose further that:

1. The total energy splits additively into the form

E = εi(pi) + E′(q1, · · · , p f ), (5.367)

where εi involves only one variable, pi, and the remaining part, E′, does not depend on pi.

2. The function εi is quadratic in pi, so that

εi(pi) = b p 2
i , (5.368)

where b is a constant.

The most common situation in which the previous assumptions are valid is where pi is a mo-
mentum. This is because the kinetic energy is usually a quadratic function of each momentum
component, whereas the potential energy does not involve the momenta at all. However, if a co-
ordinate, qi, were to satisfy assumptions 1 and 2 then the theorem that we are about to establish
would hold just as well.

What is the mean value of εi in thermal equilibrium if conditions 1 and 2 are satisfied? If the
system is in equilibrium at absolute temperature T then it is distributed according to the Boltzmann
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probability distribution. (See Section 5.4.7.) In the classical approximation, the mean value of εi

is expressed in terms of integrals over all phase-space (see Section 5.4.4):

〈εi〉 =

∫ ∞
−∞ exp[−E(q1, · · · , p f )/kB T ] εi dq1 · · · dp f∫ ∞
−∞ exp[−E(q1, · · · , p f )/kB T ] dq1 · · · dp f

. (5.369)

Condition 1 gives

〈εi〉 =

∫ ∞
−∞ exp[−(εi + E′)/kB T ] εi dq1 · · · dp f∫ ∞
−∞ exp[−(εi + E′)/kB T ] dq1 · · · dp f

=

∫ ∞
−∞ exp(−εi/kB T ) εi dpi

∫ ∞
−∞ exp(−E′/kB T ) dq1 · · · dp f∫ ∞

−∞ exp(−εi/kB T ) dpi
∫ ∞
−∞ exp(−E′/kB T ) dq1 · · · dp f

, (5.370)

where use has been made of the multiplicative property of the exponential function, and where the
final integrals in both the numerator and denominator extend over all variables, qk and pk, except
for pi. These integrals are equal and, thus, cancel. Hence,

〈εi〉 =

∫ ∞
−∞ exp(−εi/kB T ) εi dpi∫ ∞
−∞ exp(−εi/kB T ) dpi

. (5.371)

This expression can be simplified further because, writing β = 1/kB T ,∫ ∞
−∞

exp(−β εi) εi dpi ≡ − ∂
∂β

[∫ ∞
−∞

exp(−β εi) dpi

]
, (5.372)

so

〈εi〉 = − ∂
∂β

ln
[∫ ∞
−∞

exp(−β εi) dpi

]
. (5.373)

According to condition 2,∫ ∞
−∞

exp(−β εi) dpi =

∫ ∞
−∞

exp
(−β b p 2

i

)
dpi =

1√
β

∫ ∞
−∞

exp
(−b y2

)
dy, (5.374)

where y =
√
β pi. Thus,

ln
∫ ∞
−∞

exp(−β εi) dpi = −1
2

ln β + ln
∫ ∞
−∞

exp
(−b y2

)
dy. (5.375)

Note that the integral on the right-hand side is independent of β. It follows from Equation (5.373)
that

〈εi〉 = − ∂
∂β

(
−1

2
ln β
)

=
1

2 β
, (5.376)

giving

〈εi〉 =
1
2

kB T. (5.377)

This result is known as the equipartition theorem. It states that the mean value of every independent
quadratic term in the energy is equal to (1/2) kB T . If all terms in the energy are quadratic then the
mean energy is spread equally over all degrees of freedom. (Hence, the name “equipartition.”)
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5.5.6 Harmonic Oscillator
Our proof of the equipartition theorem depends crucially on the classical approximation. To see
how quantum effects modify this result, let us examine a particularly simple system that we know
how to analyze using both classical and quantum physics; namely, a simple harmonic oscillator.
Consider a one-dimensional harmonic oscillator in equilibrium with a heat reservoir held at abso-
lute temperature T . The energy of the oscillator is given by

ε =
p2

2 m
+

1
2
κ x2, (5.378)

where the first term on the right-hand side is the kinetic energy, involving the momentum, p, and
the mass, m, and the second term is the potential energy, involving the displacement, x, and the
force constant, κ. Each of these terms is quadratic in the respective variable. So, in the classical
approximation, the equipartition theorem yields:〈

p2
〉

2 m
=

1
2

kB T, (5.379)

1
2
κ
〈

x2
〉

=
1
2

kB T. (5.380)

That is, the mean kinetic energy of the oscillator is equal to the mean potential energy, which
equals (1/2) kB T . It follows that the mean total energy is

〈ε〉 =
1
2

kB T +
1
2

kB T = kB T. (5.381)

According to quantum mechanics (see Section 4.3.7), the energy levels of a harmonic oscillator
are equally spaced, and satisfy

εn =

(
1
2

+ n
)
~ω, (5.382)

where n is a non-negative integer, and

ω =

√
κ

m
. (5.383)

Making use of the Boltzmann distribution, (5.329), the mean value of the quantum number n for
such an oscillator is

〈n〉 =

∑
n=0,∞ exp[−(n + 1/2) ~ω/kB T ] n∑

n=0,∞ exp[−(n + 1/2) ~ω/kB T ]
=

∑
n=0,∞ n x n∑
n=0,∞ x n = x

d
dx

[
ln
∑

n=0,∞
x n

]
, (5.384)

where x = exp(−~ω/kB T ). Now, ∑
n=0,∞

x n =
1

1 − x
, (5.385)

so
ln
∑

n=0,∞
x n = − ln(1 − x), (5.386)
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and

x
d
dx

[
ln
∑

n=0,∞
x n

]
=

x
1 − x

. (5.387)

Hence, we deduce that

〈n〉 =
1

exp(~ω/kB T ) − 1
. (5.388)

Thus, the mean energy of the oscillator,

〈ε〉 =

(
1
2

+ 〈n〉
)
~ω, (5.389)

takes the form

〈ε〉 =

[
1
2

+
1

exp(~ω/kB T ) − 1

]
~ω. (5.390)

Consider the limit
~ω

kB T
� 1, (5.391)

in which the thermal energy, kB T , is large compared to the separation, ~ω, between successive
energy levels. In this limit,

exp
(
~ω

kB T

)
' 1 +

~ω

kB T
, (5.392)

so

〈ε〉 '
(

1
2

+
kB T
~ω

)
~ω '

(
kB T
~ω

)
~ω, (5.393)

giving
〈ε〉 ' kB T. (5.394)

Thus, the classical result, (5.381), holds whenever the thermal energy greatly exceeds the typical
spacing between quantum energy levels.

Consider the limit
~ω

kB T
� 1, (5.395)

in which the thermal energy is small compared to the separation between the energy levels. In this
limit,

exp
(
~ω

kB T

)
� 1, (5.396)

and so

〈ε〉 '
[

1
2

+ exp
(
− ~ω

kB T

)]
~ω ' 1

2
~ω. (5.397)

Thus, if the thermal energy is much less than the spacing between quantum states then the mean
energy approaches that of the ground state. Clearly, the equipartition theorem is only valid in the
former limit, where kB T � ~ω, and the oscillator possess sufficient thermal energy to explore
many of its possible quantum states.
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5.5.7 Specific Heat Capacties
Classical physics, in the guise of the equipartition theorem, tells us that each independent degree
of freedom associated with a quadratic term in the energy possesses an average energy (1/2) kB T
in thermal equilibrium at temperature T . Consider a substance made up of N molecules. Every
molecular degree of freedom contributes (1/2) N kB T , or (1/2) νR T , to the mean internal energy
of the substance (with the tacit proviso that each degree of freedom is associated with a quadratic
term in the energy). Thus, the contribution to the molar heat capacity at constant volume is

1
ν

(
∂U
∂T

)
V

=
1
ν

∂[(1/2) νR T ]
∂T

=
1
2

R, (5.398)

per molecular degree of freedom. The total classical heat capacity is therefore

cV =
g

2
R, (5.399)

where g is the number of molecular degrees of freedom.
As we have seen, the equipartition theorem (and the whole classical approximation) is only

valid when the typical thermal energy, kB T , greatly exceeds the spacing between quantum energy
levels. Suppose that the temperature is sufficiently low that this condition is not satisfied for one
particular molecular degree of freedom. In fact, suppose that kB T is much less than the spacing
between the energy levels. In this situation, the degree of freedom only contributes the ground-state
energy, E0 (say) to the mean energy of the molecule. Now, the ground-state energy can be a quite
complicated function of the internal properties of the molecule, but is certainly not a function of the
temperature, because this is a collective property of all molecules. It follows that the contribution
to the molar heat capacity is zero. Thus, if kB T is much less than the spacing between the energy
levels then the degree of freedom contributes nothing at all to the molar heat capacity. We say that
this particular degree of freedom is “frozen out.” Clearly, at very low temperatures, just about all
degrees of freedom are frozen out. As the temperature is gradually increased, degrees of freedom
successively kick in, and eventually contribute their full (1/2) R to the molar heat capacity, as kB T
approaches, and then greatly exceeds, the spacing between their quantum energy levels. We can
use these simple ideas to explain the behaviors of most experimental heat capacities.

To make further progress, we need to estimate the typical spacing between the quantum energy
levels associated with various degrees of freedom. We can do this by observing the frequency of
the electromagnetic radiation emitted and absorbed during transitions between these energy levels.
If the typical spacing between energy levels is ∆E then transitions between the various levels are
associated with photons of frequency ν, where h ν = ∆E. (Here, h is Planck’s constant.) We can
define an effective temperature of the radiation via h ν = kB Trad. If T � Trad then kB T � ∆E, and
the degree of freedom makes its full contribution to the heat capacity. On the other hand, if T �
Trad then kB T � ∆E, and the degree of freedom is frozen out. Table 5.1 lists the “temperatures” of
various different types of radiation. It is clear that degrees of freedom that give rise to emission or
absorption of radio or microwave radiation contribute their full (1/2) R to the molar heat capacity at
room temperature. On the other hand, degrees of freedom that give rise to emission or absorption
in the visible, ultraviolet, X-ray, or γ-ray regions of the electromagnetic spectrum are frozen out
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Radiation type Frequency (hz) Trad(K)
Radio < 10 9 < 0.05
Microwave 10 9 – 10 11 0.05 – 5
Infrared 10 11 – 10 14 5 – 5000
Visible 5 × 10 14 2 × 10 4

Ultraviolet 10 15 – 10 17 5 × 10 4 – 5 × 10 6

X-ray 10 17 – 10 20 5 × 10 6 – 5 × 10 9

γ-ray > 10 20 > 5 × 10 9

Table 5.1: Effective “temperatures” of various different types of electromagnetic radiation.

at room temperature. Degrees of freedom that emit or absorb infrared radiation are on the border
line.

5.5.8 Specific Heats of Gases
Let us now investigate the specific heats of gases. Consider, first of all, translational degrees of
freedom. Every molecule in a gas is free to move in three dimensions. If one particular molecule
has mass m and momentum p = m v then its kinetic energy of translation is

K =
1

2 m

(
p 2

x + p 2
y + p 2

z

)
. (5.400)

The kinetic energy of other molecules does not involve the momentum, p, of this particular
molecule. Moreover, the potential energy of interaction between molecules depends only on their
position coordinates, and is, thus, independent of p. Any internal rotational, vibrational, elec-
tronic, or nuclear degrees of freedom of the molecule also do not involve p. Hence, the essential
conditions of the equipartition theorem are satisfied. (At least, in the classical approximation.)
Because Equation (5.400) contains three independent quadratic terms, there are clearly three de-
grees of freedom associated with translation (one for each dimension of space), so the translational
contribution to the molar heat capacity of gases is

(cV)translation =
3
2

R. (5.401)

Suppose that our gas is contained in a cubic enclosure of dimensions a. According to Schrödin-
ger’s equation, the quantized translational energy levels of an individual molecule are given by

E =
~2 π2

2 m a2

(
n 2

x + n 2
y + n 2

z

)
, (5.402)

where nx, ny, and nz are positive-integer quantum numbers. (See Section 4.4.2.) Clearly, the
spacing between the energy levels can be made arbitrarily small by increasing the size of the
enclosure. This implies that translational degrees of freedom can be treated classically, so that
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Equation (5.401) is always valid. (Except very close to absolute zero.) We conclude that all gases
possess a minimum molar heat capacity of (3/2) R due to the translational degrees of freedom of
their constituent molecules.

The electronic degrees of freedom of gas molecules (i.e., the possible configurations of elec-
trons orbiting the atomic nuclei) typically give rise to absorption and emission in the ultraviolet or
visible regions of the spectrum. It follows from Table 5.1 that electronic degrees of freedom are
frozen out at room temperature. Similarly, nuclear degrees of freedom (i.e., the possible config-
urations of protons and neutrons in the atomic nuclei) are frozen out because they are associated
with absorption and emission in the X-ray and γ-ray regions of the electromagnetic spectrum. In
fact, the only additional degrees of freedom that we need worry about for gases are rotational and
vibrational degrees of freedom. These typically give rise to absorption lines in the infrared region
of the spectrum.

The rotational kinetic energy of a molecule tumbling in space can be written

K =
1
2

L 2
x

Ixx
+

1
2

L 2
y

Iyy
+

1
2

L 2
z

Izz
, (5.403)

where the x-, y-, and z-axes are the so called principal axes of rotation of the molecule (these are
mutually perpendicular), Lx, Ly, and Lz are the angular momenta about these axes, and Ixx, Iyy, and
Izz are the principal moments of inertia about these axes. (See Sections 1.7.2 and 1.7.3.) No other
degrees of freedom depend on the angular momenta. Because the kinetic energy of rotation is the
sum of three quadratic terms, the rotational contribution to the molar heat capacity of gases is

(cV)rotation =
3
2

R, (5.404)

according to the equipartition theorem. Note that the typical magnitude of a molecular moment
of inertia is m d 2, where m is the molecular mass, and d is the typical interatomic spacing in
the molecule. A special case arises if the molecule is linear (e.g., if the molecule is diatomic).
In this case, one of the principal axes lies along the line of centers of the atoms. The moment
of inertia about this axis is of order me d 2, where me is the electron mass. (See Section 5.3.6.)
Because me � m, it follows that the moment of inertia about the line of centers is minuscule
compared to the moments of inertia about the other two principal axes. In quantum mechanics,
angular momentum is quantized in units of ~. The energy levels of a rigid rotator spinning about a
principal axis are written

E =
~2

2 I
J (J + 1), (5.405)

where I is the moment of inertia, and J is a non-negative integer. Note the inverse dependence of
the spacing between energy levels on the moment of inertia. It is clear that, for the case of a linear
molecule, the rotational degree of freedom associated with spinning along the line of centers of the
atoms is frozen out at room temperature, given the very small moment of inertia along this axis,
and, hence, the very widely spaced rotational energy levels. Thus, the rotational contribution to
the molar heat capacity of a diatomic gas is

(cV)rotation = R. (5.406)
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Figure 5.4: The infrared vibration-absorption spectrum of hydrogen chloride gas.

Classically, the vibrational degrees of freedom of a molecule are studied by standard normal
mode analysis of the molecular structure. Each normal mode behaves like an independent har-
monic oscillator, and, therefore, contributes R to the molar specific heat of the gas [(1/2) R from
the kinetic energy of vibration, and (1/2) R from the potential energy of vibration]. A molecule
containing n atoms has n − 1 normal modes of vibration. For instance, a diatomic molecule has
just one normal mode (corresponding to periodic stretching of the bond between the two atoms).
Thus, the classical contribution to the specific heat from vibrational degrees of freedom is

(cV)vibration = (n − 1) R. (5.407)

So, do any of the rotational and vibrational degrees of freedom actually make a contribution to
the specific heats of gases at room temperature, once quantum effects have been taken into consid-
eration? We can answer this question by examining just one piece of data. Figure 5.4 shows the
infrared absorption spectrum of hydrogen chloride gas. The absorption lines correspond to simul-
taneous transitions between different vibrational and rotational energy levels. Hence, this is usually
called a vibration-rotation spectrum. The missing line at about 3.47 microns corresponds to a pure
vibrational transition from the ground state to the first excited state. (Pure vibrational transitions
are forbidden; hydrogen chloride molecules always have to simultaneously change their rotational
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Figure 5.5: The molar heat capacity at constant volume of gaseous molecular hydrogen versus
temperature.

energy level if they are to couple effectively to electromagnetic radiation.) The longer wavelength
absorption lines correspond to vibrational transitions in which there is a simultaneous decrease in
the rotational energy level. Likewise, the shorter wavelength absorption lines correspond to vi-
brational transitions in which there is a simultaneous increase in the rotational energy level. It is
clear that the rotational energy levels are more closely spaced than the vibrational energy levels.
The pure vibrational transition gives rise to absorption at about 3.47 microns, which corresponds
to infrared radiation of frequency 8.5 × 10 13 hertz with an associated radiation “temperature” of
4,100K. We conclude that the vibrational degrees of freedom of hydrogen chloride, or any other
small molecule, are frozen out at room temperature. The rotational transitions split the vibrational
lines by about 0.2 microns. This implies that pure rotational transitions would be associated with
infrared radiation of frequency 5×10 12 hertz and corresponding radiation “temperature” 240K. We
conclude that the rotational degrees of freedom of hydrogen chloride, or any other small molecule,
are not frozen out at room temperature, and probably contribute the classical (1/2) R to the molar
specific heat. There is one proviso, however. Linear molecules (like hydrogen chloride) effectively
only have two rotational degrees of freedom (instead of the usual three), because of the very small
moment of inertia of such molecules along the line of centers of the atoms.
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Figure 5.5 shows the variation of the molar heat capacity at constant volume of gaseous molec-
ular hydrogen (i.e., H2) with temperature. The expected contribution from the translational degrees
of freedom is (3/2) R (there are three translational degrees of freedom per molecule). The expected
contribution at high temperatures from the rotational degrees of freedom is R (there are effectively
two rotational degrees of freedom per molecule). Finally, the expected contribution at high tem-
peratures from the vibrational degrees of freedom is R (there is one vibrational degree of freedom
per molecule). It can be seen that, as the temperature rises, the rotational, and then the vibrational,
degrees of freedom eventually make their full classical contributions to the heat capacity.

5.5.9 Maxwell Velocity Distribution
Consider a molecule of mass m in a gas that is sufficiently dilute for the intermolecular forces to
be negligible (i.e., an ideal gas). The energy of the molecule is written

ε =
p2

2 m
+ ε int, (5.408)

where p is its momentum vector, and ε int is its internal (i.e., non-translational) energy. The latter
energy is due to molecular rotation, vibration, et cetera. Translational degrees of freedom can
be treated classically to an excellent approximation, whereas internal degrees of freedom usually
require a quantum-mechanical approach. Classically, the probability of finding the molecule in
a given internal state with a position vector in the range r to r + dr, and a momentum vector
in the range p to p + dp, is proportional to the number of cells (of “volume” h0) contained in
the corresponding region of phase-space, weighted by the Boltzmann factor. (See Section 5.5.5.)
In fact, because classical phase-space is divided up into uniform cells, the number of cells is just
proportional to the “volume” of the region under consideration. (See Section 5.4.4.) This “volume”
is written d3r d3p. Thus, the probability of finding the molecule in a given internal state s is

Ps(r,p) d3r d3p ∝ exp
(
− p2

2 m kB T

)
exp

(
− ε

int
s

kB T

)
d3r d3p, (5.409)

where Ps is a probability density defined in the usual manner. The probability P(r,p) d3r d3p of
finding the molecule in any internal state with position and momentum vectors in the specified
range is obtained by summing the previous expression over all possible internal states. The sum
over exp(ε int

s /kB T ) just contributes a constant of proportionality (because the internal states do not
depend on r or p), so

P(r,p) d3r d3p ∝ exp
(
− p2

2 m kB T

)
d3r d3p. (5.410)

Of course, we can multiply this probability by the total number of molecules, N, in order to obtain
the mean number of molecules with position and momentum vectors in the specified range.

Suppose that we now wish to determine f (r, v) d3r d3v; that is, the mean number of molecules
with positions between r and r + dr, and velocities in the range v and v + dv. Because v = p/m, it
is easily seen that

f (r, v) d3r d3v = C exp
(
− m v2

2 kB T

)
d3r d3v, (5.411)
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where C is a constant of proportionality. This constant can be determined by the condition∫
(r)

∫
(v)

f (r, v) d3r d3v = N. (5.412)

In other word, the sum over molecules with all possible positions and velocities must give the
total number of molecules, N. The integral over the molecular position coordinates just gives the
volume, V , of the gas, because the Boltzmann factor is independent of position. The integration
over the velocity coordinates can be reduced to the product of three identical integrals (one for vx,
one for vy, and one for vz), so we have

C V
[∫ ∞
−∞

exp
(
− m v 2

z

2 kB T

)
dvz

]3

= N. (5.413)

Now, ∫ ∞
−∞

exp
(
− m v 2

z

2 kB T

)
dvz =

√
2 kB T

m

∫ ∞
−∞

exp
(−y2

)
dy =

√
2π kB T

m
, (5.414)

so C = (N/V) (m/2π kB T )3/2. Thus, the properly normalized distribution function for molecular
velocities is written

f (v) d3r d3v = n
(

m
2π kB T

)3/2

exp
(
− m v2

2 kB T

)
d3r d3v. (5.415)

Here, n = N/V is the number density of the molecules. We have omitted the variable r in the
argument of f , because f clearly does not depend on position. In other words, the distribution
of molecular velocities is uniform in space. This is hardly surprising, because there is nothing to
distinguish one region of space from another in our calculation. The previous distribution is called
the Maxwell velocity distribution, because it was discovered by James Clark Maxwell in the middle
of the nineteenth century. The average number of molecules per unit volume with velocities in the
range v to v + dv is obviously f (v) d3v. Note that

∫
f (v) d3v = n.

Let us consider the distribution of a given component of velocity; the z-component (say). Sup-
pose that g(vz) dvz is the average number of molecules per unit volume with the z-component of
velocity in the range vz to vz + dvz, irrespective of the values of their other velocity components.
It is fairly obvious that this distribution is obtained from the Maxwell distribution by summing
(integrating actually) over all possible values of vx and vy, with vz in the specified range. Thus,

g(vz) dvz =

∫
(vx)

∫
(vy)

f (v) d3v. (5.416)

This gives

g(vz) dvz = n
(

m
2π kB T

)3/2 ∫
(vx)

∫
(vy)

exp
[
−
(

m
2 kB T

)(
v 2

x + v 2
y + v 2

z

)]
dvx dvy dvz

= n
(

m
2π kB T

)3/2

exp
(
− m v 2

z

2 kB T

)[∫ ∞
−∞

exp
(
− m v 2

x

2 kB T

)]2
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= n
(

m
2π kB T

)3/2

exp
(
− m v 2

z

2 kB T

)(√
2π kB T

m

)2

, (5.417)

or

g(vz) dvz = n
(

m
2π kB T

)1/2

exp
(
− m v 2

z

2 kB T

)
dvz. (5.418)

Of course, this expression is properly normalized, so that∫ ∞
−∞
g(vz) dvz = n. (5.419)

It is clear that each component (because there is nothing special about the z-component) of the
velocity is distributed with a Gaussian probability distribution (see Section 5.1.7), centered on a
mean value

〈vz〉 = 0, (5.420)

with variance 〈
v 2

z

〉
=

kB T
m

. (5.421)

Equation (5.420) implies that each molecule is just as likely to be moving in the plus z-direction as
in the minus z-direction. Equation (5.421) can be rearranged to give〈

1
2

m v 2
z

〉
=

1
2

kB T, (5.422)

in accordance with the equipartition theorem. (See Section 5.5.5.)
Note that Equation (5.415) can be rewritten

f (v) d 3v
n

=

[
g(vx) dvx

n

] [
g(vy) dvy

n

] [
g(vz) dvz

n

]
, (5.423)

where g(vx) and g(vy) are defined in an analogous way to g(vz). Thus, the probability that the
velocity lies in the range v to v + dv is just equal to the product of the probabilities that the velocity
components lie in their respective ranges. In other words, the individual velocity components act
like statistically independent variables.

Suppose that we now wish to calculate F(v) dv; that is, the average number of molecules per
unit volume with a speed v = |v| in the range v to v + dv. It is obvious that we can obtain this
quantity by summing over all molecules with speeds in this range, irrespective of the direction of
their velocities. Thus,

F(v) dv =

∫
f (v) d3v, (5.424)

where the integral extends over all velocities satisfying

v < |v| < v + dv. (5.425)
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This inequality is satisfied by a spherical shell of radius v and thickness dv in velocity space.
Because f (v) only depends on |v|, so f (v) ≡ f (v), the previous integral is just f (v) multiplied by
the volume of the spherical shell in velocity space. So,

F(v) dv = f (v) 4π v2 dv, (5.426)

which gives

F(v) dv = 4π n
( m

2π k T

)3/2
v2 exp

(
− m v2

2 kB T

)
dv. (5.427)

This result is known as Maxwell’s distribution of molecular speeds. Of course, it is properly
normalized, so that ∫ ∞

0
F(v) dv = n. (5.428)

Note that the Maxwell distribution exhibits a maximum at some non-zero value of v. The reason for
this is quite simple. As v increases, the Boltzmann factor decreases, but the volume of phase-space
available to the molecule (which is proportional to v2) increases; the net result is a distribution with
a non-zero maximum.

The mean molecular speed is given by

〈v〉 =
1
n

∫ ∞
0

F(v) v dv. (5.429)

Thus, we obtain

〈v〉 = 4π
(

m
2π kB T

)3/2 ∫ ∞
0
v3 exp

(
− m v2

2 kB T

)
dv, (5.430)

or

〈v〉 = 4π
(

m
2π kB T

)3/2(2 kB T
m

)2 ∫ ∞
0
y3 exp

(−y2
)

dy. (5.431)

Now, ∫ ∞
0
y3 exp

(−y2
)

dy =
1
2
, (5.432)

so

〈v〉 =

√
8
π

kB T
m

. (5.433)

A similar calculation gives

vrms =
[〈
v2
〉]1/2

=

√
3 kB T

m
. (5.434)

However, this result can also be obtained from the equipartition theorem. (See Section 5.5.5.)
Because 〈

1
2

m v2
〉

=

〈
1
2

p 2
x

m

〉
+

〈
1
2

p 2
y

m

〉
+

〈
1
2

p 2
z

m

〉
= 3
(

1
2

kB T
)
, (5.435)
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Figure 5.6: The Maxwell velocity distribution as a function of molecular speed, in units of the
most probable speed (ṽ). The dashed, dash-dotted, and dotted lines indicates the most probable
speed, the mean speed, and the root-mean-square speed, respectively.

then Equation (5.434) follows immediately. It is easily demonstrated that the most probable molec-
ular speed (i.e., the maximum of the Maxwell distribution function) is

ṽ =

√
2 kB T

m
. (5.436)

The speed of sound in an ideal gas is given by

vs =

√
γ p
ρ
, (5.437)

where γ is the ratio of specific heats. (See Section 5.2.9.) This can also be written

vs =

√
γ kB T

m
, (5.438)

because p = n kB T and ρ = n m. It is clear that the various average speeds that we have just calcu-
lated are all of order the sound speed (i.e., a few hundred meters per second at room temperature).
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In ordinary air (γ = 1.4) the sound speed is about 84% of the most probable molecular speed, and
about 74% of the mean molecular speed. Because sound waves ultimately propagate via molecular
motion, it makes sense that they travel at slightly less than the most probable and mean molecular
speeds.

Figure 5.6 shows the Maxwell velocity distribution as a function of molecular speed in units of
the most probable speed. Also shown are the mean speed and the root-mean-square speed.

5.6 Standing-Wave States

5.6.1 Counting Standing-Wave States
Consider a three-dimensional standing wave confined in a cubic box that extends from x = 0 to
x = a, from y = 0 to y = a, and from z = 0 to z = a. (See Section 4.4.2.) The wavefunction,
ψ(x, y, z), must satisfy the boundary conditions

ψ(0, y, z) = ψ(a, y, z) = 0, (5.439)

ψ(x, 0, z) = ψ(x, a, z) = 0, (5.440)

ψ(x, y, 0) = ψ(x, y, a) = 0. (5.441)

Thus, standing-wave solutions of the form

ψ(x, y, z) = ψ0 sin(kx x) sin(ky y) sin(kz z) (5.442)

are only acceptable if

kx = nx
π

a
, (5.443)

ky = ny
π

a
, (5.444)

kz = nz
π

a
, (5.445)

where nx, ny, and nz are positive integers. (Note that negative values of nx do not give rise to wave
states that are physically distinct from the corresponding positive values, et cetera.) It follows that
kx, ky, and kz are all quantized in units of π/a.

Now,

∂nx

∂kx
=

a
π
, (5.446)

∂ny
∂ky

=
a
π
, (5.447)

∂nz

∂kz
=

a
π
. (5.448)
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Thus, the number of translational wave states that are such that kx lies between kx and kx + dkx, ky
lies between ky and ky + dky, and kz lies between kz and kz + dkz, is

N(k) dkx dky dkz =

(
∂nx

∂kx
dkx

)(
∂ny
∂ky

dky

)(
∂nz

∂kz
dkz

)
=
(a
π

)3
dkx dky dkz. (5.449)

Note that
N(k) =

(a
π

)3
(5.450)

is independent of the wavevector k = (kx, ky, kz), because the allowed wave states are uniformly
distributed in k-space.

The wavenumber is defined k = |k|. The number of translational wave states such that k lies
between k and k + dk is denoted ρ(k) dk, where ρ(k) is termed the density of states. Now, ρ(k) dk
is the number of wave states that lie in an octant of a spherical annulus in k-space whose inner
radius is k, and whose outer radius is k + dk. We have to take an octant of the annulus because
only wave states characterized by positive values of nx, ny, and nz have physical significance. (See
Section 4.4.3.) The volume of the octant in k-space is

V =
1
8

4π k2 dk. (5.451)

Hence,

ρ(k) dk = N(k)V =
(a
π

)3 1
8

4π k2 dk, (5.452)

which implies that

ρ(k) =
V k2

2π2 , (5.453)

where V = a3 is the volume of the box. Although the previous expression was derived for the
special case of a cubic box, we shall assume that it is valid for a macroscopic box of any shape. This
assumption is reasonable provided that the wavelengths of most of the standing waves confined in
the box are much smaller than the dimensions of the box (i.e., provided that nx, ny, and nz are all
typically much greater than unity).

Consider electromagnetic waves confined in a box. Such waves satisfy the dispersion relation

ω = k c, (5.454)

where c is the speed of light in vacuum. (See Section 2.4.4.) Note that c is not a function of ω.
Let ρ(ω) dω be the number of translational electromagnetic wave states for which ω lies between
ω and ω + dω. It follows that

ρ(ω) dω = 2 ρ(k)
dk
dω

dω = 2 ρ(k)
1
c

dω, (5.455)

which yields

ρ(ω) = 2
ρ(k)

c
= 2

V k2

2π2 c
, (5.456)
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giving

ρ(ω) =
V
π2

ω2

c3 , (5.457)

where use has been made of Equations (5.453) and (5.454). Here, the factor of 2 in Equa-
tion (5.455) is required because electromagnetic waves are transverse waves, so there are two
independent polarization states for each allowed translational state. (See Section 2.4.4.)

Consider sound waves propagating through a solid. Such waves satisfy the dispersion relation

ω = vs k, (5.458)

where vs is the sound speed. Note that vs is not (usually) a function of ω. However, solids sup-
pose both transverse and longitudinal sound waves (unlike gases, which only support longitudinal
waves). Of course, for transverse waves, there are two independent polarization states for each
allowed translational state. However, for longitudinal waves, there is only one polarization state
for each allowed translational state. Thus, by analogy with electromagnetic waves, the density of
transverse sound wave states is

ρt(ω) =
V
π2

ω2

v 3
s t
, (5.459)

where vt s is the characteristic phase velocity of transverse waves, whereas the density of longitu-
dinal sound wave states is

ρl(ω) =
V

2π2

ω2

v 3
s l
, (5.460)

where vt s is the characteristic phase velocity of longitudinal waves. The total density of sound
wave states, irrespective of the wave polarization, is

ρ(ω) =
3 V
2 π2

ω2

v 3
s
, (5.461)

where
1
v 3

s
=

2
3

1
v 3

s t
+

1
3

1
v 3

l t
. (5.462)

Here, vs is the average sound speed.
Finally, consider electrons of mass me confined in a box. According to quantum mechanics,

electrons have wavelike properties such that the electron energy, ε, is related to the wavenumber,
k, according to the dispersion relation

ε =
~2 k2

2 me
. (5.463)

(See Section 4.4.2.) Let ρ(ε) dε be the number of translational electron states for which ε lies
between ε and ε + dε. It follows that

ρ(ε) dε = ρ(k)
dk
dε

dε = ρ(k)
(2 me)1/2

2 ~ ε1/2 dε. (5.464)

However, according to the Pauli exclusion principle(see Section 4.4.3), only two electrons (corre-
sponding to a spin-up electron, and a spin-down electron) can be put into each translational state.
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Hence, reinterpreting ρ(ε) dε as the number of electrons whose energies lies between ε and ε + dε,
we get

ρ(ε) = 2
V k2

2π2

(2 me)1/2

2 ~ ε1/2 , (5.465)

which gives

ρ(ε) =

√
2 V m 3/2

e ε1/2

π2 ~3 , (5.466)

where use has been made of Equations (5.453) and (5.463).

5.6.2 Planck Radiation Law

Consider electromagnetic radiation inside a box whose walls are held at the constant temperature
T . We know that electromagnetic radiation of angular frequency ω is quantized into photons
whose energy is ε = ~ω. (See Section 3.3.8 and 4.1.2.) Thus, given that photons are indivisible,
the allowed energy levels of such radiation are equally spaced, with spacing ~ω. In this respect,
each frequency state acts like a harmonic oscillator of angular frequency ω. (See Section 4.3.7.)
According to Equation (5.390), the mean energy of a harmonic oscillator of angular frequency ω
that is in thermal equilibrium with a heat reservoir of temperature T is

〈ε〉 =
~ω

exp(~ω/kB T ) − 1
. (5.467)

Here, we have neglected the zero-point energy, (1/2) ~ω, in Equation (5.390) because there is no
electromagnetic zero-point energy.

Let u(ω) be the electromagnetic energy per unit volume associated with electromagnetic waves
whose angular frequencies lie between ω and ω + dω. It follows that

V u(ω) dω = ρ(ω) 〈ε〉 dω, (5.468)

where ρ(ω) dω is the number of electromagnetic wave states whose angular frequencies lie between
ω and ω + dω. Making use of Equations (5.457) and (5.467), we deduce that

u(ω) =
~ω3

π2 c3 [exp(~ω/kB T ) − 1]
. (5.469)

This result is known as the Planck radiation law, after Max Planck who first obtained it in 1900.
Consider the classical limit ~→ 0. In this limit, the previous expression becomes

u(ω) =
kB T ω2

π2 c3 . (5.470)

This result is known as the Rayleigh-Jeans radiation law, after Lord Rayleigh and James Jeans
who derived it in the first decade of the twentieth century. The Rayleigh-Jeans law is equivalent
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Figure 5.7: The Planck radiation law. Here, ω0 = kB T0/~ and u0 = ~ω 3
0 /(π

2 c3), where T0 is an
arbitrary scale temperature. The dashed, solid, and dash-dotted curves show u/u0 for T/T0 = 0.75,
1.0, and 1.25, respectively. The dotted curve shows the locus of the peak emission frequency.

to the assumption that each electromagnetic wave state possesses the classical energy kB T pre-
dicted by the equipartition theorem. (See Section 5.5.5.) The total classical energy density of
electromagnetic radiation is given by

utot =

∫ ∞
0

u(ω) dω =
kB T
π2 c3

∫ ∞
0
ω2 dω. (5.471)

This is an integral that obviously does not converge. Thus, according to classical physics, the
total energy density of electromagnetic radiation inside an enclosed cavity is infinite. This is
clearly an absurd result. In fact, this prediction is known as the ultra-violet catastrophe, because
the Rayleigh-Jeans law usually starts to diverge badly from experimental observations (by over-
estimating the amount of radiation) in the ultra-violet region of the spectrum.

The Planck radiation law approximates to the classical Rayleigh-Jeans law for ~ω � kB T ,
peaks at about ~ω ' 3 kB T , and falls off exponentially for ~ω � kB T . See Figure 5.7. The
exponential fall-off at high frequencies ensures that the total energy density of electromagnetic
radiation inside an enclosed cavity remains finite. The reason for the fall-off that it is very difficult
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for a thermal fluctuation to create a photon with an energy greatly in excess of kB T , because kB T
is the characteristic energy associated with such fluctuations.

5.6.3 Black-Body Radiation
Suppose that we were to make a small hole in the wall of the enclosure described in the previous
section, and were then to observe the emitted radiation. A small hole is the best approximation in
physics to a black-body, which is defined as an object that absorbs, and, therefore, emits, radiation
perfectly at all wavelengths. What is the power radiated by the hole?

The power density inside the enclosure can be written

u(ω) dω = ~ω n(ω) dω, (5.472)

where n(ω) is the mean number of photons per unit volume whose frequencies lie in the range ω
to ω + dω. The radiation field inside the enclosure is isotropic (we are assuming that the hole is
sufficiently small that it does not distort the field). It follows that the mean number of photons
per unit volume whose frequencies lie in the specified range, and whose directions of propagation
subtend an angle in the range θ to θ + dθ with the normal to the hole, is

n(ω, θ) dω dθ = n(ω) dωg(θ) dθ, (5.473)

where g(θ) dθ = (1/2) sin θ dθ is the fractional range of solid angle in the specified range of direc-
tions. (See Section 5.3.2.) The previous two equations give

~ω n(ω, θ) =
1
2

u(ω) sin θ. (5.474)

Photons travel at the speed of light, so the power per unit area escaping from the hole in the
frequency range ω to ω + dω is

P(ω) dω =

∫ π/2

0
c cos θ ~ω n(ω, θ) dω dθ, (5.475)

where c cos θ is the component of the photon velocity in the direction of the hole. This gives

P(ω) dω = c u(ω) dω
1
2

∫ π/2

0
cos θ sin θ dθ =

c
4

u(ω) dω, (5.476)

so

P(ω) dω =
~

4π2 c2

ω3 dω
exp(~ω/kB T ) − 1

(5.477)

is the power per unit area radiated by a black-body in the frequency range ω to ω + dω.
A black-body is very much an idealization. The power spectra of real radiating bodies can

deviate quite substantially from black-body spectra. Nevertheless, we can make some useful pre-
dictions using this model. The black-body power spectrum peaks when ~ω ' 3 kB T , implying
that the peak radiation frequency scales linearly with the temperature of the body. In other words,
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hot bodies tend to radiate at higher frequencies than cold bodies. This result (in particular, the
linear scaling) is known as Wien’s displacement law, after Wilhelm Wein who derived it in 1893,
and allows us to estimate the surface temperatures of stars from their colors (surprisingly enough,
stars are fairly good black-bodies). Table 5.2 shows some stellar temperatures determined by this
method (in fact, the whole emission spectrum is fitted to a black-body spectrum). It can be seen
that the apparent colors (which correspond quite well to the colors of the peak radiation) scan the
whole visible spectrum, from red to blue, as the stellar surface temperatures gradually rise.

Name Constellation Surface Temp. (K) Color
Antares Scorpio 3300 Very Red
Aldebaran Taurus 3800 Reddish Yellow
Sun 5770 Yellow
Procyon Canis Minor 6570 Yellowish White
Sirius Canis Major 9250 White
Rigel Orion 11,200 Bluish White

Table 5.2: Physical properties of some well-known stars.

Probably the most famous black-body spectrum is cosmological in origin. Just after the “big
bang,” the universe was essentially a “fireball,” with the energy associated with radiation com-
pletely dominating that associated with matter. The early universe was also fairly well described by
equilibrium statistical thermodynamics, which means that the radiation had a black-body spectrum.
As the universe expanded, the radiation was gradually Doppler shifted to ever larger wavelengths
(in other words, the radiation did work against the expansion of the universe, and, thereby, lost en-
ergy, but its spectrum remained invariant). Nowadays, this primordial radiation is detectable as a
faint microwave background that pervades the whole universe. The cosmic microwave background
was discovered accidentally by Arno Penzias and Robert Wilson in 1964. For many years, it was
difficult to measure the full spectrum of the microwave background with any degree of precision,
because of strong absorption and scattering of microwaves by the Earth’s atmosphere. However,
all of this changed when the COBE satellite was launched in 1989. It took precisely nine minutes
to measure the perfect black-body spectrum reproduced in Figure 5.8. The data shown in the figure
can be fitted to a black-body curve of characteristic temperature 2.735K. In a very real sense, this
can be regarded as the “temperature of the universe.”

5.6.4 Stefan-Boltzmann Law
The total power radiated per unit area by a black-body at all frequencies is given by

Ptot(T ) =

∫ ∞
0

P(ω) dω =
~

4π2 c2

∫ ∞
0

ω3 dω
exp(~ω/kB T ) − 1

, (5.478)

or

Ptot(T ) =
k 4

B T 4

4π2 c2 ~3

∫ ∞
0

η3 dη
eη − 1

, (5.479)
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Figure 5.8: Cosmic background radiation spectrum measured by the Far Infrared Absolute Spec-
trometer (FIRAS) aboard the Cosmic Background Explorer satellite (COBE). The fit is to a black-
body spectrum of characteristic temperature 2.735 ± 0.06K.
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where η = ~ω/kB T . The previous integral can be looked up in standard reference books on
integrals. In fact, ∫ ∞

0

η3 dη
eη − 1

=
π4

15
. (5.480)

Thus, the total power radiated per unit area by a black-body is

Ptot(T ) =
π2

60
k 4

B

c2 ~3 T 4 = σT 4. (5.481)

This T 4 dependence of the radiated power is called the Stefan-Boltzmann law, after Josef Stefan,
who first obtained it experimentally 1877, and Ludwig Boltzmann, who first derived it theoretically
in 1884. The parameter

σ =
π2

60
k 4

B

c2 ~3 = 5.67 × 10−8 W m−2 K−4, (5.482)

is known as the Stefan-Boltzmann constant.
We can use the Stefan-Boltzmann law to estimate the temperature of the Earth from first prin-

ciples. The Sun is a ball of glowing gas of radius R� ' 7 × 10 5 km and surface temperature
T� ' 5770 K. Its luminosity is

L� = 4πR 2
� σT 4

� , (5.483)

according to the Stefan-Boltzmann law. The Earth is a globe of radius R⊕ ' 6000 km located an
average distance r⊕ ' 1.5 × 108 km from the Sun. The Earth intercepts an amount of energy

P⊕ = L�
πR 2

⊕/r
2
⊕

4π
(5.484)

per second from the Sun’s radiative output; that is, the power output of the Sun reduced by the ratio
of the solid angle subtended by the Earth at the Sun to the total solid angle 4π. The Earth absorbs
this energy, and then re-radiates it at longer wavelengths. The luminosity of the Earth is

L⊕ = 4πR 2
⊕ σT 4

⊕ , (5.485)

according to the Stefan-Boltzmann law, where T⊕ is the average temperature of the Earth’s surface.
Here, we are ignoring any surface temperature variations between polar and equatorial regions, or
between day and night. In a steady state, the luminosity of the Earth must balance the radiative
power input from the Sun, so, equating L⊕ and P⊕, we arrive at

T⊕ =

(
R�
2 r⊕

)1/2

T�. (5.486)

Remarkably, the ratio of the Earth’s surface temperature to that of the Sun depends only on the
Earth-Sun distance and the solar radius. The previous expression yields T⊕ ' 279 K or 6◦ C (or
43◦ F). This is slightly on the cold side, by a few degrees, because of the greenhouse action of the
Earth’s atmosphere, which was neglected in our calculation. Nevertheless, it is quite encouraging
that such a crude calculation comes so close to the correct answer.
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5.6.5 Specific Heats of Solids
Consider a simple solid containing N atoms. Now, atoms in solids cannot translate (unlike those in
gases), but are free to vibrate about their equilibrium positions. Such vibrations are termed lattice
vibrations, and can be thought of as sound waves propagating through the crystal lattice. Each
atom is specified by three independent position coordinates, and three corresponding momentum
coordinates. Let us only consider small-amplitude vibrations. In this case, we can expand the
potential energy of interaction between the atoms to give an expression that is quadratic in the
atomic displacements from their equilibrium positions. It is always possible to perform a normal
mode analysis of the oscillations. In effect, we can find 3 N independent modes of oscillation of
the solid. Each mode has its own particular oscillation frequency, and its own particular pattern
of atomic displacements. Any general oscillation can be written as a linear combination of these
normal modes. Let qi be the (appropriately normalized) amplitude of the ith normal mode, and
pi the corresponding momentum. In normal-mode coordinates, the internal energy of the lattice
vibrations takes the particularly simple form

U =
1
2

∑
i=1,3N

(
p 2

i + ω 2
i q 2

i

)
, (5.487)

where ωi is the (angular) oscillation frequency of the ith normal mode. It is clear that, when
expressed in normal-mode coordinates, the linearized lattice vibrations are equivalent to 3 N inde-
pendent harmonic oscillators. (Of course, each oscillator corresponds to a different normal mode.)

The typical value of ωi is the (angular) frequency of a sound wave propagating through the
lattice. Sound wave frequencies are far lower than the typical vibration frequencies of gaseous
molecules. In the latter case, the mass involved in the vibration is simply that of the molecule,
whereas in the former case the mass involved is that of very many atoms (because lattice vibra-
tions are non-localized). The strength of interatomic bonds in gaseous molecules is similar to those
in solids, so we can use the estimateω ' √κ/m (κ is the force constant that measures the strength of
interatomic bonds, and m is the mass involved in the oscillation) as proof that the typical frequen-
cies of lattice vibrations are very much less than the vibration frequencies of simple molecules. It
follows, from ∆E = ~ω, that the quantum energy levels of lattice vibrations are far more closely
spaced than the vibrational energy levels of gaseous molecules. Thus, it is likely (and is, indeed,
the case) that lattice vibrations are not frozen out at room temperature, but, instead, make their full
classical contribution to the molar specific heat of the solid. (See Section 5.5.8.)

If the lattice vibrations behave classically then, according to the equipartition theorem (see
Section 5.5.5), each normal mode of oscillation has an associated mean energy kB T , in equilibrium
at temperature T [(1/2) kB T resides in the kinetic energy of the oscillation, and (1/2) kB T resides
in the potential energy]. Thus, the internal energy of the solid is

U = 3 N kB T = 3 νR T, (5.488)

where N = νNA. It follows that the molar heat capacity at constant volume is

cV =
1
ν

(
∂U
∂T

)
V

= 3 R (5.489)
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Solid cp Solid cp

Copper 24.5 Aluminium 24.4
Silver 25.5 Tin (white) 26.4
Lead 26.4 Sulphur (rhombic) 22.4
Zinc 25.4 Carbon (diamond) 6.1

Table 5.3: Values of cp (joules/mole/degree) for some solids at T = 298◦ K.

for solids. This gives a value of 24.9 joules/mole/degree. In fact, at room temperature, most solids
(in particular, metals) have heat capacities that lie remarkably close to this value. This fact was
discovered experimentally by Pierre Dulong and Alexis Petite at the beginning of the nineteenth
century, and was used to make some of the first crude estimates of the molecular weights of solids.
(If we know the molar heat capacity of a substance then we can easily work out how much of it
corresponds to one mole, and by weighing this amount, and then dividing the result by Avogadro’s
number, we can then obtain an estimate of the molecular weight.)

Table 5.3 lists the experimental molar heat capacities, cp, at constant pressure for various solids.
The heat capacity at constant volume is somewhat less than the constant pressure value, but not
by much, because solids are fairly incompressible. It can be seen that Dulong and Petite’s law
(i.e., that all solids have a molar heat capacities close to 24.9 joules/mole/degree) holds fairly well
for metals. However, the law fails badly for diamond. This is not surprising. As is well known,
diamond is an extremely hard substance, so its interatomic bonds must be very strong, suggesting
that the force constant, κ, is large. Diamond is also a fairly low-density substance, so the mass,
m, involved in lattice vibrations is comparatively small. Both these facts suggest that the typical
lattice vibration frequency of diamond (ω ' √κ/m) is high. In fact, the spacing between the
different vibrational energy levels (which scales like ~ω) is sufficiently large in diamond for the
vibrational degrees of freedom to be largely frozen out at room temperature. This accounts for the
anomalously low heat capacity of diamond in Table 5.3.

Dulong and Petite’s law is essentially a high-temperature limit. We can make a crude model
of the behavior of cV at low temperatures by assuming that all of the normal modes oscillate at the
same frequency, ω (say). This approximation was first employed by Einstein in a paper published
in 1907. According to Equation (5.487), the solid acts like a set of 3 N independent oscillators
which, making use of Einstein’s approximation, all vibrate at the same frequency. We can use the
quantum mechanical result (5.390) for the mean energy of a single oscillator to write the internal
energy of the solid in the form

U = 3 N
[

1
2

+
1

exp(~ω/kB T ) − 1

]
~ω, (5.490)

giving

cV
1
ν

(
∂U
∂T

)
V

= 3 R
(
θE

T

)2 exp(θE/T )
[exp(θE/T ) − 1]2 . (5.491)
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Here,

θE =
~ω

kB
(5.492)

is termed the Einstein temperature. If the temperature is sufficiently high that T � θE then the
previous expression reduces to cV = 3 R, after expansion of the exponential functions. Thus, the
law of Dulong and Petite is recovered for temperatures significantly in excess of the Einstein tem-
perature. On the other hand, if the temperature is sufficiently low that T � θE then the exponential
factors appearing in Equation (5.491) become very much larger than unity, giving

cV ' 3 R
(
θE

T

)2

exp
(
−θE

T

)
. (5.493)

So, in this simple model, the specific heat approaches zero exponentially as T → 0.
In reality, the specific heats of solids do not approach zero quite as quickly as suggested by Ein-

stein’s model when T → 0. The experimentally observed low-temperature behavior is more like
cV ∝ T 3. The reason for this discrepancy is the crude approximation that all normal modes have
the same frequency. In fact, long-wavelength modes have lower frequencies than short-wavelength
modes, so the former are much harder to freeze out than the latter (because the spacing between
quantum energy levels, ~ω, is smaller in the former case). The molar heat capacity does not de-
crease with temperature as rapidly as suggested by Einstein’s model because these long-wavelength
modes are able to make a significant contribution to the heat capacity, even at very low temper-
atures. A more realistic model of lattice vibrations was developed by Peter Debye in 1912. In
the Debye model, the frequencies of the normal modes of vibration are estimated by treating the
solid as an isotropic continuous medium. This approach is reasonable because the only modes that
really matter at low temperatures are the long-wavelength modes; more explicitly, those whose
wavelengths greatly exceed the interatomic spacing. It is plausible that these modes are not partic-
ularly sensitive to the discrete nature of the solid. In other words, they are not sensitive to the fact
that the solid is made up of atoms, rather than being continuous.

According to Equation (5.461), the density of sound wave states in a continuous solid is

ρc(ω) =
3 V
2π2

ω2

v 3
s
, (5.494)

where vs is the average sound speed. The Debye approach consists in approximating the actual
density of sound wave states, ρ(ω), by the density in a continuous medium, ρc(ω), not only at low
frequencies (long wavelengths) where these should be nearly the same, but also at high frequencies
where they may differ substantially. Suppose that we are dealing with a solid consisting of N atoms.
We know that there are only 3 N independent normal modes. It follows that we must cut off the
density of states above some critical frequency, ωD (say), otherwise we will have too many modes.
Thus, in the Debye approximation, the density of normal modes takes the form

ρD(ω) =

{
ρc(ω) ω ≤ ωD

0 ω > ωD
. (5.495)
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Here, ωD is termed the Debye frequency, and is chosen such that the total number of normal modes
is 3 N: ∫ ∞

0
ρD(ω) dω =

∫ ωD

0
ρc(ω) dω = 3 N. (5.496)

Substituting Equation (5.494) into the previous formula yields

3 V
2π2 v 3

s

∫ ωD

0
ω2 dω =

V
2π 2 v 3

s
ω 3

D = 3 N. (5.497)

This implies that

ωD = vs

(
6π2 N

V

)1/3

. (5.498)

Thus, the Debye frequency depends only on the sound speed in the solid, and the number of atoms
per unit volume. The wavelength corresponding to the Debye frequency is 2π vs/ωD, which is
clearly on the order of the interatomic spacing, d ' (V/N)1/3. It follows that the cut-off of normal
modes whose frequencies exceed the Debye frequency is equivalent to a cut-off of normal modes
whose wavelengths are less than the interatomic spacing. Of course, it makes physical sense that
such modes should be absent.

We can use the quantum-mechanical expression for the mean energy of a single oscillator,
Equation (5.390), to calculate the internal energy associated with lattice vibrations in the Debye
approximation. We obtain

U =

∫ ∞
0
ρD(ω)

[
1
2

+
1

exp(~ω/kB T ) − 1

]
~ω dω. (5.499)

Hence, the molar heat capacity takes the form

cV =
1
ν

(
∂U
∂T

)
V

=
1

ν kB T 2

∫ ∞
0
ρD(ω)

{
exp(~ω/kB T ) ~ω

[exp(~ω/kB T ) − 1] 2

}
~ω dω. (5.500)

Making use of Equations (5.494) and (5.495), we find that

cV =
kB

ν

∫ ωD

0

exp(~ω/kB T ) (~ω/kB T )2

[exp(~ω/kB T ) − 1]2

3 V
2π2 v 3

s
ω2 dω, (5.501)

giving

cV =
3 V kB

2π 2 ν (vs ~/kB T )3

∫ ~ωD/kB T

0

x4 ex

(ex − 1)2 dx, (5.502)

in terms of the dimensionless variable x = ~ω/kB T . According to Equation (5.498), the volume
can be written

V = 6π2 N
(
vs

ωD

)3

, (5.503)

so the heat capacity reduces to

cV = 3 R fD

(
~ωD

kB T

)
= 3 R fD

(
θD

T

)
, (5.504)
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Solid θD (low temperature) θD (sound speed)
NaCl 308 320
KCl 230 246
Ag 225 216
Zn 308 305

Table 5.4: Comparison of Debye temperatures (in degrees kelvin) obtained from the low tempera-
ture behavior of the heat capacity with those calculated from the sound speed.

where the Debye function is defined

fD(y) ≡ 3
y3

∫ y

0

x4 ex

(ex − 1)2 dx. (5.505)

We have also defined the Debye temperature, θD, as

kB θD = ~ωD. (5.506)

Consider the asymptotic limit in which T � θD. For small y, we can approximate ex as 1 + x
in the integrand of Equation (5.505), so that

fD(y)→ 3
y3

∫ y

0
x2 dx = 1. (5.507)

Thus, if the temperature greatly exceeds the Debye temperature then we recover the law of Dulong
and Petite that cV = 3 R. Consider, now, the asymptotic limit in which T � θD. For large y,∫ y

0

x4 ex

(ex − 1)2 dx '
∫ ∞

0

x4 ex

(ex − 1)2 dx =
4π 4

15
. (5.508)

The latter integral can be looked up in standard reference books on integrals. Thus, in the low-
temperature limit,

fD(y)→ 4π4

5
1
y3 , (5.509)

which yields

cV ' 12π4

5
R
(

T
θD

)3

(5.510)

in the limit T � θD, Note that cV varies with temperature as T 3, in accordance with experimental
observation.

The fact that cV goes like T 3 at low temperatures is quite well verified experimentally, although
it is sometimes necessary to go to temperatures as low as 0.02 θD to obtain this asymptotic behavior.
Theoretically, θD should be calculable from Equation (5.498) in terms of the sound speed in the
solid, and the molar volume. Table 5.4 shows a comparison of Debye temperatures evaluated by
this means with temperatures obtained empirically by fitting the law (5.510) to the low-temperature
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Figure 5.9: The molar heat capacity of various solids. The solid curve shows the prediction of
Debye theory. The dotted curve shows the prediction of Einstein theory (assuming that θE = θD).

variation of the heat capacity. It can be seen that there is fairly good agreement between the
theoretical and empirical Debye temperatures. This suggests that the Debye theory affords a good,
though not perfect, representation of the behavior of cV in solids over the entire temperature range.

Finally, Figure 5.9 shows the actual temperature variation of the molar heat capacities of vari-
ous solids, as well as that predicted by Debye’s theory. The prediction of Einstein’s theory is also
shown, for the sake of comparison.

5.6.6 Conduction Electrons in Metal

The conduction electrons in a metal are non-localized (i.e., they are not tied to any particular
atoms). In conventional metals, each atom contributes a fixed number of such electrons (corre-
sponding to its valency). To a first approximation, it is possible to neglect the mutual interaction
of the conduction electrons, because this interaction is largely shielded out by the stationary ions.
The conduction electrons can, therefore, be treated as an ideal gas. However, the number density
of such electrons in a metal far exceeds the number density of molecules in a conventional gas.

Electrons are subject to the Pauli exclusion principle, according to which a given electron state
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Figure 5.10: The Fermi function.

can either be unoccupied, or singly occupied. (See Section 4.4.3.) The so-called Fermi energy is
the energy at which electrons are available without doing work. Thus, an electron state of energy ε
has an available free energy 0 when it is unoccupied, and an available free energy ε − εF when it is
occupied. According to the Boltzmann distribution (see Section 5.4.7), the relative probabilities of
unoccupied and occupied states are thus P(0) = 1 and P(1) = exp[−(ε − εF)/(kB T )], respectively,
where T is the temperature. (See Section 5.4.7.) Thus, the mean occupancy number of the state is

F(ε) =
0 × P(0) + 1 × P(1)

P(0) + P(1)
, (5.511)

which reduces to
F(ε) =

1
exp[(ε − εF)/(kB T )] + 1

. (5.512)

Here, F(ε) is termed the Fermi function.
Let us investigate the behavior of the Fermi function as ε varies. Here, the energy is measured

from its lowest possible value ε = 0. The Fermi energy for conduction electrons in a metal is such
that εF � kB T . In this limit, if 0 < ε � εF then (ε − εF)/(kB T ) � −1, so that F(ε) ' 1. On
the other hand, if ε � εF then (ε − εF)/(kB T ) � 1, so that F(ε) ' exp[−(ε − µ)/(kB T )] falls off

exponentially with increasing ε. Note that F = 1/2 when ε = εF . The transition region in which
F goes from a value close to unity to a value close to zero corresponds to an energy interval of
order kB T , centered on ε = εF . In fact, F = 3/4 when ε = εF − (ln 3) kB T , and F = 1/4 when
ε = εF + (ln 3) kB T . The behavior of the Fermi function is illustrated in Figure 5.10.

In the limit as T → 0, the transition region becomes infinitesimally narrow. In this case, F = 1
for ε ≤ εF , and F = 0 for ε > εF , as illustrated in Figure 5.10. This is an obvious result, because
when T = 0 the conduction electrons attain their lowest energy, or ground-state, configuration.
Because the Pauli exclusion principle requires that there be no more than one electron per single-
particle quantum state, the lowest energy configuration is obtained by piling electrons into the
lowest available unoccupied states, until all of the electrons are used up. Thus, the last electron
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added to the pile has a quite considerable energy, ε = εF , because all of the lower energy states are
already occupied. Clearly, the exclusion principle implies that free electrons in a metal possess a
large mean energy, even at a temperature of absolute zero.

We can calculate the Fermi energy by equating the number of occupied electron states to the
total number of electrons in the metal, Ne. In other words,∫ ∞

0
F(ε) ρ(ε) dε = Ne, (5.513)

where ρ(ε) is the density of electron states specified in Equation (5.466). Assuming that εF � kB T ,
we can make the approximation

F(ε) '
{

1 0 ≤ ε ≤ εF

0 ε > εF
. (5.514)

Thus, making use of Equation (5.466), we obtain
√

2 V m 3/2
e

π2 ~3

∫ εF

0
ε1/2 dε =

√
8 V m 3/2

e ε 3/2
F

3 π2 ~3 = Ne, (5.515)

which can be rearranged to give

εF =
~2

2 me
(3π2 ne)2/3 (5.516)

where ne = Ne/V is the number density of conduction electrons. The mean electron energy is

〈ε〉 =

∫ εF

0 ε ε1/2 dε∫ εF

0 ε1/2 dε
=

2
5
εF . (5.517)

(See Section 4.4.3.)
Copper at room temperature has a number density of conduction electrons of ne = 8.4 ×

1028 m−3. According to Equation (5.516), the corresponding Fermi energy is

εF = 7.0 eV. (5.518)

The associated Fermi temperature is

θF =
εF

kB
= 8.1 × 104 K. (5.519)

Thus, at room temperature, T = 288 K, we obtain

kB T
εF

=
θF

T
' 1

280
, (5.520)

which confirms that εF � kB T for conduction electrons in a metal.
Let us crudely approximate the Fermi function at finite temperature in the fashion shown in

Figure 5.11. As can be seen from the figure, the proportion of thermally excited electrons is the
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Figure 5.11: Approximate Fermi function.

ratio of the area of a triangle of height 1/2 and base 2 kB T to that of a rectangle of height 1 and
base εF . In other words,

(1/2) (1/2) (2 kB T )
εF

=
kB T
2 εF

. (5.521)

Now, the centroid of a right-angled triangle is 1/3 rd of the distance along its base from the right-
angle. Thus, the mean energy of the excited electrons increases by

2
1
3

2 kB T =
4
3

kB T. (5.522)

Hence, the thermal energy per conduction electron is(
kB T
2 εF

)(
4
3

kB T
)

=
2 k 2

B T 2

3 εF
, (5.523)

which implies that the internal energy (i.e., the difference between the energy at a finite temperature
and the energy at absolute zero) of the conduction electrons is

U ' Ne
2 k 2

B T 2

3 εF
=

2 νR kB T 2

3 εF
, (5.524)

where ν is the number of moles of electrons. Finally, the molar specific heat of the electrons at
constant volume is

cV ' 1
ν

(
∂U
∂T

)
V

=
4 R kB T

3 εF
, (5.525)

which can also be written

cV '
(

3
2

R
)(

8
9

T
θF

)
. (5.526)
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The exact result is

cV =

(
3
2

R
)(

π2

3
T
θF

)
. (5.527)

Thus, we conclude that the contribution of the conduction electrons to the molar specific heat
capacity of a metal is proportional to the temperature. However, this contribution is much less
that the classical contribution, (3/2) R, predicted by the equipartition theorem (see Section 5.5.5),
given that each conduction electron possesses three translational degrees of freedom. This is the
case because the conduction electrons in a metal are highly degenerate. (See Section 4.4.3.) In
fact, Equations (5.520) and (5.527) imply that the contribution of the conduction electrons to the
molar specific heat of copper at room temperature is a factor 85 times smaller than the classical
contribution.

Using the superscript e to denote the electronic specific heat due to conduction electrons, the
molar specific heat of such electrons can be written

c(e)
V = γ T, (5.528)

where γ is a (positive) constant of proportionality. At room temperature, c(e)
V is completely masked

by the much larger specific heat, c(L)
V , due to lattice vibrations. However, at very low temperatures,

c(L)
V = A T 3, where A is a (positive) constant of proportionality. (See Section 5.6.5.) Clearly, at low

temperatures, c(L)
V = A T 3 approaches zero far more rapidly than the electronic specific heat, as T is

reduced. Hence, it should be possible to measure the electronic contribution to the molar specific
heat at low temperatures.

The total molar specific heat of a metal at low temperatures takes the form

cV = c(e)
V + c(L)

V = γ T + A T 3. (5.529)

Hence,
cV

T
= γ + A T 2. (5.530)

It follows that a plot of cV/T versus T 2 should yield a straight-line whose intercept on the vertical
axis gives the coefficient γ. Figure 5.12 shows such a plot. The fact that a good straight-line,
with a non-zero intercept, is obtained verifies that the temperature dependence of the heat capacity
predicted by Equation (5.529) is indeed correct.
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Figure 5.12: The low-temperature heat capacity of potassium, plotted as cV/T versus T 2. The
straight-line shows the fit cV/T = 2.08 + 2.57 T 2.



Appendix A

Vector Algebra and Vector Calculus

A.1 Introduction
This appendix contains a brief outline of vector algebra and vector calculus. The essential purpose
of vector algebra is to convert the propositions of Euclidean geometry in three-dimensional space
into a convenient algebraic form. Vector calculus allows us to define the instantaneous velocity and
acceleration of a moving object in three-dimensional space, as well as the work done when such an
object travels along a general curved trajectory in a force field. Vector calculus also introduces the
concept of a scalar field—for example, the potential energy associated with a conservative force
field—and a vector field—for example, an electric field.

A.2 Scalars and Vectors
Many physical quantities (e.g., mass, energy) are entirely defined by a numerical magnitude (in
appropriate units). Such quantities, which have no directional element, are known as scalars.
Moreover, because scalars can be represented by real numbers, it follows that they obey the fa-
miliar laws of ordinary algebra. However, there exits a second class of physical quantities (e.g.,
velocity, acceleration, force) that are only completely defined when both a numerical magnitude
and a direction in space is specified. Such quantities are known as vectors. By definition, a vector
obeys the same algebra as a displacement in space, and may thus be represented geometrically by

P

Q

Figure A.1: A vector.

393
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c = a + b

P

S

R

Q

b

a

a

b

Figure A.2: Vector addition.

a straight-line,
→
PQ (say), where the arrow indicates the direction of the displacement (i.e., from

point P to point Q). See Figure A.1. The magnitude of the vector is represented by the length of
the straight-line.

It is conventional to denote vectors by bold-faced symbols (e.g., a, F) and scalars by non-bold-
faced symbols (e.g., r, S ). The magnitude of a general vector, a, is denoted |a|, or just a, and is,
by definition, always greater than or equal to zero. It is convenient to define a vector with zero
magnitude; this is denoted 0, and has no direction. Finally, two vectors, a and b, are said to be
equal when their magnitudes and directions are identical.

A.3 Vector Algebra

Suppose that the displacements
→
PQ and

→
QR represent the vectors a and b, respectively. See Fig-

ure A.2. It can be seen that the result of combining these two displacements is to give the net

displacement
→
PR. Hence, if

→
PR represents the vector c then we can write

c = a + b. (A.1)

This defines vector addition. By completing the parallelogram PQRS , we can also see that

→
PR =

→
PQ +

→
QR =

→
PS +

→
S R . (A.2)

However,
→
PS has the same length and direction as

→
QR, and, thus, represents the same vector, b.

Likewise,
→
PQ and

→
S R both represent the vector a. Thus, the previous equation is equivalent to

c = a + b = b + a. (A.3)
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c = a− b

b a

c

−b

Figure A.3: Vector subtraction.

We conclude that the addition of vectors is commutative. It can also be shown that the associative
law holds; that is,

a + (b + c) = (a + b) + c. (A.4)

The null vector, 0, is represented by a displacement of zero length and arbitrary direction.
Because the result of combining such a displacement with a finite length displacement is the same
as the latter displacement by itself, it follows that

a + 0 = a, (A.5)

where a is a general vector. The negative of a is defined as that vector that has the same magnitude,
but acts in the opposite direction, and is denoted −a. The sum of a and −a is thus the null vector;
in other words,

a + (−a) = 0. (A.6)

We can also define the difference of two vectors, a and b, as

c = a − b = a + (−b). (A.7)

This definition of vector subtraction is illustrated in Figure A.3.
If n > 0 is a scalar then the expression n a denotes a vector whose direction is the same as a,

and whose magnitude is n times that of a. (This definition becomes obvious when n is an integer.)
If n is negative then, because n a = |n| (−a), it follows that n a is a vector whose magnitude is |n|
times that of a, and whose direction is opposite to a. These definitions imply that if n and m are
two scalars then

n (m a) = n m a = m (n a), (A.8)

(n + m) a = n a + m a, (A.9)

n (a + b) = n a + n b. (A.10)
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Py

O x

z

Figure A.4: A right-handed Cartesian coordinate system.

A.4 Cartesian Components of a Vector
Consider a Cartesian coordinate system Oxyz consisting of an origin, O, and three mutually perpen-
dicular coordinate axes, Ox, Oy, and Oz. See Figure A.4. Such a system is said to be right-handed
if, when looking along the Oz direction, a 90◦ clockwise rotation about Oz is required to take
Ox into Oy. Otherwise, it is said to be left-handed. In physics, it is conventional to always use
right-handed coordinate systems.

It is convenient to define unit vectors, ex, ey, and ez, parallel to Ox, Oy, and Oz, respectively.
Incidentally, a unit vector is a vector whose magnitude is unity. The position vector, r, of some
general point P whose Cartesian coordinates are (x, y, z) is then given by

r = x ez + y ey + z ez. (A.11)

In other words, we can get from O to P by moving a distance x parallel to Ox, then a distance y
parallel to Oy, and then a distance z parallel to Oz. Similarly, if a is an arbitrary vector then

a = ax ex + ay ey + az ez, (A.12)

where ax, ay, and az are termed the Cartesian components of a. It is conventional to write a ≡
(ax, ay, az). It follows that ex ≡ (1, 0, 0), ey ≡ (0, 1, 0), and ez ≡ (0, 0, 1). Of course, 0 ≡
(0, 0, 0).

According to the three-dimensional generalization of the Pythagorean theorem, the distance
OP ≡ |r| = r is given by

r =
√

x 2 + y 2 + z 2. (A.13)

By analogy, the magnitude of a general vector a takes the form

a =

√
a 2

x + a 2
y + a 2

z . (A.14)

If a ≡ (ax, ay, az) and b ≡ (bx, by, bz) then it is easily demonstrated that

a + b ≡ (ax + bx, ay + by, az + bz). (A.15)

Furthermore, if n is a scalar then it is apparent that

n a ≡ (n ax, n ay, n az). (A.16)
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Figure A.5: Rotation of the coordinate axes about Oz.

A.5 Coordinate Transformations

A Cartesian coordinate system allows position and direction in space to be represented in a very
convenient manner. Unfortunately, such a coordinate system also introduces arbitrary elements
into our analysis. After all, two independent observers might well choose coordinate systems with
different origins, and different orientations of the coordinate axes. In general, a given vector a will
have different sets of components in these two coordinate systems. However, the direction and
magnitude of a are the same in both cases. Hence, the two sets of components must be related to
one another in a very particular fashion. Actually, because vectors are represented by moveable

line elements in space (i.e., in Figure A.2,
→
PQ and

→
S R represent the same vector), it follows that

the components of a general vector are not affected by a simple shift in the origin of a Cartesian
coordinate system. On the other hand, the components are modified when the coordinate axes are
rotated.

Suppose that we transform to a new coordinate system, Ox′y′z′, that has the same origin as
Oxyz, and is obtained by rotating the coordinate axes of Oxyz through an angle θ about Oz. See
Figure A.5. Let the coordinates of a general point P be (x, y, z) in Oxyz and (x′, y′, z′) in Ox′y′z′.
According to simple trigonometry, these two sets of coordinates are related to one another via the
transformation:

x′ = x cos θ + y sin θ, (A.17)

y′ = −x sin θ + y cos θ, (A.18)

z′ = z. (A.19)

Consider the vector displacement r ≡ →OP. Note that this displacement is represented by the same
symbol, r, in both coordinate systems, because the magnitude and direction of r are manifestly
independent of the orientation of the coordinate axes. The coordinates of r do depend on the
orientation of the axes; that is, r ≡ (x, y, z) in Oxyz, and r ≡ (x′, y′, z′) in Ox′y′z′. However, they
must depend in a very specific manner [i.e., Equations (A.17)–(A.19)] that preserves the magnitude
and direction of r.
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The components of a general vector a transform in an analogous manner to Equations (A.17)–
(A.19); that is,

ax′ = ax cos θ + ay sin θ, (A.20)

ay′ = −ax sin θ + ay cos θ, (A.21)

az′ = az. (A.22)

Moreover, there are similar transformation rules for rotation about Ox and Oy. Equations (A.20)–
(A.22) effectively constitute the definition of a vector; in other words, the three quantities (ax, ay, az)
are the components of a vector provided that they transform under rotation of the coordinate axes
about Oz in accordance with Equations (A.20)–(A.22). (And also transform correctly under ro-
tation about Ox and Oy). Conversely, (ax, ay, az) cannot be the components of a vector if they
do not transform in accordance with Equations (A.20)–(A.22). Of course, scalar quantities are
invariant under rotation of the coordinate axes. Thus, the individual components of a vector (ax,
say) are real numbers, but they are not scalars. Displacement vectors, and all vectors derived from
displacements (e.g., velocity, acceleration), automatically satisfy Equations (A.20)–(A.22). There
are, however, other physical quantities that have both magnitude and direction, but that are not
obviously related to displacements. We need to check carefully to see whether these quantities are
really vectors. (See Section A.9.)

A.6 Scalar Product
A scalar quantity is invariant under all possible rotational transformations. The individual compo-
nents of a vector are not scalars because they change under transformation. Can we form a scalar
out of some combination of the components of one, or more, vectors? Suppose that we were to
define the “percent” product,

a % b ≡ ax bz + ay bx + az by = scalar number, (A.23)

for general vectors a and b. Is a % b invariant under transformation, as must be the case if it is a
scalar number? Let us consider an example. Suppose that a ≡ (0, 1, 0) and b ≡ (1, 0, 0). It is
easily seen that a % b = 1. Let us now rotate the coordinate axes through 45◦ about Oz. In the
new coordinate system, a ≡ (1/

√
2, 1/

√
2, 0) and b ≡ (1/

√
2, −1/

√
2, 0), giving a % b = 1/2.

Clearly, a % b is not invariant under rotational transformation, so the previous definition is a bad
one.

Consider, now, the dot product or scalar product:

a · b ≡ ax bx + ay by + az bz = scalar number. (A.24)

Let us rotate the coordinate axes though θ degrees about Oz. According to Equations (A.20)–
(A.22), a · b takes the form

a · b = (ax cos θ + ay sin θ) (bx cos θ + by sin θ)
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+ (−ax sin θ + ay cos θ) (−bx sin θ + by cos θ) + az bz

= ax bx + ay by + az bz (A.25)

in the new coordinate system. Thus, a·b is invariant under rotation about Oz. It can easily be shown
that it is also invariant under rotation about Ox and Oy. We conclude that a · b is a true scalar, and
that the previous definition is a good one. Incidentally, a · b is the only simple combination of the
components of two vectors that transforms like a scalar. It is easily shown that the dot product is
commutative and distributive; that is,

a · b = b · a,
a · (b + c) = a · b + a · c. (A.26)

The associative property is meaningless for the dot product, because we cannot have (a · b) · c,
because a · b is scalar.

We have shown that the dot product a · b is coordinate independent. But what is the geometric
significance of this? Well, in the special case where a = b, we get

a · b = a 2
x + a 2

y + a 2
z = |a|2 = a 2. (A.27)

So, the invariance of a · a is equivalent to the invariance of the magnitude of vector a under trans-
formation.

Let us now investigate the general case. The length squared of AB in the vector triangle shown
in Figure A.6 is

(b − a) · (b − a) = |a| 2 + |b| 2 − 2 a · b. (A.28)

However, according to the “cosine rule” of trigonometry,

(AB)2 = (OA)2 + (OB)2 − 2 (OA) (OB) cos θ, (A.29)

where (AB) denotes the length of side AB. It follows that

a · b = |a| |b| cos θ. (A.30)

In this case, the invariance of a · b under transformation is equivalent to the invariance of the angle
subtended between the two vectors. Note that if a ·b = 0 then either |a| = 0, |b| = 0, or the vectors a
and b are mutually perpendicular. The angle subtended between two vectors can easily be obtained
from the dot product; in fact,

cos θ =
a · b
|a| |b| . (A.31)

The work W performed by a constant force F that moves an object through a displacement r is
the product of the magnitude of F and the displacement in the direction of F. If the angle subtended
between F and r is θ then

W = |F| (|r| cos θ) = F · r. (A.32)

The work dW performed by a non-constant force f that moves an object through an infinitesimal
displacement dr in a time interval dt is dW = f · dr. Thus, the rate at which the force does work on
the object, which is usually referred to as the power, is P = dW/dt = f · dr/dt, or P = f · v, where
v = dr/dt is the object’s instantaneous velocity.
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Figure A.6: A vector triangle.

A.7 Vector Area
Suppose that we have planar surface of scalar area S . We can define a vector area S whose magni-
tude is S , and whose direction is perpendicular to the plane, in the sense determined by a right-hand
circulation rule (see Section A.8) applied to the rim, assuming that a direction of circulation around
the rim is specified. (See Figure A.7.) This quantity clearly possesses both magnitude and direc-
tion. But is it a true vector? We know that if the normal to the surface makes an angle αx with the
x-axis then the area seen looking along the x-direction is S cosαx. This is the x-component of S
(because S x = ex · S = ex · n S = cosαx S , where n is the unit normal to the surface). Similarly,
if the normal makes an angle αy with the y-axis then the area seen looking along the y-direction
is S cosαy. This is the y-component of S. If we limit ourselves to a surface whose normal is
perpendicular to the z-direction then αx = π/2 − αy = α. It follows that S = S (cosα, sinα, 0). If
we rotate the basis about the z-axis by θ degrees, which is equivalent to rotating the normal to the
surface about the z-axis by −θ degrees, so that α→ α − θ, then

S x′ = S cos (α − θ) = S cosα cos θ + S sinα sin θ = S x cos θ + S y sin θ, (A.33)

which is the correct transformation rule for the x-component of a vector. The other components
transform correctly as well. This proves both that a vector area is a true vector, and that the
components of a vector area are the projected areas seen looking down the coordinate axes.

According to the vector addition theorem, the projected area of two plane surfaces, joined
together at a line, looking along the x-direction (say) is the x-component of the resultant of the
vector areas of the two surfaces. Likewise, for many joined-up plane areas, the net area seen
looking down the x-axis, which is the same as the area of the outer rim seen looking down the
x-axis, is the x-component of the resultant of all the vector areas: that is,

S =
∑

i

Si. (A.34)

If we approach a limit, by letting the number of plane facets increase, and their areas reduce, then
we obtain a continuous surface denoted by the resultant vector area

S =
∑

i

δSi. (A.35)
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S

Figure A.7: A vector area.

It is clear that the area of the rim seen looking down the x-axis is just S x. Similarly, for the areas
of the rim seen looking down the other coordinate axes. Note that it is the rim of the surface that
determines the vector area, rather than the nature of the surface spanning the rim. So, two different
surfaces sharing the same rim both possess the same vector area.

In conclusion, a loop (not all in one plane) has a vector area S which is the resultant of the
component vector areas of any surface ending on the loop. The components of S are the areas
of the loop seen looking down the coordinate axes. As a corollary, a closed surface has S = 0,
because it does not possess a rim.

A.8 Vector Product
We have discovered how to construct a scalar from the components of two general vectors a and
b. Can we also construct a vector that is not just a linear combination of a and b? Consider the
following definition:

a ∗ b ≡ (ax bx, ay by, az bz). (A.36)

Is a ∗ b a proper vector? Suppose that a = (0, 1, 0), b = (1, 0, 0). In this case, a ∗ b = 0.
However, if we rotate the coordinate axes through 45◦ about Oz then a = (1/

√
2, 1/

√
2, 0), b =

(1/
√

2, −1/
√

2, 0), and a ∗ b = (1/2, −1/2, 0). Thus, a ∗ b does not transform like a vector,
because its magnitude depends on the choice of axes. So, the previous definition is a bad one.

Consider, now, the cross product or vector product:

a × b ≡ (ay bz − az by, az bx − ax bz, ax by − ay bx) = c. (A.37)

Does this rather unlikely combination transform like a vector? Let us try rotating the coordinate
axes through an angle θ about Oz using Equations (A.20)–(A.22). In the new coordinate system,

cx′ = (−ax sin θ + ay cos θ) bz − az (−bx sin θ + by cos θ)

= (ay bz − az by) cos θ + (az bx − ax bz) sin θ

= cx cos θ + cy sin θ. (A.38)
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index finger

thumb

θ

a× b

a

Figure A.8: The right-hand rule for cross products. Here, θ is less that 180◦.

Thus, the x-component of a × b transforms correctly. It can easily be shown that the other compo-
nents transform correctly as well, and that all components also transform correctly under rotation
about Ox and Oy. Thus, a×b is a proper vector. Incidentally, a×b is the only simple combination
of the components of two vectors that transforms like a vector (and is non-coplanar with a and b).
The cross product is anticommutative,

a × b = −b × a, (A.39)

distributive,
a × (b + c) = a × b + a × c, (A.40)

but is not associative,
a × (b × c) , (a × b) × c. (A.41)

The cross product transforms like a vector, which means that it must have a well-defined direc-
tion and magnitude. We can show that a × b is perpendicular to both a and b. Consider a · a × b.
If this is zero then the cross product must be perpendicular to a. Now,

a · a × b = ax (ay bz − az by) + ay (az bx − ax bz) + az (ax by − ay bx)

= 0. (A.42)

Therefore, a× b is perpendicular to a. Likewise, it can be demonstrated that a× b is perpendicular
to b. The vectors a, b, and a×b form a right-handed set, like the unit vectors ex, ey, and ez. In fact,
ex × ey = ez. This defines a unique direction for a × b, which is obtained from a right-hand rule.
See Figure A.8.

Let us now evaluate the magnitude of a × b. We have

(a × b)2 = (ay bz − az by)2 + (az bx − ax bz)2 + (ax by − ay bx)2

= (a 2
x + a 2

y + a 2
z ) (b 2

x + b 2
y + b 2

z ) − (ax bx + ay by + az bz)2

= |a| 2 |b| 2 − (a · b)2

= |a| 2 |b| 2 − |a| 2 |b| 2 cos2 θ = |a|2 |b|2 sin2 θ. (A.43)
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Thus,
|a × b| = |a| |b| sin θ, (A.44)

where θ is the angle subtended between a and b. Clearly, a × a = 0 for any vector, because θ
is always zero in this case. Also, if a × b = 0 then either |a| = 0, |b| = 0, or b is parallel (or
antiparallel) to a.

Consider the parallelogram defined by the vectors a and b. See Figure A.9. The scalar area of
the parallelogram is a b sin θ. By convention, the vector area has the magnitude of the scalar area,
and is normal to the plane of the parallelogram, in the sense obtained from a right-hand circulation
rule by rotating a on to b (through an acute angle); that is, if the fingers of the right-hand circulate
in the direction of rotation then the thumb of the right-hand indicates the direction of the vector
area. So, the vector area is coming out of the page in Figure A.9. It follows that

S = a × b, (A.45)

Suppose that a force F is applied at position r. See Figure A.10. The torque about the origin
O is the product of the magnitude of the force and the length of the lever arm OQ. Thus, the
magnitude of the torque is |F| |r| sin θ. The direction of the torque is conventionally defined as the
direction of the axis through O about which the force tries to rotate objects, in the sense determined
by a right-hand circulation rule. Hence, the torque is out of the page in Figure A.10. It follows that
the vector torque is given by

τ = r × F. (A.46)

The angular momentum, l, of a particle of linear momentum p and position vector r is simply
defined as the moment of its momentum about the origin: that is,

l = r × p. (A.47)

A.9 Rotation
Let us try to define a rotation vector θ whose magnitude is the angle of the rotation, θ, and whose
direction is parallel to the axis of rotation, in the sense determined by a right-hand circulation
rule. Unfortunately, this is not a good vector. The problem is that the addition of rotations is not
commutative, whereas vector addition is commuative. Figure A.11 shows the effect of applying

⊙S

b

θ
a

b

a

Figure A.9: A vector parallelogram.
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Figure A.10: A torque.

two successive 90◦ rotations, one about Ox, and the other about the Oz, to a standard six-sided die.
In the left-hand case, the z-rotation is applied before the x-rotation, and vice versa in the right-hand
case. It can be seen that the die ends up in two completely different states. In other words, the z-
rotation plus the x-rotation does not equal the x-rotation plus the z-rotation. This non-commuting
algebra cannot be represented by vectors. So, although rotations have a well-defined magnitude
and direction, they are not vector quantities.

But, this is not quite the end of the story. Suppose that we take a general vector a and rotate it
about Oz by a small angle δθz. This is equivalent to rotating the coordinate axes about the Oz by
−δθz. According to Equations (A.20)–(A.22), we have

a′ ' a + δθz ez × a, (A.48)

where use has been made of the small angle approximations sin θ ' θ and cos θ ' 1. The previ-
ous equation can easily be generalized to allow small rotations about Ox and Oy by δθx and δθy,
respectively. We find that

a′ ' a + δθ × a, (A.49)

where
δθ = δθx ex + δθy ey + δθz ez. (A.50)

Clearly, we can define a rotation vector, δθ, but it only works for small angle rotations (i.e., suffi-
ciently small that the small-angle approximations of sine and cosine are good). According to the
previous equation, a small z-rotation plus a small x-rotation is (approximately) equal to the two
rotations applied in the opposite order. The fact that infinitesimal rotation is a vector implies that
angular velocity,

ω = lim
δt→0

δθ

δt
, (A.51)

must be a vector as well. Also, if a′ is interpreted as a(t + δt) in Equation (A.49) then it follows
that the equation of motion of a vector that precesses about the origin with some angular velocity
ω is

da
dt

= ω × a. (A.52)
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Figure A.11: Effect of successive rotations about perpendicular axes on a six-sided die.

A.10 Scalar Triple Product
Consider three vectors a, b, and c. The scalar triple product is defined a · b × c. Now, b × c
is the vector area of the parallelogram defined by b and c. So, a · b × c is the scalar area of this
parallelogram multiplied by the component of a in the direction of its normal. It follows that a·b×c
is the volume of the parallelepiped defined by vectors a, b, and c. See Figure A.12. This volume
is independent of how the triple product is formed from a, b, and c, except that

a · b × c = −a · c × b. (A.53)

So, the “volume” is positive if a, b, and c form a right-handed set (i.e., if a lies above the plane of b
and c, in the sense determined from a right-hand circulation rule by rotating b onto c) and negative
if they form a left-handed set. The triple product is unchanged if the dot and cross product operators
are interchanged,

a · b × c = a × b · c. (A.54)

The triple product is also invariant under any cyclic permutation of a, b, and c,

a · b × c = b · c × a = c · a × b, (A.55)

but any anti-cyclic permutation causes it to change sign,

a · b × c = −b · a × c. (A.56)

The scalar triple product is zero if any two of a, b, and c are parallel, or if a, b, and c are coplanar.
If a, b, and c are non-coplanar then any vector r can be written in terms of them; that is,

r = α a + βb + γ c. (A.57)
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c

b

a

Figure A.12: A vector parallelepiped.

Forming the dot product of this equation with b × c, we then obtain

r · b × c = α a · b × c, (A.58)

so
α =

r · b × c
a · b × c

. (A.59)

Analogous expressions can be written for β and γ. The parameters α, β, and γ are uniquely deter-
mined provided a · b × c , 0; that is, provided that the three vectors are non-coplanar.

A.11 Vector Triple Product
For three vectors a, b, and c, the vector triple product is defined a × (b × c). The brackets are
important because a × (b × c) , (a × b) × c. In fact, it can be demonstrated that

a × (b × c) ≡ (a · c) b − (a · b) c (A.60)

and
(a × b) × c ≡ (a · c) b − (b · c) a. (A.61)

Let us try to prove the first of the previous theorems. The left-hand side and the right-hand side
are both proper vectors, so if we can prove this result in one particular coordinate system then it
must be true in general. Let us take convenient axes such that Ox lies along b, and c lies in the
x-y plane. It follows that b ≡ (bx, 0, 0), c ≡ (cx, cy, 0), and a ≡ (ax, ay, az). The vector b × c is
directed along Oz; that is, b × c ≡ (0, 0, bx cy). Hence, a × (b × c) lies in the x-y plane; that is,
a× (b× c) ≡ (ay bx cy, −ax bx cy, 0). This is the left-hand side of Equation (A.60) in our convenient
coordinate system. To evaluate the right-hand side, we need a · c = ax cx + ay cy and a · b = ax bx.
It follows that the right-hand side is

RHS = ( [ax cx + ay cy] bx, 0, 0) − (ax bx cx, ax bx cy, 0)

= (ay cy bx, −ax bx cy, 0) = LHS, (A.62)

which proves the theorem.
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A.12 Vector Calculus
Suppose that vector a varies with time, so that a = a(t). The time derivative of the vector is defined

da
dt

= lim
δt→0

[
a(t + δt) − a(t)

δt

]
. (A.63)

When written out in component form this becomes

da
dt
≡
(

dax

dt
,

day
dt
,

daz

dt

)
. (A.64)

Suppose that a is, in fact, the product of a scalar φ(t) and another vector b(t). What now is the
time derivative of a? We have

dax

dt
=

d
dt

(φ bx) =
dφ
dt

bx + φ
dbx

dt
, (A.65)

which implies that
da
dt

=
dφ
dt

b + φ
db
dt
. (A.66)

Moreover, it is easily demonstrated that

d
dt

(a · b) =
da
dt
· b + a · db

dt
, (A.67)

and
d
dt

(a × b) =
da
dt
× b + a × db

dt
. (A.68)

Hence, it can be seen that the laws of vector differentiation are analogous to those in conventional
calculus.

A.13 Line Integrals
Consider a two-dimensional function f (x, y) that is defined for all x and y. What is meant by the
integral of f along a given curve joining the points P and Q in the x-y plane? Well, we first draw
out f as a function of length l along the path. See Figure A.13. The integral is then simply given
by ∫ Q

P
f (x, y) dl = Area under the curve, (A.69)

where dl = (dx 2 + dy 2)1/2.
As an example of this, consider the integral of f (x, y) = x y 2 between P and Q along the two

routes indicated in Figure A.14. Along route 1 we have x = y, so dl =
√

2 dx. Thus,∫ Q

P
x y 2 dl =

∫ 1

0
x 3
√

2 dx =

√
2

4
. (A.70)
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Figure A.13: A line integral.
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Figure A.14: An example line integral.

The integration along route 2 gives∫ Q

P
x y 2 dl =

∫ 1

0
x y 2 dx

∣∣∣∣
y=0

+

∫ 1

0
x y 2 dy

∣∣∣∣
x=1

= 0 +

∫ 1

0
y 2 dy =

1
3
. (A.71)

Note that the integral depends on the route taken between the initial and final points.
The most common type of line integral is one in which the contributions from dx and dy are

evaluated separately, rather that through the path length dl; that is,∫ Q

P

[
f (x, y) dx + g(x, y) dy

]
. (A.72)

As an example of this, consider the integral∫ Q

P

[
y dx + x 3 dy

]
(A.73)
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Figure A.15: An example line integral.

along the two routes indicated in Figure A.15. Along route 1 we have x = y + 1 and dx = dy, so∫ Q

P

[
y dx + x 3 dy

]
=

∫ 1

0

[
y dy + (y + 1)3 dy

]
=

17
4
. (A.74)

Along route 2, ∫ Q

P

[
y dx + x 3 dy

]
=

∫ 1

0
x 3 dy

∣∣∣∣
x=1

+

∫ 2

1
y dx

∣∣∣∣
y=1

=
7
4
. (A.75)

Again, the integral depends on the path of integration.
Suppose that we have a line integral that does not depend on the path of integration. It follows

that ∫ Q

P
( f dx + g dy) = F(Q) − F(P) (A.76)

for some function F. Given F(P) for one point P in the x-y plane, then

F(Q) = F(P) +

∫ Q

P
( f dx + g dy) (A.77)

defines F(Q) for all other points in the plane. We can then draw a contour map of F(x, y). The line
integral between points P and Q is simply the change in height in the contour map between these
two points: ∫ Q

P
( f dx + g dy) =

∫ Q

P
dF(x, y) = F(Q) − F(P). (A.78)

Thus,
dF(x, y) = f (x, y) dx + g(x, y) dy. (A.79)

For instance, if F = x 3 y then dF = 3 x 2 y dx + x 3 dy and∫ Q

P

(
3 x 2 y dx + x 3 dy

)
=
[
x 3 y
]Q

P (A.80)

is independent of the path of integration.
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It is clear that there are two distinct types of line integral. Those that depend only on their
endpoints and not on the path of integration, and those that depend both on their endpoints and
the integration path. Later on, we shall learn how to distinguish between these two types. (See
Section A.18.)

A.14 Vector Line Integrals
A vector field is defined as a set of vectors associated with each point in space. For instance, the
velocity v(r) in a moving liquid (e.g., a whirlpool) constitutes a vector field. By analogy, a scalar
field is a set of scalars associated with each point in space. An example of a scalar field is the
temperature distribution T (r) in a furnace.

Consider a general vector field A(r). Let dr ≡ (dx, dy, dz) be the vector element of line length.
Vector line integrals often arise as∫ Q

P
A · dr =

∫ Q

P
(Ax dx + Ay dy + Az dz). (A.81)

For instance, if A is a force-field then the line integral is the work done in going from P to Q.
As an example, consider the work done by a repulsive inverse-square central field, F = −r/|r 3|.

The element of work done is dW = F · dr. Take P = (∞, 0, 0) and Q = (a, 0, 0). Route 1 is along
the x-axis, so

W =

∫ a

∞

(
− 1

x 2

)
dx =

[
1
x

]a

∞
=

1
a
. (A.82)

The second route is, firstly, around a large circle (r = constant) to the point (a, ∞, 0), and then
parallel to the y-axis. See Figure A.16. In the first part, no work is done, because F is perpendicular
to dr. In the second part,

W =

∫ 0

∞

−y dy
(a 2 + y 2)3/2 =

[
1

(y 2 + a 2)1/2

]0

∞
=

1
a
. (A.83)

In this case, the integral is independent of the path. However, not all vector line integrals are path
independent.

A.15 Surface Integrals
Let us take a surface S , that is not necessarily co-planar, and divide it up into (scalar) elements δS i.
Then ∫ ∫

S
f (x, y, z) dS = lim

δS i→0

∑
i

f (x, y, z) δS i (A.84)

is a surface integral. For instance, the volume of water in a lake of depth D(x, y) is

V =

∫ ∫
D(x, y) dS . (A.85)
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Figure A.16: An example vector line integral.

To evaluate this integral, we must split the calculation into two ordinary integrals. The volume in
the strip shown in Figure A.17 is [∫ x2

x1

D(x, y) dx
]

dy. (A.86)

Note that the limits x1 and x2 depend on y. The total volume is the sum over all strips: that is,

V =

∫ y2

y1

dy
[∫ x2(y)

x1(y)
D(x, y) dx

]
≡
∫ ∫

S
D(x, y) dx dy. (A.87)

Of course, the integral can be evaluated by taking the strips the other way around: that is,

V =

∫ x2

x1

dx
∫ y2(x)

y1(x)
D(x, y) dy. (A.88)

Interchanging the order of integration is a very powerful and useful trick. But great care must be
taken when evaluating the limits.

For example, consider ∫ ∫
S

x y 2 dx dy, (A.89)

where S is shown in Figure A.18. Suppose that we evaluate the x integral first:

dy
(∫ 1−y

0
x y 2 dx

)
= y 2 dy

[
x 2

2

]1−y

0
=
y 2

2
(1 − y)2 dy. (A.90)

Let us now evaluate the y integral:∫ 1

0

(
y 2

2
− y3 +

y 4

2

)
dy =

1
60
. (A.91)
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Figure A.17: Decomposition of a surface integral.

We can also evaluate the integral by interchanging the order of integration:∫ 1

0
x dx

∫ 1−x

0
y 2 dy =

∫ 1

0

x
3

(1 − x)3 dx =
1

60
. (A.92)

In some cases, a surface integral is just the product of two separate integrals. For instance,∫ ∫
S

x 2 y dx dy (A.93)

where S is a unit square. This integral can be written∫ 1

0
dx
∫ 1

0
x 2 y dy =

(∫ 1

0
x 2 dx

)(∫ 1

0
y dy

)
=

1
3

1
2

=
1
6
, (A.94)

because the limits are both independent of the other variable.

A.16 Vector Surface Integrals
Surface integrals often occur during vector analysis. For instance, the rate of flow of a liquid of
velocity v through an infinitesimal surface of vector area dS is v · dS. The net rate of flow through
a surface S made up of very many infinitesimal surfaces is∫ ∫

S
v · dS = lim

dS→0

[∑
v cos θ dS

]
, (A.95)

where θ is the angle subtended between the normal to the surface and the flow velocity.
Analogously to line integrals, most surface integrals depend both on the surface and the rim.

But some (very important) integrals depend only on the rim, and not on the nature of the surface
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Figure A.18: An example surface integral.

which spans it. As an example of this, consider incompressible fluid flow between two surfaces S 1

and S 2 that end on the same rim. (See Figure A.23.) The volume between the surfaces is constant,
so what goes in must come out, and∫ ∫

S 1

v · dS =

∫ ∫
S 2

v · dS. (A.96)

It follows that ∫ ∫
v · dS (A.97)

depends only on the rim, and not on the form of surfaces S 1 and S 2.

A.17 Volume Integrals
A volume integral takes the form ∫ ∫ ∫

V
f (x, y, z) dV, (A.98)

where V is some volume, and dV = dx dy dz is a small volume element. The volume element is
sometimes written d 3r, or even dτ.

As an example of a volume integral, let us evaluate the center of gravity of a solid pyramid.
Suppose that the pyramid has a square base of side a, a height a, and is composed of material of
uniform density. Let the centroid of the base lie at the origin, and let the apex lie at (0, 0, a). By
symmetry, the center of mass lies on the line joining the centroid to the apex. In fact, the height of
the center of mass is given by

z =

∫ ∫ ∫
z dV

/∫ ∫ ∫
dV. (A.99)
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The bottom integral is just the volume of the pyramid, and can be written∫ ∫ ∫
dV =

∫ a

0
dz
∫ (a−z)/2

−(a−z)/2
dy
∫ (a−z)/2

−(a−z)/2
dx =

∫ a

0
(a − z)2 dz =

∫ a

0
(a 2 − 2 a z + z 2) dz

=
[
a 2 z − a z 2 + z 3/3

]a
0 =

1
3

a 3. (A.100)

Here, we have evaluated the z-integral last because the limits of the x- and y- integrals are z-
dependent. The top integral takes the form∫ ∫ ∫

z dV =

∫ a

0
z dz

∫ (a−z)/2

−(a−z)/2
dy
∫ (a−z)/2

−(a−z)/2
dx =

∫ a

0
z (a − z)2 dz =

∫ a

0
(z a 2 − 2 a z 2 + z 3) dz

=
[
a 2 z 2/2 − 2 a z 3/3 + z 4/4

]a
0 =

1
12

a 4. (A.101)

Thus,

z̄ =
1

12
a 4
/

1
3

a 3 =
1
4

a. (A.102)

In other words, the center of mass of a pyramid lies one quarter of the way between the centroid of
the base and the apex.

A.18 Gradient
A one-dimensional function f (x) has a gradient d f /dx that is defined as the slope of the tangent to
the curve at x. We wish to extend this idea to cover scalar fields in two and three dimensions.

Consider a two-dimensional scalar field h(x, y), which is (say) height above sea-level in a hilly
region. Let dr ≡ (dx, dy) be an element of horizontal distance. Consider dh/dr, where dh is the
change in height after moving an infinitesimal distance dr. This quantity is somewhat like the
one-dimensional gradient, except that dh depends on the direction of dr, as well as its magnitude.
In the immediate vicinity of some point P, the slope reduces to an inclined plane. See Figure A.19.
The largest value of dh/dr is straight up the slope. It is easily shown that for any other direction

dh
dr

=

(
dh
dr

)
max

cos θ, (A.103)

where θ is the angle shown in Figure A.19. Let us define a two-dimensional vector, grad h, called
the gradient of h, whose magnitude is (dh/dr)max, and whose direction is the direction of steepest
ascent. The cos θ variation exhibited in the previous expression ensures that the component of
grad h in any direction is equal to dh/dr for that direction.

The component of dh/dr in the x-direction can be obtained by plotting out the profile of h at
constant y, and then finding the slope of the tangent to the curve at given x. This quantity is known
as the partial derivative of h with respect to x at constant y, and is denoted (∂h/∂x)y. Likewise, the
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Figure A.19: A two-dimensional gradient.

gradient of the profile at constant x is written (∂h/∂y)x. Note that the subscripts denoting constant-
x and constant-y are usually omitted, unless there is any ambiguity. If follows that in component
form

grad h ≡
(
∂h
∂x
,
∂h
∂y

)
. (A.104)

The equation of the tangent plane at P = (x0, y0) is

hT (x, y) = h(x0, y0) + α (x − x0) + β (y − y0). (A.105)

This plane has the same local gradients as h(x, y), so

α =
∂h
∂x
, β =

∂h
∂y
, (A.106)

by differentiation of the previous equation. For small dx = x − x0 and dy = y − y0, the function h
is coincident with the tangent plane, so

dh =
∂h
∂x

dx +
∂h
∂y

dy. (A.107)

But, grad h ≡ (∂h/∂x, ∂h/∂y) and dr ≡ (dx, dy), so

dh = grad h · dr. (A.108)

Incidentally, the previous equation demonstrates that grad h is a proper vector, because the left-
hand side is a scalar, and, according to the properties of the dot product, the right-hand side is also
a scalar provided that dr and grad h are both proper vectors (dr is an obvious vector, because it is
directly derived from displacements).

Consider, now, a three-dimensional temperature distribution T (x, y, z) in (say) a reaction ves-
sel. Let us define grad T , as before, as a vector whose magnitude is (dT/dr)max, and whose direc-
tion is the direction of the maximum gradient. This vector is written in component form

grad T ≡
(
∂T
∂x
,
∂T
∂y
,
∂T
∂z

)
. (A.109)
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dr

isotherms

T = constant gradT

Figure A.20: Isotherms.

Here, ∂T/∂x ≡ (∂T/∂x)y,z is the gradient of the one-dimensional temperature profile at constant y
and z. The change in T in going from point P to a neighbouring point offset by dr ≡ (dx, dy, dz)
is

dT =
∂T
∂x

dx +
∂T
∂y

dy +
∂T
∂z

dz. (A.110)

In vector form, this becomes
dT = grad T · dr. (A.111)

Suppose that dT = 0 for some dr. It follows that

dT = grad T · dr = 0. (A.112)

So, dr is perpendicular to grad T . Because dT = 0 along so-called “isotherms” (i.e., contours
of the temperature), we conclude that the isotherms (contours) are everywhere perpendicular to
grad T . See Figure A.20.

It is, of course, possible to integrate dT . For instance, the line integral of dT between points P
and Q is written ∫ Q

P
dT =

∫ Q

P
grad T · dr = T (Q) − T (P). (A.113)

This integral is clearly independent of the path taken between P and Q, so
∫ Q

P grad T · dr must be
path independent.

Consider a vector field A(r). In general, the line integral
∫ Q

P A · dr depends on the path taken
between the end points, but for some special vector fields the integral is path independent. Such
fields are called conservative fields. It can be shown that if A is a conservative field then A =

grad V for some scalar field V . The proof of this is straightforward. Keeping P fixed, we have∫ Q

P
A · dr = V(Q), (A.114)
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where V(Q) is a well-defined function, due to the path-independent nature of the line integral.
Consider moving the position of the end point by an infinitesimal amount dx in the x-direction.
We have

V(Q + dx) = V(Q) +

∫ Q+dx

Q
A · dr = V(Q) + Ax dx. (A.115)

Hence,
∂V
∂x

= Ax, (A.116)

with analogous relations for the other components of A. It follows that

A = grad V. (A.117)

In classical dynamics, the force due to gravity is a good example of a conservative field. Now,
if A(r) is a force-field then

∫
A · dr is the work done in traversing some path. If A is conservative

then ∮
A · dr = 0, (A.118)

where
∮

corresponds to the line integral around a closed loop. The fact that zero net work is done in
going around a closed loop is equivalent to the conservation of energy (which is why conservative
fields are called “conservative”). A good example of a non-conservative field is the force due to
friction. Clearly, a frictional system loses energy in going around a closed cycle, so

∮
A · dr , 0.

A.19 Grad Operator
It is useful to define the vector operator

∇ ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, (A.119)

which is usually called the grad or del operator. This operator acts on everything to its right in a
expression, until the end of the expression or a closing bracket is reached. For instance,

grad f = ∇ f ≡
(
∂ f
∂x
,
∂ f
∂y
,
∂ f
∂z

)
. (A.120)

For two scalar fields φ and ψ,

grad (φψ) = φ gradψ + ψ grad φ (A.121)

can be written more succinctly as

∇(φψ) = φ∇ψ + ψ∇φ. (A.122)
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Suppose that we rotate the coordinate axes through an angle θ about Oz. By analogy with
Equations (A.17)–(A.19), the old coordinates (x,y, z) are related to the new ones (x′, y′,z′) via

x = x′ cos θ − y′ sin θ, (A.123)

y = x ′ sin θ + y′ cos θ, (A.124)

z = z′. (A.125)

Now,
∂

∂x′
=

(
∂x
∂x′

)
y′,z′

∂

∂x
+

(
∂y

∂x′

)
y′,z′

∂

∂y
+

(
∂z
∂x′

)
y′,z′

∂

∂z
, (A.126)

giving
∂

∂x′
= cos θ

∂

∂x
+ sin θ

∂

∂y
, (A.127)

and
∇x′ = cos θ∇x + sin θ∇y. (A.128)

It can be seen, from Equations (A.20)–(A.22), that the differential operator ∇ transforms in an
analogous manner to a vector. This is another proof that ∇ f is a good vector.

A.20 Divergence
Let us start with a vector field A(r). Consider

∮
S A · dS over some closed surface S , where dS

denotes an outward pointing surface element. This surface integral is usually called the flux of A
out of S . If A represents the velocity of some fluid then

∮
S A · dS is the rate of fluid flow out of S .

If A is constant in space then it is easily demonstrated that the net flux out of S is zero. In fact,∮
A · dS = A ·

∮
dS = A · S = 0, (A.129)

because the vector area S of a closed surface is zero.
Suppose, now, that A is not uniform in space. Consider a very small rectangular volume over

which A hardly varies. The contribution to
∮

A · dS from the two faces normal to the x-axis is

Ax(x + dx) dy dz − Ax(x) dy dz =
∂Ax

∂x
dx dy dz =

∂Ax

∂x
dV, (A.130)

where dV = dx dy dz is the volume element. (See Figure A.21.) There are analogous contributions
from the sides normal to the y- and z-axes, so the total of all the contributions is∮

A · dS =

(
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

)
dV. (A.131)

The divergence of a vector field is defined

divA = ∇ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
. (A.132)
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Figure A.21: Flux of a vector field out of a small box.

Divergence is a good scalar (i.e., it is coordinate independent), because it is the dot product of the
vector operator ∇ with A. The formal definition of ∇ · A is

∇ · A = lim
dV→0

∮
A · dS
dV

. (A.133)

This definition is independent of the shape of the infinitesimal volume element.
One of the most important results in vector field theory is the so-called divergence theorem.

This states that for any volume V surrounded by a closed surface S ,∮
S

A · dS =

∫
V
∇ · A dV, (A.134)

where dS is an outward pointing volume element. The proof is very straightforward. We divide
up the volume into very many infinitesimal cubes, and sum

∫
A · dS over all of the surfaces. The

contributions from the interior surfaces cancel out, leaving just the contribution from the outer
surface. (See Figure A.22.) We can use Equation (A.131) for each cube individually. This tells us
that the summation is equivalent to

∫ ∇ ·A dV over the whole volume. Thus, the integral of A · dS
over the outer surface is equal to the integral of ∇ · A over the whole volume, which proves the
divergence theorem.

Now, for a vector field with ∇ · A = 0,∮
S

A · dS = 0 (A.135)

for any closed surface S . So, for two surfaces, S 1 and S 2, on the same rim,∫
S 1

A · dS =

∫
S 2

A · dS, (A.136)
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.

exterior contributions survive

S

interior contributions cancel

Figure A.22: The divergence theorem.

as illustrated in Figure A.23. (Note that the direction of the surface elements on S 1 has been
reversed relative to those on the closed surface. Hence, the sign of the associated surface integral
is also reversed.) Thus, if ∇ · A = 0 then the surface integral depends on the rim, but not on the
nature of the surface that spans it. On the other hand, if ∇ ·A , 0 then the integral depends on both
the rim and the surface.

Consider an incompressible fluid whose velocity field is v. It is clear that
∮

v · dS = 0 for any
closed surface, because what flows into the surface must flow out again. Thus, according to the
divergence theorem,

∫ ∇ · v dV = 0 for any volume. The only way in which this is possible is
if ∇ · v is everywhere zero. Thus, the velocity components of an incompressible fluid satisfy the

S

rim

S2

S1

Figure A.23: Two surfaces spanning the same rim (right), and the equivalent closed surface (left).
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following differential relation:
∂3x
∂x

+
∂3y

∂y
+
∂3z
∂z

= 0. (A.137)

It is sometimes helpful to represent a vector field A by lines of force or field-lines. The direction
of a line of force at any point is the same as the local direction of A. The density of lines (i.e.,
the number of lines crossing a unit surface perpendicular to A) is equal to |A|. For instance, in
Figure A.24, |A| is larger at point 1 than at point 2. The number of lines crossing a surface element
dS is A · dS. So, the net number of lines leaving a closed surface is∮

S
A · dS =

∫
V
∇ · A dV. (A.138)

If ∇ · A = 0 then there is no net flux of lines out of any surface. Such a field is called a solenoidal
vector field. The simplest example of a solenoidal vector field is one in which the lines of force all
form closed loops.

A.21 Laplacian Operator
So far we have encountered

∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
, (A.139)

which is a vector field formed from a scalar field, and

∇ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
, (A.140)

which is a scalar field formed from a vector field. There are two ways in which we can combine
gradient and divergence. We can either form the vector field ∇(∇ · A) or the scalar field ∇ · (∇φ).
The former is not particularly interesting, but the scalar field ∇ · (∇φ) turns up in a great many
physical problems, and is, therefore, worthy of discussion.

Let us introduce the heat flow vector h, which is the rate of flow of heat energy per unit area
across a surface perpendicular to the direction of h. In many substances, heat flows directly down

21

Figure A.24: Divergent lines of force.
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the temperature gradient, so that we can write

h = −κ∇T, (A.141)

where κ is the thermal conductivity. The net rate of heat flow
∮

S h · dS out of some closed surface
S must be equal to the rate of decrease of heat energy in the volume V enclosed by S . Thus, we
have ∮

S
h · dS = − ∂

∂t

(∫
c T dV

)
, (A.142)

where c is the specific heat. It follows from the divergence theorem that

∇ · h = −c
∂T
∂t
. (A.143)

Taking the divergence of both sides of Equation (A.141), and making use of Equation (A.143),
we obtain

∇ · (κ∇T ) = c
∂T
∂t
. (A.144)

If κ is constant then the previous equation can be written

∇ · (∇T ) =
c
κ

∂T
∂t
. (A.145)

The scalar field ∇ · (∇T ) takes the form

∇ · (∇T ) =
∂

∂x

(
∂T
∂x

)
+
∂

∂y

(
∂T
∂y

)
+
∂

∂z

(
∂T
∂z

)
=
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 ≡ ∇2T. (A.146)

Here, the scalar differential operator

∇2 ≡ ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (A.147)

is called the Laplacian. The Laplacian is a good scalar operator (i.e., it is coordinate independent)
because it is formed from a combination of divergence (another good scalar operator) and gradient
(a good vector operator).

What is the physical significance of the Laplacian? In one dimension, ∇2T reduces to ∂2T/∂x2.
Now, ∂2T/∂x2 is positive if T (x) is concave (from above), and negative if it is convex. So, if T is
less than the average of T in its surroundings then ∇2T is positive, and vice versa.

In two dimensions,

∇2T =
∂2T
∂x2 +

∂2T
∂y2 . (A.148)

Consider a local minimum of the temperature. At the minimum, the slope of T increases in all
directions, so ∇2T is positive. Likewise, ∇2T is negative at a local maximum. Consider, now, a
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steep-sided valley in T . Suppose that the bottom of the valley runs parallel to the x-axis. At the
bottom of the valley ∂2T/∂y2 is large and positive, whereas ∂2T/∂x2 is small and may even be
negative. Thus, ∇2T is positive, and this is associated with T being less than the average local
value.

Let us now return to the heat conduction problem:

∇2T =
c
κ

∂T
∂t
. (A.149)

It is clear that if ∇2T is positive in some small region then the value of T there is less than the
local average value, so ∂T/∂t > 0: that is, the region heats up. Likewise, if ∇2T is negative then
the value of T is greater than the local average value, and heat flows out of the region: that is,
∂T/∂t < 0. Thus, the previous heat conduction equation makes physical sense.

A.22 Curl
Consider a vector field A(r), and a loop that lies in one plane. The integral of A around this loop
is written

∮
A · dr, where dr is a line element of the loop. If A is a conservative field then A = ∇φ

and
∮

A · dr = 0 for all loops. In general, for a non-conservative field,
∮

A · dr , 0.
For a small loop, we expect

∮
A · dr to be proportional to the area of the loop. Moreover,

for a fixed-area loop, we expect
∮

A · dr to depend on the orientation of the loop. One particular
orientation will give the maximum value:

∮
A · dr = Imax. If the loop subtends an angle θ with this

optimum orientation then we expect I = Imax cos θ. Let us introduce the vector field curl A whose
magnitude is

|curl A| = lim
dS→0

∮
A · dr
dS

(A.150)

for the orientation giving Imax. Here, dS is the area of the loop. The direction of curl A is perpen-
dicular to the plane of the loop, when it is in the orientation giving Imax, with the sense given by a
right-hand circulation rule.

Let us now express curl A in terms of the components of A. First, we shall evaluate
∮

A · dr
around a small rectangle in the y-z plane, as shown in Figure A.25. The contribution from sides 1
and 3 is

Az(y + dy) dz − Az(y) dz =
∂Az

∂y
dy dz. (A.151)

The contribution from sides 2 and 4 is

−Ay(z + dz) dy + Ay(z) dy = −∂Ay

∂y
dy dz. (A.152)

So, the total of all contributions gives∮
A · dr =

(
∂Az

∂y
− ∂Ay

∂z

)
dS , (A.153)

where dS = dy dz is the area of the loop.
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Figure A.25: A vector line integral around a small rectangular loop in the y-z plane.

Consider a non-rectangular (but still small) loop in the y-z plane. We can divide it into rectan-
gular elements, and form

∮
A · dr over all the resultant loops. The interior contributions cancel, so

we are just left with the contribution from the outer loop. Also, the area of the outer loop is the
sum of all the areas of the inner loops. We conclude that∮

A · dr =

(
∂Az

∂y
− ∂Ay

∂z

)
dS x (A.154)

is valid for a small loop dS = (dS x, 0, 0) of any shape in the y-z plane. Likewise, we can show
that if the loop is in the x-z plane then dS = (0, dS y, 0) and∮

A · dr =

(
∂Ax

∂z
− ∂Az

∂x

)
dS y. (A.155)

Finally, if the loop is in the x-y plane then dS = (0, 0, dS z) and∮
A · dr =

(
∂Ay

∂x
− ∂Ax

∂y

)
dS z. (A.156)

Imagine an arbitrary loop of vector area dS = (dS x, dS y, dS z). We can construct this out of
three vector areas, 1, 2, and 3, directed in the x-, y-, and z-directions, respectively, as indicated
in Figure A.26. If we form the line integral around all three loops then the interior contributions
cancel, and we are left with the line integral around the original loop. Thus,∮

A · dr =

∮
A · dr1 +

∮
A · dr2 +

∮
A · dr3, (A.157)
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Figure A.26: Decomposition of a vector area into its Cartesian components.

giving ∮
A · dr = curl A · dS = |curl A| |dS| cos θ, (A.158)

where

curl A =

(
∂Az

∂y
− ∂Ay

∂z
,
∂Ax

∂z
− ∂Az

∂x
,
∂Ay

∂x
− ∂Ax

∂y

)
, (A.159)

and θ is the angle subtended between the directions of curl A and dS. Note that

curl A = ∇ × A. (A.160)

This demonstrates that ∇×A is a good vector field, because it is the cross product of the ∇ operator
(a good vector operator) and the vector field A.

Consider a solid body rotating about the z-axis. The angular velocity is given by ω = (0, 0, ω),
so the rotation velocity at position r is

v = ω × r. (A.161)

[See Equation (A.52).] Let us evaluate ∇ × v on the axis of rotation. The x-component is pro-
portional to the integral

∮
v · dr around a loop in the y-z plane. This is plainly zero. Likewise,

the y-component is also zero. The z-component is
∮

v · dr/dS around some loop in the x-y plane.
Consider a circular loop. We have

∮
v · dr = 2π rω r with dS = π r2. Here, r is the perpendicular

distance from the rotation axis. It follows that (∇ × v)z = 2ω, which is independent of r. So, on
the axis, ∇ × v = (0 , 0 , 2ω). Off the axis, at position r0, we can write

v = ω × (r − r0) + ω × r0. (A.162)
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The first part has the same curl as the velocity field on the axis, and the second part has zero curl,
because it is constant. Thus, ∇ × v = (0, 0, 2ω) everywhere in the body. This allows us to form a
physical picture of ∇ ×A. If we imagine A(r) as the velocity field of some fluid then ∇ ×A at any
given point is equal to twice the local angular rotation velocity: that is, 2ω. Hence, a vector field
with ∇ × A = 0 everywhere is said to be irrotational.

Another important result of vector field theory is the curl theorem:∮
C

A · dr =

∫
S
∇ × A · dS, (A.163)

for some (non-planar) surface S bounded by a rim C. This theorem can easily be proved by
splitting the loop up into many small rectangular loops, and forming the integral around all of the
resultant loops. All of the contributions from the interior loops cancel, leaving just the contribution
from the outer rim. Making use of Equation (A.158) for each of the small loops, we can see that
the contribution from all of the loops is also equal to the integral of ∇ × A · dS across the whole
surface. This proves the theorem.

One immediate consequence of the curl theorem is that ∇ × A is “incompressible.” Consider
any two surfaces, S 1 and S 2, that share the same rim. (See Figure A.23.) It is clear from the curl
theorem that

∫ ∇×A ·dS is the same for both surfaces. Thus, it follows that
∮ ∇×A ·dS = 0 for any

closed surface. However, we have from the divergence theorem that
∮ ∇×A·dS =

∫ ∇·(∇×A) dV =

0 for any volume. Hence,
∇ · (∇ × A) ≡ 0. (A.164)

So, ∇ × A is a solenoidal field.
We have seen that for a conservative field

∮
A · dr = 0 for any loop. This is entirely equivalent

to A = ∇φ. However, the magnitude of ∇ × A is lim dS→0
∮

A · dr/dS for some particular loop. It
is clear then that ∇ × A = 0 for a conservative field. In other words,

∇ × (∇φ) ≡ 0. (A.165)

Thus, a conservative field is also an irrotational one.

A.23 Curvilinear Coordinates
In the cylindrical coordinate system, the Cartesian coordinates x and y are replaced by r = (x 2 +

y 2)1/2 and θ = tan−1(y/x). Here, r is the perpendicular distance from the z-axis, and θ the angle
subtended between the perpendicular radius vector and the x-axis. See Figure A.27. A general
vector A is thus written

A = Ar er + Aθ eθ + Az ez, (A.166)

where er = ∇r/|∇r| and eθ = ∇θ/|∇θ|. See Figure A.27. Note that the unit vectors er, eθ, and ez are
mutually orthogonal. Hence, Ar = A · er, et cetera. The volume element in this coordinate system
is d 3r = r dr dθ dz. Moreover, gradient, divergence, and curl take the forms

∇V =
∂V
∂r

er +
1
r
∂V
∂θ

eθ +
∂V
∂z

ez, (A.167)
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Figure A.27: Cylindrical coordinates.

∇ · A =
1
r
∂

∂r
(r Ar) +

1
r
∂Aθ

∂θ
+
∂Az

∂z
, (A.168)

∇ × A =

(
1
r
∂Az

∂θ
− ∂Aθ

∂z

)
er +

(
∂Ar

∂z
− ∂Az

∂r

)
eθ

+

(
1
r
∂

∂r
(r Aθ) − 1

r
∂Ar

∂θ

)
ez, (A.169)

respectively. Here, V(r) is a general vector field, and A(r) a general scalar field. Finally, the
Laplacian is written

∇2V =
1
r
∂

∂r

(
r
∂V
∂r

)
+

1
r2

∂2V
∂θ2 +

∂2V
∂z2 . (A.170)

In the spherical coordinate system, the Cartesian coordinates x, y, and z are replaced by r =

(x 2 + y 2 + z 2)1/2, θ = cos−1(z/r), and φ = tan−1(y/x). Here, r is the radial distance from the origin,
θ the angle subtended between the radius vector and the z-axis, and φ the angle subtended between
the projection of the radius vector onto the x-y plane and the x-axis. See Figure A.28. Note that
r and θ in the spherical system are not the same as their counterparts in the cylindrical system. A
general vector A is written

A = Ar er + Aθ eθ + Aφ eφ, (A.171)

where er = ∇r/|∇r|, eθ = ∇θ/|∇θ|, and eφ = ∇φ/|∇φ|. The unit vectors er, eθ, and eφ are mutually
orthogonal. Hence, Ar = A · er, et cetera. The volume element in this coordinate system is
d 3r = r 2 sin θ dr dθ dφ. Moreover, gradient, divergence, and curl take the forms

∇V =
∂V
∂r

er +
1
r
∂V
∂θ

eθ +
1

r sin θ
∂V
∂φ

eφ, (A.172)

∇ · A =
1
r2

∂

∂r
(r2 Ar) +

1
r sin θ

∂

∂θ
(sin θ Aθ)
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Figure A.28: Spherical coordinates.

+
1

r sin θ
∂Aφ

∂φ
, (A.173)

∇ × A =

(
1

r sin θ
∂

∂θ
(sin θ Aφ) − 1

r sin θ
∂Aθ

∂φ

)
er

+

(
1

r sin θ
∂Ar

∂φ
− 1

r
∂

∂r
(r Aφ)

)
eθ

+

(
1
r
∂

∂r
(r Aθ) − 1

r
∂Ar

∂θ

)
eφ, (A.174)

respectively. Here, V(r) is a general vector field, and A(r) a general scalar field. Finally, the
Laplacian is written

∇2V =
1
r2

∂

∂r

(
r2 ∂V
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂V
∂θ

)
+

1
r2 sin2 θ

∂2V
∂φ2 . (A.175)

A.24 Useful Vector Identities
Notation: a, b, c, d are general vectors; φ, ψ are general scalar fields; A, B are general vector fields;
(A · ∇) B ≡ (A · ∇Bx, A · ∇By, A · ∇Bz) and ∇ 2A = (∇ 2Ax, ∇ 2Ay, ∇ 2Az) (but, only in Cartesian
coordinates)

a × (b × c) = (a · c) b − (a · b) c, (A.176)

(a × b) × c = (c · a) b − (c · b) a, (A.177)

(a × b) · (c × d) = (a · c) (b · d) − (a · d) (b · c), (A.178)



Vector Algebra and Vector Calculus 429

(a × b) × (c × d) = (a × b · d) c − (a × b · c) d, (A.179)

∇(φψ) = φ∇ψ + ψ∇φ, (A.180)

∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇) B + (B · ∇) A, (A.181)

∇ · ∇φ = ∇ 2φ, (A.182)

∇ · ∇ × A = 0, (A.183)

∇ · (φA) = φ∇ · A + A · ∇φ, (A.184)

∇ · (A × B) = B · ∇ × A − A · ∇ × B, (A.185)

∇ × ∇φ = 0, (A.186)

∇ × (∇ × A) = ∇ (∇ · A) − ∇ 2A, (A.187)

∇ × (φA) = φ∇ × A + ∇φ × A, (A.188)

∇ × (A × B) = (∇ · B) A − (∇ · A) B + (B · ∇) A − (A · ∇) B. (A.189)


