next up previous
Next: About this document ... Up: Vector Algebra and Vector Previous: Curvilinear Coordinates

Exercises

  1. The position vectors of the four points $A$, $B$, $C$, and $D$ are ${\bf a}$, ${\bf b}$, $3\,{\bf a}+2\,{\bf b}$, and ${\bf a}-3\,{\bf b}$, respectively. Express $\stackrel{\displaystyle \rightarrow}{AC}$, $\stackrel{\displaystyle \rightarrow}{DB}$, $\stackrel{\displaystyle \rightarrow}{BC}$, and $\stackrel{\displaystyle \rightarrow}{CD}$ in terms of ${\bf a}$ and ${\bf b}$.
  2. Prove the trigonometric law of sines

    \begin{displaymath}
\frac{\sin a}{A} = \frac{\sin b}{B} = \frac{\sin c}{C}
\end{displaymath}

    using vector methods. Here, $a$, $b$, and $c$ are the three angles of a plane triangle, and $A$, $B$, and $C$ the lengths of the corresponding opposite sides.

  3. Demonstrate using vectors that the diagonals of a parallelogram bisect one another. In addition, show that if the diagonals of a quadrilateral bisect one another then it is a parallelogram.

  4. From the inequality

    \begin{displaymath}
{\bf a}\cdot{\bf b}= \vert{\bf a}\vert\,\vert{\bf b}\vert\,\cos\theta\leq \vert{\bf a}\vert\,\vert{\bf b}\vert
\end{displaymath}

    deduce the triangle inequality

    \begin{displaymath}
\vert{\bf a} + {\bf b}\vert\leq \vert{\bf a}\vert+\vert{\bf b}\vert.
\end{displaymath}

  5. Find the scalar product ${\bf a} \cdot {\bf b}$ and the vector product ${\bf a}\times{\bf b}$ when
    1. ${\bf a} = {\bf e}_x + 3\,{\bf e}_y-{\bf e}_z$, ${\bf b} = 3\,{\bf e}_x+ 2\,{\bf e}_y+{\bf e}_z$,
    2. ${\bf a} = {\bf e}_x - 2\,{\bf e}_y+{\bf e}_z$, ${\bf b} = 2\,{\bf e}_x+ {\bf e}_y+{\bf e}_z$.

  6. Which of the following statements regarding the three general vectors ${\bf a}$, ${\bf b}$, and ${\bf c}$ are true?
    1. ${\bf c}\cdot ({\bf a}\times {\bf b}) = ({\bf b}\times {\bf a})\cdot{\bf c}$.
    2. ${\bf a}\times ({\bf b}\times {\bf c})= ({\bf a}\times {\bf b})\times {\bf c}$.
    3. ${\bf a}\times ({\bf b}\times {\bf c}) = ({\bf a}\cdot{\bf c})\,{\bf b} - ({\bf a}\cdot{\bf b})\,{\bf c}$.
    4. ${\bf d} = \lambda\,{\bf a} + \mu\,{\bf b}$ implies that $({\bf a}\times {\bf b})\cdot {\bf d} = 0$.
    5. ${\bf a}\times {\bf c} = {\bf b}\times {\bf c}$ implies that ${\bf c}\cdot{\bf a} - {\bf c}\cdot{\bf b} = c\,\vert{\bf a}-{\bf b}\vert$.
    6. $({\bf a}\times {\bf b})\times ({\bf c}\times {\bf b}) = [{\bf b}\cdot({\bf c}\times {\bf a})]\,{\bf b}$.

  7. Prove that the length of the shortest straight-line from point ${\bf a}$ to the straight-line joining points ${\bf b}$ and ${\bf c}$ is

    \begin{displaymath}
\frac{\vert{\bf a}\times {\bf b} + {\bf b}\times {\bf c} + {\bf c}\times {\bf a}\vert}{\vert{\bf b}-{\bf c}\vert}.
\end{displaymath}

  8. Identify the following surfaces:
    1. $\vert{\bf r}\vert = a$,
    2. ${\bf r}\cdot{\bf n} = b$,
    3. ${\bf r}\cdot{\bf n} = c\,\vert{\bf r}\vert$,
    4. $\vert{\bf r} -({\bf r}\cdot{\bf n})\,{\bf n}\vert = d$.
    Here, ${\bf r}$ is the position vector, $a$, $b$, $c$, and $d$ are positive constants, and ${\bf n}$ is a fixed unit vector.

  9. Let ${\bf a}$, ${\bf b}$, and ${\bf c}$ be coplanar vectors related via

    \begin{displaymath}
\alpha\,{\bf a} + \beta\,{\bf b} + \gamma\,{\bf c} = {\bf0},
\end{displaymath}

    where $\alpha$, $\beta$, and $\gamma$ are not all zero. Show that the condition for the points with position vectors $u\,{\bf a}$, $v\,{\bf b}$, and $w\,{\bf c}$ to be colinear is

    \begin{displaymath}
\frac{\alpha}{u} +\frac{\beta}{v} + \frac{\gamma}{w} = 0.
\end{displaymath}

  10. If ${\bf p}$, ${\bf q}$, and ${\bf r}$ are any vectors, demonstrate that ${\bf a}={\bf q} + \lambda\,{\bf r}$, ${\bf b} = {\bf r}+\mu\,{\bf p}$, and ${\bf c} = {\bf p} + \nu\,{\bf q}$ are coplanar provided that $\lambda\,\mu\,\nu=-1$, where $\lambda$, $\mu$, and $\nu$ are scalars. Show that this condition is satisfied when ${\bf a}$ is perpendicular to ${\bf p}$, ${\bf b}$ to ${\bf q}$, and ${\bf c}$ to ${\bf r}$.

  11. The vectors ${\bf a}$, ${\bf b}$, and ${\bf c}$ are non-coplanar, and form a non-orthogonal vector base. The vectors ${\bf A}$, ${\bf B}$, and ${\bf C}$, defined by

    \begin{displaymath}
{\bf A} = \frac{{\bf b}\times {\bf c}}{{\bf a}\cdot{\bf b}\times {\bf c}},
\end{displaymath}

    plus cyclic permutations, are said to be reciprocal vectors. Show that

    \begin{displaymath}
{\bf a} = ({\bf B}\times {\bf C})/({\bf A}\cdot{\bf B}\times {\bf C}),
\end{displaymath}

    plus cyclic permutations.

  12. In the notation of the previous question, demonstrate that the plane passing through points ${\bf a}/\alpha$, ${\bf b}/\beta$, and ${\bf c}/\gamma$ is normal to the direction of the vector

    \begin{displaymath}
{\bf h} = \alpha\,{\bf A} + \beta\,{\bf B} + \gamma\,{\bf C}.
\end{displaymath}

    In addition, show that the perpendicular distance of the plane from the origin is $\vert{\bf h}\vert^{-1}$.

  13. Evaluate $\oint {\bf A}\cdot d{\bf r}$ for

    \begin{displaymath}
{\bf A} = \frac{x\,{\bf e}_x + y\,{\bf e}_y}{\sqrt{x^2 + y^2}}
\end{displaymath}

    around the square whose sides are $x=0$, $x=a$, $y=0$, $y=a$.

  14. Find the gradients of the following scalar functions of the position vector ${\bf r}=(x,\, y,\, z)$:
    1. ${\bf k}\cdot{\bf r}$,
    2. $\vert{\bf r}\vert^n,$
    3. $\vert{\bf r}-{\bf k}\vert^{-n}$,
    4. $\cos({\bf k}\cdot {\bf r}).$
    Here, ${\bf k}$ is a fixed vector.


next up previous
Next: About this document ... Up: Vector Algebra and Vector Previous: Curvilinear Coordinates
Richard Fitzpatrick 2011-03-31