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ABSTRACT

The critical n¼ 1, n¼ 2, and n¼ 3 error-field amplitudes needed to trigger error-field penetration in ITER and SPARC, steady-state, ohmi-
cally heated plasmas are calculated using a standard asymptotic matching approach. The calculation incorporates plasma impurities, trapped
particles, the bootstrap current, and neoclassical poloidal flow-damping. The energy confinement time is specified by the neo-Alcator scaling
law in the low-density linear Ohmic confinement (LOC) regime and by the ITER-89P L-mode scaling law in the high-density saturated
Ohmic confinement (SOC) regime. The response of the plasma in the inner region is calculated using a linearized version of the four-field
model. At the normal operating electron number density, diamagnetic levels of rotation are found to be sufficient to protect ITER and
SPARC ohmically heated plasmas from m ¼ 2=n ¼ 1 error-field penetration. On the other hand, SPARC, and especially ITER, ohmically
heated plasmas may be vulnerable to n> 1 error-field penetration. ITER and SPARC ohmically heated plasmas are also slightly more suscep-
tible to error-field penetration when the electron fluid at the rational surface rotates in the ion diamagnetic direction, rather than the electron
diamagnetic direction. At electron number densities that are sufficiently low that the plasma lies in the LOC confinement regime, the error-
field penetration threshold increases with increasing density. However, as soon as the electron number density becomes large enough that
the plasma enters the SOC regime, the increase in the error-field penetration threshold with increasing density levels off.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0161860

I. INTRODUCTION

Error-fields in tokamaks are a type of static (in the laboratory
frame) non-axisymmetric magnetic perturbation that usually origi-
nates from imperfections in magnetic field-coils. An error-field whose
amplitude (dB) is smaller than that of the equilibrium magnetic field
(B) by many orders of magnitude (i.e., dB=B ’ 10�4) can drive a com-
paratively wide (i.e., a few percent of the plasma minor radius) locked
(i.e., non-rotating) helical magnetic island chain, also known as a
locked mode, inside a tearing-stable tokamak plasma.1–14 This behav-
ior is of grave concern because the occurrence of locked modes in
tokamak plasmas is very strongly correlated with disruptive losses of
energy, momentum, and particle confinement.15 Although most previ-
ous research has concentrated on the detrimental effects of n¼ 1
(where n is the toroidal mode number) error-fields, there is a growing
concern about the effects of n> 1 error-fields.16 This is particularly the
case because deliberately applied n> 1 error-fields, known as resonant
magnetic perturbations (RMPs), are often used to control dangerous
edge localized modes (ELMs) in tokamak plasmas.17–20

The physics of error-field-driven magnetic reconnection in a
tokamak plasma is well known21–24 but is worth recapitulating in this

introduction. A helical error-field withm periods in the poloidal direc-
tion and n periods in the toroidal direction resonates with the plasma
at the so-called rational magnetic flux-surface at which the safety-
factor takes the value m/n. As far as its response to a small-amplitude
error-field is concerned, a high Lundquist number tokamak plasma
can be divided into two regions. The so-called inner region lies in the
immediate vicinity of the rational surface. The so-called outer region
comprises everywhere in the plasma apart from the inner region as
well as the vacuum region surrounding the plasma. The response of
the plasma to the error-field in the outer region is governed by the
equations of linear, marginally stable, ideal magnetohydrodynamics
(MHD). The minimal model that can realistically describe the
response of the plasma in the inner region should contain plasma
resistivity, E� B flows, electron and ion diamagnetic flows, the ion
sound radius, and anomalous cross-flux-surface transport of energy
and momentum. It is important to include diamagnetic flows in the
model because they are similar in magnitude to E� B flows in an
ohmically heated plasma (which is the type of plasma considered in
this paper). It is important to include the ion sound radius in the
model because the response of the ion fluid to the error-field is
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radically different to that of the electron fluid on length-scales below
the ion sound radius. Finally, it is important to include realistic levels
of perpendicular energy and momentum transport in the model
because these effects significantly change the response of the inner
region to the error-field. Plasma flows in the inner region lead to the
development of a localized shielding current that suppresses driven
magnetic reconnection at the rational surface. However, the error-field
exerts a localized electromagnetic torque in the inner region that acts
to modify the plasma flows in such a manner as to reduce the shielding
current. If the error-field amplitude is gradually ramped up, then a
critical error-field amplitude is reached at which there is a sudden shift
in the plasma flows, leading to the complete elimination of the shield-
ing current and allowing unhindered driven magnetic reconnection.
This phenomenon is known as error-field penetration.

Conventional tokamak plasmas are initiated in a Ohmic phase in
which the dominant energy input to the plasma comes from Joule
heating. Ohmic plasmas are particularly vulnerable to error-field pene-
tration because of their comparatively low temperatures and compara-
tively low levels of plasma rotation. The aim of this paper is to estimate
the critical error-field amplitude required to induce penetration in an
ITER25 or a SPARC26 steady-state, ohmically heated plasma.

The standard approach to estimating the error-field penetration
threshold in an ITER or a SPARC ohmically heated plasma is by
means of scaling studies using either empirical data from existing toka-
maks27 or data from computer simulations.28 In this paper, we shall
adopt a different approach in which we shall attempt to directly simu-
late an ITER or a SPARC steady-state, ohmically heated plasma.
Simulating a steady-state, ohmically heated tokamak plasma turns out
to be a particularly simple task because the heating source is a known
quantity. The two quantities whose values are the most uncertain in
ITER or SPARC ohmically heated plasmas are the energy confinement
time and the E� B rotation level. However, the scaling of the energy
confinement time with plasma parameters has been the subject of
extensive previous research.29 Consequently, we can extrapolate the
confinement time from existing tokamaks to ITER or SPARC with
some degree of confidence. Moreover, for the case of an ohmically
heated tokamak plasma, there is no reason to suppose that the level of
E� B rotation will be substantially different from the level of diamag-
netic rotation,30 which allows us to make an educated guess as to the
likely range of E� B rotation levels in ITER or SPARC ohmically
heated plasmas.

For the sake of simplicity, our model plasma equilibrium employs
cylindrical geometry. However, we have endeavored to make the calcu-
lation of the Ohmic heating power as realistic as possible by taking into
account plasma impurities, trapped particles, the bootstrap current,
and the correction to the conventional cylindrical expression for the
safety-factor due to toroidicity and plasma shaping (see Sec. II).31–34

Our model energy confinement time is specified by the neo-
Alcator scaling law35,36 in the low-density linear Ohmic confinement
(LOC) regime and by the ITER-89P L-mode scaling law29,37 in the
high-density saturated Ohmic confinement (SOC) regime (see Sec. II J).

The response of the plasma in the inner region is calculated using
a linearized version of the four-field model38 that contains seven
parameters (corresponding to the local electron diamagnetic flow, the
ion diamagnetic flow, the E� B flow, the ion sound radius, the anom-
alous cross field energy diffusivity, the anomalous cross field momen-
tum diffusivity, and the Lundquist number)23,24 (see Sec. IV). It is a

reasonable approach to employ linear theory because prior to error-
field penetration, driven magnetic reconnection is strongly suppressed
by plasma flows,21 causing the driven island width to be less than the
linear layer width (which is the condition for the validity of linear
theory) (see Fig. 3). It is important to employ a two-fluid model of the
resonant plasma response because conventional resistive-
magnetohydrodynamics (MHD) is a completely inadequate resonant
response model.

Our linear resonant response model does not incorporate the
Glasser–Greene–Johnson (GGJ) effect39,40 because, as was demon-
strated in Refs. 41 and 42, when realistic levels of anomalous cross field
transport are included in the layer response calculation, this effect is
reduced to such an extent that it does not contribute significantly to
the layer response. (Of course, there is still a nonlinear GGJ effect that
gives rise to a significant stabilizing term in the generalized Rutherford
equation that scales as the inverse of the island width.43 However, this
term depends crucially on the flattening of the plasma pressure within
the island separatrix and essentially disappears as soon as the island
becomes too thin to effect such a flattening.41)

Our linear resonant response model also does not incorporate
the perturbed bootstrap current44,45 because the linear layer width is
much narrower than the width of a banana orbit (implying that the
bootstrap current would not respond to the perturbed structure of the
resonant layer).

The response of the plasma in the outer region is calculated self-
consistently from the cylindrical tearing mode equation (see Sec. III).21

Finally, we calculate the response of the plasma to the localized
electromagnetic torque that develops in the inner region by solving the
full plasma angular equations of motion, taking the neoclassical damp-
ing of poloidal rotation into account.46 The ultimate result is a torque
balance equation that allows the local plasma flows, as well as the
amount of reconnected magnetic flux driven at the rational surface, to
be calculated as functions of the error-field amplitude (see Sec. V).

II. OHMICALLY HEATED TOKAMAK PLASMAS
A. Introduction

The aim of this section is to calculate the properties of a plasma
confined in an idealized, steady-state, ohmically heated tokamak.

B. Plasma equilibrium

Our tokamak equilibrium is approximated as a periodic cylinder
of circular cross section. Let us employ a conventional set of right-
handed cylindrical coordinates, r, h, and z. The equilibrium magnetic
flux-surfaces lie on surfaces of constant r. The system is assumed to be
periodic in the z (“toroidal”) direction, with periodicity length 2pR0,
where R0 is the simulated major radius of the plasma. It is helpful to
define the simulated toroidal angle u ¼ z=R0. Let a be the minor radius
of the plasma. The equilibrium magnetic field is written B ¼ BhðrÞ eh

þBu ez , where BhðrÞ is the poloidal magnetic field-strength and Bu is
the (approximately) spatially uniform toroidal magnetic field-strength.
The equilibrium current density takes the form j ¼ juðrÞ ez .

C. Plasma energy balance

Suppose that the plasma consists of electrons, singly charged
majority ions, and impurity ions. Let pðrÞ ¼ ð1þ iiÞ ne TeðrÞ be the
total equilibrium plasma pressure profile (neglecting the contribution
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from impurity ions), where TeðrÞ is the electron temperature profile, ii
is an assumed spatially uniform ratio of the ion to the electron temper-
ature, and ne is an assumed spatially uniform electron number density.

Suppose that the plasma is in a quasi-steady-state characterized
by a spatially uniform parallel inductive electric field, Ek. The electron
energy balance equation is written as47,48

r � ð�j?erTeÞ ¼ rk E
2
k; (1)

where j?e is the perpendicular (to magnetic flux-surfaces) electron
thermal conductivity and rk is the parallel (to the magnetic field)
plasma electrical conductivity.47,48 Let j?e ¼ ne vE , where vE is an
assumed spatially uniform perpendicular energy diffusivity. It follows
that

r2Te ¼ �
rk E2

k
vE ne

: (2)

Now, assuming that the plasma lies in the banana collisionality
regime,31,32,49,50

rk ¼
ne e2 se

me Z0eff l̂e
; (3)

where

se ¼
6
ffiffiffi
2
p

p3=2 �20 m
1=2
e T3=2

e

lnK e4 ne
; (4)

Z0eff ¼
a11 a22 � a212

a22
; (5)

l̂e ¼
A11 A22 � A2

12

A22 Z0eff
; (6)

a11 ¼ Zeff ; (7)

a12 ¼
3
2
Zeff ; (8)

a22 ¼
ffiffiffi
2
p
þ 13

4
Zeff ; (9)

A11 ¼ a11 þ gt ð0:533þ Zeff Þ; (10)

A12 ¼ a12 þ gt 0:625þ 3
2
Zeff

� �
; (11)

A22 ¼ a22 þ gt 1:386þ 13
4

Zeff

� �
; (12)

gt ¼
ft

1� ft
; (13)

ftðrÞ ¼ tanh
r
r0

� �� �3=2
1:46

r
R0

� �1=2

� 0:46
r
R0

� �3=2
" #

: (14)

Here, me is the electron mass, e is the magnitude of the electron
charge, lnK is the Coulomb logarithm, Zeff is the effective ion charge
number, and ftðrÞ is the fraction of trapped particles. Furthermore,
0 < r0 � a. Note that Z0eff is the factor by which the plasma electrical
conductivity is reduced due to the presence of impurity ions in the
plasma, whereas l̂e is the additional factor by which the conductivity
is reduced due to the presence of trapped electrons.51 Note, further,
that we have modified the expression for ftðrÞ in the immediate

vicinity of the magnetic axis (where it is not really valid anyway) in
order to prevent the plasma current gradient from becoming singular
in the limit r ! 0. Note, finally, that l̂e ! 1 as r ! 0.

Let r̂ ¼ r=a. Suppose that

Teðr̂Þ ¼ Te0 T̂ eðr̂Þ; (15)

where T̂ eð0Þ ¼ 1,

T̂ eð1Þ ¼ fe; (16)

and T̂ eðr̂ > 1Þ ¼ 0. Here, Te0 is the central electron temperature and
fe is an assumed fixed ratio of the edge to the central electron tempera-
ture. It follows from Eqs. (2)–(4) and (15) that

1
r̂

d
dr̂

r̂
dT̂ e

dr̂

� �
¼ �ke T̂

3=2
e ðr̂Þ l̂�1e ðr̂Þ; (17)

for 0 � r̂ � 1, and

ke ¼ 1:13� 103
a2 �T 1=2

e0 E2
k

�K Z0eff vE �ne
; (18)

where �ne ¼ ne=ð1020Þ; �Te0 ¼ Te0=ð103 eÞ, and48

�K ¼ lnK
17
¼ 14:8� 0:5 ln �ne þ ln �Te0

17
: (19)

D. Ohmic current density

The Ohmic toroidal current density in the plasma is given by47,48

joh ¼ rk Ek: (20)

It follows from Eqs. (3), (4), and (15) that

johðr̂Þ ¼ joh0 ĵohðr̂Þ; (21)

where joh0 is the central toroidal current density, and

ĵohðr̂Þ ¼ T̂
3=2
e ðr̂Þ l̂�1e ðr̂Þ: (22)

Note that ĵohð0Þ ¼ 1. It is easily demonstrated that

�joh0 ¼ 1:80� 101
�T 3=2
e0 Ek

�K Z0eff
; (23)

where�joh0 ¼ joh0=106.

E. Bootstrap current density

The electron bootstrap current density is given by31,32

jbs ¼ �
ne
Bh

dTe

dr
fbs; (24)

where

fbsðr̂Þ ¼
ðA11 � a11 þ a12ÞA22 � ðA12 � a12 þ a22ÞA12

A11 A22 � A2
12

: (25)

Note that fbs ! 0 as r̂ ! 0, which ensures that jbs ! 0 as r̂ ! 0
[because the ratio ðdTe=drÞ=Bh attains a constant value as r̂ ! 0].
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F. Safety-factor profile

We can write

1
r
d
dr

r Bhð Þ ¼ l0 ðjoh þ jbsÞ; (26)

where

qðrÞ ¼ r Bu fa
R0 Bh

(27)

is the safety-factor profile. Here,

fa ¼ kf
1þ j2

a ð1þ 2 d2a � 1:22 d3aÞ
2

� �
1:17� 0:65 �a
ð1� �2aÞ

2

" #
; (28)

where ja and da are the vertical elongation and triangularity of the
plasma boundary, respectively, whereas �a ¼ a=R0 is the inverse
aspect-ratio of the plasma boundary. The factor fa is a correction to
the conventional cylindrical expression for the safety-factor that takes
plasma shaping and toroidicity into account.33,34 The adjustable
parameter kf is used to obtain the desired plasma current (see Sec.
VI B). Given that johð0Þ ¼ joh0 and jbsð0Þ ¼ 0, it follows from Eqs.
(26) and (27) that

q0 ¼
5Bu fa

p�joh0 R0
; (29)

where q0 ¼ qð0Þ is the central safety-factor value.
Let

qðr̂Þ ¼ q0 q̂ðr̂Þ: (30)

According to Eqs. (15), (21), (24), and (26)–(29),

df
dr̂
¼ 2 r̂ ĵoh ðr̂Þ þ 2bh0 gbsðr̂Þ

r̂2

f
; (31)

where

f ðr̂Þ ¼ r̂2

q̂
; (32)

bh0 ¼ 1:01� 10�2
�ne �Te0

B2
u f 2a

 !
R0 q0
a

� �2

; (33)

gbsðr̂Þ ¼ �
dT̂ e

dr̂
fbsðr̂Þ: (34)

Note that f ! r̂2 as r̂ ! 0.

G. Power balance

The total thermal energy of the electrons is

We ¼ 4p2 R0

ða
0

3
2
ne TeðrÞ r dr; (35)

whereas the total electron energy loss rate is

Pe ¼ �4p2 a R0 ne vE
dTeðaÞ
dr

: (36)

By definition, the mean energy confinement time of the electrons is
�sE ¼We=Pe. Thus,

�sE ¼
je a2

vE
; (37)

where

je ¼
3
2

ð1
0
T̂ eðr̂Þ r̂ dr̂

�
� dT̂ eð1Þ

dr̂

� �
: (38)

Finally, Ek and vE can be eliminated between Eqs. (18), (23), (29), and
(37) to give

�Te0 ¼ 2:38
�K Z0eff f

2
a

ke je q20

 !2=5
�sE B2

u

�ne R2
0

 !2=5

: (39)

H. Toroidal plasma current

The total toroidal plasma current is

IpðtÞ ¼
ða
0
ðjoh þ jbsÞ 2p r dr: (40)

Thus,

�I p ¼
5 a2 Bu fa
R0 qa

; (41)

where �I p ¼ Ip=106; qa ¼ qðaÞ is the edge safety-factor value, and use
has been made of Eqs. (26) and (27).

I. Ohmic heating rate

In a quasi-steady-state, the plasma Ohmic heating rate is equal to
the energy loss rate, Pe. It follows from Eqs. (36) and (37) that

�Pe ¼ 6:33� 10�1
ne �ne R0 a2 �Te0

�sE
; (42)

where �Pe ¼ Pe=106, and

ne ¼
3
2

ð1
0
T̂ eðr̂Þ r̂ dr̂ : (43)

J. Energy confinement time

At low densities, an ohmically heated tokamak plasma lies in the
so-called linear Ohmic confinement (LOC) regime in which its energy
confinement time scales linearly with the electron number density
according to the neo-Alcator scaling law35,36

�sE ¼ 9:0� 10�2 qa �ne a R
2
0: (44)

Combining this expression with Eq. (39), we obtain

�Te0 ¼ 9:08� 10�1
�K Z0eff f

2
a

ke je q20

 !2=5

q2=5a a2=5 B4=5
u : (45)

Note that the central electron temperature is independent of the elec-
tron number density in the LOC regime.

At higher densities, the plasma enters the so-called saturated
Ohmic confinement (SOC) regime in which the linear scaling of the
confinement time with electron number density breaks down.35 In this
regime, the energy confinement time is well approximated by the
ITER-89P L-mode scaling law,29,37
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�sE ¼ 4:8� 10�2 M0:5 j0:5
a �n0:1

e R1:2
0 a0:3 B0:2

u
�I 0:85p

�P�0:5e ; (46)

where M is the majority ion mass number. Equations (39), (41), (42),
and (46) yield

�sE ¼ 6:88� 10�2
�K Z0eff f

2
a

ke je q20

 !�2=7
M ja

ne

� �5=7 fa
qa

� �17=14

� �n�2=7e R5=14
0 a10=7 B13=14

u ; (47)

�Te0 ¼ 8:17� 10�1
�K Z0eff f

2
a

ke je q20

 !2=7
M ja

ne

� �2=7 fa
qa

� �17=35

� �n�18=35e R�23=350 a4=7 B41=35
u : (48)

Note that both the confinement time and the central electron tempera-
ture decrease with increasing electron number density in the SOC
regime.

The plasma lies in the LOC regime when the energy confinement
time specified in Eq. (44) is less than that specified in Eq. (47), in
which case the energy confinement time and the central electron tem-
perature are given by Eqs. (44) and (45), respectively. In the opposite
case, the plasma lies in the SOC regime, and the energy confinement
time and the central electron temperature are given by Eqs. (47) and
(48), respectively. It is clear from a comparison of Eqs. (44) and (47)
that the plasma lies in the LOC regime when �ne < �necrit, where

�necrit ¼ 8:11� 10�1
�K Z0eff f

2
a

ke je q20

 !�2=9
M ja

ne

� �5=9 fa
qa

� �17=18 1
qa

� �7=9

� R�23=180 a1=3 B13=18
u : (49)

K. Plasma profiles

We can calculate the profiles of significant plasma quantities by
first solving Eq. (17), to determine T̂ eðr̂Þ, subject to the boundary
conditions,

T̂ eðr̂Þ ¼ 1� ke
4
r̂2; (50)

dT̂ e

dr̂
¼ � ke

2
r̂ ; (51)

when 0 < r̂ � 1, and adjusting ke such that Eq. (16) is satisfied. Next,
we need to solve Eq. (31), to determine f ðr̂Þ, subject to the boundary
condition,

f ðr̂Þ ¼ r̂2; (52)

when 0 < r̂ � 1.
The normalized electron temperature profile is specified by

�T eðr̂Þ ¼ �T e0 T̂ eðr̂Þ; (53)

where �Te ¼ Te=ð103 eÞ. The safety-factor profile is given by Eq. (30),
where

q̂ðr̂Þ ¼ r̂2

f ðr̂Þ : (54)

The energy diffusivity is

vE ¼
je a2

�sE
: (55)

The plasma toroidal beta profile is b ¼ 2 l0 p=B
2
u. It follows that

bðr̂Þ ¼ b0 T̂ eðr̂Þ; (56)

where

b0 ¼ 4:03� 10�2
ð1þ iiÞ �ne �Tec

B2
u

: (57)

Here, b0 is the central plasma beta.
The normalized Ohmic current density profile is given by

�johðr̂Þ ¼ �joh0 ĵohðr̂Þ; (58)

where �joh ¼ joh=106. The normalized electron bootstrap current den-
sity profile takes the form

�jbsðr̂Þ ¼ bh0
�joh0 ĵbsðr̂Þ; (59)

where�jbs ¼ jbs=106, and

ĵbsðr̂Þ ¼ �
q̂ðr̂Þ
r̂

dT̂ e

dr̂
fbsðr̂Þ: (60)

L. Resistive layer parameters

As has already been mentioned, a tokamak plasma subject to an
error-field develops a current sheet in a thin resistive layer located at
the rational magnetic flux-surface within the plasma where the error-
field resonates with the equilibrium magnetic field.21,23,24 The profiles
of the various parameters that govern the properties of the resistive
layer are as follows.

The magnetic shear profile, s ¼ r ðdq=drÞ=q, is

sðr̂Þ ¼ 2 1� q̂ðr̂Þ ĵuðr̂Þ
h i

; (61)

where

ĵuðr̂Þ ¼ ĵohðr̂Þ þ bh0 ĵbsðr̂Þ: (62)

The electron diamagnetic frequency profile is48

x�e ¼ �
n q
r

1
e ne Bu

dpe
dr
; (63)

where n is the toroidal mode number of the error-field. It follows that

x�eðr̂Þ ¼ x�e0 x̂�eðr̂Þ; (64)

where

x�e0 ¼ 5:00� 102
n ke q0 �T e0

a2 Bu
; (65)

x̂�eðr̂Þ ¼ �
2
ke

q̂ðr̂Þ
r̂

dT̂ e

dr̂
: (66)

Here, x�e0 is the central electron diamagnetic frequency. Note that
x̂�eð0Þ ¼ 1.
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The ion diamagnetic frequency profile is

x�iðr̂Þ ¼ �ii x�e0 x̂�eðr̂Þ: (67)

The E� B frequency profile is

xEðr̂Þ ¼ iE x�e0 x̂�eðr̂Þ; (68)

where iE is an assumed spatially uniform ratio between the values of
xE and x�e. Observations of intrinsic toroidal ion rotation in ohmi-
cally heated tokamak plasmas indicate that the rotation is roughly dia-
magnetic in magnitude, is in the co-current direction at low densities,
and switches to the countercurrent at intermediate densities but
switches back to the co-current direction at high densities.52,53 The
low density to intermediate density rotation reversal is associated with
the LOC to SOC transition.37 These observations suggest that iE is of
order unity (corresponding to an E� B velocity that is of order a dia-
magnetic velocity) and is less than unity at low (LOC regime) densities
and high densities but is greater than unity at intermediate (SOC
regime) densities.

The hydromagnetic timescale profile is24

sHðr̂Þ ¼ sH0 ŝHðr̂Þ; (69)

where

sH0 ¼
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 ne Mmp

p
n Bu

¼ 4:58� 10�7
R0

ffiffiffiffiffiffiffiffiffiffi
M �ne
p

n Bu
; (70)

ŝHðr̂Þ ¼
1

sðr̂Þ : (71)

Here,mp is the proton mass.
The resistive evolution timescale profile is sR ¼ l0 r

2 rk. It fol-
lows from Eqs. (3) and (4) that

sRðr̂Þ ¼ sR0 ŝRðr̂Þ; (72)

where

sR0 ¼ 2:27� 101
a2 �T 3=2

e0
�K Z0eff

; (73)

ŝRðr̂Þ ¼ r̂2 ĵohðr̂Þ: (74)

The Lundquist number profile is S ¼ sR=sH . It follows that

Sðr̂Þ ¼ S0 Ŝðr̂Þ; (75)

where

S0 ¼
sR0
sH0

; (76)

Ŝðr̂Þ ¼ r̂ 2 ĵohðr̂Þ sðr̂Þ: (77)

The ion sound radius profile is db ¼ ½ð5=6Þmi b=ðne e2 l0Þ�1=2.24
It follows that

dbðr̂Þ ¼ db0 d̂bðr̂Þ; (78)

where

db0 ¼ 2:95� 10�3
ð1þ iiÞM �Te0

B2
u

" #1=2
; (79)

d̂bðr̂Þ ¼ T̂
1=2
e ðr̂Þ: (80)

Finally, the energy confinement time profile is sE ¼ r2=vE . It fol-
lows that

sEðr̂Þ ¼ sE0 ŝEðr̂Þ; (81)

where

sE0 ¼
a2

vE
; (82)

ŝEðr̂Þ ¼ r̂2: (83)

III. OUTER REGION
A. Introduction

The aim of this section is to describe the plasma response to the
error-field in the outer region.

B. Cylindrical tearing mode equation

The perturbed magnetic flux associated with the plasma response
can be written as21

dwðr; h;uÞ ¼ wðrÞ eiðmh�nuÞ: (84)

The associated perturbed magnetic field is21

dBr ¼ i
m
r

dw; (85)

dBh ¼ �
ddw
dr

; (86)

dBu ’ 0: (87)

The function wðrÞ satisfies the cylindrical tearing mode
equation,21

d2w

dr̂ 2
þ 1

r̂
dw
dr̂
�m2

r̂2
w� J 0 w

r̂ ð1=q� n=mÞ ¼ 0; (88)

where

J 0ðr̂Þ ¼ dJ
dr̂
; (89)

Jðr̂Þ ¼ R0 l0 ðjoh þ jbsÞ
Bu fa

: (90)

It follows from Eqs. (29) and (58)–(60) that

Jðr̂Þ ¼ 2
q0

ĵohðr̂Þ þ bh0 ĵbsðr̂Þ
h i

(91)

for 0 � r̂ � 1 and Jðr̂Þ ¼ 0 for r̂ > 1. Note that Eq. (88) is singular at
the rational surface, of normalized minor radius r̂ s, at which
qðr̂ sÞ ¼ m=n. The singularity is indicative of the breakdown of the
equations of linearized, marginally stable, ideal MHD in the inner
region.

C. Solution of cylindrical tearing mode equation

Suppose that the plasma is surrounded by a perfectly conducting
wall located at r¼ b, where b> a. Let wðbÞ ¼ Wb, where Wb is a com-
plex constant that specifies the amplitude and phase of the error-field

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 092512 (2023); doi: 10.1063/5.0161860 30, 092512-6

Published under an exclusive license by AIP Publishing

 19 Septem
ber 2023 19:39:50

pubs.aip.org/aip/php


to which the plasma is subject. The plasma response in the outer
region is specified by

wðr̂Þ ¼ Ws ŵsðr̂Þ þWb ŵbðr̂Þ: (92)

Here, ŵsðr̂Þ is a real continuous solution of Eq. (88) that satisfies

ŵsð0Þ ¼ 0; (93)

ŵsðr̂ sÞ ¼ 1; (94)

r̂

ŵs

dŵs

dr̂

" #r̂¼1þ
r̂¼1�
¼ � Jð1Þ

1=qð1Þ � n=m½ � ; (95)

ŵsðr̂ 	 b̂Þ ¼ 0; (96)

where b̂ ¼ b=a. Moreover, ŵbðr̂Þ is a real continuous solution of Eq.
(88) that satisfies

ŵbðr̂ � r̂ sÞ ¼ 0; (97)

r̂

ŵb

dŵb

dr̂

" #r̂¼1þ
r̂¼1�

¼ � Jð1Þ
1=qð1Þ � n=m½ � ; (98)

ŵbðb̂Þ ¼ 1: (99)

Note that the complex quantity Ws specifies the amplitude and phase
of the reconnected magnetic flux driven at the rational surface by the
error-field.

D. Calculation of ŵsðr̂Þ
In the limit 0 < r̂ � 1, we have

ŵsðr̂Þ / r̂m þ j0 r̂
mþ2; (100)

where

j0 ¼ �
x0

ðmþ 1Þ ð1� q0 n=mÞ
; (101)

and x0 ¼ limr̂!0½ð1� q0 J=2Þ=r̂2�.
Let q ¼ ðr̂ � r̂ sÞ=r̂ s. In the immediate vicinity of the rational

surface,

ŵsðqÞ ¼ 1þ Dsþ qþ as q ln jqj þ Oðq2Þ (102)

for q > 0, and

ŵsðqÞ ¼ 1þ Ds� qþ as q ln jqj þ Oðq2Þ (103)

for q < 0, where

as ¼ �
r̂ q J 0

s

� �
r̂¼r̂ s

: (104)

In particular,

Ds6 ¼
r̂

ŵs

dŵs

dr̂
� as ð1þ ln jqjÞ; (105)

in the limit that q! 06.
Finally,

r̂

ŵs

dŵs

dr̂

 !
r̂¼1�

¼ �m b̂
2m þ 1

b̂
2m � 1

 !
þ Jð1Þ

1=qð1Þ � n=m½ � : (106)

We can calculate ŵsðr̂Þ by first launching a solution of Eq. (88)
from the magnetic axis, subject to the boundary condition (100), and
integrating to just inside the rational surface. Next, we launch a second
solution of Eq. (88) from just inside the plasma boundary, subject to
the boundary condition (106), and integrate to just outside the rational
surface. The two solutions are then rescaled subject to the constraint
ŵsðr̂ sÞ ¼ 1. Finally, the parameters Ds6 are determined using Eq.
(105). The real quantity

Ess 
 r̂
dŵs

dr̂

� �r̂¼r̂ sþ
r̂¼r̂ s�
¼ Dsþ � Ds� (107)

is the conventional tearing stability index.54

E. Calculation of ŵbðr̂Þ
In order to calculate ŵbðr̂Þ, we launch a solution of Eq. (88) from

just outside the rational surface, such that

ŵbðr̂ sÞ ¼ 0; (108)

dŵbðr̂ sÞ
dr̂

¼ 1
r̂ s
; (109)

and then integrate it to just inside the plasma boundary. Let

ab ¼
1
2m

m b̂
m

ŵbð1Þ þ b̂
m dŵbð1Þ

dr̂

� �
; (110)

bb ¼
1
2m

m b̂
�m

ŵbð1Þ � b̂
�m dŵbð1Þ

dr̂

� �
; (111)

cb ¼
Jð1Þ
2m

b̂
m � b̂

�m

1=qð1Þ � n=m½ � ; (112)

db ¼ ab þ bb � cb ðab b̂
�m þ bb b̂

mÞ: (113)

The boundary condition (99) is satisfied by dividing our solution
by db.

If we define the real quantity

Esb ¼ r̂
dŵb

dr̂

� �
r̂¼r̂ sþ

; (114)

then it follows that Esb ¼ 1=db.

F. Asymptotic matching

Asymptotic matching between the solution of Eq. (88) in the
outer region and the thin resistive layer, centered on the rational sur-
face, that constitutes the inner region yields21

Ds Ws ¼ Ess Ws þ Esb Wb; (115)

where use has been made of Eqs. (92), (107), and (114). Here, the com-
plex quantity Ds specifies the magnitude and phase of the shielding
current that is generated in the inner region. In the presence of the
shielding current, the amount of reconnected flux driven at the ratio-
nal surface is

Ws

Wb
¼ Esb

Ds � Ess
: (116)
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On the other hand, in the absence of the shielding current, the driven
magnetic flux is given by

Ws

Wb
¼ Esb
�Ess

: (117)

Hence, the shielding factor (i.e., the ratio of the magnitudes of the
reconnected fluxes in the absence and in the presence of the shielding
current) is

R ¼ jDs � Essj
ð�EssÞ

: (118)

Let

Wb ¼ R0 Bu Ŵb: (119)

The unshielded radial magnetic field at the rational surface, due to the
error-field, is

bv

Bu
¼ m

r̂s

R0

a
Esb
ð�EssÞ

jŴbj: (120)

G. Electromagnetic torques

The flux-surface integrated poloidal and toroidal electromagnetic
torques exerted on the plasma by the external magnetic perturbation
are21

ThðrÞ ¼ Ths dðr � rsÞ; (121)

TuðrÞ ¼ Tus dðr � rsÞ; (122)

where

Ths ¼ �
2p2 R0 m

l0
ImðDs jWsj2Þ; (123)

Tus ¼
2p2 R0 n

l0
ImðDs jWsj2Þ: (124)

It follows that

Ths ¼ �
2p2 R3

0 B
2
u

l0
m jŴbj2

E2
sb ImðDsÞ
jDs � Essj2

; (125)

Tus ¼
2p2 R3

0 B
2
u

l0
n jŴbj2

E2
sb ImðDsÞ
jDs � Essj2

; (126)

where use has been made of Eqs. (116) and (119). Note that
Ths ¼ �ðm=nÞTus.

21

IV. INNER REGION
A. Introduction

The resistive layer that constitutes the inner region is assumed to
be governed by the linearized two-fluid model described in Ref. 24.
This model is an extension of a model introduced in Ref. 23 and is ulti-
mately based on the four-field equations of Hazeltine et al.38

B. Layer parameters

According to our model, the parameters that control the response
of the resistive layer are

Qe ¼ r̂2=3 S1=3 x�e sH ; (127)

Qi ¼ r̂2=3 S1=3 x�i sH ; (128)

QE ¼ r̂2=3 S1=3 xE sH ; (129)

D ¼ r̂�1=3 S1=3
1

1þ ii

� �1=2 db

r
; (130)

P? ¼ Pu ¼
sR
sE
: (131)

Note that we are equating the energy confinement and momentum
confinement timescales for the sake of simplicity.

Making use of the results of Secs. II K and II L, we obtain

Qeðr̂Þ ¼ Qe0 Q̂eðr̂Þ; (132)

where

Qe0 ¼ S1=30 xe0 sH0; (133)

Q̂eðr̂Þ ¼
r̂ 4 ĵohðr̂Þ
s2ðr̂Þ

" #1=3
x̂eðr̂Þ: (134)

Furthermore,

Qiðr̂Þ ¼ �ii Qeðr̂Þ; (135)

QEðr̂Þ ¼ iE Qeðr̂Þ: (136)

We also have

Dðr̂Þ ¼ D0 D̂ðr̂Þ; (137)

where

D0 ¼
1

1þ ii

� �1=2 S1=30 db0

a
; (138)

D̂ðr̂Þ ¼ sðr̂Þ ĵohðr̂Þ
r̂2

� �1=3
d̂bðr̂Þ: (139)

Finally,

P?ðr̂Þ ¼ P?0 P̂?ðr̂Þ; (140)

where

P?0 ¼
sR0
sE0

; (141)

P̂?ðr̂Þ ¼ ĵohðr̂Þ; (142)

and

Puðr̂Þ ¼ P?ðr̂Þ: (143)

C. Calculation of Ds

The layer response index is

Dðr̂Þ ¼ r̂ S1=3� ðr̂Þ D̂ðr̂Þ; (144)

where

YeðpÞ ! Y0
D̂
p p
þ 1þOðpÞ

" #
; (145)
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as p! 0, and YeðpÞ is the solution that is bounded as p!1 of24

d
dp

AðpÞ dYe

dp

� �
� BðpÞ
CðpÞ r̂2

p2 Ye ¼ 0; (146)

with

AðpÞ ¼ p2

�i ð�QE � QeÞ þ p2
; (147)

BðpÞ ¼ �ð�QEÞ ð�QE � QiÞ � i ð�QE � QiÞ ðPu þ P?Þ p2

þ Pu P? p
4; (148)

CðpÞ ¼ �i ð�QE � QiÞ þ P? � i ð�QE � QiÞD2
� 	

p2

þ ð1þ iiÞ Pu D2 p4: (149)

Furthermore, S� ¼ r̂�4 S. It follows that

S1=3� ðr̂Þ ¼ S1=30 Ŝ
1=3
� ðr̂Þ; (150)

Ŝ
1=3
� ðr̂Þ ¼

sðr̂Þ ĵohðr̂Þ
r̂ 2

� �1=3
: (151)

Finally,

Ds ¼ Dðr̂ sÞ: (152)

The most convenient method of solving Eq. (146) is by means of a
Riccati transformation.55,56

V. TORQUE BALANCE
A. Introduction

The electromagnetic torque exerted at the rational surface by the
error-field acts to arrest the rotation of the local electron fluid, thereby
(in most cases) eliminating the shielding current.21 This action is
opposed by viscous torques that develop at the rational surface. As
described in this section, the rotation of the electron fluid at the ratio-
nal surface is determined by balancing the electromagnetic and viscous
torques.

B. Plasma poloidal angular equation of motion

The plasma poloidal equation of angular motion is written as21

�4p2 R0
d
dr

qN? r
3 dDXh

dr

� �
� q

sh
r3 DXh

� �
¼ Ths dðr � rsÞ; (153)

where DXhðrÞ is the change in the plasma poloidal angular velocity
profile induced by the electromagnetic torque that develops at the ratio-
nal surface, q ¼ ne Mmp is the plasma mass density, and N? ¼ vE is
the plasma toroidal momentum diffusivity. Moreover,32,50

sh ¼
r2

q2 R2
0

si
gt l̂i

; (154)

si ¼
6
ffiffiffi
2
p

p3=2 �20 M
1=2 m1=2

p i3=2i T3=2
e

lnK e4 ne
; (155)

l̂ i ¼ 0:533þ aI ; (156)

aI ¼
ZI ðZeff � 1Þ
ZI � Zeff

: (157)

Here, sh is the neoclassical poloidal flow-damping time, and ZI is the
impurity ion charge number. Equation (153) must be solved subject to
the boundary conditions,21

dDXhð0Þ
dr

¼ 0; (158)

DXhðaÞ ¼ 0: (159)

The modification of the E� B frequency induced by the change
in the toroidal angular velocity profile is

DxEhðr̂Þ ¼ mDXhðr̂Þ: (160)

It follows from Eqs. (70), (82), (125), and (153) that

d
dr̂

r̂3
dDxEh

dr̂

� �
� r̂3 DxEh

k2h

¼ 1
2

m
n

� �2 R0

a

� �4
sE0
s2H0

� �
jŴbj2

E2
sb ImðDsÞ
jDs � Essj2

dðr̂ � r̂ sÞ; (161)

which must be solved subject to the constraints

dDxEhð0Þ
dr̂

¼ 0; (162)

DxEhð1Þ ¼ 0: (163)

Here,

kh ¼
shðr̂ sÞ
sE0

� �1=2
: (164)

It follows that

kh ¼ kh0 k̂hðr̂ sÞ; (165)

kh0 ¼ 1:66� 10�2
n
m

a
R0

M1=2 i3=2i
�T 3=2
e0

�K l̂i �ne sE0

 !1=2

; (166)

k̂hðr̂Þ ¼
r̂ 2 T̂

3=2
e ðr̂Þ

gtðr̂Þ

" #1=2
: (167)

Note that we have replaced khðr̂Þ by khðr̂ sÞ in Eq. (161) because khðr̂ sÞ
is usually very much less than unity, which implies thatDxEhðr̂Þ is usu-
ally strongly localized in the vicinity of the rational surface. This locali-
zation causes DxEhðr̂Þ to be much less than DxE/ðr̂Þ [see Eq. (173)].
In other words, as a consequence of strong poloidal flow-damping, the
modification of the E� B frequency induced by the change in the
poloidal angular velocity profile is usually much less than that induced
by the change in the toroidal angular velocity profile. However, at very
low plasma densities, khðr̂ sÞ ceases to be much less than unity, which
means that we need to include DxEhðr̂Þ in the calculation.

It is easily demonstrated that

DxEhðr̂ sÞ ¼ �
1
2

m
n

� �2 R0

a

� �4
sE0
s2H0

� �
jŴbj2

E2
sb ImðDsÞ
jDs � Essj2

Fh; (168)

where

Fh ¼
I1ðr̂ s=khÞ
r̂2s I1ð1=khÞ

I1ð1=khÞK1ðr̂ s=khÞ � I1ðr̂ s=khÞK1ð1=khÞ½ � ’ kh

2 r̂ 3s
:

(169)

Here, I1ðxÞ and K1ðxÞ are Bessel functions.
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C. Plasma toroidal angular equation of motion

The plasma toroidal equation of angular motion is written as21

�4p2 R3
0
d
dr

qN? r
dDXu

dr

� �
¼ Tus dðr � rsÞ; (170)

where DXuðrÞ is the change in the plasma toroidal angular velocity
profile induced by the electromagnetic torque that develops at the
rational surface. The previous equation must be solved subject to the
boundary conditions,21

dDXuð0Þ
dr

¼ 0; (171)

DXuðaÞ ¼ 0: (172)

The modification of the E� B frequency induced by the change
in the toroidal angular velocity profile is

DxEuðr̂Þ ¼ �nDXuðr̂Þ: (173)

It follows from Eqs. (70), (82), (126), and (170) that

d
dr̂

r̂
dDxEu

dr̂

� �
¼ 1

2
R0

a

� �2
sE0
s2H0

� �
jŴbj2

E2
sb ImðDsÞ
jDs � Essj2

dðr̂ � r̂ sÞ;

(174)

which must be solved subject to the constraints

dDxEuð0Þ
dr̂

¼ 0; (175)

DxEuð1Þ ¼ 0: (176)

It is easily demonstrated that

DxEuðr̂ sÞ ¼ �
1
2

R0

a

� �2
sE0
s2H0

� �
jŴbj2

E2
sb ImðDsÞ
jDs � Essj2

ln
1
r̂ s

� �
: (177)

D. Torque balance equation

Equations (70), (71), (76), (77), (68), (168), and (177) yield the
normalized torque balance equation,

QEðr̂ sÞ ¼ iE Qeðr̂ sÞ � Th0 T̂ hðr̂ sÞ � Tu0 T̂uðr̂ sÞ; (178)

where

Th0 ¼
1
2

m
n

� �2 R0

a

� �4
sE0
sH0

� �
S1=30 jŴbj2; (179)

T̂ hðr̂ sÞ ¼
r̂4s ĵohðr̂ sÞ
s2ðr̂ sÞ

" #1=3
Fh

E2
sb ImðDsÞ
jDs � Essj2

; (180)

and

Tu0 ¼
1
2

R0

a

� �2
sE0
sH0

� �
S1=30 jŴbj2; (181)

T̂uðr̂ sÞ ¼
r̂4s ĵohðr̂ sÞ
s2ðr̂ sÞ

" #1=3
ln

1
r̂ s

� �
E2
sb ImðDsÞ
jDs � Essj2

: (182)

VI. RESULTS
A. Machine parameters

Table I lists the machine parameters for ITER and SPARC plas-
mas that are used as inputs to our calculation. Most of these parame-
ters are taken from Refs. 25 and 26. We are assuming that the majority
ion species is deuterium (i.e.,M¼ 2), and that the impurity ion species
is carbon (i.e., ZI¼ 6) (note that our calculation exhibits very little sen-
sitivity to the impurity ion charge number). We are also assuming that
the electrons and the majority ions have the same temperature (i.e.,
ii ¼ 1). This assumption is reasonable because, in both machines, the
ion-electron energy equilibration time is about 0:25 s, which is signifi-
cantly less than the energy confinement time (see Table II). The
assumed ratio of the edge to the central electron temperature is
fe ¼ 10�3. Finally, the near-axis trapped particle regularization radius
is r0 ¼ 0:05 a.

B. Plasma parameters

The data shown in Table I, used in combination with the analysis
of Sec. II, yield the estimated plasma parameters characterizing ITER
and SPARC ohmically heated plasmas that are shown in Table II. The
central safety-factor, q0, and the parameter kf [see Eq. (28)] have both
been adjusted to obtain the desired edge safety-factor and plasma cur-
rent. The normalized temperature and current density profiles, as well
as the safety-factor and magnetic shear profiles, for an ITER ohmically
heated plasma are shown in Fig. 1 (the SPARC profiles are virtually
identical).

In both machines, the critical electron number density above
which the plasma lies in the SOC regime, rather than the LOC regime
(see Sec. II J), is below the normal operating electron number density.
This implies that, in normal circumstances, both ITER and SPARC
ohmically heated plasmas lie in the SOC regime. It can be seen that

TABLE I. Assumed machine parameters for ITER and SPARC. Here, Bu is the toroi-
dal magnetic field-strength, R0 is the major radius, a is the minor radius, Ip is the
toroidal plasma current, ne is the electron number density, ja is the boundary elonga-
tion, da is the boundary triangularity, M is the majority ion mass number, ZI is the
impurity ion charge number, Zeff is the effective ion charge number, ii is the ratio of
the ion to the electron temperature, qa is the edge safety-factor, and b is the wall
radius.

Machine ITER SPARC

BuðTÞ 5.3 12.2
R0ðmÞ 6.2 1.85
aðmÞ 2.0 0.57
IpðMAÞ 15.0 8.7

neð1020 m�3Þ 1.0 3.0
ja 1.8 1.97
da 0.4 0.54
M 2 2
ZI 6 6
Zeff 2.0 2.0
ii 1.0 1.0
qa 3.2 3.2
b/a 1.2 1.2
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Ohmic heating in ITER gives rise to a plasma with a central electron
temperature of about 9.7 keV, whereas Ohmic heating in SPARC gives
rise to a central electron temperature of about 14.7 keV. In both
machines, the toroidal beta is about 2.5%, but the poloidal beta is very
small. Finally, in both machines, the central safety-factor is about 0.42.

The reason that we have had to adopt an unrealistically low value
of the central safety-factor in order to get a realistic edge safety-factor
is evident from Fig. 1. It can be seen from the figure that, although the
electron temperature profile is quite broad, the current density profile
is strongly peaked. The strong peaking of the current density profile is
a direct consequence of the neoclassical reduction in the electrical con-
ductivity of the plasma consequent on the existence of trapped elec-
trons (incidentally, given the estimated electron temperatures, it is
clear that the plasmas in both machines are in the banana collisionality
regime). In fact, the factor by which the conductivity is multiplied in
the presence of trapped electrons, l̂�1e (see Sec. IIC), is shown in the

figure and can be seen to be strongly peaked. Of course, the strongly
peaked current density profile is likely to be flattened in the plasma
core by the sawtooth oscillation. We have neglected this effect in our
calculation for the sake of simplicity. (The plasma core is of actually of
little significance to error-field penetration studies because the relevant
rational surfaces all lie in the outer regions of the plasma.) Finally, it is
clear from the figure that the bootstrap current is negligible in both
machines.

C. Example calculation

Consider the response of an ITER ohmically heated plasma to an
m ¼ 2=n ¼ 1 tearing mode. The 2/1 mode is such that
r̂ s ¼ 0:77; Ess ¼ �0:90, and Esb¼ 2.2 (see Sec. III). Note that the
mode is tearing-stable (i.e., Ess < 0). The normalized tearing eigen-
functions, ŵsðr̂Þ and ŵbðr̂Þ, that characterize the plasma response to
the error-field in the outer region are shown in Fig. 2 (see Sec. IIIC).

TABLE II. Estimated plasma parameters in ITER and SPARC ohmically heated plas-
mas. The dimensionless electron temperature profiles parameters ke, kf, je, and ne
are defined in Eqs. (18), (28), (38), and (43), respectively. necrit is the critical electron
number density above which the plasma enters the SOC regime, Te0 is the central
electron temperature, Pe is the Ohmic heating power, �sE is the mean energy confine-
ment time, b0 is the central toroidal beta, bh0 is the central poloidal beta, and q0 is
the central safety-factor.

Machine ITER SPARC

kf 0.54 0.40
ke 13.8 13.5
je 0.31 0.31
ne 0.27 0.27

necritð1020 m�3Þ 0.30 1.8
Te0ðkeVÞ 9.7 14.7
PeðMWÞ 8.4 5.4

�sEðsÞ 4.8 0.84
b0 2:8� 10�2 2:4� 10�2

bh0 7:2� 10�4 8:5� 10�4

q0 0.42 0.43

FIG. 1. Equilibrium profiles in an ITER
ohmically heated plasma. Here, r̂ is the
normalized minor radius, T̂ e is the normal-
ized electron temperature, ĵ/ is the nor-
malized toroidal current density, ĵ bs is the
normalized bootstrap current density, l̂�1e
is the factor by which the plasma electrical
resistivity is multiplied in the presence of
trapped electrons, q is the safety-factor,
and s is the magnetic shear.

FIG. 2. Normalized tearing eigenfunctions calculated for an ITER ohmically heated
plasma interacting with an m ¼ 2=n ¼ 1 error-field. The vertical dotted line shows
the location of the rational surface.
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Suppose, for the sake of example, that iE ¼ þ1, which implies
that the E� B frequency, xE, is equal to the electron diamagnetic fre-
quency, x�e (This implies that the perpendicular ion fluid velocity is
zero.) (see Sec. II L). The natural frequency, x0, of the 2/1 tearing mode
is defined as the frequency at which the mode would rotate, if it was
tearing unstable.21 According to the well-established theory,23,24,57

x0 ¼ xE þ x�e ¼ ð1þ iEÞx�e: (183)

Incidentally, there is experimental evidence that, in ohmically heated
tokamak plasmas, the natural frequency of tearing modes is in the
electron diamagnetic direction, relative to the E� B frame, as pre-
dicted by the previous expression.58

In our example calculation, we find that x0 ¼ 1:3 kHz. This fre-
quency is well below the natural frequencies found in existing toka-
maks, which are typically in excess of 10 kHz. The reason for the
comparatively small natural frequency is the fact that ITER is signifi-
cantly larger than existing tokamaks. (The natural frequency scales
roughly as a�2.) Given that the shielding of driven magnetic reconnec-
tion at the rational surface depends on the fact that the natural fre-
quency is non-zero, we might suppose that this shielding is going to be
comparatively weak in our example calculation. However, this is not
the case because the estimated Lundquist number at the rational

surface is S ¼ 3:9� 108. This value is much larger than that found in
existing tokamaks. (Again, this is due to the fact that ITER is signifi-
cantly larger than existing tokamaks.) It turns out that the factor that
controls shielding at the rational surface is roughly proportional to
S1=3 x0 (see Sec. IV). Hence, the comparatively small natural fre-
quency in our example calculation is offset by the comparatively large
Lundquist number. Consequently, the shielding of driven magnetic
reconnection is as large as if not larger than, that found in existing
tokamaks. In fact, we estimate the shielding factor to be R ¼ 827.

Suppose that the normalized amplitude of the 2/1 error-field is
Ŵb ¼ 1� 10�4 (see Sec. III F). This corresponds to an unshielded 2/1
radial magnetic field at the rational surface of bv=Bu ¼ 2:0� 10�3.
Figure 3 shows the Poincar�e section of the magnetic field-lines in the
vicinity of the 2/1 rational surface in the presence and in the absence of
shielding. It can be seen that shielding profoundly modifies the response
of the plasma to the error-field. In the absence of shielding, a compara-
tively wide magnetic island chain is driven at the rational surface. In the
presence of shielding, this island chain is strongly suppressed.

Unfortunately, this is not the end of the story. The error-field
exerts an electromagnetic torque at the rational surface that modifies
the E� B frequency in such a manner that the natural frequency is
reduced.21–24 Figure 4 shows the shielding factor and the natural

FIG. 3. Poincar�e section of magnetic
field-lines for an ITER ohmically heated
plasma interacting with an m ¼ 2=n ¼ 1
error-field of normalized amplitude
Ŵb ¼ 1� 10�4 in the presence (left-
hand panel) and in the absence (right-
hand panel) of shielding. The vertical
dotted lines show the location of the
unperturbed rational surface.

FIG. 4. The shielding factor, R, and the
natural frequency divided by its value in
the absence of an error-field, x̂0, calcu-
lated as functions of the error-field ampli-
tude for an ITER ohmically heated plasma
interacting with an m ¼ 2=n ¼ 1 error-
field.
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frequency as functions of the error-field amplitude in our example cal-
culation. It can be seen that as the error-field is (slowly) ramped up,
the natural frequency is gradually reduced, but that, initially, this does
not significantly modify the shielding factor. However, when the natu-
ral frequency has been reduced to about half of its original value, there
is a sudden collapse in the natural frequency to a very small value,
accompanied by a complete loss of shielding.21–24 It follows that the
plasma response to the error-field suddenly transitions from that illus-
trated in the left-hand panel of Fig. 3 to that illustrated in the right-
hand panel. As has already been mentioned, this phenomenon is
known as error-field penetration and entails the sudden introduction
of a comparatively wide locked magnetic island chain into the plasma
at the rational surface. The critical unshielded 2/1 radial magnetic field
at the rational surface needed to trigger penetration is
bv=Bu ¼ 1:2� 10�3.

D. Natural frequency scan

Figure 5 shows the critical n¼ 1 error-field amplitude needed to
trigger error-field penetration (actually, it shows the critical error-field
required to reduce the natural frequency to 1% of its original value),
calculated as a function of the natural frequency, in ITER and SPARC

ohmically heated plasmas. Figure 6 shows the corresponding critical
n¼ 2 error-field amplitudes. Finally, Fig. 7 shows the corresponding
critical n¼ 3 error-field amplitudes. These calculations were per-
formed by varying the parameter iE fromþ 1 to �3, which implies a
variation in the natural frequency from þ2x�e to�2x�e. This covers
the likely range of natural frequencies in ITER and SPARC ohmically
heated plasmas. A positive natural frequency corresponds to a tearing
mode that would rotate in the electron diamagnetic direction, if it was
naturally unstable. On the other hand, a negative natural frequency
corresponds to a tearing mode that would rotate in the ion diamag-
netic direction. Equivalently, a positive natural frequency corresponds
to an electron fluid at the rational surface that rotates in the electron
diamagnetic direction, whereas a negative natural frequency corre-
sponds to an electron fluid that rotates in the ion diamagnetic
direction.

Examining Figs. 5–7, it can be seen that the critical error-field
amplitude needed to trigger error-field penetration attains a minimum
value when the natural frequency, x0, passes through zero. Note, how-
ever, that this minimum value is not zero. (The fact that the minimum
value is not zero is an artifact of our definition of the critical error-field
amplitude, namely, that it is the amplitude needed to require to reduce
the natural frequency to 1% of its original value. In fact, the flat

FIG. 5. The critical error-field amplitude
for n¼ 1 error-field penetration as a func-
tion of the natural frequency. The left- and
right-hand panels correspond to ITER and
SPARC ohmically heated plasmas,
respectively. The horizontal dotted lines
show ðbv=BuÞcrit ¼ 2� 10�4.

FIG. 6. The critical error-field amplitude
for n¼ 2 error-field penetration as a func-
tion of the natural frequency calculated for
various different poloidal mode numbers.
The left- and right-hand panels corre-
spond to ITER and SPARC ohmically
heated plasmas, respectively. The hori-
zontal dotted lines show ðbv=BuÞcrit
¼ 2� 10�4.
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horizontal portions of the curves, where the natural frequency passes
through zero, that can be seen in Figs. 5–7 correspond to the absence
of effective shielding at the rational surface. It still takes a finite error-
field amplitude to reduce the very small natural frequency to 1% of its
original value, but the shielding has already disappeared.)

According to Figs. 6 and 7, the critical error-field amplitude
needed to trigger error-field penetration decreases with increasing
poloidal mode number. This is the case because rational surfaces with
higher poloidal mode numbers are closer to the edge of the plasma,
where the plasma is colder, and the Lundquist number is consequently
smaller.

Figures 5–7 indicate a slight asymmetry between positive and
negative natural frequencies for the case of an ITER and SPARC ohmi-
cally heated plasma. In other words, such plasmas are slightly more
susceptible to error-field penetration when the electron fluid at the
rational surface rotates in the ion diamagnetic direction, rather than in
the electron diamagnetic direction.

On the basis of experience gained in past and existing tokamak
experiments,1–5,8–10,12 the maximum likely value for an error-field in
an ITER or a SPARC plasma is bv=Bu ’ 2� 10�4. It is clear from
Fig. 5 that, unless the natural frequency is very close to zero, the critical
error-field amplitude needed to trigger m ¼ 2=n ¼ 1 error-field

penetration in an ITER or a SPARC ohmically heated plasma is signifi-
cantly greater than this value. This suggests that diamagnetic levels of
plasma rotation are sufficient to protect ITER and SPARC ohmically
heated plasmas fromm ¼ 2=n ¼ 1 error-field penetration.

Figures 6 and 7 show that the critical error-field amplitudes
needed to trigger n¼ 2 or n¼ 3 error-field penetration in ITER and
SPARC ohmically heated plasmas are not necessarily greater than
bv=Bu ’ 2� 10�4. This is especially the case for ITER. This suggests
that ITER and SPARC ohmically heated plasmas may be vulnerable to
n> 1 error-field penetration.

E. Electron number density scan

The calculations shown in Figs. 5–7 were all performed at the
normal operating electron number densities for ITER and
SPARC plasmas, namely, ne ¼ 1� 1020 m�3 for the case of ITER,
and ne ¼ 3� 1020 m�3 for the case of SPARC. Let us examine what
happens when the number density falls below the normal operating
level, as might well be the case in the very early stages of an ohmically
heated plasma. Figure 8 shows the critical error-field amplitude needed
to trigger m ¼ 2=n ¼ 1 error-field penetration (again it, actually,
shows the critical error-field required to reduce the natural frequency

FIG. 7. The critical error-field amplitude
for n¼ 3 error-field penetration as a func-
tion of the natural frequency calculated for
various different poloidal mode numbers.
The left- and right-hand panels corre-
spond to ITER and SPARC ohmically
heated plasmas, respectively. The hori-
zontal dotted lines show ðbv=BuÞcrit
¼ 2� 10�4.

FIG. 8. The critical error-field amplitude
for error-field penetration as a function of
the electron number density calculated for
various different values of iE. The left- and
right-hand panels correspond to ITER and
SPARC ohmically heated plasmas,
respectively. The dashed vertical lines
indicate the critical electron number den-
sity above which the LOC confinement
regime goes over to the SOC regime. The
horizontal dotted lines show ðbv=BuÞcrit
¼ 2� 10�4.
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to 1% of its original value), for various different values of iE that span
the likely range of variation of this parameter, calculated as a function
of the electron number density, in ITER and SPARC ohmically heated
plasmas.

According to Fig. 8, the critical error-field amplitude needed to
trigger error-field penetration increases with increasing electron num-
ber density when the plasma lies in the low-density LOC regime. This
increase has been observed in many tokamak experiments.1,3,4,6–11,13

(There is some debate in the literature as to whether the critical error-
field amplitude scales as n1e or as n1=2e . The results shown in Fig.
8 seem more consistent with an n1=2e scaling.) On the other hand, as
soon as the plasma enters the SOC regime, the increase in the critical
error-field amplitude with increasing electron number density levels
off. This roll-over has been observed in KSTAR plasmas.14 In our
model, the increase in the critical error-field amplitude needed to trig-
ger error-field penetration with increasing electron number density, at
low electron number densities, is associated with the density depen-
dence of the poloidal flow-damping rate. In other words, poloidal
flow-damping becomes comparatively weak at low electron number
densities (i.e., at high collisionality), which facilitates error-field
penetration.

Figure 8 indicates that ITER and SPARC ohmically heated plas-
mas are only vulnerable to m ¼ 2=n ¼ 1 error-field penetration at
electron number densities that are sufficiently low that the plasmas lie
well inside the LOC regime.

VII. SUMMARY AND CONCLUSIONS

We have calculated the critical n¼ 1, n¼ 2, and n¼ 3 error-field
amplitudes needed to trigger error-field penetration in ITER and
SPARC, steady-state, ohmically heated plasmas. For the sake of sim-
plicity, our model plasma equilibrium employs cylindrical geometry.
However, we have endeavored to make the calculation of the Ohmic
heating power as realistic as possible by taking into account plasma
impurities, trapped particles, the bootstrap current, and the correction
to the conventional cylindrical expression for the safety-factor due to
toroidicity and plasma shaping. Our model energy confinement time
is specified by the neo-Alcator scaling law in the low-density linear
Ohmic confinement (LOC) regime and by the ITER-89P L-mode scal-
ing law in the high-density saturated Ohmic confinement (SOC)
regime. Our calculation employs a standard asymptotic matching
approach. The response of the plasma in the outer region is calculated
self-consistently from the cylindrical tearing mode equation. The
response of the plasma in the inner region is calculated using a linear-
ized version of the four-field model that incorporates E� B flows,
electron and diamagnetic flows, the ion sound radius, and anomalous
cross field energy and momentum diffusivity. Finally, the response of
the plasma to the localized electromagnetic torque that develops in the
inner region is calculated by solving the full plasma angular equations
of motion, taking the neoclassical damping of poloidal rotation into
account. The ultimate result is a torque balance equation that allows
the local plasma flows, as well as the amount of reconnected magnetic
flux driven at the rational surface, to be calculated as functions of the
error-field amplitude.

We find that, at the normal operating electron number density,
diamagnetic levels of rotation are sufficient to protect ITER and
SPARC plasmas from m ¼ 2=n ¼ 1 error-field penetration. [This is
essentially because the detrimental effect of comparatively low

(compared to existing tokamaks) rotation levels in such plasmas is off-
set by the beneficial effect of much larger Lundquist numbers.] On the
other hand, SPARC, and especially ITER, ohmically heated plasmas
may be vulnerable to n> 1 error-field penetration. ITER and SPARC
ohmically heated plasmas are also found to be slightly more suscepti-
ble to error-field penetration when the electron fluid at the rational
surface rotates in the ion diamagnetic direction, rather than the elec-
tron diamagnetic direction. Finally, at electron number densities that
are sufficiently low that the plasma lies in the LOC confinement
regime (such densities are well below the normal operating density),
the error-field penetration threshold increases with increasing density.
However, as soon as the electron number density becomes large
enough that the plasma enters the SOC regime, the increase in the
error-field penetration threshold with increasing density levels off.
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