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ABSTRACT

The extended perturbed equilibrium code asymptotic matching code is used to simulate the triggering of n¼ 1 neoclassical tearing modes
(NTMs) by a pulsed, rotating, n¼ 1, resonant magnetic perturbation (RMP) in two example NSTX discharges. Although the two discharges
are significantly different from one another, the results of the two sets of simulations are quite similar. The critical n¼ 1 RMP pulse
amplitude required to trigger an n¼ 1 NTM is minimized when the RMP pulse rotation frequency matches the linear natural frequency of
an n¼ 1 tearing mode, resonant within the plasma, that is metastable to an NTM. However, if there is a frequency mismatch, then the seed
magnetic island chain driven at the relevant resonant surface is forced to rotate with respect to the RMP, because the RMP pulse amplitude
is nowhere near sufficient to lock the island chain to the RMP. This rotation causes the critical RMP pulse amplitude required to trigger an
NTM to oscillate as the RMP pulse duration is varied. The critical amplitude is minimized when the RMP pulse duration is such that seed
island chain executes a half-integer number of rotations with respect to the pulse. All of the minima have the same value.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0155038

I. INTRODUCTION

Neoclassical tearing modes (NTMs) are the main obstacle to
obtaining normalized plasma pressure (b) levels in tokamak1 plasmas
that are adequate for the achievement of thermonuclear fusion.2,3

NTMs were originally identified experimentally on the TFTR toka-
mak.4 NTMs lead to the development of low poloidal and toroidal
mode number (m and n) magnetic island chains on toroidal magnetic
flux-surfaces within the plasma that are characterized by rational (i.e.,
m/n) values of the safety-factor (q). An NTM is driven by a helical
reduction in the bootstrap current5 profile that arises as a consequence
of the flattening of the plasma pressure across the associated island
chain region.6 However, a magnetic island chain can only locally
flatten the plasma pressure when its radial width exceeds a certain
threshold value that depends on the local ratio of the parallel and per-
pendicular energy diffusivities.7 This observation leads to the conclu-
sion that NTMs are actually metastable. In other words, some sort of
seed perturbation must be applied to the relevant rational magnetic
flux-surface in order to trigger an NTM. In practice, the seed perturba-
tion usually takes the form of a transient magnetic perturbation that is

resonant at the rational surface.8,9 Such perturbations are generated in
tokamak plasmas primarily by sawtooth crashes, edge localized modes
(ELMs), and fishbones.2,3

The aim of this paper is to investigate how the properties (i.e.,
amplitude, duration, and rotation frequency) of a transient resonant
magnetic perturbation (RMP) applied to a toroidal tokamak plasma
affect its ability to trigger NTMs within the plasma. In this study, we
shall use the extended perturbed equilibrium code (EPEC) (see Sec. II)
to simulate what happens when a transient n¼ 1 magnetic perturba-
tion is applied to a typical NSTX plasma.

II. BRIEF DESCRIPTION OF THE EPEC CODE

The EPEC code10–13 employs an asymptotic matching14–24

approach to determine the resistive response of a toroidal tokamak
equilibrium to an applied RMP. The main advantage of the asymptotic
matching approach is that it largely removes the very short Alfv�en
time from the problem. In fact, the EPEC code is capable of accurately
simulating the resistive response of a toroidal tokamak plasma to an
RMP while taking time steps that extend over many Alfv�en times.

Phys. Plasmas 30, 072505 (2023); doi: 10.1063/5.0155038 30, 072505-1

Published under an exclusive license by AIP Publishing

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

 09 July 2023 15:48:14

https://doi.org/10.1063/5.0155038
https://doi.org/10.1063/5.0155038
https://doi.org/10.1063/5.0155038
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0155038
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0155038&domain=pdf&date_stamp=2023-07-07
https://orcid.org/0000-0001-6237-9309
https://orcid.org/0000-0003-1238-8121
https://orcid.org/0000-0003-2419-8667
https://orcid.org/0000-0003-1077-8118
mailto:rfitzp@utexas.edu
https://doi.org/10.1063/5.0155038
pubs.aip.org/aip/php


In this manner, the code is able to simulate the full duration of a
plasma discharge in a matter of minutes of real time.

The version of the EPEC model used in this paper is described
in detail in the Appendix. The EPEC model is fully toroidal and
makes use of experimental magnetic equilibrium data and plasma
profile data. The homogenous component of the toroidal tearing sta-
bility matrix is calculated approximately by the EPEC code. The
inhomogeneous component of the matrix, which specifies the ideal
response of the plasma to the applied RMP, is calculated exactly by
the GPEC code. (see subsection 2 d of the Appendix). The model
incorporates an accurate neoclassical model25 that takes impurities
and neutral particles into account and allows the calculation of the
neoclassical poloidal flow-damping timescale, the charge-exchange
damping timescale, the neoclassical ion rotation profile, and the
bootstrap current profile (see subsection 3 of the Appendix). The
responses of the various resonant layers in the plasma are calculated
by interpolating between the linear and nonlinear response regimes.
The linear response model includes diamagnetic flows, the ion
sound radius, and anomalous perpendicular momentum and energy
transport. The nonlinear response model includes perturbed boot-
strap current, magnetic field-line curvature, ion polarization current,
and island saturation terms in the generalized Rutherford equation
(see subsection 4 of the Appendix). The EPEC model accurately cal-
culates the (theoretical) critical island widths needed to locally flat-
ten the plasma pressure profile (see subsection 4 c of the Appendix).
The switch-over between the linear and the nonlinear response
models occurs when the island width exceeds the critical island
width.

The natural frequency of a tearing mode, resonant within the
plasma, is a concept that plays a central role in the EPEC model, and
is, therefore, worth discussing. The natural frequency of a stable, or
metastable (prior to triggering), tearing mode is defined as the angu-
lar frequency at which the mode would rotate if it had a finite ampli-
tude (in the absence of the RMP).19 The natural frequency is
determined by a combination of E� B and diamagnetic plasma
flows at the rational surface. The natural frequency of a tearing
mode can be calculated exactly in two regimes; first, the linear
regime, in which the island width is much smaller than the linear
layer width; second, the nonlinear regime, in which the island width
is much greater than the linear layer width (and the critical island
width above which the plasma pressure is locally flattened).
According to the linear tearing mode theory, the natural frequency
is such that the tearing mode is essentially convected by the electron
fluid at the rational surface.17,26,27 On the other hand, according to
the nonlinear tearing mode theory, the tearing mode is essentially
convected by the ion fluid at the rational surface.28 To be more exact,
under the influence of neoclassical poloidal flow damping, a nonlin-
ear tearing mode is forced to rotate in the ion diamagnetic direction
with respect to the local E� B frame, but in the electron diamag-
netic direction with respect to the local ion fluid frame, the exact
rotation frequency is being influenced by plasma impurities.29–31

The EPEC model interpolates between these two possibilities, with
the switchover from the linear to the nonlinear natural frequency
being triggered by the flattening of the local temperature and density
profiles at the rational surface (see subsection 5 b of the Appendix).
As will become apparent, it is the linear natural frequency that con-
trols the triggering of NTMs by rotating RMPs.

III. FIRST EXAMPLE NSTX DISCHARGE
A. Introduction

The two example NSTX discharges studied in this paper were
chosen because they were both fairly generic and had precomputed
kinetic-EFITs.

The first example discharge is 127317, which was a discharge
used in an investigation of the interaction between edge localized
modes (ELMs) and RMPs in NSTX.32 Discharge 127317 is an H-
mode plasma, characterized by a (almost) double magnetic null
boundary shape, 6MW of neutral beam heating power, and no fresh
deposition of the lithium coating on the plasma-facing wall-tiles.

B. Magnetic equilibrium

Figure 1 shows the experimental magnetic equilibrium of NSTX
discharge 127317 at t¼ 400ms. This equilibrium is characterized by a
scale major radius R0 ¼ 0:85 m (see subsection 2 a of the Appendix),
a scale toroidal magnetic field-strength B0 ¼ 0:44 T (see subsection
2 b of the Appendix), a net toroidal plasma current I/ ¼ 753 kA, a
safety-factor at the 95% flux-surface q95 ¼ 11:0, and a poloidal beta
bp ¼ 0:61.

FIG. 1. Equilibrium magnetic flux-surfaces in NSTX discharge 127317 at
t¼ 400ms. Here, R0 ¼ 0:85 m.
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C. Plasma profiles

Figure 2 shows the experimental safety-factor, electron number
density, electron temperature, ion temperature, impurity ion number
density, and impurity ion toroidal angular velocity profiles in NSTX
discharge 127317 at t¼ 400ms. The majority ions are deuterium, and
the impurities are assumed to be fully-stripped carbon ions (with the
same temperature as the majority ions), which permits the Zeff profile
to be determined from the profile data (see subsection 3 a of the
Appendix). Note that the discharge is subject to rotation braking due
to an applied n¼ 3 RMP,33 which accounts for its slightly lower than
usual toroidal rotation (compare the rotation in Fig. 12). Because there
is no poloidal impurity ion rotation data for this discharge, the E� B
rotation profile is deduced from the toroidal impurity ion rotation
data using neoclassical theory (see subsection 3 g of the Appendix).

The perpendicular electron energy diffusivity (ve), perpendicular
ion energy diffusivity (vi), perpendicular toroidal momentum diffusiv-
ity (v/), and perpendicular particle diffusivity (D?) are given the plau-
sible values 1.0, 1.0, 1.0, and 0.2m2=s, respectively, throughout the
plasma. It turns out that the simulations presented in this paper are
not particularly sensitive to these values.

Note that neutrals do not really play a role in the physics of
NTMs, which are resonant in the plasma core, and are only included

in the calculation because they need to be specified in the EPECmodel.
The flux-surface averaged neutral deuterium atom number density
takes the form hnniðrÞ ¼ hnniðr100Þ=½1þ ðr � r100Þ2=l 2n �, where
hnniðr100Þ ¼ 1:0� 1016 m�3, and ln ¼ 1:3� 10�2 m. The flux-
surface neutral poloidal asymmetry parameter is given the value
yn ¼ 1:5 (see subsection 3 e of the Appendix). The flux-surface aver-
aged deuterium-atom/deuterium-ion charge-exchange rate constant is
hr vicxi ¼ 4� 10�14 m3 s�1.34 The neutrals are assumed to be hot (i.e.,
En=Ti ¼ 1.).

D. n¼ 1 natural frequencies

Figure 3 shows the linear natural frequencies [i.e., the-e k defined
in Eq. (A142)] of all of the n¼ 1 tearing modes resonant within dis-
charge 127317. There are 18 such modes, with poloidal mode numbers
lying in the rangem¼ 2 tom¼ 19. As is usual in a tokamak discharge
with co-injected neutral beam heating, the tearing modes resonant in
the edge pressure gradient region (the pedestal) have large positive
natural frequencies (which implies that they would rotate in the elec-
tron diamagnetic direction were they naturally unstable) as a conse-
quence of relatively strong edge electron diamagnetic rotation (in this
case, mostly due to the comparatively large electron density gradient
in the pedestal) and relatively weak edge toroidal plasma rotation. On

FIG. 2. Safety-factor, electron number
density, electron temperature, ion temper-
ature, impurity ion number density, and
impurity ion toroidal rotation profiles in
NSTX discharge 127317 at t¼ 400ms.
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the other hand, the tearing modes resonant in the core have large neg-
ative natural frequencies (which implies that they would rotate in the
ion diamagnetic direction were they naturally unstable) as a conse-
quence of relatively strong core toroidal plasma rotation (in the same
direction as the toroidal plasma current) and comparatively weak core
electron diamagnetic rotation.13 Possibly because of the rotation brak-
ing, there is a wide region lying between the pedestal and the core
where the natural frequencies hover close to zero. Moreover, the natu-
ral frequency curve (i.e., the curve that interpolates between the natu-
ral frequencies) crosses zero (i.e., switches direction), about halfway
between the magnetic axis and the last closed magnetic flux-surface
(LCFS). [At the zero-crossing, the tendency of electron diamagnetic
rotation to make the natural frequency positive is exactly balanced by
the tendency of toroidal plasma rotation (in the same direction as the
toroidal plasma current) to make the natural frequency negative.] In a
conventional aspect-ratio tokamak plasma, the zero-crossing is invari-
ably at the top of the pedestal.10 The observation that the zero-
crossing of the n¼ 1 natural frequency curve in NSTX does not take
place at the top of the pedestal (see also Fig. 13) may help to explain
why RMPs were unable to suppress ELMs in this device.32

(Admittedly, the ELM suppression experiments were performed with
an n¼ 3 RMP, but the location of the zero-crossing for the n¼ 3 curve
is identical to that for the n¼ 1 curve.) It should be noted that the fact
that the natural frequency curve of tearing modes, resonant within H-
mode plasmas in conventional aspect-ratio tokamaks heated by co-
injected neutral beams, invariably passing through zero close to the
top of the pedestal is an important ingredient in recent theories of how
RMP-induced ELM suppression works.10–13,35

E. n¼ 1 NTM stability

Only two of the n¼ 1 tearing modes resonant in discharge
127317 are metastable to NTMs. These modes are resonant in the
middle of the plasma, close to the zero-crossing of the natural fre-
quency curve. The unstable modes are the m¼ 3, with a natural

frequency of 3.5 krad/s, and the m¼ 4, with a natural frequency of
11.8 krad/s. Figure 4 shows the right-hand sides (RHSs) of the modi-
fied Rutherford island width evolution equations for the m¼ 3 and
m¼ 4 modes as functions of island width. [In fact, what is plotted is
Ekk þ fk. See Eqs. (A3) and (A107). Ekk is the (negative) classical tear-
ing stability index, which is only calculated approximately for low-m
modes by EPEC. fk specifies the destabilizing effect of the perturbed
bootstrap current, the stabilizing effect of magnetic field-line curva-
ture, the stabilizing effect of the ion polarization current, and the stabi-
lizing effect of island saturation. All of these effects are calculated
accurately by EPEC.] As expected for a metastable NTM, both RHS
curves shown in Fig. 4 are negative for small and large island widths
and positive for intermediate island widths. The smaller zero-crossing
of the RHS curve indicates the width of the seed island chain that
must be induced at the resonant (i.e., rational) surface in order to trig-
ger the NTM. The larger zero-crossing indicates the saturated width of
the NTM. It should be noted that the RHS curves for all the other
m¼ 1 modes resonant in discharge 127317 are negative for all island
widths (which indicates NTM stability).

F. n¼ 1 RMP

For the sake of definiteness and convenience, the n¼ 1 transient
rotating RMP that is used to (theoretically) trigger n¼ 1 NTMs in dis-
charge 127317 is generated by pulsing a rotating n¼ 1 current in the
RMP coils installed on NSTX. (To be more exact, the ideal response of
the plasma to the currents flowing in the RMP coils is calculated by
the GPEC code,36 and this information is used as the basis for the
EPEC calculation. See subsection 2 d of the Appendix.) An RMP pro-
duced in this manner is supposed to represent the type of rotating,
multi-harmonic RMP that would be generated by a sawtooth crash or
an ELM. For this reason, we do not take into account the shielding
effect of eddy currents induced in the vacuum vessel (because the real
RMPs that trigger NTMs are generated inside the plasma, and are,

FIG. 3. Linear n¼ 1 natural frequencies
in NSTX discharge 127317. There are 18
n¼ 1 resonant surfaces in the plasma
corresponding to m¼ 2 through m¼ 19.
Only the m¼ 3 and m¼ 4 surfaces are
potentially unstable to NTMs.
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therefore, not strongly shielded from the remainder of the plasma by
vacuum vessel eddy currents).

G. Triggering of n¼ 1 NTMs

Figure 5 shows the n¼ 1 island widths vs time driven in dis-
charge 127317, as calculated by the EPEC code, in response to an
n¼ 1 current pulse of amplitude 0.089 kA, duration 5ms, and fre-
quency 0 krad/s applied to the RMP coils. It can be seen that an NTM
is not triggered (because all of the island widths eventually decay to
zero after the pulse is applied).

Figure 6 shows the n¼ 1 island widths vs time driven in discharge
127317 in response to an n¼ 1 current pulse of slightly larger amplitude
0.090kA, duration 5ms, and frequency 0 krad/s applied to the RMP
coils. It can be seen that the m¼ 3 NTM is triggered. In other words,
the m¼ 3 island width grows and eventually saturates at a large value.
Note that most of the growth occurs long after the application of the
RMP, indicating that something other than the RMP (i.e., the perturbed
bootstrap current) is responsible for driving the growth. To be more
exact, it is inferred that the RMP pushes them¼ 3 island above the seed
value shown in Fig. 4 (i.e., the smaller zero-crossing of the RHS curve in
the top panel), allowing the perturbed bootstrap current to drive the fur-
ther growth in the island width by itself. Because all of the n¼ 1 tearing
modes resonant in the plasma are coupled together, the growth of the

m¼ 3 NTM drives narrow island chains at the m¼ 4, m¼ 5, and
m¼ 6 resonant surfaces. However, these are not NTMs.

Figure 7 shows the natural frequency and phase velocity of the
m¼ 3 NTM triggered in the previous figure vs time. Note that the
plasma is subject to a small-amplitude, static, background RMP in
order to ensure that the various modes in the calculation have repro-
ducible initial phases. Prior to the application of the transient RMP,
there is a very small stationary magnetic island chain driven at the
m¼ 3 resonant surface. The fact that the phase velocity and natural
frequency of the mode do not match indicates that the plasma at the
resonant surface is capable of freely flowing through the locked island
chain (because of its very small width). As soon as the transient RMP
is applied to the plasma, a seed island chain is driven at the resonant
surface. This island chain is sufficiently wide that it is dragged by the
plasma at the resonant surface, causing it to rotate in the direction of
its natural frequency. The rotation is braked by the RMP, which means
that the phase velocity of the seed island chain does not match its nat-
ural frequency. The fact that the natural frequency barely changes dur-
ing the application of the transient RMP indicates that the amplitude
of the RMP is nowhere near large enough to halt the plasma rotation
at the resonant surface. As soon as the transient RMP disappears, the
seed island chain is no longer braked by the RMP, and consequently
accelerates until it is rotating at its natural frequency. As the seed island
chain grows and becomes a fully fledged NTM, its natural frequency

FIG. 4. Right-hand sides of the modified
Rutherford equations for the m ¼ 3=n
¼ 1 and m ¼ 4=n ¼ 1 tearing modes in
NSTX discharge 127317 at t¼ 400ms.
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changes because it switches from that characteristic of a linear layer (in
this case, small and positive) to that characteristic of a nonlinear mag-
netic island chain (in this case, large and negative) (see subsection 5 b of
the Appendix). However, this switch takes place long after the triggering
of the NTM, which suggests that it is the linear, rather than the nonlin-
ear, natural frequency that plays a role in NTM triggering.

H. Pulse duration scan

Figure 8 shows the critical n¼ 1 RMP current pulse amplitude
required to trigger an m¼ 3 NTM in discharge 127317 as a function
of the pulse duration for various different pulse frequencies.

The figure was generated as follows: For a given pulse duration
and frequency, an RMP pulse of a certain amplitude was applied to
the plasma, and the plasma response was simulated for 200ms using
the EPEC code, after which a determination was made as to whether
or not an NTM had been triggered. A bisection search was made in
the pulse amplitude in order to determine the critical amplitude
needed to trigger the NTM. In general, it required about ten EPEC
simulations to determine the critical amplitude. Because there are
about 800 points in each curve plotted in the figure, and there are five
curves, it follows that the production of the figure required about
40 000 EPEC simulations (which means that a total of about 8000 s of
plasma dynamics was simulated). Obviously, this would be impossible

FIG. 5. Calculated n¼ 1 island widths vs
time in NSTX discharge 127317 in
response to an n¼ 1 current pulse of
amplitude 0.089 kA, duration 5 ms, and
frequency 0 krad/s applied to the RMP
coils.

FIG. 6. Calculated n¼ 1 island widths vs
time in NSTX discharge 127317 in
response to an n¼ 1 current pulse of
amplitude 0.090 kA, duration 5 ms, and
frequency 0 krad/s applied to the RMP
coils.
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using a conventional MHD code. However, it is perfectly feasible using
an asymptotic matching code.

Let us concentrate, first, on the green curve, which corresponds
to zero-frequency current pulses. One might expect that the critical
pulse amplitude required to trigger an NTM would decrease mono-
tonically with pulse duration, because a longer pulse would generate a
wider seed island chain. In fact, this is not the case, and the pulse
amplitude curve exhibits oscillations. The key to understanding this
unexpected behavior is the fact that the seed island chain is not locked
to the RMP pulse, but is instead forced to rotate with respect to the
pulse by the plasma rotation at the resonant surface (see Fig. 7). This

means that after a time sufficient for the seed island chain to perform
half a rotation with respect to the pulse, the seed island width attains a
maximum value (because, assuming that it was initially in phase with
the pulse, it is now in phase quadrature). Hence, the critical pulse
amplitude attains a minimum value. A longer pulse can make the seed
island width smaller, but not larger. Thus, the minimum pulse ampli-
tudes (which are all the same) correspond to pulse durations that allow
the seed island chain to execute 1/2, 3/2, 5/2, and many other rotations
with respect to the pulse. The time needed for the seed island chain to
execute a full rotation with respect to the pulse is inversely propor-
tional to the difference between the pulse frequency and the linear

FIG. 7. Calculated phase velocity ( _u) and
natural frequency (-) of the m ¼ 3=n
¼ 1 tearing mode vs time in NSTX dis-
charge 127317 in response to an n¼ 1
current pulse of amplitude 0.090 kA, dura-
tion 5ms, and frequency 0 krad/s applied
to the RMP coils.

FIG. 8. Critical n¼ 1 RMP coil current
pulse amplitude required to trigger an
NTM in NSTX discharge 127317 as a
function of the pulse duration for various
different pulse frequencies.
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natural frequency at the resonant surface. Thus, when the pulse fre-
quency (almost) matches the linear natural frequency (light-blue
curve—in this case, the frequency mismatch is only 0.5 krad/s) the
rotation time is (almost) infinite, and the critical pulse amplitude
exhibits the expected monotonic decrease with pulse duration. On the
other hand, as the frequency mismatch increases (see the sequence
from the black to the dark-blue, to the green, to the red, curve) the
oscillations in the critical pulse amplitude become shorter and more
violent.

Note that at very short pulse durations, the critical pulse ampli-
tude needed to trigger an NTM becomes independent of the pulse fre-
quency. However, it is clear from the figure that very short duration
pulses are relatively inefficient at triggering NTMs. (In fact, in the
short pulse duration limit, the critical pulse amplitude scales as the
inverse of the pulse duration.)

I. Pulse frequency scan

Figure 9 shows the critical n¼ 1 RMP current pulse amplitude
required to trigger an NTM in discharge 127317 as a function of the
pulse frequency for a pulse duration of 20ms. The generation of this
figure required about 20 000 EPEC simulations. As might be expected,
the critical pulse amplitude exhibits a minimum value (which is not
quite zero) when the pulse frequency matches the linear natural fre-
quency of the m¼ 3 tearing mode. The critical pulse amplitude
increases in a roughly linear fashion, with superimposed oscillations of
increasing amplitude, as the size of the frequency mismatch increases.
The critical pulse amplitude exhibits a secondary minimum when the
pulse frequency matches the linear natural frequency of the m¼ 4
tearing mode. This is a synergistic effect by which the pulse simulta-
neously triggers both an m¼ 3 and an m¼ 4 NTM. This process is
illustrated in Fig. 10, which shows what happens when a pulse whose
frequency closely matches the linear natural frequency of the m¼ 4
tearing mode is applied to the plasma. It can be seen that an m¼ 4
NTM is almost immediately triggered, closely followed by an m¼ 3

NTM. Both NTMs grow to large amplitudes and clearly drive smaller
island chains at other resonant surfaces in the plasma. It should be
noted that the pulse amplitudes in Figs. 5 and 10 are the same; it is
only the pulse frequencies that are different. Thus, a comparison of the
two figures reveals that merely changing the pulse frequency can cause
the completely benign plasma response shown in Fig. 5 to convert into
the catastrophic response shown in Fig. 10.

IV. SECOND EXAMPLE NSTX DISCHARGE
A. Introduction

The second example NSTX discharge studied in this paper is
139057, which was a discharge used in an investigation of blob dynam-
ics in NSTX.37 Discharge 139057 is an H-mode plasma, characterized
by a single magnetic null boundary shape, 6MW of neutral beam
heating power, and fresh lithium coating of the wall-tiles.

B. Magnetic equilibrium

Figure 11 shows the experimental magnetic equilibrium of NSTX
discharge 139057 at t¼ 557ms. This equilibrium is characterized by a
scale major radius R0 ¼ 0:85 m, a scale toroidal magnetic field-
strength B0 ¼ 0:54T, a net toroidal plasma current I/ ¼ 907 kA, a
safety-factor at the 95% flux-surface q95 ¼ 9:5, and a poloidal beta
bp ¼ 0:57.

C. Plasma profiles

Figure 12 shows the experimental safety-factor, electron number
density, electron temperature, ion temperature, impurity ion number
density, and impurity ion toroidal angular velocity profiles in NSTX
discharge 139057 at t¼ 557ms. As before, the majority ions are deute-
rium, and the impurities are assumed to be fully stripped carbon ions.
Note that the discharge is not subject to rotation braking due to an
applied n¼ 3 RMP, which accounts for the slightly higher toroidal
rotation than that present in discharge 127317 (see Fig. 2). As before,

FIG. 9. Critical n¼ 1 RMP coil current
pulse amplitude required to trigger a NTM
in NSTX discharge 127317 as a function
of the pulse frequency for a pulse duration
of 20ms.
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the E� B rotation profile is deduced from the toroidal impurity ion
rotation data using neoclassical theory.

The diffusivity and neutral profiles in discharge 139057 are
assumed to be the same as those adopted in the study of discharge
127317.

D. n¼ 1 natural frequencies

Figure 13 shows the linear natural frequencies of all of the n¼ 1
tearing modes resonant within discharge 139057. There are 13 such
modes, with poloidal mode numbers lying in the range m¼ 2 to
m¼ 14. As is usual, the natural frequencies are negative in the pedestal
(due to strong edge electron diamagnetic rotation) and positive in the
plasma core (due to strong core toroidal plasma rotation in the same
direction as the toroidal plasma current). There is more shear in the
natural frequency curve than is evident in Fig. 3, because discharge
139059 was not subject to rotation braking. Note that the natural fre-
quency curve again passes though zero in the middle of the plasma,
rather than at the top of the pedestal. We speculate that this is the case
because diamagnetic contributions to the natural frequency scale as
the inverse-square of plasma minor radius, and are, therefore, compar-
atively stronger in spherical tokamaks than in conventional aspect-
ratio tokamaks.

E. n¼ 1 NTM stability

Five of the n¼ 1 tearing modes resonant in discharge 139057 are
metastable to NTMs. As before, these modes are resonant in the mid-
dle of the plasma, close to the zero-crossing of the natural frequency
curve. The unstable modes are them¼ 3, with a natural frequency of -
18.8 krad/s, the m¼ 4, with a natural frequency of 3.1 krad/s, the
m¼ 5, a with natural frequency of 14.5 krad/s, them¼ 6, with a natu-
ral frequency of 20.2 krad/s, and the m¼ 7, with a natural frequency
of 23.9 krad/s. Figure 14 shows the right-hand sides of the modified
Rutherford island width evolution equations for them¼ 3, 4, 5, 6, and

FIG. 10. Calculated n¼ 1 island widths vs
time in NSTX discharge 127317 in
response to an n¼ 1 current pulse of
amplitude 0.089 kA, duration 5 ms, and
frequency 11 krad/s applied to the RMP
coils.

FIG. 11. Equilibrium magnetic flux-surfaces in NSTX discharge 139057 at
t¼ 557ms. Here, R0 ¼ 0:85 m.
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7 modes as functions of island width. It can be seen that the most
unstable mode is the m¼ 3, and that the m¼ 7 mode is only barely
unstable (because its RHS barely crosses zero).

F. n¼ 1 RMP

As before, the n¼ 1 transient rotating RMP that is used to (theo-
retically) trigger n¼ 1 NTMs in discharge 139057 is generated by puls-
ing a rotating n¼ 1 current in the RMP coils installed on NSTX.

G. Pulse frequency scan

Figure 15 shows the critical n¼ 1 RMP current pulse amplitude
required to trigger an NTM in discharge 139057 as a function of the
pulse frequency for a pulse duration of 20ms. The critical pulse ampli-
tude exhibits a minimum value (which is not quite zero) when the
pulse frequency matches the linear natural frequency of the m¼ 3
tearing mode. The critical pulse amplitude also exhibits secondary
minima when the pulse frequency matches the linear natural frequen-
cies of the m¼ 4, the m¼ 5, and the m¼ 6 tearing modes. Again, this
is a synergistic effect by which the pulse simultaneously triggers both
an m¼ 3 and an m¼ 4 NTM, or an m¼ 3, an m¼ 4, and an m¼ 5
NTM, etc. There is no clear secondary minimum when the pulse

frequency matches the linear natural frequency of the m¼ 7 tearing
mode, because them¼ 7 NTM is comparatively feeble.

V. SUMMARY AND CONCLUSIONS

The EPEC asymptotic matching code has been used to simulate
the triggering of n¼ 1 NTMs by a pulsed, rotating, n¼ 1 RMP in two
example NSTX discharges. Although the two discharges are signifi-
cantly different (the first is double-null, the second is single-null; the
first is subject to n¼ 3 rotation braking, the second is not; the first has
no fresh lithium coating on the plasma-facing wall-tiles, the second
does), the results of the two sets of simulations are quite similar. The
critical n¼ 1 RMP pulse amplitude required to trigger an n¼ 1 NTM
is minimized when the RMP pulse rotation frequency matches the lin-
ear natural frequency of an n¼ 1 tearing mode, resonant within the
plasma, that is metastable to an NTM. However, if there is a frequency
mismatch, then the seed magnetic island chain driven at the relevant
resonant surface is forced to rotate with respect to the RMP, because
the RMP pulse amplitude is nowhere near sufficient to lock the island
chain to the RMP. This rotation causes the critical RMP pulse ampli-
tude required to trigger an NTM to oscillate as the RMP pulse dura-
tion is varied. The critical amplitude is minimized when the RMP
pulse duration is such that seed island chain executes a half-integer

FIG. 12. Safety-factor, electron number
density, electron temperature, impurity ion
number density, and impurity ion toroidal
rotation profiles in NSTX discharge
139057 at t¼ 557ms.
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FIG. 13. Linear n¼ 1 natural frequencies
in NSTX discharge 139057. There are 13
n¼ 1 resonant surfaces in the plasma
corresponding to m¼ 2 through m¼ 14.
Only the m¼ 3, 4, 5, 6, and 7 surfaces
are potentially unstable to NTMs.

FIG. 14. Right-hand sides of the modified
Rutherford equations for the
m ¼ 3=n ¼ 1, 4/1, 5/1, 6/1, and 7/1 tear-
ing modes in NSTX discharge 139057.
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number of rotations with respect to the pulse. All of the minima have
the same value.

One of the most important insights gained in the study presented
in this paper is that, although the triggering of an NTM by a transient,
rotating, RMP is particularly easy when the frequency of the RMP
matches the natural frequency of the NTM, triggering is still possible
when there is a modest (e.g., 10 krad/s) frequency mismatch between
the RMP and the NTM. Moreover, the rotation frequency of the seed
island driven by the RMP does not generally match either the fre-
quency of the RMP or the natural frequency of the NTM, but lies
somewhere between these two frequencies.
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APPENDIX: DESCRIPTION OF EPEC MODEL
1. Introduction

The (extended perturbed equilibrium code) EPEC model was
introduced in Ref. 10, and improved in Refs. 11–13. The model has
been further extended for the study presented in this paper. The lat-
est improvements to the model include the introduction of per-
turbed bootstrap current, magnetic field-line curvature, ion
polarization current, and island saturation terms into the resonant
plasma response model (see subsections 2 e, 3 e, 3 f, and 4 d of the
Appendix); a more accurate calculation of the critical island widths
needed to locally flatten the electron temperature, the ion tempera-
ture, and the electron number density profiles (see subsection 4 c of
the Appendix); and a better calculation of the natural frequencies of
tearing modes (see subsection 5 b of the Appendix). Finally, we
have corrected a previous error in Eqs. (A38), (A39), (A44), (A45),
(A47), and (A48).

2. Plasma response in outer region
a. Coordinates

Let R, /, and Z be right-handed cylindrical coordinates whose
symmetry axis corresponds to the toroidal symmetry axis of the
plasma. Let r, h, and / be right-handed flux coordinates whose
Jacobian is J � ðrr �rh � r/Þ�1 ¼ r R 2=R0. Here, R0 is a con-
venient scale major radius, r is a magnetic flux-surface label with

FIG. 15. Critical n¼ 1 RMP coil current
pulse amplitude required to trigger an
NTM in NSTX discharge 139057 as a
function of the pulse frequency for a pulse
duration of 20 ms.
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dimensions of length, and h is an axisymmetric angular coordinate
that increases by 2p radians for every poloidal circuit of the mag-
netic axis. Let r¼ 0 correspond to the magnetic axis, and let
r ¼ r100 correspond to the last closed magnetic flux-surface.

b. Equilibrium magnetic field

The equilibrium magnetic field is written B ¼ R0 B0½f ðrÞr/
�rr þ gðrÞr/�, where B0 is a convenient scale toroidal magnetic
field-strength, and qðrÞ ¼ r g=ðR0 f Þ is the safety-factor profile.10

The equilibrium poloidal magnetic flux, WpðrÞ, satisfies dWp=dr
¼ R0 B0 f ðrÞ, where, by convention, Wpðr100Þ ¼ 0. The normalized
poloidal magnetic flux, WNðrÞ, is defined such that WNðrÞ ¼ 1
�WpðrÞ=Wpð0Þ. Hence, WNð0Þ ¼ 0 and WNðr100Þ ¼ 1.

c. Perturbed magnetic field

Consider the response of the plasma to an RMP with n> 0
periods in the toroidal direction. We can write the components of
the perturbed magnetic field in the form10

r R 2 dB � rr
R 2
0

¼ i
X
j

wjðrÞ e i ðmjh�n/Þ; (A1)

R 2 dB � r/ ¼ n
X
j

NjðrÞ
mj

e i ðmj h�n/Þ; (A2)

where the sum is over all relevant poloidal harmonics of the per-
turbed magnetic field.

Let there be K resonant (i.e., rational) magnetic flux-surfaces
in the plasma, labeled 1 through K. Consider the kth resonant sur-
face, r¼ rk, at which qðrkÞ ¼ mk=n, where mk is a positive integer.
Let Wk ¼ wkðrkÞ=mk, and DWk ¼ ½Nk�rkþrk� . Here, Wk is the (complex)
reconnected helical magnetic flux at the kth resonant surface,
whereas DWk is a (complex) measure of the strength of the current
sheet at the same resonant surface.

d. Toroidal tearing mode dispersion relation

In the presence of the RMP, the Wk and the DWk values are
related according to the inhomogeneous toroidal tearing mode dis-
persion relation, which takes the form10,20

DWk ¼
X
k0¼1;K

Ekk0 Wk0 þ jEkkj vk: (A3)

Here, Ekk0 (for k, k0 ¼ 1, K) is the dimensionless, Hermitian, toroi-
dal tearing mode stability matrix,20 whereas the vk (for k ¼ 1;K)
parameterize the current sheets driven at the various resonant
surfaces when the plasma responds to the applied RMP in accor-
dance with the equations of linearized, marginally stable, ideal-
MHD.

The EPEC model determines the elements of the Ekk0 matrix
using a high-q approximation. In fact, if Fkk0 is the inverse of the
Ekk0 matrix, then10

Fkk0 ¼
þ þ

GðRk;Zk;Rk0 ;Zk0 Þ e�i ðmk hk�mk0 hk0 Þ dhk
2p

dhk0

2p
(A4)

and

GðRk;Zk;Rk0 ;Zk0 Þ

¼ ð�1Þ
n p 2 Rk Rk0=R0

2Cð1=2ÞCðnþ 1=2Þ
cosh gkk0

R 2
k þ R 2

k0 þ ðZk � Zk0 Þ 2

" #1=2

� ðn� 1=2ÞP n�1
�1=2ðcosh gkk0 Þ þ

Pnþ1
�1=2ðcoshgkk0 Þ
nþ 1=2

" #
(A5)

with

gkk0 ¼ tanh�1
2Rk Rk0

R 2
k þ R 2

k0 þ ðZk � Zk0 Þ 2

" #
: (A6)

Here, the double integral in Eq. (A4) is taken around the kth reso-
nant surface and the k0 th resonant surface. Finally, the CðzÞ and
P �

l ðzÞ are gamma functions and associated Legendre functions,
respectively.

The (complex) vk parameters are determined from the GPEC
code.36 To be more exact, the GPEC code calculates the (complex)
dimensionless Dmk n parameters, which measure the strengths of the
ideal current sheets that develop at the various resonant magnetic
flux-surfaces in the plasma in response to the applied RMP. The
Dmk n parameters are related to the vk parameters according to

vk
R0 B0

¼ �i Dmk n

jEkkj
rk
R0

� �2 gðrkÞ
mk akkðrkÞ þ ðrk=R0 qkÞ 2
� � ; (A7)

where qk ¼ mk=n, and akkðrÞ ¼
Þ
jrrj�2 dh=ð2pÞ.

e. Glasser–Greene–Johnson parameters

Let B̂ ¼ jBj=B0; r̂ ¼ R0r, and dwp=dr ¼ f ðrÞ=R0. The angle
H and the parameter c are defined in subsection 3 b of the
Appendix. Let

J1ðrÞ ¼
þ
1

B̂

dH
2p

; (A8)

J2ðrÞ ¼
þ
B̂
dH
2p

; (A9)

J3ðrÞ ¼
þ

1

B̂
3

dH
2p

; (A10)

J4ðrÞ ¼
þ

1

B̂ jr̂wpj
2

dH
2p

; (A11)

J5ðrÞ ¼
þ

B̂

jr̂wpj
2

dH
2p

; (A12)

J6ðrÞ ¼
þ

1

B̂
3jr̂wpj

2

dH
2p

: (A13)

It follows that39

EðrÞ ¼ �
dP=dwp

ðdq=dwpÞ
2

1
c

d
dwp

J1
c

� �
� g

dq
dwp

J1
J2

" #
J5; (A14)

FðrÞ ¼
ðdP=dwpÞ

2

ðdq=dwpÞ
2

1
c 2

g 2 J5 J6 � J 24
� �

þ J5 J3
� �

; (A15)
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HðrÞ ¼
dP=dwp

dq=dwp

g
c

J4 �
J1 J5
J2

� �
; (A16)

where P(r) is the total plasma pressure. Finally,

DRðrÞ ¼ E þ F þH 2: (A17)

f. Current gradient parameters

The normalized toroidal plasma current density profile is writ-
ten as

Ĵ/ðrÞ ¼ �
l0 R0 R
B0

dP
dWp
� R 2

0 B0 g
dg
dWp

: (A18)

The previous expression is evaluated on the outboard mid-plane.

Let Ĵ
0
/ ¼ dĴ/=dr; Ĵ

00
/ ¼ d 2 Ĵ/=dr 2, sðrÞ ¼ d ln q=d ln r, Ak

¼ �ðr q Ĵ 0/=sÞrk , and Bk ¼ �ðr 2 q Ĵ
00
/=sÞrk .

3. Neoclassical model
a. Plasma species

The plasma is assumed to consist of three (charged) species:
electrons (e), majority ions (i), and impurity ions (I). The charges of
the three species are ee ¼ �e, ei¼ e, and eI ¼ ZI e, respectively,
where e is the magnitude of the electron charge. Quasi-neutrality
demands that ne ¼ ni þ ZI nI , where naðrÞ is the species-a number
density. Let aIðrÞ ¼ ZI ðZeff � 1Þ=ðZI � Zeff Þ, where Zeff ðrÞ ¼ ðni
þZ 2

I nIÞ=ne is the effective ion charge number. It follows that
ni=ne ¼ ðZI � Zeff Þ=ðZI � 1Þ and nI=ne ¼ ðZeff � 1Þ=½ZI ðZI � 1Þ�.
Finally, let Zeff i ¼ ðZI � Zeff Þ=ðZI � 1Þ and Zeff I ¼ ZI ðZeff � 1Þ=
ðZI � 1Þ.

b. Collisionality parameters

Consider an equilibrium magnetic flux-surface whose label is
r. Let25

1
cðrÞ ¼

q
g

þ
BR 2

B0 R 2
0

dh
2p
: (A19)

It is helpful to define a new poloidal angle H such that

dH
dh
¼ c q

g
BR 2

B0 R 2
0
: (A20)

Let

I1 ¼
þ
B0

B
dH
2p

; (A21)

I2 ¼
þ
B
B0

dH
2p

; (A22)

I3 ¼
þ

@B
@H

� �2
1

B0 B
dH
2p

; (A23)

I4;j ¼
ffiffiffiffiffi
2 j

p þ
cos ðjHÞ
B=B0

dH
2p

; (A24)

I5;j ¼
ffiffiffiffiffi
2 j

p þ
cos ðjHÞ
2 ðB=B0Þ 2

dH
2p

; (A25)

I6ðkÞ ¼
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kB=Bmax

p
B=B0

dH
2p

; (A26)

where Bmax is the maximum value of B on the magnetic flux-
surface, and j is a positive integer. The species-a transit frequency is
written as xt aðrÞ ¼ Kt c vT a, where

KtðrÞ ¼
I 21 I3

I 22
X
j¼1;1

I4;j I5;j
; (A27)

and vT a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ta=ma

p
. Here, ma is the species-a mass, and TaðrÞ is

the species-a temperature (in energy units). The fraction of circulat-
ing particles is

fcðrÞ ¼
3 I2
4

B 2
0

B 2
max

ð1
0

k dk
I6ðkÞ

: (A28)

Finally, the dimensionless species-a collisionality parameter is writ-
ten as �� aðrÞ ¼ K� gt=ðxt a saaÞ, where gtðrÞ ¼ ð1� fcÞ=fc,

K�ðrÞ ¼
3
8p

I2
I3

K 2
t (A29)

1
saaðrÞ

¼ 4
3
ffiffiffi
p
p 4p na e 4a lnK

ð4p �0Þ 2 m 2
a v 3

T a

: (A30)

Here, the Coulomb logarithm, lnK, is assumed to take the same
large constant value (i.e., lnK ’ 17), independent of species.

c. Collisional friction matrices

Let xab ¼ vT b=vT a. The 2� 2 dimensionless ion collisional
friction matrices, ½F ii�ðrÞ; ½F iI �ðrÞ; ½F Ii�ðrÞ, and ½F II �ðrÞ, are defined
to have the following elements:25

F ii
00 ¼

aI ð1þmi=mIÞ
ð1þ x 2

iIÞ
3=2

; (A31)

F ii
01 ¼

3
2

aI ð1þmi=mIÞ
ð1þ x 2

iIÞ
5=2

; (A32)

F ii
11 ¼

ffiffiffi
2
p
þ

aI 13=4þ 4 x 2
iI þ ð15=2Þ x 4

iI

� �
ð1þ x 2

iIÞ
5=2

; (A33)

F iI
01 ¼

3
2
Ti

TI

aI ð1þmI=miÞ
xiI ð1þ x 2

IiÞ
5=2

; (A34)

F iI
11 ¼

27
4

Ti

TI

aI x 2
iI

ð1þ x 2
iIÞ

5=2
; (A35)

F Ii
11 ¼

27
4

aI x 2
iI

ð1þ x 2
iIÞ

5=2
; (A36)

F II
11 ¼

Ti

TI

ffiffiffi
2
p

a 2
I xIi þ

aI 15=2þ 4 x 2
iI þ ð13=4Þ x 4

iI

� �
ð1þ x 2

iIÞ
5=2

( )
; (A37)

F ii
10 ¼ F ii

01; F iI
00 ¼ F ii

00; F iI
10 ¼ F ii

01; F Ii
00 ¼ F ii

00; F Ii
01 ¼ F ii

01;

F Ii
10 ¼ F iI

01; F II
00 ¼ F ii

00; F II
01 ¼ F iI

01; F II
10 ¼ F iI

01:
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The 2� 2 dimensionless electron collisional friction matrices,
½F ee�ðrÞ; ½F ei�ðrÞ, and ½F eI �ðrÞ, are defined to have the following ele-
ments:25 F ee

00 ¼ Zeff , F ee
01 ¼ ð3=2ÞZeff , F ee

10 ¼ F ee
01 , F

ee
11 ¼

ffiffiffi
2
p
þ ð13=

4ÞZeff ; F ei
00 ¼ Zeff i, F ei

01 ¼ F ei
11 ¼ 0; F ei

10 ¼ ð3=2ÞZeff i; F eI
00 ¼ Zeff I ,

F eI
01 ¼ F eI

11 ¼ 0; F eI
10 ¼ ð3=2ÞZeff I .

d. Neoclassical viscosity matrices

The 2� 2 dimensionless species-a neoclassical viscosity
matrix, ½l a�ðrÞ, is defined to have the following elements:25

l a
00 ¼ K a

00; l a
01 ¼ ð5=2ÞK a

00 � K a
01, l a

10 ¼ l a
01, l a

11 ¼ K a
11 � 5K a

01
þð25=4ÞK a

00. Here,

K e
jk ¼ gt

8
3
ffiffiffi
p
p
ð1
0

e�x
2
x 9þ2 ðjþkÞ � e

DðxÞdx
x 4 þ �� e � e

DðxÞ
� �

x 4 þ ð5p=8Þ ðxt e seeÞ�1 � e
TðxÞ

h i ;
(A38)

� e
D ¼

3
ffiffiffi
p
p

4
1� 1

2 x 2

� �
wðxÞ þ w0ðxÞ

	 

þ 3

ffiffiffi
p
p

4
Zeff ; (A39)

� e
� ¼

3
ffiffiffi
p
p

2
wðxÞ � w0ðxÞ
� �

; (A40)

� a
TðxÞ ¼ 3 � a

DðxÞ þ � a
� ðxÞ; (A41)

and

wðxÞ ¼ 2ffiffiffi
p
p
ðx
0
e�t

2
dt � 2ffiffiffi

p
p x e�x

2
; (A42)

w0ðxÞ ¼ 2ffiffiffi
p
p x e�x

2
: (A43)

Furthermore,

K i
jk ¼ gt

8
3
ffiffiffi
p
p
ð1
0

e�x
2
x 8þ2 ðjþkÞ � i

DðxÞ dx
x 3 þ �� i � i

DðxÞ
� �

x 3 þ ð5p=8Þ ðxt i siiÞ�1 � i
TðxÞ

h i ;
(A44)

� i
D ¼

3
ffiffiffi
p
p

4
1� 1

2 x 2

� �
wðxÞ þ w0ðxÞ

	 

1
x

þ 3
ffiffiffi
p
p

4
aI 1� x 2

iI

2 x 2

� �
w

x
xiI

� �
þ w0

x
xiI

� �" #
1
x
; (A45)

� i
� ¼

3
ffiffiffi
p
p

2
wðxÞ � w0ðxÞ
� � 1

x

þ 3
ffiffiffi
p
p

2
aI

mi

mI
w

x
xiI

� �
� w0

x
xiI

� �	 

1
x
; (A46)

and, finally,

K I
jk ¼ gt

8
3
ffiffiffi
p
p
ð1
0

e�x
2
x 8þ2 ðjþkÞ � I

DðxÞdx
x 3 þ �� I � I

DðxÞ
� �

x 3 þ ð5p=8Þ ðxt I sIIÞ�1 � I
TðxÞ

h i ;
(A47)

� I
D ¼

3
ffiffiffi
p
p

4
1� 1

2 x 2

� �
wðxÞ þ w0ðxÞ

	 

1
x

þ 3
ffiffiffi
p
p

4
1
aI

1� x 2
Ii

2 x 2

� �
w

x
xIi

� �
þ w0

x
xIi

� �" #
1
x
; (A48)

� I
� ¼

3
ffiffiffi
p
p

2
wðxÞ � w0ðxÞ
� � 1

x

þ 3
ffiffiffi
p
p

2
1
aI

mI

mi
w

x
xIi

� �
� w0

x
xIi

� �	 

1
x
: (A49)

e. Parallel force and heat balance

Let ½~l I � ¼ a 2
I ðTi=TIÞ xIi ½l I �. The requirement of equilibrium

force and heat balance parallel to the magnetic field leads us to
define four 2� 2 dimensionless ion matrices, ½L ii�ðrÞ; ½L iI �ðrÞ;
½L Ii�ðrÞ, and ½L II �ðrÞ, where25

L ii½ �; L iI½ �
L Ii½ �; L II½ �

 !
¼

F ii þ l i þ Y in=yn
� �

; � F iI½ �
� F Ii½ �; F II þ ~l I

� �
 !�1

� F ii þ Y in½ �; � F iI½ �
� F Ii½ �; F II½ �

 !
; (A50)

and the additional four 2� 2 dimensionless ion matrices,
½Gii�ðrÞ; ½GiI �ðrÞ; ½GIi�ðrÞ, and ½GII �ðrÞ, where

Gii½ �; GiI½ �
GIi½ �; GII½ �

 !
¼ sii hr vi cxi hnni

�
F ii þ l i þ Y in=yn
� �

; � F iI½ �
� F Ii½ �; F II þ ~l I

� �
 !�1

;

(A51)

and the 2� 2 dimensionless electron matrices, ½Qee�ðrÞ; ½Gei�ðrÞ;
½Lee�ðrÞ; ½Lei�ðrÞ, and ½LeI �ðrÞ, where

Qee½ � ¼ F ee þ l e½ ��1; (A52)

Gei½ � ¼ Qee½ � ð F ei½ � Gii½ � þ F eI½ � GIi½ �Þ; (A53)

Lee½ � ¼ Qee½ � F ee½ �; (A54)

Lei½ � ¼ Qee½ � F ei½ � L ii½ � � F ei½ � þ F eI½ � LIi½ �
� �

; (A55)

LeI½ � ¼ Qee½ � F eI½ � L II½ � � F eI½ � þ F ei½ � L iI½ �
� �

: (A56)

Here,40

Y in½ � ¼ sii hr vi cxi hnni
1; 0

0; En=Ti

" #
; (A57)

yn ¼
hnni hB 2i
hnn B 2i ; (A58)

where

hAiðrÞ �
þ
Aðr;HÞ dH
Bðr;HÞ

þ
dH

Bðr;HÞ : (A59)

Moreover, hr vi cxi is the flux-surface averaged rate constant for
charge-exchange reactions between neutrals and majority ions,
nnðr;HÞ is the neutral particle number density, and En=Ti is the
ratio of the incoming neutral energy to the majority ion energy. The
parameter yn takes into account the fact that the incoming neutrals
at the edge of an H-mode tokamak plasma are usually concentrated
at the X-point (i.e., yn > 1).
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f. Neoclassical frequencies

The neoclassical frequencies of the three plasma species have
the following definitions:

xnc iðrÞ ¼ �Gii
00 xE � L ii

00 � L ii
01

gi
1þ gi

� �	 

x� i

� L iI
00 � L iI

01
gI

1þ gI

� �	 

x� I ; (A60)

xnc IðrÞ ¼ �GIi
00 xE � LII

00 � L II
01

gI
1þ gI

� �	 

x� I

� L Ii
00 � L Ii

01
gi

1þ gi

� �	 

x� i; (A61)

xnc eðrÞ ¼ �Gei
00 xE � Lee

00 � Lee
01

ge
1þ ge

� �	 

x� e

� Lei
00 � Lei

01
gi

1þ gi

� �	 

x� i

� LeI
00 � LeI

01
gI

1þ gI

� �	 

x� I : (A62)

Here,

xEðrÞ ¼ �
dU
dWp

; (A63)

x� aðrÞ ¼ �
Ta

ea

d ln pa
dWp

; (A64)

gaðrÞ ¼
d lnTa

d ln na
: (A65)

Moreover, paðrÞ ¼ na Ta, and UðrÞ is the equilibrium electric scalar
potential.

g. Impurity ion angular rotation velocities

Let

xh IðrÞ ¼
V I � rh
B � rh

R0 B0 g
R 2

; (A66)

x/ IðrÞ ¼ V I � r/; (A67)

where V I is the impurity ion fluid velocity, and the right-hand sides
are evaluated on the outboard mid-plane. According to neoclassical
theory,13

xh I ¼ Kh xnc I ; (A68)

x/ I ¼ xE þ x� I þ xh I ; (A69)

where

KhðrÞ ¼
R 2
0 B

2
0 g

2

R 2 hB 2i : (A70)

4. Plasma response in inner region
a. Linear layer widths

Let

sRðrÞ ¼ l0 r
2 ree Q

ee
00; (A71)

reeðrÞ ¼
ne e 2 see

me
; (A72)

sHðrÞ ¼
R0

B0 g

ffiffiffiffiffiffiffiffi
l0 q
p

n s
; (A73)

qðrÞ ¼ mi niðrÞ þmI nIðrÞ; (A74)

s?ðrÞ ¼
r 2

D?
; (A75)

suðrÞ ¼
r2

v/
; (A76)

sðrÞ ¼ �x� e
x� i

; (A77)

dbðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5=3Þmi Te þ ðni=neÞTi þ ðnI=neÞTI½ �

p
e B0 g

; (A78)

SðrÞ ¼ sR
sH
; (A79)

PuðrÞ ¼
sR
su
; (A80)

P?ðrÞ ¼
sR
s?
; (A81)

DðrÞ ¼ S 1=3 s
1þ s

� �1=2 db

r
; (A82)

QEðrÞ ¼ �S 1=3 nxE sH ; (A83)

Qe;iðrÞ ¼ �S 1=3 nx� e;i sH : (A84)

Here, veðrÞ; D?ðrÞ, and v/ðrÞ are the perpendicular electron
energy, particle, and toroidal momentum diffusivity profiles, respec-
tively. The constant-w linear layer width is determined from the
solution of26,27

d2Y
dp2
� �QE ðQEþQiÞþ iðQEþQiÞðPuþP?Þp2þPuP?p4

iðQEþQeÞþfP?þ iðQEþQiÞD2gp2þð1þ1=sÞPuD2p4

" #

�p2Y¼0: (A85)

If the small-p behavior of the solution of the previous equation that
is well-behaved as p!1 is, then

YðpÞ ¼ Y0 1� c pþOðp 2Þ
� �

: (A86)

Then, the linear layer width is

dlinearðrÞ ¼
p jcj r
S 1=3

: (A87)

Note that Eq. (A85) can only be solved when 1þ 1=s > 0.

b. Island widths

Let Wk ¼ R0 B0 Ŵk e�iuk , where Ŵk > 0 and uk are both real
quantities. The full width (in r) of the magnetic island chain at the
kth resonant surface is10

Wk ¼ 4R0
q
g s

� �1=2

rk

Ŵ
1=2
k : (A88)
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c. Critical island widths

The critical full island width (in r), which must be exceeded
before the electron temperature is flattened within the magnetic
separatrix of the magnetic island chain at the kth resonant surface,
is7,41

WTe k ¼
ffiffiffi
8
p ve

vk e

� �1=4

rk

1
� s n

� �1=2

rk

rk; (A89)

where � ¼ r=R0, and

vk e ¼
vbragk e vmax

k e

vbragk e þ vmax
k e

; (A90)

vbragk e ¼
1:581 see v 2

T e

1þ 0:2535Zeff
; (A91)

vmax
k e ¼

2R0 vT e

p1=2 n s

rk
WTe k

: (A92)

Equations (A89)–(A92) must be solved iteratively forWTe k=rk.
The critical full island width (in r), which must be exceeded

before the ion temperature is flattened within the magnetic separa-
trix of the magnetic island chain at the kth resonant surface, is7,41

WTi k ¼
ffiffiffi
8
p vi

vk i

� �1=4

rk

1
� s n

� �1=2

rk

rk; (A93)

where viðrÞ is the perpendicular ion energy diffusivity profile,

vk i ¼
vbragk i vmax

k i

vbragk i þ vmax
k i

; (A94)

vbragk i ¼
1:953 sii v 2

T iffiffiffi
2
p

Zeff
; (A95)

vmax
k i ¼

2R0 vT i

p1=2 n s

rk
WTi k

: (A96)

Equations (A93)–(A96) must be solved iteratively forWTi k=rk.
The critical full island width (in r), which must be exceeded

before the electron density is flattened within the magnetic separa-
trix of the magnetic island chain at the kth resonant surface, is7,41

Wne k ¼
ffiffiffi
8
p D?

vk i

 !1=4

rk

1
� s n

� �1=2

rk

rk; (A97)

where

vk i ¼
vbragk i vmax

k i

vbragk i þ vmax
k i

; (A98)

vbragk i ¼
1:953 sii v 2

T iffiffiffi
2
p

Zeff
; (A99)

vmax
k i ¼

2R0 vT i

p1=2 n s
rk

Wne k
: (A100)

Equations (A97)–(A100) must be solved iteratively forWne k=rk.

d. Resonant plasma response model

Let vk ¼ R0 B0 v̂k e
�i fk , and Ekk0 ¼ Êkk0 e�i nkk0 , where v̂k > 0,

fk, Ê
0
kk > 0, and nkk0 are all real quantities. Furthermore, let

Xk ¼ Ŵk cosuk and Yk ¼ Ŵk sinuk. The resonant plasma
response model at the kth resonant surface takes the form10,12

Ŵk þ d̂k

� �
Sk

dXk

dt̂
þ -̂k Yk

� �
¼ fk Xk þ

X
k0¼1;K

Êkk0 ðcos nkk0 Xk0 � sin nkk0 Yk0 Þ þ Êkk v̂k cos fk;

(A101)

Ŵk þ d̂k

� �
Sk

dYk

dt̂
� -̂k Xk

� �
¼ fk Yk þ

X
k0¼1;K

Êkk0 ðcos nkk0 Yk0 þ sin nkk0 Xk0 Þ þ Êkk v̂k sin fk;

(A102)

where

Ŵk ¼
IWk

2 rk
¼ 2 I
�100 r̂ k

q
g s

� �1=2

rk

ðX 2
k þ Y 2

k Þ
1=4; (A103)

d̂k ¼
dlinearðrkÞ
R0 �100 r̂ k

; (A104)

Sk ¼
sRðrkÞ

sA
; (A105)

sA ¼
l0 qð0Þ r 2100

B 2
0

" #1=2
; (A106)

fk ¼ fb k þ fc k þ fp k þ fs k: (A107)

Here, I ¼ 0:8227; �100 ¼ r100=R0; r̂ ¼ r=r100; r̂ k ¼ rk=r100, and
t̂ ¼ t=sA.

The perturbed bootstrap current terms in the resonant
response model take the following forms:31,42

fb k ¼ fb e k þ fb i k; (A108)

fb e k ¼ ab e k fb Te k þ fb ne kð Þ; (A109)

fb i k ¼ ab i k fb Ti k þ fb ni kð Þ; (A110)

fb Te k ¼
ge

1þ ge

� �
rk

Ŵ k

Ŵ
2
Te k þ q̂ 2

h e k þ Ŵ
2
k

; (A111)

fb ne k ¼
1

1þ ge

� �
rk

Ŵ k

Ŵ
2
ne k þ q̂ 2

h e k þ Ŵ
2
k

; (A112)

fb Ti k ¼
gi

1þ gi

� �
rk

Ŵ k

Ŵ
2
Ti k þ q̂ 2

h i k þ Ŵ
2
k

; (A113)

fb ni k ¼
1

1þ gi

� �
rk

Ŵ k

Ŵ
2
ne k þ q̂ 2

h i k þ Ŵ
2
k

; (A114)

where

ab e k ¼ �2 I Ig
x� e þ xnc e

xb

� �
rk

; (A115)
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ab i k ¼ 2 I Ig
ðni=neÞ x� i þ xnc ið Þ þ ðZI nI=neÞ x� I þ xnc Ið Þ

xb

" #
rk

;

(A116)

xbðrÞ ¼
s g B0

l0 ne e R
2
0 q

; (A117)

ŴTe k ¼
IWTe k

2 rk
; (A118)

ŴTi k ¼
IWTi k

2 rk
; (A119)

Ŵne k ¼
IWne k

2 rk
; (A120)

q̂h e k ¼
I qh e

2 r

� �
rk

¼ 2 I vT e me q R0

e B0 g r 2

� �
rk

; (A121)

q̂h i k ¼
I qh i

2 r

� �
rk

¼ 2 I vT i mi q R0

e B0 g r 2

� �
rk

; (A122)

and Ig ¼ 1:58.
The magnetic field-line curvature terms in the resonant

response model take the following forms:31,42

fc k ¼ ac k fc Te k þ fc ne k þ fc Ti k þ fc ni kð Þ; (A123)

fc Te k ¼
ne

ne þ ni

ge
1þ ge

� �
rk

Ŵ k

Ŵ
2
Te k þ Ŵ

2
k

; (A124)

fc ne k ¼
ne

ne þ ni

1
1þ ge

� �
rk

Ŵ k

Ŵ
2
ne k þ Ŵ

2
k

; (A125)

fc Ti k ¼
ni

ne þ ni

gi
1þ gi

� �
rk

Ŵ k

Ŵ
2
Ti k þ Ŵ

2
k

; (A126)

fc ni k ¼
ni

ne þ ni

1
1þ gi

� �
rk

Ŵ k

Ŵ
2
ne k þ Ŵ

2
k

; (A127)

where

ac k ¼ 2 I Ig DRðrkÞ: (A128)

Here, DRðrÞ is the Glasser–Greene–Johnson resistive interchange
stability parameter (see subsection 2 e of the Appendix).

The ion polarization terms in the resonant response model
take the following forms:31,42

fp k ¼ ap k fp Ti k þ fp ni k
� �

; (A129)

fp Ti k ¼
gi

1þ gi

� �
rk

Ŵ k

ðŴ 2
Ti k þ Ŵ

2
k Þ

2
; (A130)

fp ni k ¼
1

1þ gi

� �
rk

Ŵ k

ðŴ 2
ne k þ Ŵ

2
k Þ

2
; (A131)

where

ap k ¼ 8 I 3 Ip
ðx� i þ xnc iÞxnc i

xb xX

" #
rk

; (A132)

xXðrÞ ¼
e g B0 s q

mi
(A133)

and Ip ¼ 1:38.
Finally, the island saturation terms in the resonant response

model take the form43

fs k ¼ �ð0:8A 2
k � 0:27Bk � 0:09AkÞ

Wk

rk
: (A134)

5. Plasma angular velocity evolution
a. Evolution equations

The quantity -̂k that appears in Eqs. (A101) and (A102)
evolves in time according to10

-̂kð̂tÞ ¼ -̂k 0 �
Xp¼1;1
k0¼1;K

mk

mk0

ypðr̂ kÞ
ypðr̂ k0 Þ

ak0;pð̂tÞ �
Xp¼1;1
k0¼1;K

zpðr̂ kÞ
zpðr̂ k0 Þ

bk0;pð̂tÞ:

(A135)

Here, -̂k 0 ¼ -k 0 sA; ypðr̂Þ ¼ J1ðj1;p r̂Þ=r̂ , and zpðr̂Þ ¼ J0ðj0;p r̂Þ.
Moreover, -k 0 is the so-called “natural frequency” (in the absence
of the RMP) at the kth resonant surface; this quantity is defined
as the helical phase velocity of a naturally unstable island chain,
resonant at the surface, in the absence of an RMP (or any other
island chains). Furthermore, JmðzÞ is a standard Bessel function,
and jm;p denotes the pth zero of this function. The time evolution
equations for the ak;p and bk;p parameters specify how the plasma
poloidal and toroidal angular velocity profiles are modified by the
electromagnetic torques that develop within the plasma, in
response to the applied RMP, and how these modifications affect
the natural frequencies. The evolution equations take the follow-
ing forms:10

ð1þ 2Q 2
k Þ

dak;p
dt̂
þ

j 21;p
ŝM k
þ 1

ŝh k
þ 1

ŝcx k

 !
ak;p

¼
m 2

k ypðr̂ kÞ
� � 2

q̂k �
2
100 J2ðj1;pÞ
� � 2 dT̂ k; (A136)

dbk;p

dt̂
þ

j 20;p
ŝM k
þ 1

ŝcx k

 !
bk;p ¼

n 2 zpðr̂ kÞ
� � 2

q̂k J1ðj0;pÞ
� � 2 dT̂ k; (A137)

where

dT̂ k ¼
X
k0¼1;K

Êkk0 ðYk Xk0 � Xk Yk0 Þ cos nkk0½

�ðXk Xk0 þ Yk Yk0 Þ sin nkk0 �
þÊkk v̂k ðYk cos fk � Xk sin fkÞ: (A138)

Here, Qk ¼ QðrkÞ; q̂k ¼ qðrkÞ=qð0Þ; ŝM k ¼ r 2100=½v/ðrkÞ sA�; ŝh k

¼ shðrkÞ=sA; ŝcx k ¼ scxðrkÞ=sA. Moreover,

shðrÞ ¼
sii
li
00


1þ q 2 R 2

0

r 2 akk

� �
(A139)

is the poloidal flow damping timescale, and
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scxðrÞ ¼
1

hnni hr vicxi
(A140)

is the charge-exchange damping timescale. Furthermore,44

Q 2ðrÞ ¼ q 2 R 2
0

2 r 2

�
1
R 2

�
� 1
hR 2i

 !�
jrrj2

R2

�
: (A141)

b. Natural frequencies

According to linear tearing mode theory, in the absence of the
RMP, the natural frequency of the tearing mode resonant at the kth
resonant surface is given by10,26

-e k ¼ �n ðxE þ x� eÞrk : (A142)

According to the nonlinear tearing mode theory, in the absence of
the RMP, the natural frequency of the tearing mode resonant at the
kth resonant surface is given by10,31,42

-i k ¼ �n ðxE þ x� i þ xnc iÞrk : (A143)

It is also helpful to define

-E k ¼ �n ðxEÞrk : (A144)

The EPEC model for the natural frequency is

-k 0 ¼ -E k þ ð-e k � -E kÞ fe k þ ð-i k � -E kÞ fi k; (A145)

where

fe k ¼ fTe k þ fne k; (A146)

fi k ¼ fTi k þ fni k; (A147)

fTe k ¼
ge

1þ ge

� �
rk

Ŵ
2
Te k

Ŵ
2
Te k þ Ŵ

2
k

; (A148)

fne k ¼
1

1þ ge

� �
rk

Ŵ
2
ne k

Ŵ
2
ne k þ Ŵ

2
k

; (A149)

fTi k ¼
gi

1þ gi

� �
rk

Ŵ
2
k

Ŵ
2
Ti k þ Ŵ

2
k

; (A150)

fni k ¼
1

1þ gi

� �
rk

Ŵ
2
k

Ŵ
2
ne k þ Ŵ

2
k

: (A151)

Note that the switchover from linear to nonlinear theory is triggered
by the flattening of the local temperature and density profiles.
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