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ABSTRACT

The locking of the 2/1 tearing mode to the resistive wall in the ITER tokamak (15 MA inductive scenario 2) is investigated theoretically using
a cylindrical asymptotic matching model. The model takes into account the fact that ITER plasmas will effectively be surrounded by two
walls; the inner blanket module layer with a time constant of about 23ms, and the outer vacuum vessel with a time constant of about 380ms.
The model also takes cognizance of the fact that neither the blanket module layer nor the vacuum vessel can be accurately described as “thin”
walls (in the ordinarily accepted sense). The model incorporates changes in both the plasma poloidal and the toroidal angular velocity
profiles, in response to the electromagnetic braking torque that develops at the rational surface, because it turns out that neoclassical poloidal
flow-damping is not strong enough to completely suppress changes in the poloidal velocity. Finally, the model accurately calculates changes
in the poloidal and toroidal plasma angular velocity profiles by evolving the full angular equations of motion, taking the electromagnetic
braking torque, plasma inertia, plasma viscosity, and poloidal flow-damping into account. The time required for the 2/1 tearing mode to
grow from a small amplitude to a sufficient one to lock to the walls is found to be about 3.5 s. The critical full radial island width at which
wall locking is triggered is found to be about 9% of the plasma minor radius.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0141742

I. INTRODUCTION

A rotating tearing mode in a tokamak plasma induces helical
eddy currents in surrounding, rigid, electrically conducting structures,
such as the vacuum vessel, that lead to the development of an electro-
magnetic braking torque acting on the plasma that slows down the
mode’s rotation. In fact, if the mode grows to sufficiently large ampli-
tude, then its rotation is effectively arrested, i.e., it “locks” to the sur-
rounding structures.1–7 This phenomenon is a cause for concern
because there is a strong empirical correlation between locked tearing
modes and disruptions in tokamak discharges.8

Given that disruption avoidance is crucial to the success of the
ITER project, it is clearly important to develop an accurate model for
predicting the critical tearing mode amplitude (which is most conve-
niently parameterized in terms of the full radial width of the associated
magnetic island chain that develops at the rational surface inside the
plasma6) at which mode locking will take place in ITER discharges. It is
also important to accurately model the time interval between the onset of
the mode and the occurrence of mode locking, as this must be taken into
account when designing control strategies to suppress tearing modes.9

ITER plasmas will be surrounded by a relatively distant (i.e.,
rv=a ’ 1:5, where rv and a are the minor radii of the vessel and the

plasma, respectively), double, vacuum vessel fabricated from austenitic
stainless steel, type 316L(N)-IG, with an electrical resistivity of
gv ¼ 7:4� 10�7 X m.10 A 3D model (with port openings) of the vac-
uum vessel has revealed that the longest decay time of n¼ 1 (where n
is a toroidal mode number) eddy currents flowing in the double struc-
ture, in the absence of plasma, is sd ¼ 188ms.11,12 According to cylin-
drical theory,6 this decay time is related to the so-called time-constant
of the vessel, which (in this paper) is defined as sv ¼ l0 rv dv=gv,
where dv is the effective radial thickness of the vessel, according to
sd ¼ sv=ð2mÞ, where m is a poloidal mode number. (Note that
another common convention used in the literature defines the time
constant to be l0 rv dv=2 gv, i.e., half of that in this paper.) Hence,
assuming that the most slowly decaying eddy current is characterized
bym¼ 1, we deduce that sv ¼ 376ms.

The region between the edge of an ITER plasma and the vacuum
vessel will be occupied by a layer of blanket modules.10 These modules
will be fabricated from boronated stainless steel blocks with compli-
cated 3D structures, which are designed to shield the surrounding
regions from neutrons generated within the plasma. A thin first-wall
fabricated from a beryllium layer, followed by a copper layer, and a
stainless steel layer will be attached to the inner surfaces of the blocks.
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Detailed 3D modeling of the blanket module layer (including the first-
wall) has revealed that, as far as its interaction with non-rotating resis-
tive wall modes is concerned, it acts like a simple resistive wall in
which the ratio of the electrical resistivity, gb, to the wall thickness, db,
takes the value gb=db ¼ 1:33� 10�4 X (see Sec. 4.4 and Fig. 9 in Ref.
13). Given that the inner radius of the blanket modules will lie at
rb=a ’ 1:2, and that a ¼ 2:0 m for ITER, we deduce that the effective
time-constant of the blanket module layer is sb ¼ l0 � 1:2� 2:0=
1:33� 10�4 ¼ 23 ms. Note that this time-constant is much less than
that of the vacuum vessel.

A recent calculation of the slowing down and locking of tearing
modes in ITER, performed by La Haye, Paz-Solden, and Liu, that takes
the blanket modules into account, has shown that the m ¼ 2=n ¼ 1
tearing mode, which is generally considered to be the most dangerous
mode, can slow down and lock-in about 3 s.14 Moreover, the critical
island width at which locking occurs is predicted to be about 9 cm,
which corresponds to 4.5% of the plasma minor radius. The latter pre-
diction is alarming because tearing modes in existing (large) tokamak
plasmas only lock when their widths exceed about 10% of the plasma
minor radius.14 In other words, the new calculation implies that ITER
plasmas are likely to be far more susceptible to disruption-triggering
locked modes than plasmas in existing (large) tokamaks.

The calculation of La Haye et al. is ultimately based on the cylin-
drical analysis of Nave and Wesson.4 The calculation only takes the
blanket module layer into account. Moreover, the blanket module
layer is treated as a thin wall, which means that the skin-depth in the
wall material is assumed to be much greater than the wall thickness.
The calculation neglects any changes in the plasma poloidal angular
velocity profile, in response to the electromagnetic braking torque that
develops at the rational surface, on the assumption that such changes
are completely suppressed by neoclassical poloidal flow-damping.4

The calculation only models the evolution of the plasma toroidal angu-
lar velocity profile, under the influence of the electromagnetic braking
torque, plasma inertia, and plasma viscosity, in a highly approximate
manner. Finally, the values of some important parameters in the
model (i.e., Cw and CM) are determined by empirical fitting to experi-
mental DIII-D data rather than from theory.

The aim of this paper is to perform a purely theoretical (i.e., with
no empirical fitting) version of the calculation of La Haye et al., which
takes more physics into account. Given the alarming implications of
the La Haye calculation for ITER, this seems like a worthwhile exer-
cise. Our calculation is ultimately based on the cylindrical asymptotic
matching model of Fitzpatrick,6 but will take into account the presence
of both the blanket module layer and the vacuum vessel. We shall also
take cognizance of the fact that neither the blanket module layer nor
the vacuum vessel can be accurately described as thin walls.15 Our cal-
culation incorporates changes in both the plasma poloidal and the
toroidal angular velocity profiles, in response to the electromagnetic
braking torque that develops at the rational surface, because it turns
out that neoclassical poloidal flow-damping is not strong enough to
completely suppress changes in the poloidal velocity (see Fig. 3).
Finally, we shall accurately model the changes in the poloidal and
toroidal plasma angular velocity profiles by evolving the full angular
equations of motion, taking the electromagnetic braking torque,
plasma inertia, plasma viscosity, and poloidal flow-damping into
account. Note that a similar, but somewhat simpler, version of the the-
oretical model employed in this paper was able to successfully model

the slowing down and locking of large amplitudem¼ 1 tearing modes
to a thick wall in the MST reversed field pinch.7

II. DERIVATION OF ROTATION BRAKING EQUATIONS
A. Plasma equilibrium

Consider a low-b, large aspect-ratio, tokamak plasma equilibrium
whose magnetic flux-surfaces map out (almost) concentric circles in
the poloidal plane. Such an equilibrium can be approximated as a peri-
odic cylinder.6 Let us employ a conventional set of right-handed cylin-
drical coordinates, r, h, and z. The equilibrium magnetic flux-surfaces
lie on surfaces of constant r. The system is assumed to be periodic in
the z (“toroidal”) direction, with periodicity length 2pR0, where R0
is the simulated major radius of the plasma. Let a be the minor radius
of the plasma. The equilibrium magnetic field is written B ¼ BhðrÞ eh

þBu ez , where BhðrÞ is the poloidal magnetic field-strength and Bu is
the (approximately) spatially uniform toroidal magnetic field-strength.
The safety-factor profile takes the form qðrÞ ¼ r Bu=½R0 BhðrÞ�. The
equilibrium current density is written j ¼ juðrÞ ez , where l0 juðrÞ
¼ ðBu=R0Þ JuðrÞ. Here, the dimensionless function JuðrÞ ¼ ð1=
rÞ ðr2=qÞ0, with 0 � d=dr, parameterizes the toroidal plasma current
density profile.

B. Tearing mode perturbation

Consider helical tearing mode instability with m periods in the
poloidal direction and n periods in the toroidal direction.16 The per-
turbed magnetic field associated with the tearing mode can be written
as6

dBr

R0 Bu
’ i

m
r

w; (1)

dBh

R0 Bu
’ �w0; (2)

dBu

R0 Bu
’ n

R0

r
m

w0 � n
R0

r
m

Ju w
r ð1=q� n=mÞ : (3)

Here, the dimensionless function wðr; tÞ parameterizes the perturbed
helical magnetic flux. Furthermore, there is an implicit exp ½ i ðm h
�nuÞ� variation of perturbed quantities, where u ¼ z=R0 is the toroi-
dal angle. Finally, we have made use of the standard large aspect-ratio
tokamak orderings that r=R0 � 1 and q � Oð1Þ. The perturbed
plasma current density associated with the tearing mode can be writ-
ten as6

l0 djr
R0 Bu

’ �i n
R0

Ju w
r ð1=q� n=mÞ ; (4)

l0 djh
R0 Bu

’ n
R0

m
r

w� n
R0

r
m
ðr w0Þ0

r
þ n
R0

r
m

1
r

Ju w
1=q� n=m

� �0
; (5)

l0 dju
R0 Bu

’ m2

r2
w� ðr w0Þ0

r
: (6)

The tearing mode perturbation satisfies the perturbed force bal-
ance equation dj� Bþ dB� j ’ rdp, where dp is the perturbed
plasma pressure.16 The z-component of the curl of this equation yields
the well-known cylindrical tearing mode equation,6,17

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 30, 042514 (2023); doi: 10.1063/5.0141742 30, 042514-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


@2w
@r2
þ 1

r
@w
@r
�m2

r2
w�

J 0u w

r ð1=q� n=mÞ ¼ 0: (7)

Note that this equation is singular at the so-called rational magnetic
flux-surface, radius rs, at which qðrsÞ ¼ m=n.

In general, the physical solution of Eq. (7) that is well behaved at
r¼ 0 and satisfies appropriate boundary conditions at r¼ a is such
that w is continuous across the rational surface, whereas @w=@r is dis-
continuous.16 The complex dimensionless quantity

WsðtÞ ¼ wðrs; tÞ; (8)

parameterizes the amplitude and phase of the reconnected magnetic
flux at the rational surface, whereas the complex dimensionless
quantity

DWsðtÞ ¼ r
@w
@r

� �rsþ
rs�

; (9)

parameterizes the amplitude and phase of a helical current sheet that
flows (parallel to the equilibrium magnetic field) at the rational
surface.

C. Resistive walls

Suppose that the plasma is surrounded by two concentric, thin
(compared to their minor radii, but not necessarily compared to their
skin-depths) resistive walls of radii rb and rv, where a < rb < rv. The
inner wall represents the blanket modules, whereas the outer wall rep-
resents the vacuum vessel. The tearing perturbation in the vacuum
region outside the plasma (i.e., the region r> a), excluding the walls,
satisfies Eq. (7) with Ju ¼ 0. The complex dimensionless quantity

WbðtÞ ¼ wðrb; tÞ; (10)

parameterizes the amplitude and phase of the perturbed magnetic flux
that penetrates the inner wall, whereas the complex dimensionless
quantity

DWbðtÞ ¼ r
@w
@r

� �rbþ
rb�

; (11)

parameterizes the amplitude and phase of a helical eddy current sheet
that flows (parallel to the equilibrium magnetic field at the rational sur-
face) in the inner wall. Likewise, the complex dimensionless quantity

WvðtÞ ¼ wðrv; tÞ; (12)

parameterizes the amplitude and phase of the perturbed magnetic flux that
penetrates the outer wall, whereas the complex dimensionless quantity

DWvðtÞ ¼ r
@w
@r

� �rvþ
rv�

; (13)

parameterizes the amplitude and phase of a helical eddy current sheet
that flows (parallel to the equilibrium magnetic field at the rational
surface) in the outer wall.

D. Asymptotic matching

The most general physical solution of the cylindrical tearing
mode equation, Eq. (7), can be written as18

wðr; tÞ ¼ WsðtÞwsðrÞ þWbðtÞwbðrÞ þWvðtÞwvðrÞ; (14)

where wsð0Þ ¼ 0, wsðrsÞ ¼ 1, wsðr � rbÞ ¼ 0, wbðr 	 rsÞ ¼ 0;
wbðrbÞ ¼ 1, wbðr � rvÞ ¼ 0, wvðr 	 rbÞ ¼ 0, wvðrvÞ ¼ 1, and
wvð1Þ ¼ 0. Here, wsðrÞ; wbðrÞ, and wvðrÞ are the real continuous
functions that have gradient discontinuities at r¼ rs, r¼ rb, and r¼ rv.
It is helpful to define the real dimensionless quantities18

Ess ¼ r
dws

dr

� �rsþ
rs�

; (15)

Ebs ¼ � r
dws

dr

� �
rb�

; (16)

Esb ¼ r
dwb

dr

� �
rsþ

; (17)

Ebb ¼ r
dwb

dr

� �rbþ
rb�

; (18)

Evb ¼ � r
dwb

dr

� �
rv�

; (19)

Ebv ¼ r
dwv

dr

� �
rbþ

; (20)

Evv ¼ r
dwv

dr

� �rvþ
rv�

: (21)

Given that wsðrÞ; wbðrÞ, and wvðrÞ all individually satisfy Eq. (7), it is
easily demonstrated that6,18

Ebs ¼ Esb; (22)

Evb ¼ Ebv: (23)

In fact, it can be shown that

Evv ¼ �
2m

1� ðrb=rvÞ2m
; (24)

Evb ¼ Ebv ¼
2m ðrb=rvÞm

1� ðrb=rvÞ2m
: (25)

Equations (10)–(21) yield the asymptotic matching
constraints,6,18

DWs ¼ Ess Ws þ Esb Wb; (26)

DWb ¼ Ebs Ws þ Ebb Wb þ Ebv Wv; (27)

DWv ¼ Evb Wb þ Evv Wv: (28)

E. Electromagnetic torques

The flux-surface integrated poloidal and toroidal electromagnetic
torque densities acting on the plasma can be written as

ThðrÞ ¼ r j� B 
 ehf g; (29)

TuðrÞ ¼ R0 j� B 
 ezf g; (30)

respectively, where


 
 
f g �
þ þ

r R0 
 
 
 dh du; (31)
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is a flux-surface integration operator. However, both the plasma equi-
librium and the tearing perturbation satisfy the force balance criterion
j� B ’ rp. Given that the scalar pressure is a single-valued function
of h and u, it immediately follows that Th ¼ Tu ¼ 0 throughout the
plasma.6 The only exception to this rule occurs in the immediate vicin-
ity of the rational surface, where Eq. (7) breaks down. It follows that
we can write:

ThðrÞ ¼ Ths dðr � rsÞ; (32)

TuðrÞ ¼ Tus dðr � rsÞ; (33)

where

Ths ¼
1
4

ðrsþ
rs�

þ þ
R0 r

2 ðdju dB�r þ dj�u dBr � djr dB�u

� dj�r dBuÞ dr dh du; (34)

Tus ¼
1
4

ðrsþ
rs�

þ þ
R2
0 r ðdjr dB�h þ dj�r dBh � djh dB�r

� dj�h dBrÞ dr dh du; (35)

are the net poloidal and toroidal torques, respectively, acting at the
rational surface. Note that the zeroth-order (in perturbed quantities)
torques are zero because Br ¼ jr ¼ 0. Furthermore, the linear (in
perturbed quantities) torques average to zero over the flux-surface.
Hence, the largest non-zero torques are quadratic in perturbed
quantities.

Now, it follows from Eqs. (1)–(6) that:

dju dB�r þ dj�u dBr � djr dB�u � dj�r dBu

ðR0 BuÞ2

’ im
l0 r2

@

@r
r
@w
@r

w� � r
@w�

@r
w

� �
; (36)

djr dB�h þ dj�r dBh � djh dB�r � dj�h dBr

ðR0 BuÞ2

’ � i n
l0 r R0

@

@r
r
@w
@r

w� � r
@w�

@r
w

� �
: (37)

The previous four equations yield6,18

Ths ¼ �
2p2 R3

0 B
2
u m

l0
ImðDWs W

�
s Þ; (38)

Tus ¼
2p2 R3

0 B
2
u n

l0
ImðDWs W

�
s Þ; (39)

where Eqs. (8) and (9) are used.
By analogy with the previous analysis, the poloidal and toroidal

electromagnetic torques acting on the inner wall are

Thb ¼ �
2p2 R3

0 B
2
u m

l0
ImðDWb W�bÞ; (40)

Tub ¼
2p2 R3

0 B
2
u n

l0
ImðDWb W�bÞ; (41)

respectively. Likewise, the poloidal and toroidal electromagnetic tor-
ques acting on the outer wall are

Thv ¼ �
2p2 R3

0 B
2
u m

l0
ImðDWv W�vÞ; (42)

Tuv ¼
2p2 R3

0 B
2
u n

l0
ImðDWv W�vÞ; (43)

respectively.
Finally, it is easily demonstrated from Eqs. (22), (23), (26)–(28),

and (38)–(43) that6,18

Ths þ Thb þ Thv ¼ 0; (44)

Tus þ Tub þ Tuv ¼ 0: (45)

In other words, the plasma/inner wall/outer wall system cannot exert a
net poloidal electromagnetic torque, or a net toroidal electromagnetic
torque, on itself.

F. Wall response indices

It is helpful to define the complex dimensionless wall response
indices,

GbðtÞ ¼
DWb

Wb
; (46)

GvðtÞ ¼
DWv

Wv
: (47)

Here, Gb specifies the relationship between the eddy current excited in
the inner wall and the perturbed magnetic flux that penetrates the
wall. Likewise, Gv specifies the analogous relationship for the outer
wall. It follows from Eqs. (27) and (28) that:

Wb ¼
Ebs
ð�~EbbÞ

Gv

ðGb þ CbvÞ Gv � Cbv
Ws; (48)

Wv ¼
Ebs
Ebv

Cbv

ðGb þ CbvÞ Gv � Cbv
Ws; (49)

where

Gb ¼ 1þ Gb

ð�~EbbÞ
; (50)

Gv ¼ 1þ Gv

ð�EvvÞ
; (51)

~Ebb ¼ Ebb �
Ebv Evb

Evv
; (52)

Cbv ¼ �1þ
Ebb
~Ebb
¼ 2m ðrb=rvÞ2m

1� ðrb=rvÞ2m
1

ð�~EbbÞ
: (53)

Finally, Eqs. (26) and (48) yield

DWs

Ws
¼ Dpw þ ðDnw � DpwÞ Gbv; (54)

where

Dpw ¼ Ess; (55)

Dnw ¼ Ess þ
Esb Ebs
ð�~EbbÞ

; (56)

Gbv ¼
Gv

ðGb þ CbvÞ Gv � Cbv
: (57)
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Here, Dpw is the (dimensionless) tearing stability index16 when the
inner wall is perfectly conducting, whereas Dnw is the tearing stability
index when there are no walls surrounding the plasma.

G. Island width evolution

The reconnected magnetic flux at the rational surface generates a
helical magnetic island chain whose full radial width is

W ¼ 4 ðLs R0 jWsjÞ1=2: (58)

Here, Ls ¼ R0 qs=ss is the magnetic shear-length at the rational sur-
face. Moreover, qs ¼ qðrsÞ ¼ m=n; ss ¼ sðrsÞ, and sðrÞ ¼ r q0=q. The
width of the magnetic island chain evolves in time according to the
Rutherford island width evolution equation,19

I1 sR
d
dt

W
rs

� �
¼ Re

DWs

Ws

� �
; (59)

where I1 ¼ 0:8227, and sR ¼ l0 r
2
s =gkðrsÞ is the resistive evolution

time at the rational surface. Here, gkðrÞ is the plasma electrical resistiv-
ity profile. It follows from Eq. (54) that:

I1 sR
d
dt

W
rs

� �
¼ Dpw þ ðDnw � DpwÞReðGbvÞ: (60)

According to the standard neoclassical theory (assuming that the
plasma at the rational surface lies in the banana collisionality
regime),20–22

gk ¼ Qee
11

ne e2 se
me

; (61)

where ne is the electron number density, se is the electron collision
time,23me is the electron mass, and

Qee½ � ¼
Fee
11 þ le

11; Fee
12 þ le

12

Fee
12 þ le

12; Fee
22 þ le

22

" #�1
; (62)

Fee
11 ¼ Zeff ; (63)

Fee
12 ¼

3
2
Zeff ; (64)

Fee
22 ¼

ffiffiffi
2
p
þ 13

4
Zeff ; (65)

le
11 ¼ gt ð0:533þ Zeff Þ; (66)

le
12 ¼ gt 0:625þ 3

2
Zeff

� �
; (67)

le
22 ¼ gt 1:386þ 13

4
Zeff

� �
: (68)

Here, gt ¼ ft=ð1� ftÞ, ft is the fraction of trapped particles, and Zeff is
the effective ion charge number.

Note that we have neglected the destabilizing effect of the per-
turbed bootstrap current in Eq. (60), for the sake of simplicity. This
approximation is reasonable because the bootstrap contribution to
Dpw is similar in magnitude to the classical contribution.14 We have,
however, attempted to make as accurate an estimate as possible of the
parallel plasma resistivity, taking impurities and neoclassical effects
into account, because it is important that our estimate for the

neoclassical resistivity be consistent with our estimate for the neoclas-
sical poloidal flow-damping rate.

Equation (60) implies that, in the presence of a perfectly conduct-
ing inner wall (i.e., Gbv ¼ 0), the island width grows without limit if
Dpw > 0. In fact, this is not the case. If the asymptotic matching at the
rational surface is carried out to higher order, then this equation
becomes24

I1 sR
d
dt

W
rs

� �
¼ Dpwð0Þ 1� W

Wpw

� �
þ Dnwð0Þ � Dpwð0Þ
� �

ReðGbvÞ;

(69)

where

Wpw ¼
Dpwð0Þ rs

0:8 a2s � 0:27bs � 0:09 as
; (70)

as ¼ �
r q J 0u
s

� �
rs
; (71)

bs ¼ �
r q J 00u
s

� �
rs
: (72)

Here, Dpwð0Þ denotes the perfect-wall tearing stability index evaluated
at zero island width. Likewise, Dnwð0Þ denotes the no-wall tearing sta-
bility index evaluated at zero island width. Finally,Wpw is the saturated
island width when the inner wall is perfectly conducting.

H. Island frequency evolution

We can write

WsðtÞ ¼
W2ðtÞ
16 Ls R0

exp �i
ðt
0
xðt0Þ dt0

 !
; (73)

where xðtÞ is the instantaneous angular rotation frequency of the
magnetic island chain. The island rotation frequency evolves in time
according to6,18

xðtÞ ¼ x0 þmDXhðrs; tÞ � nDXuðrs; tÞ; (74)

where x0 is the angular rotation frequency in the absence of the walls,
otherwise known as the natural frequency,6 whereas DXhðr; tÞ and
DXuðr; tÞ are the modifications to the plasma poloidal and toroidal
angular velocity profiles, respectively, generated by the electromagnetic
torques exerted at the rational surface by the eddy currents excited in
the walls.

I. Plasma angular equations of motion

The plasma poloidal equation of angular motion takes the form6

4p2 R0 q r3
@DXh

@t
þ q

sh
r3 DXh �

@

@r
qN? r

3 @DXh

@r

� �� �

¼ Ths dðr � rsÞ: (75)

Here, qðrÞ is the plasma mass density profile, N?ðrÞ is the perpendicu-
lar momentum diffusivity profile, and

shðrÞ ¼
1ffiffiffi

2
p

li
11 gt

�

q

� �2

si; (76)
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the neoclassical poloidal flow-damping rate.22 Moreover,
li
11 ¼ 0:533þ aI ,

20–22 where

aI ¼
ZI ðZeff � 1Þ
ZI � Zeff

; (77)

ZI is the impurity ion change number, �ðrÞ ¼ r=R0, and si is the ion
collision time.23 The plasma toroidal equation of angular motion is
written as6

4p2 R3
0 q r

@DXu

@t
� @

@r
qN? r

@DXu

@r

� �� �
¼ Tus dðr � rsÞ: (78)

Equations (75) and (78) must be solved subject to the boundary
conditions

@DXhð0; tÞ
@r

¼ @DXuð0; tÞ
@r

¼ 0; (79)

DXhða; tÞ ¼ DXuða; tÞ ¼ 0: (80)

The boundary conditions (79) merely ensure that the angular veloci-
ties remain finite at the magnetic axis. On the other hand, the bound-
ary conditions (80) are a consequence of the action of charge exchange
with electrically neutral particles emitted isotropically from the wall in
the edge regions of the plasma.6

J. Solution of plasma angular equations of motion

During the time interval in which mode locking occurs, the per-
turbed angular velocity profiles, DXhðr; tÞ and DXuðr; tÞ, are localized
in the vicinity of the rational surface.6 Hence, it is reasonable to express
the perturbed angular equations of motion, (75) and (78), in the sim-
plified forms

4p2 R0 qs r
3 @DXh

@t
þ qs

shs
r3 DXh � qs N?s

@

@r
r3
@DXh

@r

� �� �

¼ Ths dðr � rsÞ; (81)

4p2 R3
0 qs r

@DXu

@t
� qs N?s

@

@r
r
@DXu

@r

� �� �
¼ Tus dðr � rsÞ; (82)

where qs ¼ qðrsÞ; shs ¼ shðrsÞ, and N?s ¼ N?ðrsÞ.
Let us write7,25

DXhðr; tÞ ¼ �
1
m

X
p¼1;1

apðtÞ
ypðr=aÞ
ypðrs=aÞ

; (83)

DXuðr; tÞ ¼
1
n

X
p¼1;1

bpðtÞ
zpðr=aÞ
zpðrs=aÞ

; (84)

where ypðrÞ ¼ J1ðj1p r=aÞ=ðr=aÞ and zpðrÞ ¼ J0ðj0p r=aÞ. Here, JmðzÞ
is a Bessel function, and jmp denotes its pth zero. Note that Eqs. (83)
and (84) automatically satisfy the boundary conditions (79) and (80).

It is easily demonstrated that

d
dr

r3
dyp
dr

� �
¼ �

j21p r
3 yp

a2
; (85)

d
dr

r
dzp
dr

� �
¼ �

j20p r zp
a2

; (86)

and

ða
0
r3 ypðrÞ yqðrÞ dr ¼

a4

2
J2ðj1pÞ
� �2 dpq; (87)

ða
0
r zpðrÞ zqðrÞ dr ¼

a2

2
J1ðj0pÞ
� �2 dpq: (88)

Equations (81)–(88) can be combined with Eqs. (38), (39), (58),
and (74) to give

xðtÞ ¼ x0 �
X
p¼1;1

apðtÞ þ bpðtÞ
� �

; (89)

where

sM
dap
dt
þ ðfh þ j21pÞ ap ¼ ghp

su

s2H

� �
w
rs

� �4

Im
DWs

Ws

� �
; (90)

sM
dbp

dt
þ j20p bp ¼ gup

�s
qs

� �2 su

s2H

� �
w
rs

� �4

Im
DWs

Ws

� �
; (91)

and sM ¼ a2=N?s, su ¼ r2s =N?s,

sH ¼
Ls ðl0 qsÞ1=2

mBu
; (92)

fh ¼
sM
shs
; (93)

ghp ¼
J1ðj1p rs=aÞ
J2ðj1pÞ

" #2
; (94)

gup ¼
J0ðj0p rs=aÞ
J1ðj0pÞ

" #2
; (95)

w ¼W=4, and �s ¼ �ðrsÞ.

K. Wall physics

Suppose that the inner wall extends from r¼ rb to r ¼ rb þ db,
where db � rb is the wall thickness. Ohm’s law inside the wall yields

@2w
@r2
’ l0

gb

@w
@t
; (96)

where gb is the electrical resistivity of the inner wall material. The pre-
vious equation must be solved subject to the boundary conditions,

wðrb; tÞ ¼ WbðtÞ; (97)

@ lnwðrb þ db; tÞ
@ ln r

¼ �mb; (98)

where

mb ¼ m
Gv þ ðGv � 2Þ ðrb=rvÞ2m

Gv 1� ðrb=rvÞ2m
� �

( )
: (99)

These boundary conditions follow from Eqs. (7), (14), (48), (49), and
(53). Note that we have effectively redefined Wb to be the normalized
helical magnetic flux that penetrates the inner (in r) boundary of the
inner wall.

Let

q ¼ r � rb
db

; (100)
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wðr; tÞ ¼ WbðtÞ FðqÞ: (101)

Equations (96)–(98) yield

@2F
@q2
¼ sb fb cb F; (102)

Fð0Þ ¼ 1; (103)

@ ln Fð1Þ
@q

’ �mb fb; (104)

where

cb ¼
d lnWb

dt
; (105)

sb ¼
l0 rb db

gb
; (106)

fb ¼
db
rb
: (107)

Here, sb is the time-constant of the inner wall.4,15 Note that, in writing
Eq. (102), we have neglected transient eddy currents excited in the
inner wall, for the sake of simplicity. (See Ref. 7 for an explanation of
how transient eddy currents could be incorporated into the analysis.)

Equations (102)–(104) can be solved to give

FðqÞ ¼ ab cosh ab ðq� 1Þ½ � �mb fb sinh ab ðq� 1Þ½ �
ab coshab þmb fb sinhab

; (108)

where

ab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cb sb fb

p
: (109)

However, in the physically relevant limit,

m2
b fb � jcbj sb; (110)

expression (108) simplifies to

FðqÞ ’ cosh ab ðq� 1Þ½ �
coshab

: (111)

Equation (11) generalizes to give

DWb ¼ r
@w
@r

� �rbþdb

rb

’ Wb

fb

@F
@q

� �1
0

; (112)

where Eqs. (100), (101), and (107) have been used. It follows from Eqs.
(46), (109), and (111) that the wall response index for the inner wall
takes the form:

Gb ¼
ffiffiffiffiffiffiffiffiffi
cb sb
fb

r
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cb sb fb

p	 

: (113)

In the so-called thin-wall limit,

m2
b fb � jcj sb �

1
fb
; (114)

in which the thickness of the wall is much less than the skin-depth, the
wall response index reduces to the standard form4,15

Gb ’ cb sb: (115)

On the other hand, in the thick-wall limit,

1
fb
� jcbj sb; (116)

in which the thickness of the wall is much greater than the skin-depth,
we obtain1,15

Gb ’
ffiffiffiffiffiffiffiffiffi
cb sb
fb

r
: (117)

The previous expression represents a wall response in which the eddy
current only penetrates a distance of order the skin-depth into the wall
from its inner boundary.

By analogy with Eq. (113), the wall response index for the outer
wall takes the form

Gv ¼
ffiffiffiffiffiffiffiffiffi
cv sv

fv

r
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv sv fv

p	 

; (118)

where

cv ¼
d lnWv

dt
; (119)

sv ¼
l0 rv dv

gv
; (120)

fv ¼
dv

rv
: (121)

Here, dv, gv, and sv are the thickness, electrical resistivity, and time-
constant of the outer wall, respectively.

Equations (50), (51), (113), and (118) yield

Gb ¼ 1þ
ffiffiffiffiffiffiffiffiffiffi
cb ~sb
~fb

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cb ~sb ~fb

q� �
; (122)

Gv ¼ 1þ
ffiffiffiffiffiffiffiffiffi
cv ~sv

~fv

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv ~sv

~fv

q� �
; (123)

where

~sb ¼
sb

ð�~EbbÞ
; (124)

~fb ¼
db
rb
ð�~EbbÞ; (125)

~sv ¼
sv

ð�EvvÞ
; (126)

~fv ¼
dv

rv
ð�EvvÞ: (127)

Finally, Eqs. (48), (49), (73), (105), (119), (122), and (123) give

Hb
dcb
dt
¼ ðGb þ CbvÞ ðcv � cbÞ þ

1
Gbv

c� cvð Þ; (128)

Hv
dcv

dt
¼ Gv ðcb � cvÞ; (129)

where
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c � d lnWs

dt
¼ 2

d lnW
dt
� ix; (130)

Hb ¼
1
2

ffiffiffiffiffiffiffiffiffi
~sb

cb ~fb

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cb ~sb ~fb

q� �
þ ~sb

cosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cb ~sb ~fb

q� �
2
64

3
75; (131)

Hv ¼
1
2

ffiffiffiffiffiffiffiffiffi
~sv

cv
~fv

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv ~sv

~fv

q� �
þ ~sv

cosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cv ~sv

~fv

q� �
2
64

3
75: (132)

L. Normalized rotation braking equations

Let x ¼ w=wpw; y ¼ x=x0, and T ¼ tx0. Here, wpw ¼Wpw=4.
Thus, x is the width of the magnetic island chain relative to its satu-
rated width when the inner wall is perfectly conducting, y is the
island rotation frequency relative to the natural frequency, and T is
time normalized to the typical time required for the island chain
complete a full rotation. Equations (57), (69), (89)–(91), (122),
(123), and (128)–(132) reduce to the following closed set of equa-
tions that determine the time evolution of the normalized island
rotation frequency:

yðTÞ ¼ 1�
X
p¼1;1

âpðTÞ þ b̂pðTÞ
h i

; (133)

where

ŝM
dâp

dT
¼ � fh þ j21p

	 

âp þ ghp Ch x

4 ImðGbvÞ; (134)

ŝM
db̂p

dT
¼ �j20p b̂p þ gup Cu x4 ImðGbvÞ; (135)

ŝpw
dx
dT
¼ 1� x þ Cx ReðGbvÞ; (136)

and

Gbv ¼
Gv

ðGb þ CbvÞ Gv � Cbv
; (137)

Gb ¼ 1þ
ffiffiffiffiffiffiffiffiffiffi
ĉb ŝb
~fb

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉb ŝb ~fb

q� �
; (138)

Gv ¼ 1þ
ffiffiffiffiffiffiffiffiffiffi
ĉv ŝv

~fv

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉv ŝv

~fv

q� �
; (139)

with

Hb
dĉb
dT
¼ ðGb þ CbvÞ ðĉv � ĉbÞ þ

1
Gbv

ĉ � ĉvð Þ; (140)

Hv
dĉv

dT
¼ Gv ðĉb � ĉvÞ; (141)

where

ĉ ¼ 2
d ln x
dT
� i y; (142)

Hb ¼
1
2

ffiffiffiffiffiffiffiffiffiffi
ŝb

ĉb ~fb

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉb ŝb ~fb

q� �
þ ŝb

cosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉb ŝb ~fb

q� �
2
64

3
75; (143)

Hv ¼
1
2

ffiffiffiffiffiffiffiffiffiffi
ŝv

ĉv
~fv

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉv ŝv

~fv

q� �
þ ŝv

cosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉv ŝv

~fv

q� �
2
64

3
75: (144)

Here, Cbv; fh; ghp; gup; ~fb, and ~fv are defined in Eqs. (53), (93), (94),
(95), (125), and (127), respectively. Moreover,

ŝM ¼ sM x0; (145)

ŝpw ¼ spw x0; (146)

spw ¼
I1 sR

Dpwð0Þ
Wpw

rs
; (147)

ŝb ¼
sb x0

ð�~EbbÞ
; (148)

ŝv ¼
sv x0

ð�EvvÞ
; (149)

Ch ¼ Dnwð0Þ � Dpwð0Þ
� � su

s2H x0

� � wpw

rs

� �4

; (150)

Cu ¼
�s
qs

� �2

Ch; (151)

Cx ¼
Dnwð0Þ � Dpwð0Þ

Dpwð0Þ
: (152)

Note that spw is the typical time required for the island chain to attain
its final saturated width.

M. Approximation

If we neglect plasma inertia (i.e., the terms involving d=dT), then
Eqs. (133)–(135) yield

T ðTÞ � y þ Chu x
4 ImðGbvÞ � 1 ¼ 0; (153)

where

Chu ¼
1
4

shs

su

� �1=2

Ch þ 2 ln
a
rs

� �
Cu

" #
: (154)

Here, the results have been used,26

lim
�!0

X
p¼1;1

ffiffi
�
p

J1ðj1p xÞ
� �2

J2ðj1pÞ
� �2 ð1þ � j21pÞ ’

1
4 x

; (155)

X
p¼1;1

J0ðj0p xÞ
� �2
J1ðj0pÞ
� �2 j20p ¼

1
2
ln

1
x

� �
: (156)

Unfortunately, when the summations in the previous two expressions
are truncated, as they must be in practice, the first expression is found
to converge to its final value comparatively slowly. In order to avoid
retaining an unpractical number of velocity harmonics in the calcula-
tion, Eq. (133) is replaced by
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y ¼ 1� 1
Sh

X
p¼1;ph max

âp �
1
Su

X
p¼1;pu max

b̂p; (157)

where

Sh ¼ 4
rs
a

� � ffiffiffi
f

p
h

X
p¼1;ph max

ghp
fh þ j21p

; (158)

Su ¼
2

ln ða=rsÞ
X

p¼1;pu max

gup
j20p

: (159)

Note that Sh ! 1 as phmax !1, and Su ! 1 as pumax !1. With
these changes, T , which is defined in Eq. (153), becomes an accurate
torque balance diagnostic. In other words, T ’ 0 when the plasma is
in a torque-balanced state (i.e., a state in which the electromagnetic
torque at the rational surface is exactly balanced by the viscous and
poloidal flow-damping torques), and plasma inertia is not playing a
role in determining the angular velocity profiles, whereas T � Oð1Þ
when torque balance breaks down.

In conclusion, our final set of rotation braking equations are Eqs.
(134)–(144) and (157). These equations are integrated using an explicit,
adaptive step, embedded Runge–Kutta Cash–Karp (4, 5) method.

III. LOCKING OF 2/1 TEARING MODE IN ITER
A. Simulation parameters

Like La Haye et al.,14 we shall consider locking of the 2/1 tearing
mode in the ITER 15 MA inductive scenario 2.27 Plasma profiles
for this scenario obtained by Urso28 originate from simulations by
Polevoi et al.29

The main plasma parameters are Bu ¼ 5:3 T; R0 ¼ 5:3 m,
a ¼ 2:0 m; Zeff ¼ 1:7, ZI¼ 4 (beryllium), and sM ¼ 3:7 s.28,29 The
m ¼ 2=n ¼ 1 rational surface lies at rs=a ¼ 0:87.28,29 The electron
number density, electron temperature, ion temperature, neoclassical
plasma resistivity, and natural frequency at this surface are
ne¼ 9:8�1019m�3; Te¼ 5:6 keV; Ti¼ 5:7 keV; gk ¼ 3:4�10�8 Xm,
and x0¼ 0:42 kHz, respectively.28,29

In our study, we shall use a “Wesson”-type plasma current
density profile of the form Ju ¼ Juð0Þ ð1� r2=a2Þ� , where qðaÞ
¼ 2=Juð0Þ and qð0Þ ¼ qðaÞ=ð1þ �Þ.17 The choices qð0Þ ¼ 0:8 and
qðaÞ ¼ 2:6 yield rs=a ¼ 0:87. [Note that the rather low value for q(a)
is an artifact of using a cylindrical model to describe a toroidal plasma.
The q(a) value is chosen so as to ensure that the 2/1 rational surface
lies at the same minor radius as in the La Haye study.] The choice
ft ¼ 0:91 is consistent with gk ¼ 3:4� 10�8 X m.

Finally, our adopted wall parameters are rb ¼ 1:2 a; db ¼ 0:25 a;
sb ¼ 23 ms, rv ¼ 1:5 a; sv ¼ 0:369 s, and gv ¼ 7:4� 10�7 Xm (see
Sec. I.). Note that we are assuming that the blanket module layer fills
most of the space between its inner surface and the inner surface of
the vacuum vessel. The effective electrical resistivity of the blanket
module layer is 6:6� 10�5 X m. The effective thickness of the vac-
uum vessel is db ¼ 7:4 cm.

We find that Dpwð0Þ ¼ 2:49; Dnwð0Þ ¼ 3:79; Wpw ¼ 0:45 a,
~Ebb ¼ �5:60, and ~Evv ¼ �6:78. The various timescales in the calcula-
tion are sH ¼ 4:2�10�7 ; shs¼ 6:4�10�6 ; sM ¼ 3:7, and spw¼ 19s.

The normalized simulation parameters are ~fb ¼ 1:17; ~fv ¼ 0:17;
fh ¼ 5:8� 105; ŝb ¼ 10:8; ŝv ¼ 1:5� 102; ŝM ¼ 9:8� 103, ŝpw
¼ 5:0� 104; Ch ¼ 2:1� 106; C/ ¼ 4:2� 104, Cx ¼ 0:52; Chu ¼ 3:7
�103, and Cbv ¼ 0:50.

The number of poloidal velocity harmonics retained in the calcu-
lation is phmax ¼ 500, while the number of toroidal velocity harmonics
retained in the calculation is pumax ¼ 100.

B. Simulation results

Figure 1 shows the 2/1 island width and island angular frequency
calculated as functions of time using our model. Figure 2 shows the
same parameters in unnormalized units. It can be seen that the 2/1
tearing mode locks to the walls when it has attained about 20% of its
final saturated width. Looking more closely, it is clear that the mode
locks to the walls in two stages. First, it locks to the blanket module
layer and is left rotating at about 15Hz. Next, it locks to the vacuum
vessel and is left rotating at less than 0.5Hz. The time required for the
2/1 mode to grow from a small amplitude and lock to the blanket
module layer is 3.6 s, whereas that required to lock to the vacuum ves-
sel is 3.9 s. The island width when the mode locks to the blanket
module layer is 8.9% of the plasma minor radius, whereas that when
the mode locks to the vacuum vessel is 9.6%. The figures also show the
results of a “thin-wall” calculation in which the time constants of the
inner and outer wall are kept the same as in the thick-wall calculation,
but the dimensionless wall thickness parameters, ~fb and ~fv, are both
given very small values. It can be seen that the thin-wall slowing down
curve is a little different from its thick-wall counterpart. On the other
hand, the critical island width at which the mode locks to the wall is
the same in both cases.

According to our calculation, the time required for the 2/1 tear-
ing mode to grow from a small amplitude to one large enough to lock
to the walls is about 50% larger than that reported by La Haye et al.14

On the other hand, the critical island width at which wall locking
occurs is about twice that reported by La Haye et al. This finding is sig-
nificant because a critical island width for wall locking in ITER of
about 9% is similar to that seen in existing (large) tokamaks.14

FIG. 1. Island width and island angular rotation frequency as functions of time for a
growing 2/1 tearing mode in ITER. Here, Wpw¼ 90 cm, and x0 ¼ 0:42 kHz. The
subscripts “thick” and thin indicate thin-wall and thick-wall calculations, respectively.
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Figure 3 shows the fractions of the 2/1 tearing mode frequency
shift that is due to changes in the plasma poloidal and toroidal angular
velocities at the rational surface as functions of time. It can be seen
that about 22% of the mode frequency shift associated with wall lock-
ing is due to changes in the plasma poloidal angular velocity, the
remaining 78% being due to changes in the plasma toroidal angular
velocity. Clearly, it is not the case that neoclassical poloidal flow-
damping is strong enough to completely suppress plasma poloidal

angular velocity shifts associated with mode locking in ITER (or in
any existing tokamak). Note that the poloidal angular velocity shift
during the time interval in which the mode frequency collapses evolves
on a significantly shorter timescale than the toroidal angular velocity
shift. The figure also shows the results of a thin-wall calculation. It can
be seen that the thin-wall frequency shift curves are a slightly different
than the thick-wall curves.

Figure 4 shows the fractions of the reconnected magnetic flux
that penetrate the blanket module layer and the vacuum vessel as
functions of time. It can be seen that the magnetic flux penetrates
the walls in two stages. First, it penetrates the blanket module layer
over a timescale of about 50ms. Next, it penetrates the vacuum ves-
sel over a timescale of about 500ms. Note that, even when the mode
rotation is not significantly slowed, the reconnected flux still par-
tially penetrates both the blanket module layer and the vacuum ves-
sel. The figure also shows the results of a thin-wall calculation. It
can be seen that, when the mode rotation is not significantly slowed,
the magnetic flux penetrates the (inner surface of the) inner wall
more effectively in the thick-wall calculation than in the thin-wall
calculation.

Finally, Fig. 5 shows the torque balance diagnostic, T , as a func-
tion of time. Recall that if T ’ 0, then the plasma is in a torque-
balanced state in which the electromagnetic torque at the rational
surface is exactly balanced by the viscous and poloidal flow-damping
torques. It can be seen that the plasma is indeed in a torque-balanced
state well before and well after the occurrence of wall locking. On the
other hand, the plasma is clearly not in a torque-balanced state during
the time interval in which wall locking occurs, indicating that plasma
inertia is playing a significant role in the wall-locking process. The fig-
ure also shows the results of a thin-wall calculation. It can be seen that
the thin-wall torque balance curve is a little different than the thick-
wall curve.

FIG. 2. Island width and island rotation frequency as functions of time for a growing
2/1 tearing mode in ITER. The subscripts thick and thin indicate thin-wall and thick-
wall calculations, respectively.

FIG. 4. Fractions of the reconnected 2/1 magnetic flux that penetrates the inner
wall (jWv=Wsj) and the outer wall (jWv=Wsj) as functions of time. The subscripts
thick and thin indicate thin-wall and thick-wall calculations, respectively.

FIG. 3. Fraction of 2/1 mode frequency shift that is due to changes in the plasma
poloidal (fh) and toroidal (fu) angular velocities at the rational surface as functions
of time. The subscripts thick and thin indicate thin-wall and thick-wall calculations,
respectively.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 30, 042514 (2023); doi: 10.1063/5.0141742 30, 042514-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


C. Frequency scan

The ITER plasma parameter whose value is most difficult to pre-
dict is the plasma toroidal rotation. This uncertainty implies that the
most uncertain parameter in our simulation is the natural frequency,
x0. Unlike most existing tokamaks, ITER will not possess an unbal-
anced neutral beam injection heating system that is capable of impart-
ing significant toroidal momentum to plasma. As such, it is difficult to
envisage situations in which the toroidal rotation in ITER plasmas will
significantly exceed diamagnetic levels. In this situation, we expect the
contribution to the natural frequency from diamagnetic levels of poloi-
dal plasma rotation to be similar in magnitude to the contribution
from toroidal plasma rotation. This observation leads to the following
estimate for the natural frequency:

x0 �
m
rs

TeðeVÞ þ TiðeVÞ½ �
Bu Lp

; (160)

where Lp is the pressure scale length. For the case in hand, m¼ 2,
rs ¼ 1:74m, Te ¼ 5:6� 103 eV, Ti ¼ 5:7� 103 eV, Bu ¼ 5:3T, and
Lp ¼ 0:9m.28,29 Thus, we obtain x0 � 400Hz. This prediction is con-
sistent with our previous calculation, as well as the best estimates in
the literature.30

Figures 6 and 7 show the times required for locking of the 2/1
tearing mode to the blanket module layer and the vacuum vessel, as
well as the critical island widths needed to trigger locking, calculated
using our model for all likely values of the natural frequency. These
calculations are identical to the calculation discussed in Secs. IIA and
II B, apart from the fact that x0 is allowed to take a range of different
values. It can be seen that if the natural frequency lies below 40Hz,
then the 2/1 tearing mode is locked to the blanket module layer at
birth. However, for higher values of the natural frequency, the 2/1
mode is born rotating and subsequently locks to the wall. Both the
locking time and the critical island width required to trigger locking
scale roughly as the square root of the natural frequency. The main
results of this paper—that the locking time exceeds about 3.5 s and

that the critical island width required to trigger locking exceeds about
9% of the plasma minor radius—hold unless the plasma rotation falls
well below diamagnetic values.

D. Bootstrap current

Finally, we have performed some relatively crude calculations in
which we attempt to include the effect of the equilibrium bootstrap
current density at the 2/1 rational surface, which is estimated to be
0:074MA=m2, in the model.28 We find that the bootstrap drive (due
to the loss of the bootstrap current inside the magnetic separatrix of

FIG. 5. Torque balance diagnostic as function of time. The subscripts thick and thin
indicate thin-wall and thick-wall calculations, respectively. FIG. 6. Time required for 2/1 locking to the blanket module layer (tb) and to the

vacuum vessel (tv) as functions of the natural frequency.

FIG. 7. Critical 2/1 island widths for locking to the blanket module layer (Wb) and to
the vacuum vessel (Wv) as functions of the natural frequency.
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the island chain) can reduce the locking time to as small a value as
0.5 s. On the other hand, the critical island width at which the mode
locks to the wall is slightly increased to about 10% of the plasma minor
radius.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have simulated the locking of the 2/1 tearing
mode to the wall in the ITER 15 MA inductive scenario 2 (Ref. 27)
using a cylindrical asymptotic matching model.6 Our calculation is
similar to an earlier calculation performed by La Haye et al.,14 but
incorporates more physics. Our model takes into account the fact that
ITER plasmas will effectively be surrounded by two walls; the inner
blanket module layer with a time constant (which in this paper is
defined as l0 r d=g, where r, d, and g are the wall minor radius, radial
thickness, and resistivity, respectively) of about 23ms, and the outer
vacuum vessel with a time constant of about 380ms. Our model also
takes cognizance of the fact that neither the blanket module layer nor
the vacuum vessel can be accurately described as thin walls (i.e., such
that the wall thickness is much less than the skin-depth). Our model
incorporates changes in both the plasma poloidal and the toroidal
angular velocity profiles, in response to the electromagnetic braking
torque that develops at the rational surface, because it turns out that
neoclassical poloidal flow-damping is not strong enough to completely
suppress changes in the poloidal velocity. Finally, our model accurately
calculates changes in the poloidal and toroidal plasma angular velocity
profiles by evolving the full angular equations of motion, taking the
electromagnetic braking torque, plasma inertia, plasma viscosity, and
poloidal flow-damping into account. Note that a similar, but some-
what simpler, theoretical model to that employed in this paper was
successfully used to model the slowing down and locking of large
amplitude m¼ 1 tearing modes to a thick wall in the MST reversed
field pinch.7

We find that wall locking of the 2/1 tearing mode in ITER takes
place in two stages. First, the mode locks to the blanket module layer
and is left rotating at about 15Hz. Next, the mode locks to the vacuum
vessel and is left rotating at less than 0.5Hz. The time required for the
mode to grow from a small amplitude to sufficient one large to lock to
the walls is about 3.5 s (but becomes shorter if the bootstrap current is
included in the calculation). The critical island width required to trig-
ger wall locking is about 9% of the plasma minor radius. The latter
prediction is not as pessimistic as that of La Haye et al., who obtained
a critical island width of only 4.5% of the plasma minor radius.14 We
find that about 20% of the mode frequency shift associated with wall
locking is due to changes in the poloidal plasma angular velocity at the
rational surface, the remaining 80% being due to changes in the toroi-
dal angular velocity. The plasma is found to be in a torque-balanced
state (i.e., one in which the electromagnetic torque at the rational sur-
face is exactly balanced by the viscous and poloidal flow-damping tor-
ques) well before and well after the occurrence of wall locking. On the
other hand, the plasma is not in a torque-balanced state during the
time interval in which wall locking occurs, indicating that plasma iner-
tia plays a significant role in the wall-locking process.

Given that the likely toroidal plasma rotation levels in ITER plas-
mas are very uncertain, we have repeated our calculation for a range of
probable rotation levels. We find that the main results of this paper—
that the locking time exceeds about 3.5 s (in the absence of the boot-
strap current) and that the critical island width required to trigger

locking exceeds about 9% of the plasma minor radius—hold unless
the plasma rotation falls well below diamagnetic values.

The pessimistic prediction by La Haye et al. that the critical island
width for wall locking of the 2/1 tearing mode in ITER is only about
4.5% of the plasma minor radius14 has led Nies et al. to propose that
that the mode be allowed to lock before an attempt is made to control
it via electron cyclotron current drive localized about the rational sur-
face (because it much easier to correctly phase the current drive to the
magnetic island chain when the chain is stationary rather than when it
is rotating).31 However, if the critical island width is actually 9% of the
plasma minor radius (which is similar to the critical island width in
the existing large tokamaks), then this novel idea loses some of its
attractiveness.
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