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Normalized Linear Response Equations
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• W - island width. Wv - error-field strength. ϕ - island helical

phase. ω - plasma rotation. t - time.

• First equation governs time evolution of island width, second

governs evolution of island phase.

• Linear equations only valid when W � 1 : i.e., when island width

less than linear layer width.
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Normalized Nonlinear Response Equations
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=

1

2

(
−1+

W 2
v

W 2
cosϕ

)
,

dϕ

dt
−ω = 0.

• Island width evolution equation surprisingly similar to

corresponding linear equation.

• Island phase evolution equation, which encapsulates “no slip”

constraint, quite different to corresponding linear equation.

• Nonlinear equations only valid when W � 1.
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Linear Evolution of Reconnected Flux
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• X = W cosϕ, Y = W sinϕ. Evolution is to fixed point.
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Nonlinear Evolution of Reconnected Flux
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• Evolution is to limit cycle.
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Limit Cycle Depends on Plasma Rotation Level
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Torque-Balance Solutions in Linear Regime
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• x - plasma rotation. β - error-field amplitude.

• Solutions within thick curve are dynamically unstable.

• System exhibits bifurcations between high- and low-rotation states.
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Torque-Balance Solutions in Nonlinear Regime
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• x - plasma rotation. β ′ - error-field amplitude.

• Solutions within thick curve are dynamically unstable.

• System exhibits bifurcations between high- and low-rotation states.
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Bifurcation Regimes
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• ω̂0 - natural plasma rotation. R - plasma resistivity.

• I: L ↔ H bifurcations linear. II: L ↔ H bifurcations nonlinear. III:

L → H bifurcation nonlinear. H → L bifurcation linear. IV: No

bifurcations.
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Bifurcation Thresholds (no NC flow damping)

• H → L bifurcations in regimes I and III:

(br/BT )crit ∼ ζ−13/3,

where ζ = B
1/5
T R

1/4
0 .

• H → L bifurcation in regime II:

(br/BT )crit ∼ ζ−23/5.

• L → H bifurcations in regimes I, II, and III:

(br/BT )crit ∼ ζ−11/2.
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Bifurcation Thresholds (with NC flow damping)

• H → L bifurcations in regimes I and III:

(br/BT )crit ∼ ζ−13/3.

• H → L bifurcation in regime II:

(br/BT )crit ∼ ζ−15/3.

• L → H bifurcations in regimes I, II, and III:

(br/BT )crit ∼ ζ−20/3.
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Summary

• General investigation of response of rotating (ohmically heated)

tokamak plasma to resonant error-field.

• Both linear and nonlinear response regimes investigated.

• Neoclassical flow damping incorporated into analysis.

• Solutions exhibit bifurcations, but bifurcation thresholds have no

dependence on plasma density.

• Calculation makes clear that observed linear scaling of error-field

penetration threshold in ohmically heated plasmas can only be

explained as a consequence of ion polarization current.
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