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Peculiar Properties of Tokamak Plasmas

◮ The solar wind is typical naturally-occurring plasma:
supersonic, super-Alfvénic outflow from Sun that is filled with
shocks and other violent variations in plasma properties.

◮ Tokamak plasmas are, by design, extraordinarily quiescent.
When tokamak is operating normally, plasma is subsonic,
sub-Alfvénic, with no shocks or violent motions, just low-level
turbulence and occasional slowly-growing tearing modes.

◮ Present-day tokamak discharges last a few seconds:
equivalent to 108 Alfvén times. ITER discharges will last a
few minutes: equivalent to 1011 Alfvén times. Clear that,
unlike most naturally-occurring plasmas, Alfvén time is totally
irrelevant timescale for tokamak plasmas.



Disruptions, Error-Fields, and RMPs

◮ Tokamak plasmas sometimes terminate prematurely in violent
events known as disruptions.

◮ One class of disruption is triggered by crossing ideal-MHD
stability boundaries. This class is (mostly) avoidable because
location of ideal stability boundaries can be accurately
calculated.

◮ Virtually all other types of disruptions are associated with
tearing modes: especially, tearing modes that grow to
(relatively) large amplitudes, and then lock to stationary
error-fields (i.e., accidentally produced, non-axisymmetric,
equilibrium magnetic fields).

◮ Error-fields sometimes deliberately applied to tokamaks, in
which case they are called resonant magnetic perturbations
(RMPs), so as to drive small-amplitude tearing modes in
plasma in controlled manner (e.g., to suppress edge localized
modes).



Tearing Modes in Tokamak Plasmas

◮ Tearing modes are plasma instabilities that reconnect
magnetic flux at resonant surfaces (where k ·B = 0).

◮ Tearing modes degrade plasma confinement, and trigger
disruptions when they attain (relatively) large amplitudes.

◮ Unlike magnetic reconnection in most naturally-occurring
plasmas, tearing-mode-mediated reconnection in tokamak
plasmas takes place extraordinarily slowly, due to intrinsic
stability of tokamak plasmas.

◮ In short-lived linear regime, reconnection timescale is S 3/5
τA,

where S ≫ 1 is Lundquist number. In nonlinear regime
(when island width exceeds linear layer width), reconnection
timescale is S τA.

◮ Slow reconnection is problematic because, to simulate it, need
to follow plasma evolution on timescales that exceed most
basic plasma timescales by very many orders of magnitude.



MHD Codes

◮ What is appropriate vehicle for simulating interaction of
tearing modes with error-fields and RMPs in tokamak
plasmas?

◮ Conventional answer is that appropriate vehicle is toroidal,
nonlinear, two-fluid, resistive-MHD code.

◮ Purpose of talk is to explain why this answer is incorrect, and
to provide correct answer.



Alfvén Time

◮ By definition, most important timescale in an MHD code is
Alfvén time.

◮ But, Alfvén time is completely irrelevant timescale in type of
calculation under consideration.

◮ Explicit MHD codes forced to take timesteps that are less
than Alfvén time by CFL condition. Would need to take 108

timesteps to simulate present-day tokamak plasmas, and 1011

timesteps to simulate ITER plasmas. Completely impossible!

◮ Implicit MHD codes can take longer timesteps, but have to
solve large-dimension, ill-posed, computationally-expensive,
matrix problem every timestep. Still impossible to simulate
whole plasma discharge.



Asymptotic Matching - I

◮ Asymptotic matching approach to tearing mode evolution in
high-temperature tokamak plasma recognizes that problem
can be split into two halves.

◮ Outer region, which comprises virtually all of plasma, as well
as surrounding vacuum, is governed by linear, marginally-
stable, ideal-MHD.

◮ Inner region, which comprises series of thin layers centered on
resonant surfaces, is governed by nonlinear, two-fluid,
resistive-MHD.

◮ Can solve for plasma response in inner and outer regions
independently, and then asymptotically match two sets of
solutions to get overall solution.



Asymptotic Matching - II
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Asymptotic Matching - III

◮ Important to realize that asymptotic matching approach only
feasible because of intrinsic stability of tokamak plasmas.

◮ Radial width of given component of inner region is greater of
linear layer width (very thin in high-S plasma) and magnetic
island width.

◮ Tokamak plasmas are sufficiently stable that tearing modes
saturate at relatively low amplitudes (i.e., such that
associated island width is, at most, a few percent of minor
radius). Hence, inner region occupies very small volume
fraction of plasma.

◮ By contrast, in reversed field pinches, which are much less
stable cousins of tokamaks, magnetic island widths grow to
such an extent that inner region engulfs whole plasma.
Asymptotic matching does not work under such
circumstances.



Outer Region - I

◮ Outer region governed by so-called “linear, marginally-stable,
ideal-MHD”.

◮ Nomenclature is misleading. MHD necessarily involves plasma
inertia. However, linear, marginally-stable, ideal-MHD
completely neglects plasma inertia.

◮ In fact, linear, marginally-stable, ideal-MHD is not MHD at
all: it is simply linearized force balance.

◮ Solution of outer region essentially boils down to solving a
slightly non-axisymmetric plasma equilibrium problem.

◮ No sane person would use an MHD code to solve a
conventional axisymmetric plasma equilibrium problem. It
makes just as little sense to use an MHD code to solve a
slightly non-axisymmetric plasma equilibrium problem. But
this is precisely what MHD codes do every timestep.



Outer Region - II

◮ Once you have determined the positions of the resonant
surfaces, and calculated the linearized tearing mode
eigenfunctions, solution in outer region is completely
described once amplitudes and phases of reconnected
magnetic fluxes at resonant surfaces are specified.

◮ In other words, in order to evolve outer solution, you just need
to evolve amplitudes and phases of reconnected fluxes.

◮ Obviously, if equilibrium changes significantly then you need
to recalculate positions of resonant surfaces and tearing
eigenfunctions. But, such changes typically take place on
timescale of few ms (i.e., 104 Alfvén times).



Outer Region - III

◮ MHD codes solve perturbed equilibrium problem in outer
region by finite-difference/finite-element method every
timestep. This is time-consuming calculation because it
necessarily involves solution of Poisson’s equation on large
multi-dimensional grid.

◮ Such an approach is spectacularly inefficient, because solution
is actually completely parameterized by relatively small
number of variables: i.e., amplitudes and phases of
reconnected fluxes.

◮ In other words, even if it were possible to simulate a whole
tokamak plasma discharge with an MHD code, you would not
want to, because useful information/total information ratio is
minuscule.



EPEC Code

◮ The EPEC code has been developed to implement asymptotic
matching approach to modeling tearing mode dynamics in
tokamak plasmas.

◮ EPEC has been completely integrated into OMFIT framework.
This facilitates access to experimental data, as well as
incorporation of data from other codes such as GPEC (used to
calculate ideal response of plasma to RMP), TRANSP (used
to calculate diffusivity profiles), and SOLPS (used to calculate
neutral particle profile).

◮ In order to describe how EPEC works, will concentrate on
simulation of DIII-D discharge #145380, in which an n = 3
RMP was applied to a plasma whose edge safety-factor was
gradually ramped down. Purpose of experiment was to
suppress edge localized modes.



DIII-D Discharge #145380



EPEC Simulation of DIII-D Discharge #145380 - I

◮ Experimental equilibrium data (in form of EQDSK gFiles),
profile data (in form of Osbourne pFiles), and diffusivity data
(output from TRANSP in form of so-called cFiles) available
every 50 ms.

◮ gFiles are used as input for GPEC code to calculate
ideal-MHD response of plasma equilibrium to lower RMP coil
set (generating so-called lFiles), and upper RMP coil set
(generating so-called uFiles), every 50 ms.

◮ EPEC interpolates gFiles, pFiles, and cFiles to produce
requisite equilibrium data (generating so-called fFiles) and
profile data (generating so-called nFiles) at each resonant
surface in the plasma every 10 ms.



EPEC Simulation of DIII-D Discharge #145380 - II

◮ EPEC interpolates fFiles, nFiles, lFiles, and uFiles to simulate
plasma in series of 1 ms (104 Alfvén times) chunks.

◮ Equilibrium, profiles, and tearing eigenfunctions effectively
recalculated every 1 ms.

◮ Within 1 ms chunks, EPEC evolves amplitudes and phases of
reconnected fluxes at every resonant surface in the plasma, as
well as data that specifies modified velocity profiles at
resonant surfaces. Typical timestep is between 10 and 100
Alfvén times. Calculation is feasible because only a relatively
small number of variables (∼ 1000) are being evolved in time.



EPEC Simulation of DIII-D Discharge #145380 - II



EPEC Code: Achievements and Further Plans

◮ EPEC code has been used to successfully model RMP-induced
edge localized mode (ELM) suppression in DIII-D and KSTAR
tokamaks.

◮ Preliminary calculations offer some insight as to why
RMP-induced ELM suppression did not work in NSTX and
MAST spherical tokamaks (devices too small and cold for
plasma rotation to generate effective shielding of driven
magnetic reconnection).

◮ Working to incorporate SOLPS data into code, in order to
characterize neutral particle profiles in edge regions of plasma.

◮ EPEC incorporates accurate neoclassical model that can be
used to simulate neoclassical tearing modes (NTMs). Intend
to examine whether RPMs are likely to trigger NTMs.

◮ Intend to incorporate neoclassical toroidal viscosity into model
(important for spherical tokamaks).


