next up previous
Next: Generalized Momenta Up: Lagrangian Dynamics Previous: Atwood Machines


Sliding down a Sliding Plane

Consider the case of a particle of mass $m$ sliding down a smooth inclined plane of mass $M$ which is, itself, free to slide on a smooth horizontal surface, as shown in Figure 34. This is a two degree of freedom system, so we need two coordinates to specify the configuration. Let us choose $x$, the horizontal distance of the plane from some reference point, and $x'$, the parallel displacement of the particle from some reference point on the plane.

Figure 34: A sliding plane.
\begin{figure}
\epsfysize =1.75in
\centerline{\epsffile{Chapter09/fig9.03.eps}}
\end{figure}

Defining $x$- and $y$-axes, as shown in the diagram, the $x$- and $y$-components of the particle's velocity are clearly given by

$\displaystyle v_x$ $\textstyle =$ $\displaystyle \dot{x} + \dot{x}'\,\cos\theta,$ (637)
$\displaystyle v_y$ $\textstyle =$ $\displaystyle -\dot{x}'\,\sin\theta,$ (638)

respectively, where $\theta $ is the angle of inclination of the plane with respect to the horizontal. Thus,
\begin{displaymath}
v^2 = v_x^{\,2} + v_y^{\,2} = \dot{x}^{\,2} + 2\,\dot{x}\,\dot{x}'\,\cos\theta+ \dot{x}'^{\,2}.
\end{displaymath} (639)

Hence, the kinetic energy of the system takes the form
\begin{displaymath}
K = \frac{1}{2}\,M\,\dot{x}^{\,2} + \frac{1}{2}\,m\,(\dot{x}^{\,2} + 2\,\dot{x}\,\dot{x}'\,\cos\theta+ \dot{x}'^{\,2}),
\end{displaymath} (640)

whereas the potential energy is given by
\begin{displaymath}
U = - m\,g\,x'\,\sin\theta + {\rm const}.
\end{displaymath} (641)

It follows that the Lagrangian is written
\begin{displaymath}
L = \frac{1}{2}\,M\,\dot{x}^{\,2} + \frac{1}{2}\,m\,(\dot{x}...
...os\theta+ \dot{x}'^{\,2})+ m\,g\,x'\,\sin\theta + {\rm const}.
\end{displaymath} (642)

The equations of motion,
$\displaystyle \frac{d}{dt}\!\left(\frac{\partial L}{\partial\dot{x}}\right) - \frac{\partial L}{\partial x}$ $\textstyle =$ $\displaystyle 0,$ (643)
$\displaystyle \frac{d}{dt}\!\left(\frac{\partial L}{\partial\dot{x}'}\right) - \frac{\partial L}{\partial x'}$ $\textstyle =$ $\displaystyle 0,$ (644)

thus yield
$\displaystyle M\,\ddot{x}+ m\,(\ddot{x} + \ddot{x}'\,\cos\theta)$ $\textstyle =$ $\displaystyle 0,$ (645)
$\displaystyle m\,(\ddot{x}'+ \ddot{x}\,\cos\theta) - m\,g\,\sin\theta$ $\textstyle =$ $\displaystyle 0.$ (646)

Finally, solving for $\ddot{x}$ and $\ddot{x}'$, we obtain
$\displaystyle \ddot{x}$ $\textstyle =$ $\displaystyle - \frac{g\,\sin\theta\,\cos\theta}{(m+M)/m-\cos^2\theta},$ (647)
$\displaystyle \ddot{x}'$ $\textstyle =$ $\displaystyle \frac{g\,\sin\theta}{1 - m\,\cos^2\theta/(m+M)}.$ (648)


next up previous
Next: Generalized Momenta Up: Lagrangian Dynamics Previous: Atwood Machines
Richard Fitzpatrick 2011-03-31