Next: Matrix Eigenvalue Theory
Up: Rigid Body Rotation
Previous: Moment of Inertia Tensor
The instantaneous rotational kinetic energy of a rotating rigid body is written
![\begin{displaymath}
K = \frac{1}{2}\sum_{i=1,N} m_i\left(\frac{d{\bf r}_i}{dt}\right)^2.
\end{displaymath}](img1269.png) |
(467) |
Making use of Equation (457), and some vector identities (see Section A.9),
the kinetic energy takes the form
![\begin{displaymath}
K = \frac{1}{2}\sum_{i=1,N} m_i\,(\mbox{\boldmath$\omega$}\t...
...i\,{\bf r}_i\times (\mbox{\boldmath$\omega$}\times {\bf r}_i).
\end{displaymath}](img1270.png) |
(468) |
Hence, it follows from (458) that
![\begin{displaymath}
K = \frac{1}{2}\,\, \mbox{\boldmath$\omega$} \cdot {\bf L}.
\end{displaymath}](img1271.png) |
(469) |
Making use of Equation (466), we can also
write
![\begin{displaymath}
K = \frac{1}{2}\,\mbox{\boldmath$\omega$}^T\,\tilde{\bf I}\,\mbox{\boldmath$\omega$}.
\end{displaymath}](img1272.png) |
(470) |
Here,
is the row vector of the Cartesian components
,
,
, which is, of course, the transpose
(denoted
) of the column vector
.
When written in component form, the above equation yields
![\begin{displaymath}
K = \frac{1}{2}\left(I_{xx}\,\omega_x^{\,2}+ I_{yy}\,\omega_...
...z}\,\omega_y\,\omega_z + 2\,I_{xz}\,\omega_x\,\omega_z\right).
\end{displaymath}](img1278.png) |
(471) |
Richard Fitzpatrick
2011-03-31