Multi-Harmonic Rutherford Island Theory

Richard Fitzpatrick

Institute for Fusion Studies, Department of Physics, University of Texas at Austin
Consider Harris-type current sheet, running in y-direction, of thickness a in x-direction. Let system be independent of z.

Suppose that sheet is subject to tearing mode perturbation of wavenumber k_0 in y-direction.

Mode reconnects magnetic flux at center of sheet to produce magnetic island chain of width W (in x-direction) and wavelength $2\pi/k_0$ (in y-direction).
As soon as island width exceeds very thin linear layer width (which is of order $S^{-2/5} a$, where $S \gg 1$ is Lundquist number), tearing mode enters nonlinear regime.

According to Rutherford theory,\(^1\) if tearing mode in constant-ψ regime\(^2\) then island width grows algebraically on resistive diffusion timescale, τ_R:

$$0.8227 \tau_R \frac{d}{dt} \left(\frac{W}{a} \right) = \Delta'.$$

Here, Δ' is tearing stability index (normalized to a).

Rutherford theory is nonlinear because (normalized) perturbed current density, J, in vicinity of island is multi-harmonic: i.e.,

$$J(x, y, t) = J_1(x, t) \cos(k_0 y) + \sum_{m=2}^{\infty} J_m(x, t) \cos(m k_0 y).$$

Overtone harmonics, J_2, J_3, etc., similar in magnitude to fundamental harmonic, J_1.

But, perturbed (normalized) magnetic flux assumed to consist of fundamental harmonic only,

$$\psi(x, y, t) = \Psi_1(t) \cos(k_0 y).$$

Is this approximation justified?
Assume that ψ is multi-harmonic: i.e.,

$$\psi(x, y, t) = \Psi_1(t) \cos(k_0 y) + \sum_{m=2}^{\infty} \Psi_m(t) \cos(m k_0 y).$$

Can derive multi-harmonic generalization of Rutherford island width evolution equation:

$$\tau_R \frac{W_1}{2} \sum_{m'=1,\infty} I_{m,m'} \frac{d\Psi_{m'}}{dt} = \Delta'_m \Psi_m - K_m \Psi_1. \quad (1)$$

Here, $W_1 = 4 \Psi_1^{1/2}$ is (normalized) island width in single-harmonic limit, and Δ'_m is tearing stability index for mode of wavenumber $m k_0$.

Furthermore,

\[I_{m,m'} = 2 \int_{\Omega_{\text{min}}}^{\infty} \frac{C_m(\Omega) C_{m'}(\Omega)}{C_0(\Omega)} \, d\Omega, \]

\[K_m = -16 \int_{\Omega_{\text{min}}}^{\infty} \langle J_{ni} \rangle C_m(\Omega) \, d\Omega, \]

\[C_m(\Omega) = \langle \cos(m k_0) \rangle. \]

Here, \(\Omega \) is flux-surface label such that \(\Omega = 1 \) on magnetic separatrix, and \(\Omega = \Omega_{\text{min}} \) at O-points.

\(J_{ni} \) is non-inductive current density, driven by electron cyclotron waves injected into plasma (standard way of controlling tearing modes in tokamaks).

\(\langle \cdots \rangle \) is flux-surface average operator (i.e., annihilator of \(B \cdot \nabla \)).
Equation (1) is highly nonlinear because $I_{m,m'}$ and K_m depend on relative magnitudes of Ψ_m.

In general, equation almost impossible to solve.

However, equation can be solved in two-harmonic limit in which

$$\Psi(x, y, t) = \Psi_1(t) [\cos(k_0 y) + \epsilon_2 \cos(2 k_0 y)].$$
For $-1/4 < \epsilon_2 < 1/4$, magnetic flux-surfaces topologically equivalent to those found in single-harmonic limit.
If $\epsilon_2 > 1/4$ then O-points bifurcate.
If $\epsilon_2 < -1/4$ then X-points bifurcate.
In absence of non-inductive current, find that $\epsilon_2 \approx 0$ when $\Delta'_1 \ll 1$: i.e., weakly unstable tearing mode is single-harmonic in nature.

ϵ_2 increases with increasing Δ'_1, but increase saturates at $\epsilon_2 = 0.095$, well below level needed to trigger bifurcation of O-points.

Growth-rate of tearing mode in two-harmonic limit is greater than that in one-harmonic limit, but only by maximum of about 10%.

Conclusion: single-harmonic approximation works pretty well for tearing modes in absence of non-inductive current.
Non-inductive current concentrated at island O-points has stabilizing effect on mode. (In practice, this technique used to suppress tearing modes in tokamaks).

However, non-inductive current drives multi-harmonic content of mode. In fact, ε_2 driven past critical value $1/4$, above which O-points bifurcate, before full stabilization achieved.

This result highly significant, because bifurcation of island O-points, in presence of non-inductive current injected into plasma at island O-points, was recently observed experimentally on DIII-D tokamak.\(^4\)

Experimental Evidence for O-point Bifurcation
Conclusions

- Single-harmonic Rutherford theory is reasonably accurate for isolated magnetic island chains.

- However, if island chain is subject to non-inductive current, injected into plasma in vicinity of O-points, in effort to stabilize chain, then topology of chain can change.

- Implies that single-harmonic theory is not particularly accurate at describing stabilization of magnetic island chains via non-inductive current injection.