Next: Expansion of Tide Generating
Up: Terrestrial Ocean Tides
Previous: Tide Generating Potential
Decomposition of Tide Generating Potential
Let
,
,
be right-handed spherical coordinates in a non-rotating reference frame whose origin lies at the center of the planet,
and whose symmetry axis coincides with the planetary rotation axis. Thus, the vector position of a
general point is
![$\displaystyle {\bf r} = r\,\sin\theta\,\cos\varphi\,{\bf e}_r + r\,\sin\theta\,\sin\varphi\,{\bf e}_\theta + r\,\cos\theta\,{\bf e}_\varphi,$](img4248.png) |
(12.15) |
where
, et cetera.
Let the coordinates of the moon's center be
,
,
. It follows that
![$\displaystyle {\bf r}' = r'\,\sin\theta'\,\cos\varphi'\,{\bf e}_r + r'\,\sin\theta'\,\sin\varphi'\,{\bf e}_\theta + r'\,\cos\theta'\,{\bf e}_\varphi.$](img4252.png) |
(12.16) |
Hence, from Equation (12.5),
![$\displaystyle \cos\gamma = \cos\theta\,\cos\theta'+\sin\theta\,\sin\theta'\,\cos(\varphi-\varphi').$](img4253.png) |
(12.17) |
Now, according to the spherical harmonic addition theorem (Arfken 1985),
which implies that
Here,
![$\displaystyle P_n^{\,m}(x)=(-1)^m\,(1-x^{\,2})^{m/2}\,\frac{d^{\,m}[P_n(x)]}{dx^{\,m}},$](img4260.png) |
(12.21) |
for
and
, denotes an associated Legendre function (Abramowitz and Stegun 1965). In particular,
Note that
.
Let
where
. According to Equations (12.14), (12.20), and (12.25)-(12.27),
Here, we have neglected the unimportant constant term in Equation (12.14).
Next: Expansion of Tide Generating
Up: Terrestrial Ocean Tides
Previous: Tide Generating Potential
Richard Fitzpatrick
2016-01-22