Next: Scalar Triple Product
Up: Vector Algebra and Vector
Previous: Vector Product
Rotation
Let us try to define a rotation vector
whose magnitude
is the angle of the rotation,
, and whose direction is parallel to the axis of
rotation, in the sense determined by a right-hand circulation rule. Unfortunately, this is not a good vector. The problem is that the addition of rotations
is not commutative, whereas vector addition is commuative.
Figure A.105 shows the effect of applying two successive
rotations,
one about
, and the other about the
, to a standard six-sided die. In the
left-hand case, the
-rotation is applied before the
-rotation, and vice
versa in the right-hand case. It can be seen that the die ends up in two completely
different states. In other words, the
-rotation plus the
-rotation does not equal
the
-rotation plus the
-rotation. This non-commuting algebra cannot be
represented by vectors. So, although rotations have a well-defined magnitude and
direction, they are not vector quantities.
Figure A.105:
Effect of successive rotations about perpendicular axes on a six-sided die.
 |
But, this is not quite the end of the story. Suppose that we take a general vector
and rotate it about
by a small angle
.
This is equivalent to rotating the coordinate axes about the
by
.
According to Equations (A.1280)-(A.1282), we have
 |
(1305) |
where use has been made of the small angle approximations
and
. The above equation can easily be generalized to allow
small rotations about
and
by
and
,
respectively. We find that
 |
(1306) |
where
 |
(1307) |
Clearly, we can define a rotation vector, 
, but it only
works for small angle rotations (i.e., sufficiently small that the small
angle approximations of sine and cosine are good). According to the above equation,
a small
-rotation plus a small
-rotation is (approximately) equal to
the two rotations applied in the opposite order.
The fact that infinitesimal rotation is a vector implies that angular velocity,
 |
(1308) |
must be a vector as well. Also, if
is interpreted as
in Equation (A.1306) then it follows that the equation of motion of a vector
which precesses about the origin with some angular velocity
is
 |
(1309) |
Next: Scalar Triple Product
Up: Vector Algebra and Vector
Previous: Vector Product
Richard Fitzpatrick
2011-03-31