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ABSTRACT

The external-kink stability of a toroidal plasma surrounded by a rigid resistive wall is investigated. The well-known analysis of Haney and
Freidberg is rigorously extended to allow for a wall that is sufficiently thick that the thin-shell approximation does not necessarily hold. A
generalized Haney–Freidberg formula for the growth-rate of the resistive wall mode is obtained. Thick-wall effects do not change the mar-
ginal stability point of the mode but introduce an interesting asymmetry between growing and decaying modes. Growing modes have
growth-rates that exceed those predicted by the original Haney–Freidberg formula. On the other hand, decaying modes have decay-rates that
are less than those predicted by the original formula. The well-known Hu–Betti formula for the rotational stabilization of the resistive wall
mode is also generalized to take thick-wall effects into account. Increasing wall thickness facilitates the rotational stabilization of the mode,
because it decreases the critical toroidal electromagnetic torque that the wall must exert on the plasma. On the other hand, the real frequency
of the mode at the marginal stability point increases with increasing wall thickness.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0239148

I. INTRODUCTION

According to the standard ideal-magnetohydrodynamical (ideal-
MHD) stability theory, a fusion plasma confined on a set of toroidally
nested magnetic flux-surfaces can be rendered completely stable to
ideal external-kink modes by means of a perfectly conducting, rigid
wall that is located sufficiently close to the plasma boundary.1–3 Of
course, a practical metal wall possesses a finite electrical conductivity
and can, therefore, only act as a perfect conductor on timescales that
are much less than its characteristic L/R time. Given that the L/R time
of any conceivable wall (�10�3 s) is considerably smaller than the
desired confinement time of a fusion plasma (�1 s),4,5 it is clear that
the finite conductivity of the wall must be taken into account in the
stability analysis. When the finite wall conductivity is taken into con-
sideration, ideal external-kink modes that would be stabilized by the
wall, were it perfectly conducting, are found to grow on the L/R time
of the wall.6,7 Such comparatively slowly growing modes [compared to
ideal external-kink modes, which grow on the extremely short
(�10�7 s) Alfv�en time]8–11 are known as resistive wall modes. In 1989,
Haney and Freidberg12 derived a very general formula for the growth-
rate of a resistive wall mode that makes use of the “thin-shell approxi-
mation,” according to which the skin-depth in the wall material is

assumed to be much larger than the wall thickness. The aim of this
paper is to generalize the Haney–Freidberg formula to allow for thicker
walls in which the thin-shell approximation breaks down.13–19

The Haney–Freidberg formula features the quantity dWnw, which
represents the perturbed potential energy of the plasma calculated on
the assumption that inertia is negligible and the wall is absent, as well
as the quantity dWpw, which represents the corresponding energy cal-
culated on the assumption that the wall is present and perfectly con-
ducting. The Haney–Freidberg calculation constructs the physical
resistive wall mode eigenfunction as a linear superposition of the trial
eigenfunctions that are used to calculate dWnw and dWpw. Now, the
resistive wall mode eigenfunction must satisfy all physical boundary
conditions at the plasma/vacuum interface. On the other hand, it turns
out that the trial eigenfunctions do not satisfy the perturbed pressure
balance boundary condition at the interface. In general, the only rea-
son that dWnw and dWpw can take non-zero values is because this
boundary condition is not satisfied. The fact that the trial eigenfunc-
tions do not satisfy the pressure balance boundary condition is implicit
in previous work, but has never been directly pointed out before.
Furthermore, Haney and Freidberg did not explicitly demonstrate that
their resistive wall mode eigenfunction satisfies the pressure balance
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boundary condition (in general, it does). Consequently, the analysis
presented in this paper will pay particular attention to the boundary
conditions at the plasma/vacuum interface.

II. IDEAL EXTERNAL-KINK MODE STABILITY
A. Scenario

Section II reprises some well-known background material in order
to closely examine relationship between dWnw and dWpw and the pres-
sure balance boundary condition at the plasma/vacuum interface.

Consider a fusion plasma that is confined on a set of toroidally
nested magnetic flux-surfaces. Let Vp represent the toroidal volume
occupied by the plasma, and let Sp be the volume’s bounding surface.
Suppose that the plasma is surrounded by a rigid, conducting wall
whose uniform thickness, d, is small compared to its effective minor
radius, b. Let the wall occupy the toroidal surface Sw. Let Vi represent
the vacuum region lying between the plasma boundary and the wall.
Finally, let Vo represent the vacuum region that lies outside the wall,
and extends to infinity, see Fig. 1.

B. Plasma equilibrium

Let qðrÞ; pðrÞ; BðrÞ, and jðrÞ represent the equilibrium plasma
mass density, scalar pressure, magnetic field, and electric current den-
sity, respectively. It follows that l0 j ¼ r� B, andrp ¼ j� B. Let n
be a unit, outward directed normal vector to Sp. We have

n � B ¼ 0 (1)

on Sp, because Sp must correspond to a magnetic flux-surface. We also
expect the rapid transport of particles and energy along magnetic field-
lines to ensure that n�rp ¼ 0 on Sp.

5 Hence, we deduce from the
equilibrium force balance equation that

n � j ¼ 0 (2)

on Sp. Finally, equilibrium force balance across Sp yields

pþ B2

2 l0

" #" #
� B̂

2

2 l0
� p� B2

2 l0
¼ 0 (3)

on Sp, which implies that

r � pþ B2

2 l0

 !" #" #
¼ n � r pþ B2

2 l0

 !" #" #
n (4)

on Sp. Here, B̂ðrÞ is the equilibrium magnetic field in the vacuum
region.

C. Plasma perturbation

Assuming an expðc tÞ time dependence of all perturbed quanti-
ties, and neglecting equilibrium plasma flows, the perturbed, linearized
plasma equation of motion takes the form8–11

c2 q n ¼ FðnÞ; (5)

where

FðnÞ ¼ rðC pr � nÞ � l�1
0 B� ðr �QÞ þ rðn � rpÞ þ j�Q;

(6)

and Q ¼ r� ðn� BÞ. Here, nðrÞ is the plasma displacement,
C ¼ 5=3 is the ratio of specific heats, and QðrÞ is the divergence-free
perturbed magnetic field in the plasma. Moreover, FðnÞ is known as
the force operator. The divergence-free perturbed magnetic field in the
vacuum region is written asr� A, where

r� ðr � AÞ ¼ 0: (7)

D. Physical boundary conditions

Now, nðrÞ must be square integrable at the magnetic axis, other-
wise the potential energy, dW [see Eq. (12)], of the perturbation would
be infinite. Furthermore,9–11

n� A ¼ �ðn � nÞ B̂; (8)

�C pr � nþ n � r B2

2 l0

 !
þ l�1

0 B �Q

¼ n � r B̂
2

2 l0

 !
þ l�1

0 B̂ � r � A (9)

on Sp. Equation (8) ensures that the perturbed plasma boundary
remains a magnetic flux-surface, whereas Eq. (9) is an expression of
perturbed pressure balance across the boundary. Finally, if the wall is
perfectly conducting then

nw � A ¼ 0; (10)

on Sw, where nw is a unit, outward directed normal vector to Sw. On
the other hand, if the wall is absent then

r� A ¼ 0; (11)

at infinity. Equation (10) ensures that the perturbed magnetic field
cannot penetrate the perfectly conducting wall, whereas Eq. (11)
ensures that the potential energy of the perturbation remains finite.

FIG. 1. Schematic diagram showing the poloidal cross section of a toroidally con-
fined plasma. Vp is the plasma volume, and Sp is its bounding surface. Sw is a phys-
ically thin wall that surrounds the plasma. Vi is the vacuum region that lies between
the plasma and the wall, whereas Vo is the vacuum region that lies outside the wall.
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The boundary conditions (8), (10), and (11), the constraint that
nðrÞ be square integrable at the magnetic axis, and the constraint that
r� A be square integrable at infinity, are conventionally termed
essential boundary conditions, whereas the boundary condition (10) is
termed a natural boundary condition.9–11 An essential boundary con-
dition is one that must be satisfied by all prospective solution pairs
[nðrÞ; AðrÞ]. In other words, an essential boundary condition must be
satisfied by the physical resistive wall mode eigenfunction, as well as
the trial eigenfunctions used to calculate dWnw and dWpw. On the
other hand, a natural boundary condition is one that must be satisfied
by the resistive wall mode eigenfunction, but can be violated by the
trial eigenfunctions.

A more precise definition of a natural boundary condition is that
it is one that emerges from the minimization of the plasma potential
energy. In other words, the minimization processes drives the trial
solution toward one that satisfies the boundary condition. Although
this has been pointed out many times before,8,10,11 what is not
completely clear from previous work is that the minimization process
can fail to satisfy a natural boundary condition if such satisfaction
would overconstrain the problem. This is precisely what happens to
the trial solutions used to calculate dWnw and dWpw.

E. Ideal-MHD energy principle

The potential energy of the perturbation characterized by the
solution pair [nðrÞ; AðrÞ] takes the form8–11

dWðn; nÞ ¼ � 1
2

ð
Vp

n � FðnÞ dVp: (12)

It follows from Eq. (A4) that

dW ¼ dWp þ dWs þ dWv; (13)

where

dWpðn; nÞ ¼ 1
2

ð
Vp

C p ðr � nÞ ðr � nÞ þ l�1
0 Q �Q�

þ ðr � nÞ ðn � rpÞ þ j � n�Q�dVp; (14)

dWsðn; nÞ ¼ 1
2

ð
Sp

ðn � nÞ ðn � nÞn � r pþ B2

2 l0

 !" #" #
dSp; (15)

dWvðA;AÞ ¼ 1
2 l0

ð
V
ðr � AÞ � ðr � AÞ dV : (16)

Clearly, dWp; dWs, and dWv, respectively, represent the contributions
from the bulk plasma, from equilibrium surface currents flowing on
the plasma boundary, and from the vacuum, to the overall potential
energy of the perturbation.

The ideal-MHD energy principle8–11 states that if any solution
pair that satisfies the boundary conditions makes dW < 0 then the
plasma is ideally unstable. In other words, at least one eigenmode with
c2 > 0 exists, where c is of order the inverse Alfv�en time. On the other
hand, if no valid solution pair can be found such that dW < 0 then
the plasma is ideally stable. In other words, all eigenmodes are charac-
terized by c2 < 0.

Clearly, in order to utilize the ideal-MHD principle, we need to
minimize dWðn; nÞ with respect to n, and then determine whether the
minimum value is positive or negative. In the former case, the plasma

is ideally stable. In the latter case, it is ideally unstable. In Subsection 2
of the Appendix, it is shown that the trial solution pair that minimizes
dW, subject to the essential boundary conditions, satisfies the force-
balance equation,

FðnÞ ¼ 0; (17)

in Vp, satisfies Eq. (7) in V, and also ought to satisfy the pressure bal-
ance matching condition, (9), at the plasma boundary.

F. dWpw and dWnw

The perfect-wall and no-wall plasma potential energies, dWpw

and dWnw, respectively, are defined in Subsection 3 of the Appendix. If
dWpw > 0 then the ideal external-kink mode in question is stabilized
by the wall. On the other hand, if dWnw < 0 then the ideal external-
kink mode is unstable in the absence of the wall. Of course, the situa-
tion in which a kink mode is unstable in the absence of the wall, and
stable in the presence of perfectly conducting wall, is exactly that which
pertains to the resistive wall mode.

G. Relationship between dWnw ; dWpw and pressure
balance boundary condition

The reason that we have reproduced the very standard theory
outlined in Secs. II B–II F is to make an important observation.
Namely, the solution pairs [nðrÞ; ApwðrÞ] and [nðrÞ; AnwðrÞ], conven-
tionally used to calculate dWpw and dWnw, respectively, do not satisfy
the pressure balance matching condition, (9), at the plasma boundary.
One way of seeing this is to note that if FðnÞ ¼ 0 in Vp then, according
to Eq. (12), dW ¼ 0. However, if we assume that the pressure balance
matching condition is not satisfied then Eq. (13) generalizes to

dW ¼ dWp þ dWs þ dWv þ dWc; (18)

where

dWcðn;AÞ ¼ 1
2

ð
Sp

ðn � nÞ �C pr � nþ n � r B2

2 l0

 !"

þ l�1
0 B �Q� n � r B̂

2

2 l0

 !

�l�1
0 B̂ � ðr � AÞ

#
dSp: (19)

Here, the surface energy dWc is directly related to the failure to satisfy
the pressure balance matching condition at the plasma boundary.
Thus, it is clear that

dWpw ¼ �dWcðn;ApwÞ; (20)

dWnw ¼ �dWcðn;AnwÞ: (21)

In other words, the only reason that dWpw and dWnw can take non-
zero values at all is because the pressure balance matching condition is
not satisfied, see Sec. IVL.

The fact that the solution pairs [nðrÞ; ApwðrÞ] and
[nðrÞ; AnwðrÞ], do not satisfy the pressure balance matching condition,
(9), at the plasma boundary is not problematic within the context of
ideal-MHD theory. The ideal-MHD energy principle guarantees that if
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dWnw < 0 then we can find a solution of Eq. (5) inside the plasma,
and Eq. (7) outside the plasma, which satisfies all of the boundary con-
ditions in the absence of a wall, and is such that c2 > 0. Likewise, if
dWpw > 0 then we can find a solution of Eq. (5) inside the plasma,
and Eq. (7) outside the plasma, which satisfies all of the boundary con-
ditions in the presence of a perfectly conducting wall, and is such that
c2 < 0. In both cases, the undetermined Alfv�enic growth-rate of the
instability, c, provides the additional degree of freedom that allows the
pressure balance matching condition, (9), to be satisfied at the plasma
boundary. However, the analysis of Haney–Freidberg constructs the
resistive wall mode solution from a linear combination of
[nðrÞ; ApwðrÞ] and [nðrÞ; AnwðrÞ]. Moreover, such a solution must
satisfy all of the boundary conditions, including Eq. (9). Haney and
Freidberg did not explicitly demonstrate that this is possible. As we
shall see, it turns out that it is possible.

III. RESISTIVE WALL MODE PHYSICS
A. Resistive wall physics

Let AiðrÞ be the vector potential in Vi. Let AoðrÞ be the vector
potential in Vo. Finally, let AwðrÞ be the vector potential inside the
wall. Choosing the Coulomb gauge within the wall,20 the electric field
in the wall takes the form Ew ¼ �cAw, whereas the magnetic field is
given by Bw ¼ r� Aw. Ohm’s law inside the wall yields jw ¼ rw Ew,
where rw is the uniform electrical conductivity of the wall material,
and jw is the density of the electrical current flowing in the wall.
Finally, l0 jw ¼ r� Bw. The previous equations can be combined to
give

r� ðr � AwÞ ¼ �l0 rw cAw: (22)

Let d and b be the uniform thickness and effective minor radius
of the wall, respectively. Now, we are assuming that the wall is physi-
cally thin: i.e., d � b. Following Haney and Freidberg,12 the position
vector of a point lying within the wall is written r ¼ ri þ u d nw. where
ri is the position vector of a point on the inner surface of the wall. The
normalized length u represents perpendicular distance measured out-
ward from the inner surface of the wall. Thus, u¼ 0 and u¼ 1
correspond to the inner and outer surface of the wall,
respectively. We deduce that the gradient operator within the wall can
be written as

r ¼ nw

d
@

@u
þrSw ; (23)

where rSw 	 b
�1

only involves derivatives tangent to the surface of
the wall.

To lowest order in d=b, Eqs. (22) and (23) yield

nw � nw � @2 Aw

@u2

� �
¼ k2 Aw; (24)

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 rw d2 c

p
. Let

dk ¼ d

k b
: (25)

The neglect of tangential derivatives with respect to perpendicular
derivatives in Eq. (24) is valid as long as jdkj � 1, which we shall
assume to be the case. Note that jkj ¼ d=dskin, where

dskin ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 rw jcj

p (26)

is the skin-depth in the wall material.20 The so-called thin-shell limit
correspond to the situation in which the skin-depth is much greater
than the wall thickness: i.e., jkj � 1. On the other hand, the thick-shell
limit corresponds to the situation in which the skin-depth is much
greater than the wall thickness: i.e., jkj 
 1. Note that it is possible for
the wall to be physically thin (i.e., d=b � 1) but still be in the thick-
shell limit.

Equation (24) yields

@2

@u2
nw � Aw ¼ k2 nw � Aw: (27)

The solution is

nw � AwðuÞ ¼ coshðk uÞ þ a sinhðk uÞ½ �nw � Awð0Þ; (28)

where a is an arbitrary constant. Here, we have made the simplifying
assumption that AwðuÞ does not change direction across the wall: i.e.,
as u varies from 0 to 1. This assumption is certainly valid in the thin-
shell limit, and we shall assume that it is also valid in the thick-shell
limit. To the lowest order in dk,

r� AwðuÞ ’ 1
d
nw � @Aw

@u

¼ k
d
sinhðk uÞ þ a coshðk uÞ½ �n� Awð0Þ: (29)

The boundary conditions that must be satisfied at the inner and
outer surfaces of the wall are continuity of the tangential component
of the electric field,20 and continuity of the tangential component of
the magnetic field. The latter boundary condition follows because we
are assuming that there are no sheet currents flowing on the inner or
the outer surface of the wall.12 Thus, we obtain

nw � Ai ¼ nw � Awð0Þ; (30)

nw � Ao ¼ nw � Awð1Þ ¼ ðcosh kþ a sinh kÞ n� Ai; (31)

b nw � ðr � AiÞ ¼ b nw � ðr � AwÞ½ �ð0Þ ’ d�1
k a nw � ðnw � AiÞ;

(32)

b nw�ðr�AoÞ ¼ b nw�ðr�AwÞ½ �ð1Þ
’ d�1

k ðsinhkþ acoshkÞnw�ðnw�AiÞ

¼ d�1
k

sinhkþ acoshk
coshkþ a sinhk

� �
nw�ðnw �AoÞ; (33)

where use has been made of Eqs. (25), (28), and (29). Here, Ai and Ao

are evaluated on the inner and outer surfaces of the wall, respectively.
Let

fo ¼
b nw � ðr � AoÞ
nw � ðnw � AoÞ : (34)

Note that fo must be a scalar in order to satisfy Eq. (33). Now, we
expect Ao to decay monotonically to zero as we move from the outer
surface of the wall to infinity. Moreover, we expect the decay length to
be of order 1=b. It follows that fo 	 Oð1Þ.

Equations (33) and (34) can be combined to give
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dk fo ¼
sinh kþ a cosh k
cosh kþ a sinh k

; (35)

which implies that15

a ¼ �tanh kþ dk fo
cosh2k

þOðdk foÞ2: (36)

To lowest order in dk fo, Eqs. (31), (32), and (34) yield

nw � Ao ¼ nw � Ai

cosh k
; (37)

nw � ðr � AiÞ ¼ � k tanh k
d

nw � ðnw � AiÞ

þ nw � ðr � AoÞ
cosh k

: (38)

The previous equation gives

nw � nw � ðr � AiÞ½ � ¼ k tanh k
d

nw � Ai

þ nw � nw � ðr � AoÞ½ �
cosh k

: (39)

Equations (37) and (38) [or, alternatively, Eq. (39)] are the two match-
ing conditions that must be satisfied at the wall. According to Eq. (37),
jnw � Aoj ’ jnw � Aij in the thin-shell limit.12 On the other hand,
jnw � Aoj � jnw � Aij in the thick-shell limit, due to the shielding of
the outer vacuum region, Vo, from the inner vacuum region, Vi, by
eddy currents excited in the wall. (See Fig. 2.) Finally, Eqs. (37) and
(39) can be combined to produce

nw � Ai � nw � nw � ðr � AiÞ½ �
¼ nw � Ao � nw � nw � ðr � AoÞ½ � þ k tanh k

d
jnw � Aij2:

(40)

Figure 2 shows how nw � Aw varies across a wall for various dif-
ferent choices of the ratio of the wall thickness to the skin-depth, k. It

can be seen that in the thin-shell limit, k � 1; nw � A only exhibits
weak variation across the wall, whereas in the thick-shell limit,
k 
 1; nw � A decays to almost zero from the inner to the outer sur-
face of the wall.

B. Timescale ordering

In order for the left-hand side of Eq. (5) to compete with the
right-hand side, we need c 	 s�1

A , where sA ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 q a2=B2

p 	 10�7

s. Here, a is the minor radius of the plasma. However, the growth-
rate of a resistive wall mode is of order s�1

w , where sw
’ l0 rw d b� 10�3 s.6,7,12 Hence, it is clear that, for the case of a resis-
tive wall mode, the left-hand side of Eq. (5) is negligible. In other
words, plasma inertia is negligible. Consequently, the plasma dis-
placement associated with the resistive wall mode satisfies the force
balance equation, (17), within the plasma. Note that we are saying
that the actual physical solution, as opposed to a trial solution,
must satisfy Eq. (17) within the plasma.

C. Variational principle

In Subsection 4 of the Appendix, we confirm that the force opera-
tor is self-adjoint in the presence of a thick resistive wall. Making use
of Eq. (A23), the perturbed potential energy of the resistive wall mode
can be written as

dWðn; nÞ ¼ � 1
2

ð
Vp

n � FðnÞ dVp

¼ dWp þ dWs þ dWðiÞ
v þ dWðoÞ

v þ dWðwÞ
v ; (41)

where

dWðiÞ
v ðAi;AiÞ ¼ 1

2 l0

ð
Vi

ðr � AiÞ2 dVi; (42)

dWðoÞ
v ðAo;AoÞ ¼ 1

2 l0

ð
Vo

ðr � AoÞ2 dVo; (43)

dWðwÞ
v ðAi;AiÞ ¼ k tanh k

d
1

2 l0

ð
Sw

jAi � nwj2 dSw: (44)

Clearly, dWðiÞ
v is the potential energy associated with the vacuum

region interior to the wall, dWðoÞ
v is the potential energy associated

with the vacuum region exterior to the wall, and dWðwÞ
v is the potential

energy associated with eddy currents excited in the wall. In fact, it is
easily demonstrated that

dWðwÞ
v ¼ c�1

ð
Vw

jw � Ew dVw; (45)

where Vw represents the volume occupied by the wall. In deriving the
previous formula, we have assumed that nw � Aw ’ 0 in Vw, which
implies that the eddy currents excited in the wall flow predominately
in directions tangental to the wall surface (because d � b).
Incidentally, can be shown that the magnetic energy of the wall,
ð1=2 l0Þ

Ð
Vw
jr � Awj2 dVw, is negligible.

Given that Eq. (17) holds within the plasma, it is clear that from
Eq. (12) that

dW ¼ 0 (46)

FIG. 2. Variation of FðuÞ ¼ ½nw � AwðuÞ�=½nw � Awð0Þ� across a resistive wall
for various values of the ratio, k, of the wall thickness to the skin-depth in the wall
material. Here, the scaled perpendicular distance, u, takes the value 0 on the inner
surface of the wall, and 1 on the outer surface.
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for a resistive wall mode. This is not a surprising result, because a resis-
tive wall mode is essentially a marginally stable ideal mode (given that
jcj � s�1

A ), which corresponds to a mode with dW ¼ 0.
In Subsection 5 of the Appendix, it is shown that the solution

pair [nðrÞ, AðrÞ�, that minimizes the dWðn; nÞ specified in Eq. (41),
while satisfying the essential boundary conditions, satisfies Eq. (17) in
Vp, satisfies Eq. (7) in Vi and Vo, satisfies the pressure balance match-
ing condition, (9), at the plasma boundary, and satisfies the matching
condition (39) at the wall. In other words, the solution pair solves the
resistive wall mode problem.

Note that the wall matching condition (37) is clearly an essential
boundary condition, whereas the matching condition (38) [or, alterna-
tively, (39)] plays the role of a natural boundary condition.10

We might ask why we believe that the solution pair that mini-
mizes the dWðn; nÞ specified in Eq. (41) will satisfy the pressure bal-
ance matching condition, (9), at the plasma boundary, when the
solution pair that minimizes the dWðn; nÞ specified in Eq. (13) failed
to do this. The answer is that the unspecified growth-rate of the resis-
tive wall mode, c, introduces an additional degree of freedom into the
system that allows us to simultaneously satisfy all of the boundary
conditions.

D. Minimization process

Following Haney and Freidberg,12 let us write

AiðrÞ ¼ c1 AnwðrÞ þ c2 ApwðrÞ; (47)

AoðrÞ ¼ c3 AnwðrÞ; (48)

where c1, c2, and c3 are constants that must be determined by the
essential boundary conditions and the minimization process. Now, the
essential boundary condition (8) implies that

n� Ai ¼ �ðn � nÞ B̂ (49)

on Sp. Combining this relation with Eqs. (A13), (A17), and (47), we
deduce that

c1 þ c2 ¼ 1: (50)

Next, the essential boundary condition (37) can be combined with
Eqs. (A14), (47), and (48) to give

c3 ¼ c1
cosh k

: (51)

Note that the essential boundary condition (11) is automatically satis-
fied because of Eq. (A18).

The useful results listed in Subsection 6 of the Appendix can be
combined to give the following expression for the vacuum energy:

dWv ¼ dWðiÞ
v þ dWðoÞ

v þ dWðwÞ
v

¼ dWð1Þ
v þ c22 ðdWðbÞ

v � dWð1Þ
v Þ

þ ð1� c2Þ2 k tanh k
2 l0 d

ð
Sw

jAnw � nwj2 dSw � tanh2k dWðxÞ
v

" #
:

(52)

Here, dWðxÞ
v represents the contribution of the region Vo to the no-

wall vacuum energy, and is defined in Eq. (A34). Now, the ratio of the
first term to the second term appearing in square brackets in the

previous equation is roughly b k=ðd tanh kÞ. Thus, in the thin-shell
limit, k � 1, the ratio is b=d, which is very large. On the other hand,
in the thick-shell limit, k 
 1, the ratio is d�1

k [see Eq. (25)], which is
also very large. Hence, we deduce that we can neglect the second term.
Thus, the previous equation simplifies to give

dWv ¼ dWð1Þ
v þ c22 ðdWðbÞ

v � dWð1Þ
v Þ þ ð1� c2Þ2 FðkÞ; (53)

where

FðkÞ ¼ k tanh k
2 l0 d

ð
Sw

jAnw � nwj2 dSw: (54)

According to the variational principle discussed in Sec. IIIC, we
can determine the true vacuum energy by minimizing dWv with
respect to variations in c2. This procedure yields

c2 ¼ FðkÞ
dWðbÞ

v � dWð1Þ
v þ FðkÞ

; (55)

dWv ¼ dWð1Þ
v þ ðdWðbÞ

v � dWð1Þ
v Þ FðkÞ

dWðbÞ
v � dWð1Þ

v þ FðkÞ
: (56)

Following Haney and Freidberg,12 we can define the effective minor
radius of the wall as

b ¼
ð1=2 l0Þ

ð
Sw

jAnw � nwj2 dSw

dWðbÞ
v � dWð1Þ

v

: (57)

Equations (54) and (57) give

dWv ¼ dWð1Þ
v þ ðdWðbÞ

v � dWð1Þ
v Þ GðcÞ

1þ GðcÞ ; (58)

where

GðcÞ ¼
ffiffiffiffiffiffiffiffi
c sw
dw

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dw c sw

q� �
; (59)

sw ¼ l0 rw d b; (60)

dw ¼ d

b
: (61)

Here, sw is the effective L/R time of the wall, whereas dw � 1 mea-
sures the relative wall thickness.

E. Generalized Haney–Freidberg formula

According to Eqs. (41), (52), and (58), the total potential energy
of the perturbation is

dW¼dWpþdWsþdWv¼dWnwþðdWpw�dWnwÞ GðcÞ
1þGðcÞ; (62)

where use has been made of Eqs. (A11) and (A15). However, Eq. (46)
mandates that dW ¼ 0 for a resistive wall mode, so we obtain the fol-
lowing generalized Haney–Freidberg formula:

ffiffiffiffiffiffiffiffi
c sw
dw

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dw c sw

q� �
¼ � dWnw

dWpw
; (63)
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for the case dWnw < 0; dWpw > 0 in which the resistive wall mode is
unstable, and ffiffiffiffiffiffiffiffiffiffiffiffi

�c sw
dw

s
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�dw c sw

q� �
¼ dWnw

dWpw
(64)

for the case dWnw > 0; dWpw > 0 in which the resistive wall mode is
stable. The formula does not apply to the case dWpw < 0 in which the
plasma is ideally unstable in the presence of the wall, because the
neglect of plasma inertia is not tenable in this situation. The derivation
of the generalized Haney–Freidberg formula is valid provided

d

b
� jcj sw; 1: (65)

In the thin-shell limit, dw jcj sw � 1, Eqs. (63) and (64) reduce to the
original Haney–Freidberg formula:

c sw ¼ � dWnw

dWpw
: (66)

Equations (46), (50), (55), and (62) yield

c1 ¼
dWpw

dWpw � dWnw
; (67)

c2 ¼ � dWnw

dWpw � dWnw
: (68)

Moreover, given that the generalized Haney–Freidberg dispersion rela-
tion sets dW ¼ 0, a comparison of Eqs. (18) and (62) reveals that
dWc ¼ 0, where dWc is defined in Eq. (19). Thus, the linear combina-
tion of solutions, (47), with c1 and c2 given by the previous two equa-
tions, ensures that the pressure balance matching condition, (9), is
satisfied at the plasma boundary. Later on, in Sec. IVN, we shall show
a particular example of this.

F. Resistive wall mode growth-rate

Figure 3 shows the growth-rate of the resistive wall mode pre-
dicted by the generalized Haney–Freidberg formula, (63) and (64). For

a thin wall characterized by dw � 1, we reproduce the characteristic
linear relationship between c sw and �dWnw=dWpw predicted by the
original Haney–Freidberg formula. The mode grows or decays on the
characteristic L/R timescale, sw, and the marginal stability point,
dWnw ¼ 0, is the same as that for an ideal-kink mode in the absence
of a wall.6 Thick-wall effects, which manifest themselves when dw�1,
do not change the marginal stability point, in accordance with a result
first proved by Pfirsch and Tasso in 1971,6 but introduce an interesting
asymmetry between growing and decaying modes. Growing modes
have growth-rates that exceed those predicted by the original Haney–
Freidberg formula. (Here, we are comparing thick and thin walls with
the same sw values.) On the other hand, decaying modes have decay-
rates that are less than those predicted by the original formula. Note
that there are actually multiple branches of decaying solutions, and we
have plotted the most slowly decaying branch in Fig. 3.

For a very rapidly growing resistive wall mode, such that
c sw dw 
 1, which corresponds to the complete breakdown of the
thin-shell approximation, Eq. (63) reduces to13,17

c sw ¼ dw � dWnw

dWpw

 !2

: (69)

In this limit, the mode is almost completely shielded from the vacuum
region outside the wall. [See Eq. (37) and Fig. 2.] According to Eq.
(64), a very rapidly decaying resistive wall mode (on the slowest decay-
ing solution branch) cannot decay faster than

�c sw ¼ p

2 dw
: (70)

Interestingly, rapidly growing resistive wall modes only partially pene-
trate the wall (in other words, the skin-depth in the wall material is
much less than the wall thickness), whereas rapidly decaying modes
always penetrate the wall (in other words, the skin-depth in the wall
material is of order the wall thickness).

G. Experimental detection of thick-wall effects

LetK ¼ �dWnw=dWpw. Suppose that we can calculate K for two
similar plasmas using an ideal-MHD stability code, and can also mea-
sure the corresponding growth-rates, c, of the resistive wall mode
experimentally. We can then form the ratio

c2
c1

K1

K2
¼

ffiffiffiffi
c2
c1

r tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 dw sw

q� �

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 dw sw

q� � ; (71)

where the subscript 1 refers to the first plasma, et cetera. Thick-wall
effects would manifest themselves by making this ratio differ from
unity. This test becomes more sensitive in the limit in which the ratio
c1=c2 differs substantially from unity.

If the ratio in the previous equation differs from unity then we
can use the right-hand side of the equation to estimate dw sw. We can
then compare one of the growth-rates with Eq. (63) to estimate
sw=dw. In this manner, we could estimate both the effective wall thick-
ness parameter, dw, and the effective wall L/R time, sw, from experi-
mental data. Note that this estimation method depends on the
assumption that the effective minor radius of the wall, b, is the same in

FIG. 3. Growth-rate of the resistive wall mode predicted by the generalized Haney–
Freidberg formula, (63).
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both plasmas. However, according to Eq. (107), in cylindrical geome-
try, the ratio of b to the actual minor radius of the wall, b, depends on
the poloidal and toroidal mode numbers of the resistive wall mode and
the minor radius of the plasma, but is otherwise independent of the
plasma equilibrium. Hence, the assumption that b=b is the same in
both plasmas seems reasonable.

H. Further generalization of the Haney–Freidberg
formula

Our analysis has assumed that the thickness, d, and conductivity,
rw, of the wall are uniform. However, if we redo the analysis without
making this assumption then very similar arguments reveal that

Ð
Sw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c sw=dw

q
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dw c sw

p� �
jAnw � nwj2 dSwÐ

Sw
jAnw � nwj2 dSw

¼ � dWnw

dWpw
; (72)

where both d and rw, which appear inside the expressions for sw and
dw [see Eqs. (60) and (61)], are now allowed to vary around the wall.

Note that the previous equation can be reexpressed in the form

c
ð
Vw

rw f ðkÞ jAnw � nwj2 dVw ¼ �dWnw 1� dWnw

dWpw

 !
; (73)

where k ¼ ðc l0 rw d2Þ1=2 and f ðxÞ ¼ ð1=2Þ tanhðxÞ=x. Here, Anw is
evaluated on the inner surface of the wall. This formula is clearly
related to the following completely general expression first derived by
Pfirsch and Tasso in 1971:6

c
ð
Vw

rw jAwj2 dVw ¼ �dW: (74)

Here, we have neglected plasma inertia in Pfirsch and Tasso’s Eq. (14).

IV. AXISYMMETRIC QUASI-CYLINDRICAL EQUILIBRIUM
A. Introduction

In order to further illustrate some of the arguments presented in
this paper, let us calculate the resistive wall stability of an axisymmetric
toroidal plasma of major radius R0 that is modeled as a periodic
cylinder.

Let r, h, z be right-handed cylindrical coordinates. Let the mag-
netic axis of the plasma corresponds to r¼ 0, and let the cylinder be
periodic in the z-direction, with periodicity length 2pR0.

B. Plasma equilibrium

The plasma equilibrium is such that p ¼ pðrÞ and
B ¼ BhðrÞ eh þ BzðrÞ ez . Force balance within the plasma yields

l0 p
0 þ Bh B

0
h þ Bz B

0
z þ

B2
h

r
¼ 0; (75)

where 0 � d=dr. Force balance across the plasma boundary, which lies
at r¼ a, demands that

2 l0 pþ B2
h þ B2

z ¼ B̂
2
h þ B̂

2
z ; (76)

at r¼ a. In the vacuum region, r> a, we have B̂
0
h ¼ �B̂h=r and

B̂
0
z ¼ 0.

C. Perturbation

Let us assume that all perturbed quantities vary with h and z as
exp½iðm hþ k zÞ�, where m is the poloidal mode number of the insta-
bility, k ¼ n=R0, and n> 0 is the toroidal mode number. The plasma
displacement is written n ¼ n? þ nk b ¼ nðrÞ er þ gðrÞ eg þ nkðrÞ b,
where eg ¼ ðBz=BÞ eh � ðBh=BÞ ez , and b ¼ ðBh=BÞ eh þ ðBzBÞ ez .
Here, n is assumed to be real, whereas g and nk turn out to be imagi-
nary. Note that er, eg, and b form a right-handed set of mutually
orthogonal unit vectors.

D. Plasma potential energy

In Subsection 7 of the Appendix, it is shown that the minimiza-
tion of the perturbed plasma potential energy leads to Refs. 9–11
and 21

dWp ¼ p2 R0

l0

ða
0
ðf n02 þ g n2Þ dr þ k2 r2 B2

z �m2 B2
h

k20 r2

 !
a

n2ðaÞ
8<
:

9=
;;

(77)

where

f ðrÞ ¼ r F2

k20
; (78)

gðrÞ ¼ 2 k2

k20
l0 p

0 þ k20 r
2 � 1

k20 r2

 !
r F2 þ 2 k2

r k40
k Bz �m

r
Bh

� �
F: (79)

Here, F(r) and k0ðrÞ are defined in Eqs. (A42) and (A43), respectively.

E. Surface potential energy

The perturbed potential energy associated with equilibrium sur-
face currents can easily be shown to take the form

dWs ¼ p2 R0

l0
ðB2

h � B̂
2
hÞa n2ðaÞ: (80)

F. Vacuum region

We shall write the divergence- and curl-free perturbed magnetic
field in the vacuum region as

Q̂ ¼ r� A ¼ irV : (81)

Here, V ¼ VðrÞ exp½iðm hþ k zÞ�, where V(r) is assumed to be real.
Now, the wall matching condition (37) implies that
ðm=rÞAh þ k Az ¼ 0. Hence, we deduce that

iAr ¼ � mk
r2 k40

dV
dr

; (82)

Ah ¼ � k
k20

dV
dr

; (83)

Az ¼ m
r k20

dV
dr

: (84)
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G. Matching conditions at the plasma boundary

Given that n ¼ er , the essential boundary condition (8) yields

F̂ n ¼ dV
dr

; (85)

at r¼ a, where F̂ðrÞ ¼ ðm=rÞ B̂h þ k B̂z . Moreover, the pressure bal-
ance matching condition, (9), reduces to

f n0 þ k2 r2 B2
z �m2 B2

h

k20 r2

 !
nþ ðB2

h � B̂
2
hÞ n ¼ r F̂ V; (86)

at r¼ a.

H. Matching conditions at wall

The wall is assumed to be uniform, and located at minor radius
r¼ b. Given that nw ¼ er , the essential boundary condition (37) gives

dV
dr

� �
b�

¼ cosh k
dV
dr

� �
bþ
: (87)

Moreover, the natural boundary condition (38) reduces to

Vðb�Þ þ k tanh k
d

1
k2b

dVðb�Þ
dr

¼ VðbþÞ
cosh k

: (88)

Here, b� and bþ denote the inner and outer wall radii, respectively,
where it is assumed that the wall is radially thin. Furthermore,
k2b ¼ m2=b2 þ k2.

I. Vacuum potential energy

The contribution of the vacuum region lying internal to the wall
to the overall potential energy of the perturbation can be shown to be
[see Eqs. (42) and (81)]

dWðiÞ
v ¼ p2 R0

l0
�
ðb�
a

V r2V r dr � ðr F̂ nVÞa þ r
dV
dr

V

� �
b�

" #
;

(89)

where use has been made of the essential boundary condition (85).
Similarly, the contribution of the vacuum region lying outside the wall
is [see Eqs. (43) and (81)]

dWðoÞ
v ¼ p2 R0

l0
� r

dV
dr

V

� �
bþ

�
ð1
bþ
V r2V r dr

" #
: (90)

J. Wall potential energy

The contribution of the wall to the overall potential energy of the
perturbation can be shown to take the form [see Eqs. (44), (83), and (84)]

dWðwÞ
v ¼ p2 R0

l0

k tanh k
d

b
k2b

dV
dr

� �2

b�
: (91)

K. Variation principle

In Subsection 8 of the Appendix, we demonstrate that the pertur-
bation that minimizes the total perturbed potential energy,

dW ¼ dWp þ dWs þ dWðiÞ
v þ dWw þ dWðoÞ

v , satisfies Newcomb’s
equation,21

ðf n0Þ0 � g n ¼ 0; (92)

in the plasma, satisfies

r2V � 1
r
d
dr

r
dV
dr

� �
� m2

r2
þ k2

� �
V ¼ 0; (93)

in the vacuum, and satisfies the natural boundary conditions (86) and
(88) at the plasma boundary and at the wall, respectively.

L. No-wall and perfect-wall energies

The independent solutions of Eq. (93) are Ijmjðk rÞ and
Kjmjðk rÞ, where ImðzÞ and KmðzÞ are modified Bessel functions.
The vacuum scalar potential associated with the no-wall solution
must satisfy

dVnw

dr
¼ F̂ðaÞ nðaÞ (94)

at the plasma boundary [see Eq. (85)], and

Vnw ¼ 0 (95)

at infinity [see Eq. (A18)]. It follows that

VnwðrÞ ¼ F̂ðaÞ nðaÞ
k

Kjmjðk rÞ
K 0
jmjðk aÞ

: (96)

Here, 0 denotes differentiation with respect to argument. The vacuum
potential energy associated with the no-wall solution is

dWð1Þ
v ¼ � p2 R0

l0
ðr F̂ nVnwÞa; (97)

where use has been made of Eqs. (42), (81), (85), (93), and (95).
The vacuum scalar potential associated with the perfect-wall solu-

tion must satisfy

dVpw

dr
¼ F̂ðaÞ nðaÞ (98)

at the plasma boundary [see Eq. (85)], and

dVpw

dr
¼ 0 (99)

at the wall [see Eq. (A14)]. It follows that

VpwðrÞ ¼ F̂ðaÞ nðaÞ
k

Ijmjðk rÞK 0
jmjðk bÞ � Kjmjðk rÞ I0jmjðk bÞ

I0jmjðk aÞK 0
jmjðk bÞ � K 0

jmjðk aÞ I0jmjðk bÞ
: (100)

The vacuum potential energy associated with the perfect-wall solution
is

dWðbÞ
v ¼ � p2 R0

l0
ðr F̂ nVpwÞa; (101)

where use has been made of Eqs. (42), (81), (85), (93), and (99).
Now, integrating by parts, and making use of Eq. (92), the expres-

sion, (77), for the plasma potential energy becomes
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dWp ¼ p2 R0

l0
n f n0 þ k2 r2 B2

z �m2 B2
h

k20 r2

 !
n

" #( )
a

: (102)

Thus, the total potential energy of the no-wall ideal external-kink
mode takes the form

dWnw ¼ dWp þ dWs þ dWð1Þ
v

¼ p2 R0

l0
n f n0 þ k2 r2 B2

z �m2 B2
h

k20 r2

 !
n

"(

þðB2
h � B̂

2
hÞ n� r F̂ Vnw

#)
a

: (103)

Likewise, the total potential energy of the perfect-wall ideal external-
kink mode can be written as

dWpw ¼ dWp þ dWs þ dWðbÞ
v

¼ p2 R0

l0
n f n0 þ k2 r2 B2

z �m2 B2
h

k20 r2

 !
n

"(

þðB2
h � B̂

2
hÞ n� r F̂ Vpw

#)
a

: (104)

In accordance with the discussion in Sec. IIG, we can see that the only
reason that the energies dWnw and dWpw can take non-zero values is
because the solution pairs, ½nðrÞ; VðrÞ�, from which they are con-
structed, do not satisfy the pressure balance matching condition, (86),
at the plasma boundary.

M. Effective wall radius

It follows from Eqs. (96), (97), (100), and (101) that

dWðbÞ
v � dWð1Þ

v

¼ p2R0

l0

ðr F̂ nÞ2a K 0
jmjðkbÞ

ðkaÞ2K 0
jmjðkaÞ I0jmjðkaÞK 0

jmjðkbÞ�K 0
jmjðkaÞ I0jmjðkbÞ

h i :
(105)

Moreover,

1
2 l0

ð
Sw

jAnw � er j2 dSw

¼ p2 R0

l0

b
k2b

dVnw

dr

� �2

b

¼ p2 R0

l0
ðr F̂ nÞ2a

b

ðkb aÞ2
K 0
jmjðk bÞ

K 0
jmjðk aÞ

" #2
; (106)

where use has been made of Eqs. (83), (84), and (96). Hence, it follows
from Eq. (57) that the ratio of the effective wall minor radius to the
actual wall minor radius is10

b
b
¼ ðk bÞ2

m2 þ ðk bÞ2
K 0
jmjðk bÞ

K 0
jmjðk aÞ

I0jmjðk aÞK 0
jmjðk bÞ � K 0

jmjðk aÞ I0jmjðk bÞ
h i

:

(107)

N. Pressure balance matching condition

Let

Pa ¼ f n0 þ k2 r2 B2
z �m2 B2

h

k20 r2

 !
nþ ðB2

h � B̂
2
hÞ n

" #
a

: (108)

According to Eqs. (67), (68), (103), and (104),

c1 ¼
Pa � ðr F̂ VpwÞa
h i
r F̂ ðVnw � VpwÞ
h i

a

; (109)

c2 ¼ �
Pa � ðr F̂ VnwÞa
h i
r F̂ ðVnw � VpwÞ
h i

a

: (110)

Thus, the linear combination of solutions that satisfies the resistive
wall mode problem is characterized by [see Eq. (47)]

ðr F̂ VÞa ¼ c1 ðr F̂ VnwÞa þ c2 ðr F̂ VpwÞa ¼ Pa: (111)

However, the pressure balance matching condition at the plasma
boundary, (86), can be written as

Pa ¼ ðr F̂ VÞa: (112)

Thus, it is clear, from a comparison of the previous two equations, that
the matching condition is satisfied.

The natural boundary condition at the wall, (88), is satisfied
when the growth-rate of the resistive wall mode takes the value [see
Eqs. (60), (61), (63), and (64)]ffiffiffiffiffiffiffiffi

c sw
dw

r
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dw c sw

p� �
¼ � b

b

dWnw

dWpw
: (113)

Here, sw ¼ l0 rw d b is the true time-constant of the wall, and
dw ¼ d=b is a measure of its true thickness.

O. Force-free reversed-field pinch equilibrium

Consider a reversed-field pinch10 plasma equilibrium. Let us
assume, for the sake of simplicity, that the equilibrium pressure is neg-
ligible. In this case, the equilibrium magnetic field, both in the plasma
and in the vacuum, satisfies22

B0
h ¼ rBz � Bh

r
; (114)

B0
z ¼ �rBh; (115)

where rðrÞ ¼ l0 j � B=B2. Let us adopt the following model rðrÞ
profile,22

rðrÞ ¼ r0 1� ðr=aÞa� ��
; r � a;

0; r > a;

(
(116)

where a, � > 0. Note that rðaÞ ¼ 0, which implies that there is no
equilibrium current sheet flowing around the plasma boundary.

The resistive wall mode perturbation can be specified, both in the
plasma and in the vacuum, in terms of the perturbed poloidal flux,
wðrÞ,5 where
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wðrÞ ¼ r F n; r � a;

r ðdV=drÞ; r > a:

(
(117)

The matching condition (85) becomes

wða�Þ ¼ wðaþÞ; (118)

whereas the pressure balance matching condition, (86), reduces to

r
dw
dr

				
a�

¼ r
dw
dr

				
aþ

: (119)

Note that a failure to satisfy the pressure balance matching condition
is associated with a gradient discontinuity in wðrÞ at the plasma
boundary. Such a discontinuity implies the existence of a perturbed
current sheet flowing on the boundary.

Inside the plasma, Newcomb’s equation, (92), can be re-
expressed in the form22

ðf̂ w0Þ0 � ĝ w ¼ 0; (120)

where

f̂ ðrÞ ¼ 1
r k20

; (121)

ĝ ðrÞ ¼ 1
r
þ r0 G
r k20 F

� 2mkr
r3 k40

� r2

r k20
: (122)

Here, G(r) is defined in Eq. (A41). Note that Eq. (120) is singular at
any equilibrium magnetic flux-surface, r¼ rs, lying within the plasma,
that satisfies FðrsÞ ¼ 0. An ideal solution (which is unable to reconnect
magnetic field-lines) must satisfy wðrsÞ ¼ 0 at such a surface.5,10 It is
helpful to define

cp ¼ r
dwp

dr

� �
a
; (123)

where wpðrÞ is a solution of Eq. (120) that is well-behaved at r¼ 0, sat-
isfies wðrsÞ ¼ 0 at any singular surfaces within the plasma, and is such
that wpðaÞ ¼ 1. Thus, the solution in the region 0 � r � a becomes

wðrÞ ¼ wa wpðrÞ; (124)

where wa ¼ wðaÞ, which is the value of the perturbed poloidal mag-
netic flux at the plasma boundary, is undetermined.Outside the
plasma, in the region r> a, we can write

wðrÞ ¼ wa wrwmðrÞ ¼ wa c1 wnwðrÞ þ c2 wpwðrÞ
� �

; (125)

where wnwðaÞ ¼ wpwðaÞ ¼ 1, and c1 þ c2 ¼ 1. [See Eqs. (132) and
(133).] This automatically satisfies the matching condition (120). Here,

wnwðrÞ ¼
r
a

K 0
jmjðk rÞ

K 0
jmjðk aÞ

; (126)

wpwðrÞ ¼
r
a

I0jmjðk rÞK 0
jmjðk bÞ � K 0

jmjðk rÞ I0jmjðk bÞ
I0jmjðk aÞK 0

jmjðk bÞ � K 0
jmjðk aÞ I0jmjðk bÞ

: (127)

Note that wnwð1Þ ¼ wpwðbÞ ¼ 0, in accordance with Eqs. (95) and
(99). Furthermore, it is understood that wpwðr > bÞ ¼ 0. It is helpful
to define

cnw ¼ r
dwnw

dr

� �
a
¼ m2 þ ðk aÞ2

k a

Kjmjðk aÞ
K 0
jmjðk aÞ

; (128)

cpw ¼ r
dwpw

dr

� �
a

¼ m2 þ ðk aÞ2
k a

Ijmjðk aÞK 0
jmjðk bÞ � Kjmjðk aÞ I0jmjðk bÞ

I0jmjðk aÞK 0
jmjðk bÞ � K 0

jmjðk aÞ I0jmjðk bÞ
: (129)

It is easily demonstrated that

dWnw ¼ p2 R0

l0

w2
a

m2 þ ðk aÞ2 cp � cnwð Þ; (130)

dWpw ¼ p2 R0

l0

w2
a

m2 þ ðk aÞ2 cp � cpwð Þ: (131)

Furthermore,

c1 ¼
cp � cpw
cnw � cpw

; (132)

c2 ¼
cnw � cp
cnw � cpw

: (133)

Note that c1 þ c2 ¼ 1.
The resistive wall dispersion relation, (113), becomesffiffiffiffiffiffiffiffi

c sw
dw

r
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dw c sw

p
¼ cb

cnw � cp
cp � cpw

� �
; (134)

where

FIG. 4. Force-free reversed-field pinch equilibrium characterized by a=R0 ¼ 0:25;
r0 a ¼ 3:57; a ¼ 4:0, and � ¼ 2:0.
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cb ¼ ðk bÞ2
m2 þ ðk bÞ2

K 0
jmjðk bÞ

K 0
jmjðk aÞ

I0jmjðk aÞK 0
jmjðk bÞ � K 0

jmjðk aÞ I0jmjðk bÞ
h i

:

(135)

Thus, the whole problem is fully specified, for given poloidal and toroi-
dal mode numbers, once the parameter cp, defined in Eq. (123), is
numerically calculated from the modified Newcomb equation, (120).

P. Example calculation

Let us adopt the following equilibrium parameters:
a=R0 ¼ 0:25; r0 a ¼ 3:57; a ¼ 4:0, and � ¼ 2:0. The resulting
generic reversed-field pinch equilibrium is shown in Fig. 4. The char-
acteristic pinch and reversal parameters10 are H ¼ 1:70 and
F ¼ �0:18, respectively. As is well-known, it is necessary to place the
wall relatively close to a reversed-field pinch plasma in order to stabi-
lize all possible ideal external-kink modes.10 In the present case, we
choose b=a ¼ 1:12. The thickness of the wall is d=a ¼ 0:4, which is
the largest value that we could adopt and plausibly argue that
d=b � 1.

Consider the m ¼ �1=n ¼ 11 resistive wall mode. This is a
mode that possesses a resonant surface in the plasma located at
r=a ¼ 0:463. The no-wall and perfect-wall energies of the mode
are dWnw ¼ 0:359 ðp2 R0 w

2
a=l0Þ and dWpw ¼ 1:030 ðp2 R0 w

2
a=l0Þ,

respectively. The fact that both energies are positive indicates that the
mode is stable. In fact, the decay-rate of the mode is�c sw ¼ 0:026 77.
If the wall were in the thin-shell limit, but had the same sw value, then
the decay-rate would have been �csw ¼ 0:026 85. Thus, the finite
thickness of the wall has decreased the decay-rate of mode, in accor-
dance with the discussion in Sec. III F. However, despite the compara-
tively large wall thickness, the reduction is extremely modest.

Figure 5 shows the eigenfunctions of the m ¼ �1=n ¼ 11 resis-
tive wall mode. The no-wall ideal external-kink mode has the eigen-
function ½wpðrÞ; wnwðrÞ�, where the first function corresponds to the
plasma, whereas the second corresponds to the vacuum. It can be seen
that this eigenfunction has a gradient discontinuity at the plasma

boundary, indicating that it does not satisfy the pressure balance
matching condition. The perfect-wall ideal external-kink mode has the
eigenfunction ½wpðrÞ; wpwðrÞ�. Again, this eigenfunction has a gradient
discontinuity at the plasma boundary, indicating that it does not satisfy
the pressure balance matching condition. Finally, the resistive wall
mode has the eigenfunction ½wpðrÞ; wrwmðrÞ�. Note that this eigen-
function is completely continuous across the plasma boundary, indi-
cating that it does satisfy the pressure balance matching condition.

Figure 6 shows the growth-rates of the m¼ – 1, m¼ 0, and
m¼ 1 resistive wall modes, calculated for n in the range 1–20, and for
various values of the wall thickness. It can be seen that the varying wall
thickness makes no discernible difference to the growth-rates of the
modes, with the exception of the m ¼ �1=n ¼ 7 mode. It turns out
that the m ¼ �1=n ¼ 7 ideal external-kink mode is barely stabilized
by a perfectly-conducting wall located at b=a ¼ 1:12. Consequently,
the corresponding resistive wall mode has a comparatively large
growth-rate. In fact, in this case, it can be seen that increasing wall
thickness (at fixed sw) leads to a noticeable increase in the growth-rate,
in accordance with the discussion in Sec. III F. Thus, we conclude that
thick-wall effects are only important for resistive wall modes that lie
fairly close to the perfect-wall ideal stability boundary.

V. ROTATIONAL STABILIZATION OF THE RESISTIVE
WALL MODE
A. Generalized Hu–Betti formula

So far, the analysis presented this paper suggests that the marginal
stability point for the resistive wall mode is the same as that for the no-
wall ideal external-kink mode: i.e., dWpw ¼ 0.6 In other words, a close-

FIG. 5. Eigenfunctions of an m ¼ �1=n ¼ 11 resistive wall mode in a force-free
reversed-field pinch equilibrium characterized by a=R0 ¼ 0:25; r0 a ¼ 3:57;
a ¼ 4:0; � ¼ 2:0; b=a ¼ 1:12, and d=a ¼ 0:4. The dotted vertical line indicates
the resonant surface, the dashed vertical line indicates the plasma boundary, and
the solid vertical line indicates the inner surface of the wall.

FIG. 6. Growth-rates of m¼� 1, m¼ 0, and m¼ 1 resistive wall modes calculated
in a force-free reversed-field pinch equilibrium characterized by a=R0
¼ 0:25; r0 a ¼ 3:57; a ¼ 4:0; � ¼ 2:0, and b=a ¼ 1:12, for various values of
the wall thickness. Note that most of the data points for different wall thicknesses
plot on top of one another.
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fitting resistive wall is capable of transforming a rapidly growing ideal
external-kink mode into a slowly growing resistive wall mode, but is
unable to completely stabilize the mode.6,10 This conclusion is ulti-
mately a consequence of the fact that the plasma potential energy,
dWp, is a real quantity. However, it turns out that resonances within
the plasma, in combination with toroidal plasma rotation, allow dWp

to acquire an imaginary component.23 The resonances in question
include resonances with the sound wave continuum,24 resonances with
the shear-Alfv�en wave continuum,25 and resonances with trapped and
circulating particles.26,27 Furthermore, above a critical plasma rotation
rate, the resistive wall mode is stabilized by the imaginary component
of dWp.

28

Let us write dWp ¼ dWðrÞ
p þ i dWðiÞ

p , where dWðrÞ
p and dWðiÞ

p are
the real and imaginary components of dWp, respectively. We can then
make the following redefinitions:

dWpw ¼ dWðrÞ
p þ dWs þ dWðbÞ

v ; (136)

dWnw ¼ dWðrÞ
p þ dWs þ dWð1Þ

v : (137)

Incidentally, it is obvious, from their definitions, that dWs; dW
ðbÞ
v , and

dWð1Þ
v are all real quantities. Note that the real part of the resonant

contribution to dWp has been incorporated into dWðrÞ
p . In general, we

expect dWðiÞ
p to be proportional to the toroidal plasma rotation at the

resonant point within the plasma.24

In the presence of resonances, our generalized Haney–Freidberg
formula, (63), generalizes further to giveffiffiffiffiffiffiffiffi

c sw
dw

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dw c sw

q� �
¼ � dWnw þ i dWðiÞ

p

dWpw þ i dWðiÞ
p

0
@

1
A; (138)

where c ¼ cr � ixr . Here, cr and xr are the real growth-rate and real
frequency of the resistive wall mode, respectively. The previous for-
mula is a generalization of a formula that first appeared in a paper by
Hu and Betti in 2004.26

Note, incidentally, that it is not obvious that the force operator,
FðnÞ, remains self-adjoint in the presence of an imaginary resonant
contribution to dWp. Given that the proof of the variation principle,
upon which Eq. (63) is based, is itself based on the self-adjoint nature
of the force operator, this calls into question the validity of the Hu and
Betti formula, and the previous generalization. However, in the follow-
ing, we shall assume that these formulas are correct.

B. Marginal stability point

Let us assume that the resistive wall mode is unstable in the
absence of an imaginary resonant contribution to dWp, which implies
that dWnw < 0 and dWpw > 0. Let us search for a marginal stability
point at which cr ¼ 0. If we define x ¼ xr sw, y ¼ dWðiÞ

p =dWpw,
z ¼ �dWnw=dWpw, f ¼ ½x=ð2 dwÞ�1=2, l ¼ ð2 dw xÞ1=2, S ¼ sinhl,
C ¼ coshl, s ¼ sin l, c ¼ cos l, and

aðxÞ ¼ f
S� s
C þ c

� �
; (139)

bðxÞ ¼ f
Sþ s
C þ c

� �
; (140)

then Eq. (138) yields

a ¼ z � y2

1þ y2
; (141)

b ¼ y ð1þ zÞ
1þ y2

: (142)

Here, we are assuming, without loss of generality, that x> 0 and y> 0.
This assumption simply implies an arbitrary choice of the direction of
plasma rotation. The previous two equations can be combined to give

FðxÞ � b2 � ðz � aÞ ð1þ aÞ ¼ 0: (143)

Once x has been determined, by finding the root of the previous equa-
tion, y is specified by

y ¼
ffiffiffiffiffiffiffiffiffiffiffi
z � a
1þ a

r
: (144)

Figure 7 shows the critical real frequency, xr, and the critical
imaginary part of the plasma potential energy, dWðiÞ

p , needed to stabi-
lize the resistive wall mode, according to the generalized Hu–Betti for-
mula, (138). It can be seen that increasing wall thickness (at fixed sw)
facilitates the stabilization of the resistive wall mode, because it
decreases the critical value of dWðiÞ

p , which corresponds to a decreased
critical plasma rotational rate. On the other hand, the real frequency of
the mode at the marginal stability point increases with increasing wall
thickness. Note, finally, that the thick-wall stabilization criterion
only differs substantially from the thin-wall stabilization criterion,
which is

ðxr swÞcrit ¼
dWðiÞ

p

dWpw

" #
crit

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� dWnw

dWpw

s
; (145)

when �dWnw=dWpw � 1, which implies that the corresponding
external-kink mode lies fairly close to the perfect-wall stability
boundary.

FIG. 7. Critical real frequency, xr, and critical imaginary part of the plasma potential
energy, dW ðiÞ

p , needed to stabilize the resistive wall mode according to the general-
ized Hu–Betti formula, (138).
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C. Toroidal electromagnetic torque

As pointed out by Park,29 there is an intimate connection
between the imaginary component of the plasma potential energy,
dWðiÞ

p , and the net toroidal electromagnetic torque exerted by the resis-
tive wall on the plasma. Let us investigate this connection.

Employing the cylindrical analysis of Sec. IV, the net outward
flux of toroidal angular momentum across a magnetic flux-surface of
minor radius r, lying outside the plasma, is30

T/ðrÞ ¼ 1
2 l0

þ ð2pR0

0
r R0 Q̂

�
z Q̂r þ Q̂z Q̂

�
r

� �
dh dz: (146)

Given that Q̂ ¼ irV in a vacuum region, we deduce that

T/ðrÞ ¼ p2 nR0

l0
i �V� r

dV
dr

þ V r
dV�

dr

� �
; (147)

where the additional factor of 1/2 comes from averaging
cos2ðm hþ k zÞ, and n ¼ k R is the toroidal mode number. However,
it is clear from Eq. (93) that

d
dr

V� r
dV
dr

� V r
dV�

dr

� �
¼ 0: (148)

Hence, we conclude that

dT/

dr
¼ 0: (149)

in any vacuum region.31

Now, in the vacuum region beyond the wall,

VðrÞ ¼ wa c3 V̂ nwðrÞ (150)

[see Eq. (48)], where wa ¼ ðr F̂ nÞa is the value of the perturbed poloi-
dal magnetic flux at the plasma boundary, and

V̂ nwðrÞ ¼ 1
k a

Kjmjðk rÞ
Kjmj0 ðk aÞ

: (151)

[See Eq. (96).] However, it is obvious from Eqs. (147) and (150) that

T/ðr > bÞ ¼ 0: (152)

In other words, the net flux of toroidal angular momentum from the
plasma-wall system is zero.

Now, in the vacuum region between the plasma and the wall,

VðrÞ ¼ wa c1 V̂ nwðrÞ þ c2 V̂ pwðrÞ
h i

(153)

[see Eq. (47)], where c1 þ c2 ¼ 0 [see Eq. (50)]. Here,

V̂ pwðrÞ ¼ 1
k a

Ijmjðk rÞK 0
jmjðk bÞ � Kjmjðk rÞ I0jmjðk bÞ

I0jmjðk aÞK 0
jmjðk bÞ � K 0

jmjðk aÞ I0jmjðk bÞ
: (154)

[See Eq. (100).] Note that

r
dV̂ nw

dr

� �
a
¼ r

dV̂ pw

dr

� �
a
¼ 1: (155)

It follows from Eqs. (147) and (153) that

T/ðaÞ ¼ � 2p2 R0 nw
2
a

l0
ðV̂ nw � V̂ pmÞa Imðc1Þ: (156)

Thus, if c1 possesses an imaginary component then there is a constant
flux of toroidal electromagnetic angular momentum between the
plasma and the wall. This flux is associated with a toroidal electromag-
netic torque exerted on the plasma, and an equal and opposite torque
exerted on the wall.

Now, according to Eqs. (80), (97), (102), (108), and (109),

c1 ¼ l0
p2 R0 w

2
a

dWp þ dWs þ dWð1Þ
v

ðV̂ nw � V̂ pwÞa
; (157)

which implies that

Imðc1Þ ¼ l0
p2 R0 w

2
a

ImðdWpÞ
ðV̂ nw � V̂ pwÞa

¼ l0
p2 R0 w

2
a

dWðiÞ
p

ðV̂ nw � V̂ pwÞa
:

(158)

Here, we have made use of the fact that dWs and dW
ð1Þ
v are obviously

real quantities. Hence, we deduce from Eq. (156) that29

T/ ¼ �2 n dWðiÞ
p : (159)

[Note that the opposite sign with respect to the result in Ref. 29 is due
to the assumed expð�i n z=R0Þ variation of perturbed quantities in
this reference, as opposed to the assumed expðþi n z=R0Þ variation in
this paper.] Here, T/ is the toroidal electromagnetic torque acting on
the plasma. It follows that the variable y, appearing in the analysis of
Sec. VB, represents a normalized electromagnetic torque exerted by
the wall on the plasma. In fact,

y ¼ � T/

2 n dWpw
: (160)

Thus, we can reinterpret Fig. 7 as stating, first, that the rotational stabi-
lization of the resistive wall mode requires the assistance of such a tor-
que, and, second, that the critical torque needed to stabilize the mode
decreases with increasing wall thickness (at constant sw).

VI. SUMMARY

This paper investigates the external-kink stability of a toroidal
plasma surrounded by a rigid resistive wall. The main aim of this paper
is to extend the well-known analysis of Haney and Freidberg12 to allow
for a wall that is sufficiently thick that the thin-shell approximation
does not necessarily hold.

In Subsection 4 of the Appendix, we demonstrate that the MHD
force operator remains self-adjoint in the presence of a thick resistive
wall. In Sec. III C, making use of the self-adjoint property, we modify
the variational principle of Haney and Freidberg to allow for a thick
wall. Finally, in Sec. IIID, we minimize the plasma potential energy to
obtain a generalized Haney–Freidberg formula, (63) and (64), for the
growth-rate of the resistive wall mode that allows the wall to lie either
in the thin-shell regime, the thick-shell regime, or somewhere in
between.

We find that thick-wall effects do not change the marginal stabil-
ity point of the mode,6 but introduce an interesting asymmetry
between growing and decaying modes. Growing modes have growth-
rates that exceed those predicted by the original Haney–Freidberg
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formula. (Here, we are comparing walls with differing thicknesses but
the same L/R time.) On the other hand, decaying modes have decay-
rates that are less than those predicted by the original formula. We can
even generalize the Haney–Freidberg formula to allow for walls with
varying thickness and electrical conductivity. [See Eq. (72).]

We also show, during the course of our investigation, that the
eigenfunctions conventionally used to calculate the quantities dWnw

and dWpw, that feature in the Haney–Freidberg formula, do not satisfy
the pressure balance matching condition at the plasma boundary. We
then explain why this is not problematic. In particular, the resistive
wall mode eigenfunction is found to satisfy the pressure balance
matching condition.

In Sec. IV, we perform a cylindrical calculation for a generic
force-free reversed-field pinch plasma equilibrium that reveals
that thick-wall effects have no noticeable effect on the growth-
rates of the various resistive wall modes to which the plasma is
subject, except when the mode in question lies quite close to the
perfect-wall stability boundary. For such a comparatively rapidly
growing mode, thick-wall effects perceptibly increase the growth-
rate.

Finally, in Sec. V, we generalize the well-known Hu–Betti
formula26 for the rotational stabilization of the resistive wall
mode to take thick-wall effects into account. We find that
increasing wall thickness (at fixed L/R time) facilitates the rota-
tional stabilization of the resistive wall mode, because it decreases
the critical toroidal electromagnetic torque that the wall must
exert on the plasma. On the other hand, the real frequency of the
mode at the marginal stability point increases with increasing
wall thickness.
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APPENDIX: TECHNICAL DETAILS

1. Self-adjoint property of force operator

Let [nðrÞ; AðrÞ] and [gðrÞ; CðrÞ] be two independent pro-
spective solution pairs that satisfy both the essential and the nat-
ural boundary conditions. It is easily demonstrated that11

ð
Vp

g � FðnÞ dVp ¼ �
ð
Vp

C p ðr � nÞ ðr � gÞ þ l�1
0 Q � R�

þ 1
2
rp � ðr � gÞ nþ ðr � nÞ g½ �

þ 1
2
j � ðn� Rþ g�QÞ�dVp

þ
ð
Sp

ðn � gÞ C pr � nþ n � rp� l�1
0 B �Q
 �

dSp;

(A1)

where R ¼ r� ðg� BÞ, and use has been made of Eqs. (1) and (2).
The surface integral can be expressed asð

Sp

ðn � gÞ C pr � nþ n � rp� l�1
0 B �Q
 �

dSp

¼ �
ð
Sp

ðn � gÞ ðn � nÞ n � r pþ B2

2 l0

 !" #" #
dSp

þ l�1
0

ð
Sp

n � C� ðr � AÞ dSp; (A2)

where use has been made of Eqs. (4), (8), and (9). However, the
boundary conditions (10) and (11) allow us to writeð

Sp

n � C� ðr � AÞ dSp ¼ �
ð
V
r � C� ðr � AÞ½ � dV

¼ �
ð
V
ðr � CÞ � ðr � AÞ dV; (A3)

where use has been made of Eq. (7). Here, V denotes the appropri-
ate vacuum region: i.e., Vi for the case of a perfectly conducting
wall, and Vio ¼ Vi þ Vo for the case of no wall. The previous three
equations yieldð

Vp

g � FðnÞ dVp ¼ �
ð
Vp

�
C p ðr � nÞ ðr � gÞ þ l�1

0 Q � R

þ 1
2
rp � ðr � gÞ nþ ðr � nÞ g½ �

þ 1
2
j � ðn� Rþ g�QÞ



dVp

�
ð
Sp

ðn � gÞ ðn � nÞ n � r pþ B2

2 l0

 !" #" #
dSp

�
ð
V
l�1
0 ðr � CÞ � ðr � AÞ dV:

(A4)

The well-known self-adjoint property of the force operator,8–11ð
Vp

g � FðnÞ dVp ¼
ð
Vp

n � FðgÞ dVp; (A5)

immediately follows from the invariance of Eq. (A4) under the
transformation n; A; Q $ g; C; R, respectively.

2. Minimization of DW

Following from Sec. II E, we can write
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d dWðn; nÞ½ � ¼ dWðdn; nÞ þ dWðn; dnÞ ¼ 2 dWðdn; nÞ; (A6)

where use has been made of the self-adjoint property of the force
operator, (A5). It is easily demonstrated that

2 dWpðdn; nÞ ¼ �
ð
Vp

dn � FðnÞ dVp

þ
ð
Sp

ðn � dnÞ C pr � nþ n � rp� l�1
0 B �Q
 �

dSp;

(A7)

2 dWsðdn; nÞ ¼
ð
Sp

ðn � dnÞ n � r B̂
2

2 l0
� B2

2 l0
� p

 !
dSp; (A8)

2 l0 dWvðdA;AÞ ¼
ð
Sp

ðn � dnÞ B̂ � ðr � AÞ dSp þ
ð
V
dA � r

� ðr � AÞ dV: (A9)

Here, use has been made of the boundary conditions (8), (10), and
(11), which are assumed to apply to dn and dA. Thus, setting
d½dWðn; nÞ� ¼ 0, we get

0 ¼ �
ð
Vp

dn � FðnÞ dVp

�
ð
Sp

ðn � dnÞ �C pr � nþ n � r B2

2 l0

 !"

þ l�1
0 B �Q

� n � r B̂
2

2 l0

 !
� l�1

0 B̂ � ðr � AÞ
#
dSp

þ
ð
V
l�1
0 dA � r � ðr � AÞ dV:

(A10)

Because the previous equation must hold for arbitrary dn and dA,
we deduce that the trial solution pair that minimizes dW satisfies
the force-balance equation, FðnÞ ¼ 0, in Vp, satisfies Eq. (7) in V,
and also ought to satisfy the pressure balance matching condition,
(9), at the plasma boundary.

3. Perfect-wall and no-wall stability

Suppose that the wall is perfectly conducting. In this case, the
analysis of Sec. II E suggests that the minimum value of the per-
turbed potential energy can be written

dWpw ¼ dWp þ dWs þ dWðbÞ
v ; (A11)

where dWp and dWs are calculated from a particular solution of Eq.
(17) that is well-behaved at the magnetic axis, and

dWðbÞ
v ¼ 1

2 l0

ð
Vi

ðr � ApwÞ2 dVi: (A12)

Here, the superscript (b) implies that the perfectly conducting wall
is present at effective minor radius b. Moreover, ApwðrÞ is a solution
of Eq. (7) that satisfies the boundary conditions

n� Apw ¼ �ðn � nÞ B̂; (A13)

on Sp [see Eq. (8)], and

nw � Apw ¼ 0; (A14)

on Sw. [See Eq. (10).]
Suppose that there is no wall. In this case, the analysis of

Sec. II E suggests that the minimum value of the perturbed potential
energy can be written as

dWnw ¼ dWp þ dWs þ dWð1Þ
v ; (A15)

where dWp and dWs are calculated from the same solution of Eq.
(17) as that used to calculate dWpw, and

dWð1Þ
v ¼ 1

2 l0

ð
Vio

ðr � AnwÞ2 dVio: (A16)

Here, the superscript ð1Þ implies that the perfectly conducting wall
is absent, which is equivalent to it being placed at infinity.
Moreover, AnwðrÞ is a solution of Eq. (7) that satisfies the boundary
conditions

n� Anw ¼ �ðn � nÞ B̂; (A17)

on Sp [see Eq. (8)], and

r� Anw ¼ 0; (A18)

at infinity. [See Eq. (11).]

4. Self-adjoint property of force operator in presence of
thick resistive wall

The proof of the self-adjoint property of the force operator in
the presence of a thick resistive wall follows along the lines of that
in Subsection 1 of Appendix, except thatð

Sp

n � C� ðr � AÞ dSp

¼ �
ð
Vi

r � Ci � ðr � AiÞ½ � dVi þ
ð
Sw

nw � Ci � ðr � AiÞ dSw

¼ �
ð
Vi

ðr � CiÞ � ðr � AiÞ dVi

�
ð
nw � Ci � nw � nw � ðr � AiÞ½ � dSw;

(A19)

where use has been made of Eq. (7). However, Eq. (40) can easily be
generalized to give

nw � Ci � nw � nw � ðr � AiÞ½ �
¼ nw � Co � nw � nw � ðr � AoÞ½ �

þ k tanh k
d

nw � Ci � nw � Ai:

(A20)

Moreover,
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ð
Sw

nw � Co � nw � ½nw � ðr � AoÞ� dSw ¼ �
ð
Sw

nw � Co � ðr � AoÞ dSw ¼
ð
Vo

r � Co � ðr � AoÞ½ � dVo ¼
ð
Vo

ðr � CoÞ � ðr � AoÞ dVo;

(A21)

where use has been made of Eqs. (7) and (11). Hence, we deduce thatð
Sp

n � C� ðr � AÞ dSp ¼ �
ð
Vi

ðr � CiÞ � ðr � AiÞ dVi �
ð
Vo

ðr � CoÞ � ðr � AoÞ dVo �
ð
Sw

k tanh k
d

nw � Ci � nw � Ai dSw: (A22)

Thus, in the presence of a thick resistive wall, Eq. (A4) generalizes to giveð
Vp

g � FðnÞ dVp ¼ �
ð
Vp

C p ðr � nÞ ðr � gÞ þ l�1
0 Q � Rþ 1

2
rp � ðr � gÞ nþ ðr � nÞ g½ � þ 1

2
j � ðn� Rþ g�QÞ

� 

dVp

�
ð
Sp

ðn � gÞ ðn � nÞn � r pþ B2

2 l0

 !" #" #
dSp �

ð
Vi

l�1
0 ðr � CiÞ � ðr � AiÞ dVi �

ð
Vo

l�1
0 ðr � CoÞ � ðr � AoÞ dVo

�
ð
Sw

l�1
0

k tanh k
d

nw � Ci � nw � Ai dSw: (A23)

The self-adjoint property of the force operator, (A5), immediately follows from the symmetric nature of the previous equation. Thus, we con-
clude that the force operator remains self-adjoint in the presence of a resistive wall, even when the wall lies in the thick-shell limit.

5. Minimization of dW in presence of thick resistive wall

Consider the expression for dWðn; nÞ given in Eq. (41). We can write

d dWðn; nÞ½ � ¼ dWðdn; nÞ þ dWðn; dnÞ ¼ 2 dWðdn; nÞ; (A24)

where use has been made of the self-adjoint property of the force operator, (A5). Now, 2 dWpðn; nÞ and 2 dWsðdn; nÞ are given by Eqs. (A7)
and (A8), respectively. Moreover,

2 l0 dW
ðiÞ
v ðdAi;AiÞ ¼

ð
Vi

r� dAi � r � Ai dVi ¼
ð
Vi

r � dAi � ðr � AiÞ½ � þ dAi � r � ðr � AiÞ
� �

dVi

¼ �
ð
Sp

n � dA� ðr � AÞ dSp þ
ð
Sw

nw � dAi � ðr � AiÞ dSw þ
ð
Vi

dAi � r � ðr � AiÞ dVi

¼
ð
Sp

ðn � nÞ B̂ � ðr � AÞ dSp �
ð
Sw

nw � dAi � nw � nw � ðr � AiÞ½ � dSw þ
ð
Vi

dAi � r � ðr � AiÞ dVi; (A25)

where use has been made of the essential boundary condition (8). Furthermore,

2 l0 dW
ðoÞ
v ðdAo;AoÞ ¼

ð
Vo

r� dAo � r � Ao dVo ¼
ð
Vo

r � dAo � ðr � AoÞ½ � þ dAo � r � ðr � AoÞ
� �

dVo

¼ �
ð
Sw

nw � dAo � ðr � AoÞ dSw þ
ð
Vo

dAo � r � ðr � AoÞ dVo ¼
ð
Sw

nw � dAi � nw � nw � ðr � AoÞ½ �
cosh k

dSw

þ
ð
Vo

dAi � r � ðr � AoÞ dVo; (A26)

where use has been made of the essential boundary condition (11), as well as Eq. (37). Finally,

2 l0 dW
ðwÞ
v ðdAi;AiÞ ¼

ð
Sw

k tanh k
d

nw � dAi � nw � Ai dSw: (A27)

Thus, setting d½dWðn; nÞ� to zero, we obtain

0 ¼ �
ð
Vp

dn � FðnÞ dVp �
ð
Sp

ðn � dnÞ �C pr � nþ n � r B2

2l0

 !
þ l�1

0 B �Q� n � r B̂
2

2l0

 !
� l�1

0 B̂ � ðr �AÞ
2
4

3
5dSp þ ð

Vi

l�1
0 dAi � r

� ðr�AiÞ dVi þ
ð
Vo

l�1
0 dAo � r � ðr�AoÞdVo þ l�1

0

ð
Sw

nw � dAi

� nw � nw � ðr�AoÞ½ �
cosh k

� nw � nw � ðr�AiÞ½ � þ k tanhk
d

nw �Ai

� 

: (A28)
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However, the previous equation must hold for arbitrary dn and dA. Hence, we deduce that the solution pair [nðrÞ, AðrÞ�, that minimizes the
dWðn; nÞ specified in Eq. (41) satisfies Eq. (17) in Vp, satisfies Eq. (7) in Vi and Vo, satisfies the pressure balance matching condition, (9), at
the plasma boundary, and satisfies the matching condition (39) at the wall.

6. Useful results

Making use of the analysis of Sec. III C, the following results are easily demonstrated:

2 l0 dW
ðiÞ
v ¼

ð
Sp

ðn � nÞ B̂ � r � Ai dSp þ
ð
Sw

nw � Ai � r � Ai dSw ¼ c1

ð
Sp

ðn � nÞ B̂ � r � Anw dSp þ c2

ð
Sp

ðn � nÞ B̂ � r � Apw dSp

þ c21

ð
Sw

nw � Anw � r � Anw dSw þ c1 c2

ð
Sw

nw � Anw � r � Apw dSw; (A29)

2 l0 dW
ðoÞ
v ¼ �

ð
Sw

nw � Ao � r � Ao dSw ¼ �c23

ð
Sw

nw � Anw � r � Anw dSw; (A30)

2 l0 dW
ðbÞ
v ¼

ð
Sp

ðn � nÞ B̂ � r � Apw dSp; (A31)

2 l0 dW
ð1Þ
v ¼

ð
Sp

ðn � nÞ B̂ � r � Anw dSp; (A32)

and ð
Vi

ðr � AnwÞ � ðr � ApwÞ dVi ¼
ð
Sp

ðn � nÞ B̂ � r � Apw dSp þ
ð
Sw

nw � Anw � r � Apw dSw ¼
ð
Sp
ðn � nÞ B̂ � r � Anw dSp; (A33)

where use has been made of Eqs. (7), (8), (10), (11), (A13), (A14), (A17), (A18), (47), and (48). It is helpful to define

2 l0 dW
ðxÞ
v ¼

ð
Vo

jr � Anwj2 dVp ¼ �
ð
Sw

n� Anw � r � Anw dSw: (A34)

Here, dWðxÞ
v represents the contribution of the region Vo to the no-wall vacuum energy.

7. Minimization of dWp in axisymmetric plasma

In an axisymmetric quasi-cylindrical plasma, the perturbed plasma potential energy can be written9–11

dWp ¼ 1
2 l0

ða
0
Cl0 p ðr � n�Þ ðr � nÞ þQ� �Qþ ðr � n�?Þ n? � rðl0 pÞ½ � þ l0 j � n�? �Q
� � 1

2
2p r 2pR0 dr; (A35)

where l0 j ¼ r� B; Q ¼ r� ðn? � BÞ, and the factor 1/2 comes from averaging cos2ðm hþ k zÞ. After a great deal of standard analysis,
we arrive at

dWp ¼ p2 R0

l0

ða
0
WðrÞ r dr; (A36)

where

WðrÞ ¼ Cl0 p

				 ðr nÞ0r
þ i

G
B
gþ i

F
B
nk

				
2

þ
				 Gk0

ðr nÞ0
r

þ 2 k Bh

r k0
nþ i k0 B g

				
2

þ A1 n
02 þ A2 n

0 nþ A3 n
2; (A37)

and

A1ðrÞ ¼ F2

k20
; (A38)

A2ðrÞ ¼ ðk2 r2 B2
z �m2 B2

hÞ
r3 k20

; (A39)

A3ðrÞ ¼ F2 þ 1
r2

B2
z � B2

h � 2 r B0
h Bh � ðr G2 þ 4mkBh BzÞ

r k20

" #
; (A40)

GðrÞ ¼ m
r
Bz � k Bh; (A41)

FðrÞ ¼ m
r
Bh þ k Bz; (A42)
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k20ðrÞ ¼
m2

r2
þ k2: (A43)

Because nk and g only appear in Eq. (A37) inside positive-definite
terms, we can minimize dWp by choosing nk and g in such a man-
ner as to set these terms to zero. After doing this, and after integrat-
ing by parts, we arrive at Eqs. (77)–(79).

8. Minimization of dW in axisymmetric plasma

The total potential energy of the perturbation is

dW¼ dWpþdWsþdWðiÞ
v þdWwþdWðoÞ

v

¼ p2R0

l0

(ða
0
ðf n02þ g n2Þdrþ

"
k2 r2B2

z �m2B2
h

k20 r2

 !
n2

þðB2
h� B̂

2
hÞn2� r F̂ nV

#
a

�
ðb�
a
Vr2V rdrþ r

dV
dr

� �
b�

� Vðb�Þþk tanhk
d

1
k2b

dV
dr

� �
b�
�VðbþÞ
coshk

" #
�
ð1
bþ
Vr2V rdr

)
:

(A44)

Here, use has been made of the essential boundary condition (87). If
we minimize the potential energy, making use of the self-adjoint
property of the overall expression demonstrated in Subsection 4 of
Appendix, then we get

d dW½ �¼ 2p2R0

l0

(ða
0
dn �ðf n0Þ0 þ g n
� �

dr

þdnðaÞ f n0 þ k2 r2B2
z �m2B2

h

k20 r2

 !
nþðB2

h� B̂
2
hÞn� r F̂ V

" #
a

�
ðb�
a
dVr2V rdrþ r

ddV
dr

� �
b�

� Vðb�Þþk tanhk
d

1
k2b

dV
dr

� �
b�
�VðbþÞ
coshk

" #

�
ð1
bþ
dVr2V rdr

)
¼ 0: (A45)

Given that the previous expression must hold for arbitrary dn
and dV, we deduce that the perturbation that minimizes dW satis-
fies Eq. (92) in the plasma, satisfies (93) in the vacuum, and satisfies
the natural boundary conditions (86) and (88) at the plasma bound-
ary and at the wall, respectively.
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