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ABSTRACT

The tearing mode stability of an inverse aspect-ratio expanded tokamak plasma equilibrium of general shape is investigated using asymptotic
matching techniques. Particular emphasis is placed on the conservation of toroidal electromagnetic angular momentum. The TJ code, which
is a specific implementation of the results of the investigation, is described.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0231715

I. INTRODUCTION

The calculation of the tearing mode stability of a high temperature,
axisymmetric, tokamak plasma equilibrium is most efficiently formu-
lated as an asymptotic matching problem.1 In such a problem, the
plasma is divided into two regions. In the “outer region,” which com-
prises most of the plasma, the tearing perturbation is described by the
equations of linearized, marginally stable, ideal magnetohydrodynamics
(which, in the following, are referred to as the “ideal-MHD” equations)
(see Sec. III B). However, these equations become singular on so-called
“rational” magnetic flux surfaces at which the perturbed magnetic field
resonates with the equilibrium field. In the so-called “inner region,”
which consists of a set of narrow layers centered on the various rational
surfaces, non-ideal-MHD effects such as plasma inertia, resistivity, and
viscosity become important. The growth rate and angular rotation fre-
quency of the reconnected magnetic flux at a given rational surface
(numbered k) are fixed by asymptotically matching the resistive layer
solution in the associated segment of the inner region, which is charac-
terized by a dimensionless complex quantity Dk, to the ideal-MHD
solution in the outer region. In a realistic axisymmetric tokamak plasma
equilibrium, tearing perturbations with different toroidal mode num-
bers are independent of one another, whereas perturbations with differ-
ent poloidal mode numbers are coupled together via toroidicity and the
non-circular shaping of equilibrium magnetic flux surfaces.2

Consequently, for a tearing perturbation with a given toroidal mode
number, the Dk values associated with the various rational surfaces in
the plasma are interrelated via a matrix equation3 [see Eq. (319)].

In general, the determination of the elements of the matrix equa-
tion that links the various Dk values from the ideal-MHD equations
in the outer region is an exceptionally challenging computational
task.4–19 One way of greatly reducing the complexity of this task is to
employ an inverse aspect-ratio expanded plasma equilibrium.20,21 In
such an equilibrium, the metric elements of the flux-coordinate system
can be expressed analytically in terms of a relatively small number of
flux-surface functions, which represents a major simplification.2

Another significant advantage of an inverse aspect-ratio expanded
equilibrium is that the magnetic perturbation in the plasma can be effi-
ciently matched to an exterior vacuum solution that is expressed as an
expansion in toroidal functions.6 The alternative approach of using a
Green’s function solution in the vacuum region is much more compu-
tationally intensive.22,23

The inverse aspect-ratio expansion approach to determining tear-
ing mode stability in tokamak plasmas was first presented in Ref. 4, in a
calculation that features triplets of poloidal harmonics coupled via toroi-
dicity. The inverse aspect-ratio expansion approach was extended in
Ref. 6, in a calculation that features septuplets of poloidal harmonics
coupled via toroidicity, flux-surface elongation, and flux-surface triangu-
larity. In this paper, we generalize the inverse aspect-ratio expansion
approach to allow for an arbitrary number of poloidal harmonics cou-
pled by flux surfaces of general shape. Furthermore, unlike Refs. 4 and 6,
we do not assume that the plasma equilibrium is up-down-symmetric.

This paper is organized as follows. In Sec. II, we examine a gen-
eral tokamak plasma equilibrium. In Sec. III, we derive the so-called
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“outer-region partial differential equations (p.d.e.s),” which are a set of
two coupled second-order p.d.e.s that control the ideal-MHD solution
in the outer region. In Sec. IV, we derive the so-called “outer-region
ordinary differential equations (o.d.e.s),” which are a large set of cou-
pled first-order o.d.e.s that control the ideal-MHD solution in the
outer region. We also demonstrate that these o.d.e.s conserve toroidal
electromagnetic angular momentum. In Sec. V, we discuss the general
behavior of the outer-region o.d.e.s in the vicinity of a rational surface.
In Sec. VI, we obtain the general boundary condition satisfied by the
outer-region o.d.e.s at the plasma/vacuum interface, on the assumption
that the region surrounding the plasma does not contain any non-
axisymmetric currents. We also demonstrate that these boundary con-
ditions conserve toroidal electromagnetic angular momentum. In Sec.
VII, we introduce the aspect-ratio expanded tokamak equilibrium and
determine the specific forms of the outer-region o.d.e.s. In Sec. VIII,
we calculate the matrix equation that constitutes the tearing mode dis-
persion relation and demonstrate that this equation must be
Hermitian in order to conserve toroidal electromagnetic angular
momentum. In Sec. IX, we discuss how the tearing mode dispersion
relation is modified by non-axisymmetric currents flowing in resonant
magnetic perturbation (RMP) coils external to the plasma. We also
derive expressions for the toroidal electromagnetic torques exerted at
the various rational surfaces in the plasma by the RMP coils. In Sec. X,
we discuss the TJ code, which is a specific implementation of the
theory presented in Sec. II–IX. Finally, the paper is summarized in
Sec. XI.

II. GENERAL PLASMA EQUILIBRIUM
A. Normalization

All lengths in this paper are normalized to the major radius of the
plasma magnetic axis, R0. All magnetic field strengths are normalized
to the toroidal field strength at the magnetic axis, B0. All currents are
normalized to B0 R0=l0. All current densities are normalized to
B0=ðl0 R0Þ. All plasma pressures are normalized to B2

0=l0. All toroidal
electromagnetic torques are normalized to B2

0 R
3
0=l0.

B. Axisymmetric tokamak plasma equilibrium

Let R, /, and Z be right-handed cylindrical coordinates whose
Jacobian is

ðrR�r/ � rZÞ�1 ¼ R: (1)

Note that jr/j ¼ 1=R.
Let r, h, and / be right-handed flux-coordinates whose Jacobian

is4,24

J ðr;hÞ� ðrr�rh �r/Þ�1 �R
@R
@h

@Z
@r

�@R
@r

@Z
@h

� �
¼ rR2: (2)

Note that r ¼ rðR;ZÞ and h ¼ hðR;ZÞ. The magnetic axis corre-
sponds to r ¼ 0. The inboard mid-plane corresponds to h ¼ 0.

Consider an axisymmetric tokamak equilibrium25 whose mag-
netic field takes the form4,6

Bðr; hÞ ¼ f ðrÞr/�rr þ gðrÞr/ ¼ f rð/� q hÞ � rr; (3)

where

qðrÞ ¼ r g
f

(4)

is the safety factor (i.e., the inverse of the rotational transform). Note
that B � rr ¼ 0, which implies that r is a magnetic flux-surface label.
We require g ¼ 1 on the magnetic axis in order to ensure that the nor-
malized toroidal magnetic field-strength at the axis is unity.

It is easily demonstrated that

Br ¼ B � rr ¼ 0; (5)

Bh ¼ B � rh ¼ f
r R2

; (6)

B/ ¼ B � r/ ¼ g
R2

; (7)

Br ¼ J rh�r/ � B ¼ �r f rr � rh; (8)

Bh ¼ J r/�rr � B ¼ r f jrrj2; (9)

B/ ¼ J rr �rh � B ¼ g; (10)

where use has been made of the results and notation of the Appendix.
The Maxwell equation (neglecting the displacement current,

because tearing modes are comparatively low-frequency phenomena)
J ¼ r� B yields

J Jr ¼ @B/

@h
¼ 0; (11)

J Jh ¼ � @B/

@r
¼ �g 0; (12)

J J/ ¼ @Bh

@r
� @Br

@h
¼ @

@r
r f jrrj2
� �

þ @

@h
r f rr � rhð Þ; (13)

where J is the equilibrium current density, 0 � d=dr, and use has been
made of Eqs. (8)–(10) and (A11)–(A13).

Equilibrium force balance requires that

rP ¼ J� B; (14)

where PðrÞ is the equilibrium scalar plasma pressure. Here, for the sake
of simplicity, we have neglected the small centrifugal modifications to
force balance due to subsonic plasma rotation.26,27 It follows that

P0 ¼ J ðJh B/ � J/ BhÞ

¼ �g 0
g
R2

� f
r R2

@

@r
r f jrrj2
� �

þ @

@h
r f rr � rhð Þ

� �
; (15)

where use has been made of Eqs. (5)–(7), (11)–(13), and (A4)–(A6).
The other two components of Eq. (14) are identically zero.

Equation (15) yields the Grad–Shafranov equation,25

f
r
@

@r
r f jrrj2
� �

þ f
r

@

@h
r f rr � rhð Þ þ g g 0 þ R2 P0 ¼ 0: (16)

It follows from Eqs. (4), (13), and (16) that

J J/ ¼ �q g 0 � r R2 P0

f
: (17)

It is clear from Eqs. (12) and (17) that g 0 ¼ P0 ¼ 0 in the current-free
“vacuum” region surrounding the plasma. We shall also assume that
g 0 ¼ P0 ¼ 0 at the plasma/vacuum interface, so as to ensure that the
equilibrium plasma current density is zero at the interface.
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III. DERIVATION OF OUTER-REGION P.D.E.S
A. Introduction

The outer-region p.d.e.s were first presented in Ref. 4, without an
explicit derivation. However, the derivation is sufficiently non-obvious
that it is worth outlining in this section.

B. Governing equations

In the outer region, the perturbed plasma equilibrium satisfies the
ideal-MHD equations4,6,16,25

b ¼ r� ðn� BÞ; (18)

rp ¼ j� Bþ J� b; (19)

j ¼ r� b; (20)

p ¼ �n � rP; (21)

where nðr; h;/Þ is the plasma displacement, bðr; h;/Þ the perturbed
magnetic field, jðr; h;/Þ the perturbed current density, and pðr; h;/Þ
the perturbed scalar pressure. Let us assume that all perturbed quanti-
ties vary with the toroidal angle,/, as expð�i n/Þ, where the real posi-
tive integer n is the toroidal mode number of the tearing mode. For
example, pðr; h;/Þ ¼ pðr; hÞ expð�i n/Þ.

C. Radial plasma displacement

Equations (A5) and (A6) yield

ðn� BÞh ¼ J ðn/ Br � nr B/Þ ¼ �J B/ nr ; (22)

ðn� BÞ/ ¼ J ðnr Bh � nh BrÞ ¼ J Bh nr ; (23)

where use has been made of the fact that Br ¼ Jr ¼ 0 [see Eqs. (5) and
(11)]. Combining the previous two equations with Eqs. (18) and
(A11), we obtain

J br ¼ @

@h
J Bh nr
� �

� i nJ B/ nr: (24)

Thus, Eqs. (2), (4), (6), and (7) give

r R2 br ¼ @

@h
� i n q

� �
y; (25)

where

yðr; hÞ ¼ f nr : (26)

D. Perturbed force balance

According to Eq. (21),

p ¼ �P0 rr � n ¼ �P0 nr : (27)

So, the perturbed force balance equation (19) yields

� @ ðP0 nrÞ
@r

¼ ðj� BÞr þ ðJ� bÞr ; (28)

� @ ðP0 nrÞ
@h

¼ ðj� BÞh þ ðJ� bÞh; (29)

i n P0 nr ¼ ðj� BÞ/ þ ðJ� bÞ/; (30)

giving

� @ ðP0 nrÞ
@r

¼ r R2 ðjh B/ � j/ BhÞ þ r R2 ðJh b/ � J/ bhÞ; (31)

� @ ðP0 nrÞ
@h

¼ r R2 ðj/ Br � jr B/Þ þ r R2 ðJ/ br � Jr b/Þ; (32)

i n P0 nr ¼ r R2 ðjr Bh � jh BrÞ þ r R2 ðJr bh � Jh brÞ; (33)

where use has been made of Eqs. (2) and (A4)–(A6). Thus, according
to Eqs. (5)–(7), (11), (12), and (17),

� @ ðP0 nrÞ
@r

¼ f ðq jh � j/Þ � g 0 b/ þ q g 0 þ r R2 P0

f

 !
bh; (34)

� @ ðP0 nrÞ
@h

¼ �r g jr � q g 0 þ r R2 P0

f

 !
br ; (35)

i n P0 nr ¼ f jr þ g 0 br : (36)

It follows from Eqs. (26), (25), and (36) that

r jr ¼ i n ap y �
ag
R2

@

@h
� i n q

� �
y; (37)

where

apðrÞ ¼ r P0

f 2
; (38)

agðrÞ ¼ g 0

f
: (39)

Note that Eq. (35) is trivially satisfied. Hence, of the three components
of the perturbed force balance equation, only Eq. (34) remains to be
solved.

E. Perturbed plasma current density

Equation (20) yields

r R2 jr ¼ @b/
@h

þ i n bh; (40)

r R2 jh ¼ �i n br � @b/
@r

; (41)

r R2 j/ ¼ @bh
@r

� @br
@h

; (42)

where use has been made of Eqs. (2) and (A11)–(A13).

F. Perturbed magnetic field

According to the Appendix,

b ¼ br rr þ bh rhþ b/ r/; (43)

so

br ¼ b � rr ¼ jrrj2 br þ ðrr � rhÞ bh; (44)

bh ¼ b � rh ¼ ðrr � rhÞ br þ jrhj2 bh; (45)

b/ ¼ b � r/ ¼ b/
R2

: (46)
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Let us define

xðr; hÞ ¼ b/: (47)

It follows from Eqs. (37), (40), (46), and (47) that

bh ¼ � ag
i n

@

@h
� i n q

� �
y þ ap R

2 y � 1
i n

@x
@h

; (48)

b/ ¼ x
R2

: (49)

Equations (44) and (45) can be rearranged to give

br ¼ 1

jrrj2
� �

br � rr � rh

jrrj2
 !

bh; (50)

bh ¼ rr � rh

jrrj2
 !

br þ jrhj2 � ðrr � rhÞ2
jrrj2

" #
bh: (51)

However, from Eq. (2),

jrrj2 jrhj2 � ðrr � rhÞ2 ¼ 1
r2 R2

: (52)

Thus, Eq. (51) reduces to

bh ¼ rr � rh

jrrj2
 !

br þ 1

r2 R2 jrrj2
� �

bh: (53)

Making use of Eqs. (25) and (48), we obtain

r2 R2 bh ¼ T
@

@h
� i n q

� �
y þ U y � Q

@x
@h

; (54)

where

Qðr; hÞ ¼ 1

i n jrrj2 ; (55)

Uðr; hÞ ¼ ap R2

jrrj2 ; (56)

Tðr; hÞ ¼ rrr � rh

jrrj2 � ag
i n jrrj2 : (57)

Equation (50) gives

br ¼ A
@

@h
� i n q

� �
y � B y þ C

@x
@h

; (58)

where

Aðr; hÞ ¼ 1

r R2 jrrj2 þ
ag
i n

rr � rh

jrrj2 ; (59)

Bðr; hÞ ¼ ap
R2 rr � rh

jrrj2 ; (60)

Cðr; hÞ ¼ 1
i n

rr � rh

jrrj2 ; (61)

and use has been made of Eqs. (25) and (48).

G. First outer-region P.D.E.

According to Eq. (18),

r � b ¼ 0; (62)

which implies that

r
@

@r
@

@h
� i n q

� �
y

� �
þ @ðr2 R2 bhÞ

@h
� S x ¼ 0; (63)

where

SðrÞ ¼ i n r2; (64)

and use has been made of Eqs. (2), (25), (49), and (A10). Thus,
employing Eq. (54), we obtain the first outer-region p.d.e.,4

r
@

@r
@

@h
� i n q

� �
y

� �
¼ @

@h
Q

@x
@h

� �
þ S x

� @

@h
T

@

@h
� i n q

� �
y þ U y

� �
: (65)

H. Second outer-region P.D.E.

According to Eqs. (41), (42), (47), (48), and (58),

r R2 jh ¼ �i n A
@

@h
� i n q

� �
y � B y þ C

@x
@h

� �
� @x

@r
; (66)

r R2 j/ ¼ @

@r
� ag
i n

@

@h
� i n q

� �
y þ ap R

2 y

� �
� 1
i n

@2x
@r @h

� @

@h
A

@

@h
� i n q

� �
y � B y þ C

@x
@h

� �
: (67)

So,

r R2 ðq jh � j/Þ ¼ @

@h
� i n q

� �
A

@

@h
� i n q

� �
y � B y þ C

@x
@h

� �

þ 1
i n

@

@h
� i n q

� �
@x
@r

� @

@r
� ag
i n

@

@h
� i n q

� �
y þ ap R

2 y

� �
: (68)

Thus, Eq. (34) gives

�rR2

f
@

@r
f
r
ap y

� �
¼ @

@h
� inq

� �
A

@

@h
� inq

� �
y�ByþC

@x
@h

� �

þ 1
in

@

@h
� inq

� �
@x
@r

� @

@r
�ag
in

@

@h
� inq

� �
yþapR

2 y

� �
� rag x

þ1
r
qagþR2ap
� �

T
@

@h
� inq

� �
yþUy�Q

@x
@h

� �
;

(69)
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where use has been made of Eqs. (26), (38), (39), (49), and (54). The
previous equation reduces to

�inap af R
2 y¼ in

@

@h
� inq

� �
r A

@

@h
� inq

� �
y� r Byþ r C

@x
@h

� �

þ @

@h
� inq

� �
r
@x
@r

þ r a0g
@

@h
� inq

� �
y

þ ag r
@

@r
@

@h
� inq

� �
y

� �
� inr

@R2

@r
ap y� ag Sx

þ in qag þR2 ap
� �

T
@

@h
� inq

� �
yþU y�Q

@x
@h

� �
;

(70)

where

af ðrÞ ¼ r2

f
d
dr

f
r

� �
; (71)

and use has been made of Eq. (64). Employing Eq. (65), we obtain

� i n ap af R
2 y

¼ i n
@

@h
� i n q

� �
r A

@

@h
� i n q

� �
y � r B y þ r C

@x
@h

� �

þ @

@h
� i n q

� �
r
@x
@r

þ r a0g
@

@h
� i n q

� �
y

þ ag
@

@h
Q

@x
@h

� �
þ ag S x � ag

@

@h
T

@

@h
� i n q

� �
y þ U y

� �

� i n r
@R2

@r
ap y � ag S x þ i n q ag þ R2 ap

� �
� T

@

@h
� i n q

� �
y þ U y � Q

@x
@h

� �
; (72)

which yields

� i n ap af R
2 y

¼ i n
@

@h
� i n q

� �
r A

@

@h
� i n q

� �
y � r B y þ r C

@x
@h

� �

þ @

@h
� i n q

� �
r
@x
@r

þ r a0g
@

@h
� i n q

� �
y

þ ag
@

@h
� i n q

� �
Q

@x
@h

� T
@

@h
� i n q

� �
y � U y

� �

� i n r
@R2

@r
ap y þ i nR2 ap T

@

@h
� i n q

� �
y þ U y � Q

@x
@h

� �
;

(73)

which reduces to the second outer-region p.d.e.,4

@

@h
� i n q

� �
r
@x
@r

¼ � @

@h
� i n q

� �
T� @x

@h
þ U

@x
@h

þ X y

� @

@h
� i n q

� �
V

@

@h
� i n q

� �
y þW

@

@h
� i n q

� �
y; (74)

where

Vðr; hÞ ¼ 1

jrrj2
i n
R2

þ a2g
i n

� �
; (75)

Wðr; hÞ ¼ 2 ag ap R2

jrrj2 � r a0g ; (76)

Xðr; hÞ ¼ i n ap
@

@h
ðT� R2Þ þ r

@R2

@r
� af R

2 � U R2

� �
; (77)

and � denotes a complex conjugate.

IV. OUTER-REGION O.D.E.S
A. Primitive outer-region O.D.E.s

Let

xðr; hÞ ¼ n zðr; hÞ; (78)

and let us express yðr; hÞ and zðr; hÞ as a Fourier series in the poloidal
angle, h:

yðr; hÞ ¼
X
m

ymðrÞ expð im hÞ; (79)

zðr; hÞ ¼
X
m

zmðrÞ expð im hÞ: (80)

Here, the (not necessarily positive) integers m are the poloidal mode
numbers of the coupled Fourier harmonics included in the calculation.
The outer-region p.d.e.s, (65) and (74), reduce to the primitive outer-
region o.d.e.s,4,6,16

r
d
dr

½ðm� n qÞ ym� ¼
X
m0

Am0
m zm0 þ Bm0

m ym0

� 	
; (81)

ðm� n qÞ r dzm
dr

¼
X
m0

Cm0
m zm0 þ Dm0

m ym0

� 	
; (82)

where

n�1 Am0
m ðrÞ ¼ 1

2p i

þ
e�imh @

@h
Q

@

@h
þ S

� �
eim

0h dh; (83)

Bm0
m ðrÞ ¼ 1

2p i

þ
e�imh � @

@h
T

@

@h
� i n q

� �
� @U

@h

� �
eim

0h dh; (84)

Cm0
m ðrÞ ¼ 1

2p i

þ
e�imh � @

@h
� i n q

� �
T� @

@h
þ U

@

@h

� �
eim

0h dh;

(85)

nDm0
m ðrÞ ¼ 1

2p i

þ
e�imh

�
� @

@h
� i n q

� �
V

@

@h
� i n q

� �

þW
@

@h
� i n q

� �
þ X

�
eim

0h dh: (86)

Hence, it follows from Eqs. (55)–(57), (64), and (75)–(77) that16

Am0
m ¼ mm0 cm

0
m þ n2 r2 dm

0
m ; (87)

Bm0
m ¼ m ðm0 � n qÞ �f m

0
m þ n�1 ag cm

0
m

� 	
�m ap dm

0
m ; (88)

Cm0
m ¼ �ðm� n qÞm0 f m

0
m þ n�1 ag c

m0
m

� 	
þm0 ap dm

0
m ; (89)
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Dm0
m ¼ ðm�nqÞðm0 �nqÞ bm

0
m � n�2 a2g c

m0
m

� 	
�ðm� nqÞn�1 r a0g d

m0
m

þ ap

�
ðm�m0Þgm0

m þ n�1 ag ðmþm0 � 2nqÞdm0
m

þ r
dam

0
m

dr
� af a

m0
m � ap e

m0
m

�
; (90)

where

am
0

m ðrÞ ¼
þ
R2 exp �i ðm�m0Þ h
 � dh

2p
; (91)

bm
0

m ðrÞ ¼
þ
jrrj�2 R�2 exp �i ðm�m0Þ h
 � dh

2p
; (92)

cm
0

m ðrÞ ¼
þ
jrrj�2 exp �i ðm�m0Þ h
 � dh

2p
; (93)

dm
0

m ðrÞ ¼
þ
jrrj�2 R2 exp �i ðm�m0Þ h
 � dh

2p
; (94)

em
0

m ðrÞ ¼
þ
jrrj�2 R4 exp �i ðm�m0Þ h
 � dh

2p
; (95)

f m
0

m ðrÞ ¼
þ
i rrr � rh

jrrj2 exp �i ðm�m0Þ h
 � dh
2p

; (96)

gm
0

m ðrÞ ¼
þ
i rrr � rh

jrrj2 R2 exp �i ðm�m0Þ h
 � dh
2p

: (97)

Here, we have extended the analysis of Ref. 16, to take into account the
fact that the Am0

m , Bm0
m , am

0
m , bm

0
m , etc., are complex quantities in a realistic

non-up-down-symmetric tokamak plasma equilibrium. Note that dm
0

m
is a Kronecker delta symbol.

B. Outer-region O.D.E.s

Let

ymðrÞ ¼ wmðrÞ
m� n q

; (98)

zmðrÞ ¼ ZmðrÞ þ km wmðrÞ
m� n q

; (99)

where

kmðrÞ ¼ �Re
Bm
m

Am
m

� �
¼ � m ðm� n qÞ n�1 ag cmm �m ap dmm

m2 cmm þ n2 r2

" #
:

(100)

Here, we have made use of the fact that f mm is imaginary [see Eq. (96)].
It follows from Eq. (25) that

brðr; hÞ ¼ i
X
m

wmðrÞ
r R2

expð im hÞ: (101)

Furthermore, Eqs. (81) and (82) transform to give the outer-region o.d.
e.s,6,16

r
dwm

dr
¼
X
m0

Lm
0

m Zm0 þMm0
m wm0

m0 � n q
; (102)

ðm� n qÞ r d
dr

Zm

m� n q

� �
¼
X
m0

Nm0
m Zm0 þ Pm0

m wm0

m0 � n q
; (103)

where

Lm
0

m ðrÞ ¼ Am0
m ; (104)

Mm0
m ðrÞ ¼ Bm0

m þ km0 Lm
0

m ; (105)

Nm0
m ðrÞ ¼ Cm0

m � km Lm
0

m ; (106)

Pm0
m ðrÞ ¼ Dm0

m þ km0 Cm0
m � km Mm0

m � km n q s dm
0

m

� ðm� n qÞ r dkm
dr

dm
0

m ; (107)

with

sðrÞ ¼ r q0

q
: (108)

Note that

Mm
m ¼ Nm

m ¼ �m ðm� n qÞ f mm : (109)

C. Symmetry properties of coupling matrices

Equations (91)–(97) imply that amm0 ¼ am
0�

m , bmm0 ¼ bm
0�

m ,
cmm0 ¼ cm

0�
m , dmm0 ¼ dm

0�
m , emm0 ¼ em

0�
m , f mm0 ¼ �f m

0�
m , and gmm0 ¼ �gm

0�
m , for

allm,m0. Hence, Eqs. (87)–(90), (100), and (104)–(107) give

Lmm0 ¼ Lm
0�

m ; (110)

Mm
m0 ¼ �Nm0�

m ; (111)

Nm
m0 ¼ �Mm0�

m ; (112)

Pm
m0 ¼ Pm0�

m ; (113)

for allm,m0.

D. Toroidal electromagnetic torque

The volume-integrated toroidal electromagnetic torque acting
between the magnetic axis and a magnetic flux surface whose label is r
is given by

T/ðrÞ ¼
ðr
0

þ þ
R2 r/ � ðJþ jÞ � ðB� bÞ J d~r dh d/

¼
ðr
0

þ þ
ðj� bÞ/ J d~r dh d/: (114)

Here, use has been made of Eq. (14), as well as the fact that P ¼ PðrÞ.
We have also taken into account that b and j vary with / as
expð�i n/Þ, whereas B, J, J , and jr/j are independent of /. It is
clear that the zeroth-order (in perturbed quantities) contribution to T/

is identically zero, whereas the first-order contributions average to
zero, leaving only second-order (i.e., nonlinear in perturbed quantities)
contributions. Making use of the Appendix, as well as Eqs. (2), (20),
(50), (53), and (62), we deduce that

J ðj� bÞ/ ¼ @

@r
J b/ b

r� �þ @

@h
J b/ b

h
� 	

þ @

@/
J b/ b

/
� 	

� 1
2

@

@/
J br b

r þ bh b
h þ b/ b

/
� 	h i

: (115)
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Hence, we obtain

T/ðrÞ ¼
þ þ

J b/ b
r dh d/ ¼ r

þ þ
R2 b/ b

r dh d/; (116)

where the integral on the right-hand side is evaluated on the magnetic
flux surface whose label is r. We can reinterpret the previous expres-
sion as specifying the net outward flux of toroidal electromagnetic
angular momentum across the magnetic flux surface whose label is r.
Finally, making use of Eqs. (47), (78), (80), and (99)–(101), the previ-
ous expression reduces to6

T/ðrÞ ¼ i p2 n
X
m

Z�
m wm � w�

m Zm

m� n q
: (117)

It follows from Eqs. (102), (103), and (110)–(113) that

r
d
dr

X
m

Z�
m wm � w�

m Zm

m� n q

 !
¼ 0: (118)

Hence, we deduce that6

dT/

dr
¼ 0 (119)

in any region of the plasma that satisfies the outer-region o.d.e.s. Thus,
the volume-integrated toroidal electromagnetic torque acting between
the magnetic axis and a given magnetic flux surface is constant
between rational magnetic flux surfaces. As will become apparent in
Sec. VD, the integrated torque can have discontinuous jumps across
rational flux surfaces. It follows that net electromagnetic torques can
only develop in the plasma in the immediate vicinity of rational mag-
netic flux surfaces, where the ideal MHD equations become singular.28

V. BEHAVIOR IN VICINITY OF RATIONAL SURFACE
A. Introduction

The analysis of this section is a generalization of the analysis of
Ref. 16 that takes into account the fact that the Lm

0
m ,Mm0

m , etc., are com-
plex quantities in a realistic non-up-down-symmetric tokamak plasma
equilibrium.

Let there be K rational magnetic flux surfaces in the plasma.
Suppose that the kth surface lies at r ¼ rk and possesses the resonant
poloidal mode numbermk, where qðrkÞ ¼ mk=n.

B. General case

Consider the solution of the outer-region o.d.e.s, (102) and (103),
in the vicinity of the kth rational surface. Let x ¼ r � rk. The most
general small-jxj solution of the o.d.e.s can be shown to take the
form6,16

wmk
ðrk þ xÞ ¼ A6

Lk jxj�L k ð1þ kL x þ � � �Þ
þ A6

Sk sgnðxÞ jxj�S k ð1þ � � �Þ þ AC x ð1þ � � �Þ;
(120)

Zmkðrk þ xÞ ¼ A6
Lk jxj�L kðbL þ cL x þ � � �Þ

þ A6
Sk sgnðxÞ jxj�S k ðbS þ � � �Þ þ BC x ð1þ � � �Þ;

(121)

and

wmkþjðrk þ xÞ ¼ A6
Lk jxj�L k ðaj þ cj x þ � � �Þ þ A6

Sk sgnðxÞ jxj�S k

� ð~aj þ � � �Þ þ ð�wmkþj þ �w
0
mjþk x þ � � �Þ;

(122)

Zmkþjðrk þ xÞ ¼ A6
Lk jxj�L k ðbj þ dj x þ � � �Þ þ A6

Sk sgnðxÞ jxj�S k

� ð~bj þ � � �Þ þ ð�Zmkþj þ �Z 0
mkþj x þ � � �Þ;

(123)

for j 6¼ 0. The superscripts þ and � correspond to x > 0 and x < 0,
respectively. Here, ALk is known as the “coefficient of the large solu-
tion,” whereas ASk is termed the “coefficient of the small solu-
tion.”6,16,29 Moreover,

�Lk ¼ 1
2
� ffiffiffiffiffiffiffiffiffiffiffi�DIk
p

; (124)

�Sk ¼ 1
2
þ ffiffiffiffiffiffiffiffiffiffiffi�DIk
p

; (125)

DIk ¼ �L0 P0 � 1
4
; (126)

L0 ¼ � L
mk
mk

mk s

� 	
rk
; (127)

P0 ¼ � P
mk
mk

mk s

� 	
rk
: (128)

Note that, ordinarily, �Lk, �Sk, DIk, L0, and P0 are all real quantities.
Furthermore,

bL ¼ �Lk
L0

; (129)

bS ¼ �Sk
L0

; (130)

AC ¼ � 1
rk P0

X
j 6¼0

1
j

Nmkþj
mk

�Zmkþj þ Pmkþj
mk

�wmkþj

� 	
rk
; (131)

BC ¼ � 1
rk L0

X
j 6¼0

1
j

Lmkþj
mk

�Zmkþj þMmkþj
mk

�wmkþj

� 	
rk
þ AC

L0
; (132)

kL ¼ 1
2 rk

P1 L0
�Lk

þ T1 þ �Lk
L1
L0

� 2

� �
þ 2M1

� �
rk

� 1
2 ðmk sÞrk

1
rk �Lk

�
X
j 6¼0

1
j

�
Lmkþj
mk

Pmk
mkþj þ Pmkþj

mk
Lmk
mkþj þMmkþj

mk
Mmk

mkþj

þ Nmkþj
mk

Nmk
mkþjþbL ðLmkþj

mk
Nmk

mkþj þMmkþj
mk

Lmk
mkþjÞ

þ 1
bL

ðNmkþj
mk

Pmk
mkþj þ Pmkþj

mk
Mmk

mkþjÞ
�
rk

; (133)

cL ¼
1
2 rk

ð1þ �LkÞ P1
�Lk

þT1

L0
� �Lk

L0

� �
þP0

L1
L0

� 1

� �
þ 2bLM1

" #
rk

� 1
2ðmk sÞrk

1
rk �Lk L0

X
j 6¼0

1
j

�
ð�Lkþ 1ÞðPmkþj

mk
Lmk
mkþjþNmkþj

mk
Nmk
mkþjÞ

þ ð�Lk� 1Þ ðLmkþj
mk

Pmk
mkþj þMmkþj

mk
Mmk

mkþjÞ
þ bL ð�Lk� 1Þ ðLmkþj

mk
Nmk

mkþjþMmkþj
mk

Lmk
mkþjÞ

þ 1
bL

�Lkþ 1Þ ðNmkþj
mk

Pmk
mkþjþPmkþj

mk
Mmk

mkþj

� 	�
rk

; (134)
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aj ¼ � 1
ðmk sÞrk

Lmk
mkþj

L0
þMmk

mkþj

�Lk

 !
rk

; (135)

bj ¼ � 1
ðmk sÞrk

Pmk
mkþj

�Lk
þ Nmk

mkþj

L0

 !
rk

; (136)

~aj ¼ � 1
ðmk sÞrk

Lmk
mkþj

L0
þMmk

mkþj

�Sk

 !
rk

; (137)

~bj ¼ � 1
ðmk sÞrk

Pmk
mkþj

�Sk
þ Nmk

mkþj

L0

 !
rk

; (138)

cj ¼ 1
ð1þ �LkÞ rk

"
� �Lk ajþLj1 bLþMj1

� rk
mk s

Lmk
mkþj cL þMmk

mkþj kL
� 	

þ
X
j0 6¼0

1
j0

Lmkþj0
mkþj bj0 þMmkþj0

mkþj aj0
� 	#

rk

;

(139)

dj ¼ 1
ð1þ �LkÞ rk

"
� �Lk þmk s

j

� �
bj þNj1 bL þPj1

� rk
mk s

Nmk
mkþj cLþPmk

mkþj kL
� 	

þ
X
j0 6¼0

1
j0

Nmkþj0
mkþj bj0 þPmkþj0

mkþj aj0
� 	#

rk

;

(140)

�wmkþj0 ¼
1
rk

"
� rk
mk s

Lmk
mkþj BC þMmk

mkþj AC

� 	

þ
X
j0 6¼0

1
j0

Lmkþj0
mkþj

�Zmkþj0 þMmkþj0
mkþj

�wmkþj0

� 	#
rk

; (141)

�Zmkþj0 ¼ 1
rk

"
�mk s

j
�Zmkþj � rk

mk s
Nmk

mkþj BC þ Pmk
mkþj AC

� 	

þ
X
j0 6¼0

1
j0

Nmkþj0
mkþj

�Zmkþj0 þ Pmkþj0
mkþj

�wmkþj0

� 	#
rk

; (142)

and

L1 ¼ lim
x!0

Lmk
mk

mk � n q
� rk L0

x

 !
; (143)

P1 ¼ lim
x!0

Pmk
mk

mk � n q
� rk P0

x

 !
; (144)

T1 ¼ lim
x!0

�n q s
mk � n q

� rk
x

� �
; (145)

M1 ¼ lim
x!0

Mmk
mk

mk � n q

 !
; (146)

Lj1 ¼ lim
x!0

Lmk
mkþj

mk � n q
þ rk
mk s

Lmk
mkþj

x

 !
; (147)

Mj1 ¼ lim
x!0

Mmk
mkþj

mk � n q
þ rk
mk s

Mmk
mkþj

x

 !
; (148)

Nj1 ¼ lim
x!0

Nmk
mkþj

mk � n q
þ rk
mk s

Nmk
mkþj

x

 !
; (149)

Pj1 ¼ lim
x!0

Pmk
mkþj

mk � n q
þ rk
mk s

Pmk
mkþj

x

 !
; (150)

where j 6¼ 0.
The coefficients of the large and the small solutions at the kth

rational surface are evaluated as follows:

�wmkþj ¼ wmkþjðrk þ dÞ � ðaj þ d cjÞALk jdj�L k � ~aj sgnðdÞASk jdj�S k � �w
0
mkþj dþOðd2Þ; (151)

�Zmkþj ¼ Zmkþjðrk þ dÞ � ðbj þ d djÞALk jdj�L k � ~bj sgnðdÞASk jdj�S k � �Z 0
mkþj dþOðd2Þ; (152)

ASk ¼
Zmkðrk þ dÞ � bL wmk

ðrk þ dÞ � d ðBC � bL ACÞ � d ðcL � bL kLÞALk jdj�L k

ðbS � bLÞ sgnðdÞ jdj�S k
þOðdÞ; (153)

ALk ¼
wmk

ðrk þ dÞ � ASk sgnðdÞ jdj�S k � AC d

ð1þ d kLÞ jdj�L k
þOðd2Þ; (154)

for j 6¼ 0. The previous set of equations can be solved via iteration. Here, d � 1 is a numerical parameter that controls how close the outer-region
o.d.e. solutions are allowed to approach the various rational surfaces in the plasma. If the asymptotic matching procedure is working correctly, then
the coefficients of the large and small solutions should exhibit no dependance on d, once it falls below a critical value. In this situation, the proce-
dure is deemed to have converged.

Note that the analysis in this section is based on the assumption that DIk < 0. If DIk > 0, then the indices �Lk and �Sk become complex, indi-
cating that the plasma in the vicinity of the kth rational surface is unstable to localized ideal interchange modes.30
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C. Special case

In the limit �Lk ! 0, some of the previous expressions become singular, and a special treatment is required. Such a special treatment is always
needed for rational surfaces characterized by q¼ 1. The most general small-jxj solution of the outer-region o.d.e.s takes the form

wmk
ðrk þ xÞ ¼ A6

Lk 1þ �Lk ln jxj þ k̂L x ðln jxj � 1Þ þ lL x ð ln2jxj � 2 ln jxj þ 2Þ þ nL x þ � � �
h i

þ A6
Sk x ð1þ � � �Þ þ ÂC x ð1þ � � �Þ þ AD x ðln jxj � 1þ � � �Þ; (155)

Zmkðrk þ xÞ ¼ A6
Lk bL þ ĉL x ln jxj þ dL x ln 2jxj þ � � �
� �

þ A6
Sk x ðbS þ � � �Þ þ BD x ðln jxj þ � � �Þ; (156)

and

wmkþjðrk þ xÞ ¼ A6
Lk âj ln jxj þ x ð̂cj þ ĉ0j ln jxj þ ĉ00j ln2jxjÞ þ � � �
h i

þ A6
Sk x ð~aj þ � � �Þ

þ �wmkþj þ x ð�w00
mkþj þ �w

000
mkþj ln jxj � � �Þ

h i
; (157)

Zmkþjðrk þ xÞ ¼ A6
Lk b̂j ln jxj þ x ðd̂ j þ d̂

0
j ln jxj þ d̂

00
j ln2jxjÞ þ � � �

h i
þ A6

Sk x ð~bj þ � � �Þ
þ �Zmkþj þ x ð�Z 00

mkþj þ �Z 000
mkþj ln jxj � � �Þ

h i
; (158)

for j 6¼ 0. Here,

ÂC ¼ 1
rk

X
j 6¼0

1
j

Lmkþj
mk

�Zmkþj þMmkþj
mk

�wmkþj

� 	
rk
; (159)

AD ¼ L0
rk

X
j 6¼0

1
j

Nmkþj
mk

�Zmkþj þ Pmkþj
mk

�wmkþj

� 	
rk
� �Lk ÂC; (160)

BD ¼ AD

L0
; (161)

k̂L ¼ P1 L0 ð1þ �LkÞ
rk

þ �Lk T1

rk
� 1
ðmk sÞrk

1
rk

X
j 6¼0

1
j

Lmkþj
mk

Pmk
mkþj þMmkþj

mk
Mmk

mkþj

� 	
rk

� 1
ðmk sÞrk

�Lk
L0 rk

Lmkþj
mk

Nmk
mkþj þMmkþj

mk
Lmk
mkþj

� 	
rk
; (162)

lL ¼ � 1
2 ðmk sÞrk

L0
rk

X
j6¼0

1
j
ðNmkþj

mk
Pmk
mkþj þ Pmkþj

mk
Mmk

mkþjÞrk ; (163)

nL ¼ M1 þ �Lk
rk

L1
L0

� 1

� �
; (164)

ĉL ¼
P1 ð1þ �LkÞ

rk
þ �Lk T1

L0 rk
; (165)

dL ¼ lL
L0

; (166)

âj ¼ � 1
ðmk sÞrk

�Lk L
mk
mkþj

L0
þMmk

mkþj

 !
rk

; (167)

b̂j ¼ � 1
ðmk sÞrk

Pmk
mkþj þ

�Lk N
mk
mkþj

L0

 !
rk

; (168)

ĉj ¼ 1
rk

�âj þ Lj1 bL þMj1 ð1� �LkÞ þ rk
mk s

½Lmk
mkþj ðĉL � 2 dLÞ þMmk

mkþj ð2 k̂L � 6 lL � nLÞ��
X
j0 6¼0

1
j0

Lmkþj0
mkþj b̂j0 þMmkþj0

mkþj âj0
� 	( )

rk

; (169)

ĉ0j ¼
1
rk

Mj1 �Lk � rk
mk s

½Lmk
mkþj ðĉL � 2 dLÞ þMmk

mkþj ðk̂L � 4 lLÞ�þ
X
j0 6¼0

1
j0

Lmkþj0
mkþj b̂j0 þMmkþj0

mkþj â j0
� 	( )

rk

; (170)

ĉ00j ¼
1
rk

� rk
mk s

Lmkþj0
mkþj dL þMmkþj0

mkþj lL

� 	� �
rk

; (171)
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d̂ j ¼ 1
rk

� 1�mk s
j

� �
b̂j þ Nj1 bL þ Pj1 ð1� �LkÞ þ rk

mk s
½Nmk

mkþj ðĉL � 2 dLÞ þ Pmk
mkþj ð2 k̂L � 6 lL � nLÞ��

X
j0 6¼0

1
j0

Nmkþj0
mkþj b̂j0 þ Pmkþj0

mkþj âj0
� 	( )

rk

;

(172)

d̂
0
j ¼

1
rk

�mk s
j

b̂j þ Pj1 �Lk � rk
mk s

½Nmk
mkþj ðĉL � 2 dLÞ þ Pmk

mkþj ðk̂L � 4 lLÞ�þ
X
j0 6¼0

1
j0

Nmkþj0
mkþj b̂j0 þ Pmkþj0

mkþj âj0
� 	( )

rk

; (173)

d̂
00
j ¼ 1

rk
� rk
mk s

ðNmkþj0
mkþj dL þ Pmkþj0

mkþj lLÞ
� �

rk

; (174)

�w
00
mkþj ¼

1
rk

� rk
mk s

½�Lmk
mkþj BD þMmk

mkþj ðÂC � 2ADÞ�þ
X
j0 6¼0

1
j0

Lmkþj0
mkþj

�Zmkþj0 þMmkþj0
mkþj

�wmkþj0

� 	( )
rk

; (175)

�w
000
mkþj ¼

1
rk

� rk
mk s

Lmk
mkþj BD þMmk

mkþj AD

� 	� �
rk

; (176)

�Z 00
mkþj ¼

1
rk

�mk s
j

�Zmkþj � rk
mk s

½�Nmk
mkþj BD þ Pmk

mkþj ðÂC � 2ADÞ�þ
X
j0 6¼0

1
j0

Nmkþj0
mkþj

�Zmkþj0 þ Pmkþj0
mkþj

�wmkþj0

� 	( )
rk

; (177)

�Z 000
mkþj ¼

1
rk

� rk
mk s

Nmk
mkþj BD þ Pmk

mkþj AD

� 	� �
rk

: (178)

Moreover, ~aj and ~bj are again specified by Eqs. (137) and (138).
The coefficients of the large and the small solutions at the kth rational surface are evaluated as follows:

�wmkþj ¼ wmkþjðrk þ dÞ � âj ln jdj þ d ð̂cj þ ĉ0j ln jdj þ ĉ00j ln2jdjÞ
h i

ALk � ~aj ASk d� ð�w 00
mkþj þ �w

000
mkþj ln jdjÞ dþOðd2Þ; (179)

�Zmkþj ¼ Zmkþjðrk þ dÞ � b̂j ln jdj þ d ðd̂ j þ d̂ j0 ln jdj þ d̂ j00 ln
2jdjÞ

h i
ALk � ~bj ASk d

� ð�Z 00
mkþj þ �Z 000

mkþj ln jdjÞ dþOðd2Þ; (180)

ASk ¼ Zmkðrk þ dÞ � bL ALk � d ln jdj BD þ ðĉL þ dL ln jdjÞALk½ �
bS d

þOðdÞ; (181)

ALk ¼
wmk

ðrk þ dÞ � d ASk þ ÂC þ AD ðln jdj � 1Þ

 �

1þ �Lk ln jdj þ d k̂L ðln jdj � 1Þ þ lL ð ln 2jdj � 2 ln jdj þ 2Þ þ nL

h iþOðd2Þ; (182)

for j 6¼ 0. As before, the previous equations can be solved via iteration
(see the discussion of the numerical parameter d in Sec. VB).

D. Asymptotic matching across rational surfaces

Consider the resonant layer solution in the vicinity of the kth
rational surface, whose resonant poloidal mode number is mk. This
solution can be separated into independent tearing and twisting parity
components.29 The tearing parity component is such that wmk

ðrk � xÞ
¼ wmk

ðrk þ xÞ throughout the layer, whereas the twisting parity com-
ponent is such that wmk

ðrk � xÞ ¼ �wmk
ðrk þ xÞ. It turns out, how-

ever, that the twisting parity response of a resonant layer to the
solution in the outer region is generally negligible compared to
the tearing parity response.4,16,31 Hence, in this paper, we shall neglect
the twisting parity responses of the various resonant layers in the
plasma all together.

The neglect of the twisting parity responses of the various reso-
nant layers in the plasma implies that the coefficients of the large

solution to the left and to the right of each rational surface in the
plasma are equal to one another.6 In other words,

A�
Lk ¼ Aþ

Lk ¼ ALk; (183)

for all k. Note, however, that the coefficients of the small solution to
the left and to the right of a given rational surface are not, in general,
equal to one another.

Consider a solution that is completely continuous across the kth
rational surface, so that A�

Sk ¼ Aþ
Sk. According to the preceding analy-

sis, the continuity conditions for the various poloidal harmonics can
be written as

wmk
ðrk þ jdjÞ ¼ wmk

ðrk � jdjÞ þ 2 jdj ALk jdj�L k kL þ AC


 �
þ 2A�

Sk jdj�S k þOðd2Þ; (184)

Zmkðrk þ jdjÞ ¼ Zmkðrk � jdjÞ þ 2 jdj ALk jdj�L k cL þ BC


 �
þ 2A�

Sk bS jdj�S k þOðd2Þ; (185)
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wmkþjðrk þ jdjÞ ¼ wmkþjðrk � jdjÞ þ 2 jdj ALk jdj�L k cj þ �w
0
mkþj

h i
þ 2A�

Sk ~aj jdj�S k þOðd2Þ; (186)

Zmkþjðrk þ jdjÞ ¼ Zmkþjðrk � jdjÞ þ 2 jdj ALk jdj�L k dj þ �Z 0
mkþj

h i
þ 2A�

Sk
~bj jdj�S k þOðd2Þ; (187)

in the general case, and

wmk
ðrk þ jdjÞ ¼ wmk

ðrk � jdjÞ þ 2 jdj
n
ALk

h
k̂L ðln jdj � 1Þ

þ l̂L ð ln2jdj � 2 ln jdj þ 2Þ þ nL
i

þ ÂC þ AD ðln jdj � 1Þ þ A�
Sk

o
þOðd2Þ; (188)

Zmkðrk þ jdjÞ ¼ Zmkðrk � jdjÞ þ 2 jdj ALk ln jdj ðĉL þ dL ln jdjÞ½
þBD ln jdj þ A�

Sk bS
�þOðd2Þ; (189)

wmkþjðrk þ jdjÞ ¼ wmkþjðrk � jdjÞ
þ 2 jdj½ALk ð̂cj þ ĉ0j ln jdj þ ĉ00j ln 2jdjÞ
þ A�

Sk ~aj þ �w
00
mkþj þ �w

000
mkþj ln jdj� þ Oðd2Þ;

(190)

Zmkþjðrk þ jdjÞ ¼ Zmkþjðrk � jdjÞ þ 2 jdj½ALk ðd̂ j þ d̂ j0 ln jdj
þ d̂

00
j ln 2jdjÞ þ A�

Sk
~bj þ �Z 00

mkþj

þ �Z 000
mkþj ln jdj� þ Oðd2Þ; (191)

in the special case. In both cases, j 6¼ 0. The previous expressions are
used to “jump” the solutions of the outer-region ODEs across the vari-
ous rational surfaces in the plasma, while preventing them from
approaching the surfaces too closely.

Consider a solution that is launched from the kth rational surface,
so that ALk ¼ A�

Sk ¼ 0. It follows from the preceding analysis that

wmk
ðrk þ jdjÞ ¼ Aþ

Sk jdj�S k þOðd2Þ; (192)

Zmkðrk þ jdjÞ ¼ Aþ
Sk bS jdj�S k þOðd2Þ; (193)

wmkþjðrk þ jdjÞ ¼ Aþ
Sk ~aj jdj�S k þOðd2Þ; (194)

Zmkþjðrk þ jdjÞ ¼ Aþ
Sk
~bj jdj�S k þOðd2Þ; (195)

for j 6¼ 0. The previous expression is used to launch “small” solutions
from the various rational surfaces in the plasma, while preventing
them from approaching the launching surfaces too closely.

It is helpful to define the quantities6

Wk ¼ r�L k
k

�Sk � �Lk
Lmk
mk

� �1=2

rk

ALk; (196)

DWk ¼ r�S k
k

�Sk � �Lk
Lmk
mk

� �1=2

rk

ðAþ
Sk � A�

SkÞ; (197)

at each rational surface in the plasma. Here, the complex parameter
Wk is a measure of the reconnected helical magnetic flux at the kth
rational surface, whereas the complex parameter DWk is a measure of
the strength of a localized current sheet that flows parallel to the equi-
librium magnetic field at the surface. It is evident from Eqs. (117),
(119)–(121), (124), (125), (127), (129), (130), and (183)–(197) that6,16

T/ðrÞ ¼
ðr
0

X
k¼1;K

dTk dð~r � rkÞ d~r ; (198)

where

dTk ¼ 2p2 n ImðW�
k DWkÞ: (199)

Here, dTk is the net toroidal electromagnetic torque exerted on the
plasma in the immediate vicinity of the kth rational surface.

VI. VACUUM SOLUTION
A. Plasma/vacuum interface

Let the plasma/vacuum interface correspond to r ¼ �, where � is
the inverse aspect ratio of the plasma. In other words, let � ¼ a=R0,
where a is the effective minor radius of the plasma. The region external
to the plasma, r > �, is assumed to be free of non-axisymmetric
currents.

B. Perturbed vacuum magnetic field

In the vacuum region r > �, the curl-free perturbed magnetic
field can be written in the form6

b ¼ ir½Vðr; hÞ expð�i n/Þ�: (200)

The physical constraintr � b ¼ 0 implies that

r2½Vðr; hÞ expð�i n/Þ� ¼ 0: (201)

C. Toroidal coordinates

It is necessary to obtain a solution of the previous equation that
extends to infinity. This goal can be achieved using orthogonal toroidal
coordinates, l, g, and /, where32

R ¼ sinh l
cosh l� cos g

; (202)

Z ¼ sin g
cosh l� cos g

: (203)

Here, lðR;ZÞ ! 0 corresponds to either R ! 0 or ðR2 þ Z2Þ1=2
! 1 (i.e., an approach to the toroidal symmetry axis or to infinity),
whereas lðR;ZÞ ! 1 corresponds to ðR;ZÞ ! ð1; 0Þ (i.e., an
approach to the magnetic axis). Furthermore, gðR;ZÞ is an angular
variable in the poloidal plane.

The most general solution of Eq. (201), in toroidal coordinates,
that satisfies the physical constraint that the scalar magnetic potential,
V, is well-behaved a long way from the plasma, can be written33

Vðz; gÞ ¼ a0

ffiffiffi
p

p
Cð1=2� nÞffiffiffi

2
p ðz � cos gÞ1=2 Pn

�1=2ðzÞ

þ
X
m6¼0

am cosðjmj pÞ
ffiffiffi
p

p
Cðjmj þ 1=2� nÞ �jmj

2jmj�1=2 jmj!
� ðz � cos gÞ1=2 Pn

m�1=2ðzÞ expð�im gÞ; (204)

where z ¼ cosh l, the Pn
m�1=2ðzÞ are toroidal functions,34 CðzÞ is a

gamma function,35 and the am are arbitrary complex coefficients.
Here, the normalization of the am is the same as that adopted in Ref. 6.
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D. Vacuum solution at plasma/vacuum interface

In the vicinity of the plasma/vacuum interface, we can write

Vðr; hÞ ¼
X
m

VmðrÞ expð im hÞ; (205)

where

Vmð�Þ ¼
þ
r¼�

V expð�im hÞ dh
2p

¼
X
m0

Pm0
m am0 ; (206)

and, according to Eq. (204),

Pm0
m ¼ cosðjm0j pÞ

ffiffiffi
p

p
Cðjm0j þ 1=2� nÞ �jm0 j

2jm0 j�1=2 jm0j!
þ
r¼�

ðz � cos gÞ1=2

� Pn
m0�1=2ðzÞ exp �i ðm hþm0 gÞ
 � dh

2p
(207)

for generalm0, and

P0
m ¼

ffiffiffi
p

p
Cð1=2� nÞffiffiffi

2
p

þ
r̂¼1

ðz � cos gÞ1=2 Pn
�1=2ðzÞ expð�im hÞ dh

2p

(208)

for the special casem0 ¼ 0.
Let

J b � rr ¼ iwðr; hÞ expð�i n/Þ: (209)

In the vicinity of the plasma/vacuum interface, we can write

wðr; hÞ ¼
X
m

wmðrÞ expð im hÞ; (210)

where

wmð�Þ ¼
þ
r¼�

J rV � rr expð�im hÞ dh
2p

¼
X
m0

Rm0
m am0 ; (211)

and, according to Eq. (204),

Rm0
m ¼ cosðjm0j pÞ

ffiffiffi
p

p
Cðjm0j þ 1=2� nÞ �jm0 j

2jm0 j�1=2 jm0j!
�
þ
r¼�

1
2
ðz � cos gÞ�1=2 Pn

m0�1=2ðzÞ
�


þðz � cos gÞ1=2
dPn

m0�1=2

dz

�
J rr � rz

þ 1
2
ðz � cos gÞ�1=2 sin g� im0 ðz � cos gÞ1=2

� �

� Pn
m0�1=2ðzÞ J rr � rg

o
exp �i ðm hþm0 gÞ
 � dh

2p
; (212)

for generalm0, and

R0
m ¼

ffiffiffi
p

p
Cð1=2� nÞffiffiffi

2
p

þ
r¼�



1
2
ðz � cos gÞ�1=2 Pn

�1=2ðzÞ
�

þðz � cos gÞ1=2
dPn

�1=2

dz

�
J rr � rz þ 1

2
ðz � cos gÞ�1=2

� sin gPn
�1=2ðzÞrr � rg

�
expð�im hÞ dh

2p
; (213)

for the special casem0 ¼ 0.

E. Homogeneous boundary condition at plasma/
vacuum interface

According to Eqs. (49), (78), (80), (99)–(101), (200), and (205),

VmðrÞ ¼ ZmðrÞ
m� n qðrÞ ; (214)

and the wmðrÞ defined in Eq. (98) can be identified with the wmðrÞ
defined in Eqs. (209) and (210). Thus, given that w and Zmust be con-
tinuous across the plasma/vacuum interface (in the absence of finite
edge equilibrium plasma currents), Eqs. (206) and (211) yield the fol-
lowing homogenous boundary condition at the interface:

Zmð�Þ
m� n qð�Þ ¼

X
m0

Hmm0 wm0 ð�Þ; (215)

where X
m00

Hmm00 Rm0
m00 ¼ Pm0

m : (216)

F. Toroidal electromagnetic angular momentum flux

By analogy with Eq. (116), the outward flux of toroidal electro-
magnetic angular momentum across the plasma/vacuum interface,
which is equal to the flux of toroidal electromagnetic angular momen-
tum across a surface of constant l (in the direction of decreasing l) in
the vacuum region, is given by

T/ð�Þ ¼ �
þ þ

ðrl�rg � r/Þ�1 b/ b
l dg d/

¼ � ip n
2

þ
z2 � 1

z � cos g
@V
@z

V� � @V�

@z
V

� �
dg: (217)

Making use of Eq. (204), we deduce that

T/ð�Þ ¼ 0: (218)

In other words, the flux of toroidal electromagnetic angular momen-
tum across the vacuum/plasma interface is zero, as must be the case
because an isolated tokamak plasma cannot exert a net toroidal elec-
tromagnetic torque on itself.6

According to Eq. (117), the outward flux of toroidal electromag-
netic angular momentum across the plasma/vacuum interface can also
be written as follows:

T/ð�Þ ¼ i p2 n
X
m

Z�
m wm � w�

m Zm

m� n q

� �
r¼�

: (219)

It follows from Eq. (215) that Eq. (218) can only be satisfied, in general,
if the vacuum response matrix,Hmm0 , is Hermitian.

G. Vacuum response matrix

It is clearly important to prove that the vacuum response matrix,
Hmm0 , is Hermitian. Otherwise, toroidal electromagnetic angular
momentum is not conserved.
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Let us assume that all perturbed quantities vary with the toroidal
angle, /, as expð�i n/Þ. The vacuum region outside the plasma corre-
sponds to the section, C (say), of the R, Z plane that lies between the
curve r ¼ � and the curve z ¼ 1. Let us define the function Emðz; lÞ
such that

Em ¼ expð�im hÞ at r ¼ �; (220)

r2Em ¼ n2

R2
Em throughoutC; (221)

Em ¼ 0 at z ¼ 1: (222)

In this section, r2 denotes a two-dimensional Laplacian in the R, Z
plane, and all vector analysis is two-dimensional, and takes place in the
R-Z plane. Recall that

r2V ¼ n2

R2
V throughoutC; (223)

V ¼ 0 at z ¼ 1: (224)

It follows from Eq. (211) and (220) that

wmð�Þ ¼
þ
r¼�

J Em rV � rr
dh
2p

: (225)

The previous equation can also be written

wmð�Þ ¼ � 1
2p

þ
S
Em rV � dS; (226)

where S is the bounding surface of the vacuum domain, C, and use has
been made of Eqs. (222) and (224). Note that dS ¼ �J rr dh. Now,þ

S
Em rV � V rEmð Þ � dS ¼

ð
C
r � Em rV � VrEmð ÞdC

¼
ð
C
Em r2V � V r2Em

� �
dC ¼ 0;

(227)

where use has been made of Eqs. (221) and (223). The previous three
equations imply that

wmð�Þ ¼ � 1
2p

þ
S
V rEm � dS ¼

þ
r¼�

J VrEm � rr
dh
2p

; (228)

where use has been made of Eqs. (222) and (224). Thus, in accordance
with Eqs. (206), (214), and (215), we can write

wmð�Þ ¼
X
m0

H�1
mm0 Vm0 ð�Þ; (229)

where

H�1
mm0 ¼

þ
r¼�

J rEm � rr expð im0 hÞ dh
2p

: (230)

The inverse vacuum response matrix can be written as follows:

H�1
mm0 ¼ � 1

2p

þ
S
E�
m0 rEm � dS; (231)

where use has been made of Eqs. (220), (222), and (230). It follows
that

H�1
mm0 � H�1�

m0m ¼ � 1
2p

þ
S
E�
m0 rEm � Em rE�

m0
� � � dS

� 1
2p

ð
C
r � E�

m0 rEm � Em rE�
m0

� �
dC

� 1
2p

ð
C
E�
m0 r2Em � Em r2E�

m0
� �

dC ¼ 0; (232)

where use has been made of Eq. (221). Thus, we conclude that H�1
mm0 ,

as defined in Eq. (230), is Hermitian. It follows that the vacuum
response matrix,Hmm0 , is also Hermitian.

VII. INVERSE ASPECT-RATIO EXPANDED TOKAMAK
EQUILIBRIUM
A. Equilibrium magnetic flux surfaces

Let us assume that the inverse aspect ratio of the plasma, �, is
such that 0 < � � 1. Let r ¼ � r̂ , r ¼ ��1 r̂, and 0 ! ��1 0. Suppose
that the loci of the equilibrium magnetic flux surfaces can be written in
the parametric form:2,6,21,36

Rðr̂ ;xÞ ¼ 1� � r̂ cosxþ �2
X
j>0

Hjðr̂Þ cos ðj� 1Þx½ �

þ �2
X
j>1

Vjðr̂Þ sin ðj� 1Þx½ � þ �3 Lðr̂Þ cosx; (233)

Zðr̂ ;xÞ ¼ � r̂ sinxþ �2
X
j>1

Hjðr̂Þ sin ðj� 1Þx½ �

� �2
X
j>1

Vjðr̂Þ cos ðj� 1Þx½ � � �3 Lðr̂Þ sinx; (234)

where j is a positive integer. Here, H1ðr̂Þ controls the relative hori-
zontal locations of the flux-surface centroids, H2ðr̂Þ and V2ðr̂Þ con-
trol the magnitudes and vertical tilts of the flux-surface ellipticities,
H3ðr̂Þ and V3ðr̂Þ control the magnitudes and vertical tilts of the
flux-surface triangularities, etc., whereas Lðr̂Þ is a flux-surface re-
labeling parameter. Moreover, xðR;ZÞ is a poloidal angle that is dis-
tinct from h. Note that V1 does not appear in Eq. (234) because such
a factor merely gives rise to a rigid vertical shift of the plasma that
can be eliminated by a suitable choice of the origin of the flux-
coordinate system.36

Let

Jðr̂ ;xÞ ¼ 1
�2

@R
@x

@Z
@r̂

� @R
@r̂

@Z
@x

� �
(235)

be the Jacobian of the r̂ , x coordinate system. We can transform to the
r̂ , h coordinate system by writing

hðr̂ ;xÞ ¼ 2p
ðx
0

Jðr̂ ; ~xÞ
Rðr̂ ; ~xÞ d~x

�þ
Jðr̂ ;xÞ
Rðr̂ ;xÞ dx; (236)

r̂ ¼ 1
2p

þ
Jðr̂ ;xÞ
Rðr̂ ;xÞ dx: (237)

This transformation ensures that

@h
@x

¼ J
r̂ R

; (238)

and, hence, that
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J � R
�

@R
@h

@Z
@ r̂

� @R
@ r̂

@Z
@r̂

� �
¼ �R J

@x
@h

¼ r R2; (239)

in accordance with Eq. (2).

B. Metric elements

We can determine the metric elements of the flux-coordinate sys-
tem by combining Eqs. (233)–(237). Evaluating the elements up to
Oð�Þ, but retaining Oð�2Þ contributions to terms that are independent
ofx, we obtain6,21,36

Lðr̂Þ ¼ r̂3

8
� r̂ H1

2
� 1
2

X
j>1

ðj� 1Þ H
2
j

r̂
� 1
2

X
j>1

ðj� 1Þ V
2
j

r̂
; (240)

h ¼ xþ � r̂ sinx� �
X
j>0

1
j

H0
j � ðj� 1Þ Hj

r̂

� �
sinðjxÞ

þ �
X
j>1

1
j

V 0
j � ðj� 1Þ Vj

r̂

� �
cosðjxÞ; (241)

jr̂ r̂ j2 ¼ 1þ 2 �
X
j>0

H0
j cosðj hÞ þ 2 �

X
j>1

V 0
j sinðj hÞ

þ �2

 
3 r̂2

4
� H1 þ 1

2

X
j>0

H02
j þ ðj2 � 1Þ H

2
j

r̂2

" #

þ 1
2

X
j>1

V 02
j þ ðj2 � 1Þ V

2
j

r̂2

" #!
; (242)

r̂ r̂ � r̂h¼ � sinh� �
X
j>0

1
j
H00

j þ
H0

j

r̂
þðj2�1ÞHj

r̂2

� �
sinðjhÞ

þ �
X
j>1

1
j
V 00
j þ

V 0
j

r̂
þðj2�1Þ Vj

r̂2

� �
cosðjhÞ; (243)

R2 ¼ 1� 2 � r̂ cos h� �2
r̂2

2
� r̂ H0

1 � 2H1

� �
: (244)

Here, 0 � d=dr̂ . Moreover, we have made use of the fact that Vj / Hj,
for j > 1, because Vj and Hj satisfy the identical differential equations,
(250) and (251).

C. Expansion of Grad–Shafranov equation

Let us write

f ðr̂Þ ¼ �
r̂ g
q
; (245)

gðr̂Þ ¼ 1þ �2 g2ðr̂Þ þ �4 g4ðr̂Þ; (246)

P0ðr̂Þ ¼ �2 p02ðr̂Þ; (247)

where q, g2, g4, and p2 are all Oð1Þ. Here, the safety factor, qðr̂Þ, and
the second-order plasma pressure gradient, p02ðr̂Þ, are the two free
flux-surface functions that characterize the plasma equilibrium.25

Expanding the Grad–Shafranov equation (16) order by order in
the small parameter �, making use of Eqs. (242)–(247), we
obtain2,4,21,36

g 02 ¼ �p02 �
r̂
q2

ð2� sÞ; (248)

H00
1 ¼ �ð3� 2 sÞ H

0
1

r̂
� 1þ 2 p02 q

2

r̂
; (249)

H00
j ¼ �ð3� 2 sÞ H

0
j

r̂
þ ðj2 � 1Þ Hj

r̂2
for j > 1; (250)

V 00
j ¼ �ð3� 2 sÞ V

0
j

r̂
þ ðj2 � 1Þ Vj

r̂2
for j > 1; (251)

g 04¼� r̂
q2

 
3 r̂2

2
�2 r̂ H0

1þ
X
j>0

H02
j þ2ðj2�1ÞH

0
j Hj

r̂
�ðj2�1ÞH

2
j

r̂2

" #

þ
X
j>1

V 02
j þ2ðj2�1ÞV

0
j Vj

r̂
�ðj2�1ÞV

2
j

r̂2

" #!

þ r̂
q2

ð2� sÞ
 
�g2�3 r̂2

4
þ r̂2

q2
þH1þ1

2

X
j>0

3H02
j �ðj2�1ÞH

2
j

r̂2

" #

þ1
2

X
j>1

3V 02
j �ðj2�1ÞV

2
j

r̂2

" #!
þp02 g2þ r̂2

2
þ r̂2

q2
�2H1�3 r̂ H0

1

 !
:

(252)

Note that the relative horizontal shift of magnetic flux surfaces, H1,
otherwise known as the Shafranov shift,37 is driven by toroidicity [the
second term on the right-hand side of Eq. (249)], and plasma pressure
gradients (the third term). All of the other shaping terms (i.e., the Hj,
for j > 1, and the Vj) are driven by axisymmetric currents flowing in
external magnetic field coils.36

Finally, it follows from Eqs. (38), (39), (71), and (245)–(247) that

apðr̂Þ ¼ p02 q
2

r̂
1� 2 �2 g2
� �

; (253)

agðr̂Þ ¼ q
r̂

g 02 � �2 g2 g
0
2 þ �2 g 04

� �
; (254)

af ðr̂Þ ¼ �sþ �2 r̂ g 02: (255)

D. Self-inductance and b values

The conventionally defined normalized self-inductance, toroidal
beta, poloidal beta, and normalized beta values of the plasma equilib-
rium can be written as follows:25

li ¼
2
ð1
0
r̂ f 2 hjrrj2i dr̂

ðf 2 hjrrj2i2Þr̂¼1

; (256)

bt ¼
2 �2

ð1
0
r̂ hR2i p2 dr̂ð1

0
r̂ ð1þ 2 �2 g2Þ dr̂

; (257)

bp ¼
2 �2

ð1
0
r̂ hR2i p2 dr̂ð1

0
r̂ f 2 hjrrj2i dr̂

; (258)
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bN ¼ 20 bt
ðf hjrrj2iÞr̂¼1

; (259)

respectively. Here, h� � �i � Þð� � �Þ dh=2p.
E. Coupling coefficients

Let

S1ðr̂Þ ¼ 1
2

X
j>0

3 ðH02
j þ V 02

j Þ � ðj2 � 1Þ H
2
j þ V2

j

r̂2

" #
; (260)

S2ðr̂Þ ¼
X
j>1

2 ðj2� 1Þ H02
j þV 02

j � 11
3

H0
j HjþV 0

j Vj

r̂
þ j2

H2
j þV2

j

r̂2

 !

�
X
j>0

ð1� sÞ H0
j Hj þV 0

j Vj

r̂
þ 1
3

H2
j þV2

j

r̂2

 !
: (261)

The analysis of Secs. IVA, IVB, VII B, and VIIC can be combined to
give the following expressions for the coupling coefficients appearing
in the outer-region o.d.e.s, (102) and (103):6

Lmmðr̂Þ ¼ m2 þ �2 m2 � 3 r̂2

4
þ H1 þ S1

� �
þ �2 n2 r̂2; (262)

Mm
mðr̂Þ ¼ 0; (263)

Nm
m ðr̂Þ ¼ 0; (264)

Pm
mðr̂Þ ¼ ðm�nqÞ2 þm� nq

m
q r̂

d
dr̂

2� s
q

� �

þ �2 ðm� nqÞ2
(
7 r̂2

4
�H1� 3 r̂ H0

1 þ S1

þ 1
m2

n
m

r̂
d
dr̂

r̂2
2� s
q

� �
� r̂2

ð2� sÞ2
q2

� r̂
d
dr̂

ðr̂ p02Þ
" #)

� �2
m�nq

m

(
2 r̂ p02 ð2� sÞþ q r̂

d
dr̂

� r̂2
2� s
q3

þ s
q

3 r̂2

4
�H1� S1

� �"

�2
q

3 r̂2

2
�H1� r̂ H0

1 �
2
3
S1

� �#
� S2

)
þ �2 2 r̂ p02 ð1� q2Þ;

(265)

Lm61
m ðr̂Þ ¼ ��m ðm6 1ÞH0

1; (266)

Lm6j
m ðr̂Þ ¼ ��m ðm6 jÞ ðH0

j 6 iV 0
j Þ for j > 1; (267)

Mm61
m ðr̂Þ ¼ 7�m ðm� n qÞ p02 q2 6 �m ðm6 1� n qÞ

� r̂ þ ð1� sÞH0
1


 �
; (268)

Mm6j
m ðr̂Þ ¼ 6�

m
j
ðm6 j� n qÞ

� ð1� sÞ ðH0
j 6 iV 0

j Þ � ðj2 � 1Þ Hj 6 iVj

r̂

� �
for j > 1;

(269)

Nm61
m ðr̂Þ ¼ 7� ðm6 1Þ ðm6 1� n qÞ p02 q2 6 � ðm61Þ

� ðm� n qÞ r̂ þ ð1� sÞH0
1


 �
; (270)

Nm6j
m ðr̂Þ ¼ 6�

ðm6 jÞ
j

ðm� n qÞ

� ð1� sÞ ðH0
j 6 iV 0

j Þ � ðj2 � 1Þ Hj 6 iVj

r̂

� �
for j > 1;

(271)

Pm61
m ðr̂Þ ¼ �� ð1þ sÞ p02 q2 þ � ðm� n qÞ ðm6 1� n qÞ ðr̂ � H0

1Þ;
(272)

Pm6j
m ðr̂Þ ¼ �� ðm� n qÞ ðm6 j� n qÞ ðH0

j 6 iV 0
j Þ� for j > 1:

(273)

Whenm ¼ 0, some of the coupling coefficient take on special values

P0
0ðr̂Þ ¼ n2 q2 � q2

r̂
d
dr̂

r̂2
2� s
q2

� �
� q2 r̂

d
dr̂

p02
r̂

� �
; (274)

M0
61ðr̂Þ ¼ lim

m!0
Mm

m617� ð2� sÞH0
1; (275)

M0
6jðr̂Þ ¼ lim

m!0
Mm

m6j 7 � ð2� sÞ j ðH0
j 7 iV 0

j Þ for j > 1; (276)

N61
0 ðr̂Þ ¼ lim

m!0
Nm61
m 6 � ð2� sÞH0

1; (277)

N6j
0 ðr̂Þ ¼ lim

m!0
Nm6j
m 6 � ð2� sÞ j ðH0

j 6 iV 0
j Þ for j > 1; (278)

P0
61ðr̂Þ¼ lim

m!0
Pm
m61� �ð2� sÞf6nq3 p02þð17nqÞ½̂rþð1� sÞH0

1�g;
(279)

P0
6jðr̂Þ ¼ lim

m!0
Pm
m6j � � ð2� sÞ ðj7n qÞ

j

� ð1� sÞ ðH0
j 7 iV 0

j Þ � ðj2 � 1Þ Hj 7 iVj

r̂

� �� �
for j > 1;

(280)

P61
0 ðr̂Þ¼ lim

m!0
Pm
m61��ð2�sÞf6nq3p02þð17nqÞ½̂rþð1�sÞH0

1�g;
(281)

P6j
0 ðr̂Þ ¼ lim

m!0
Pm6j
m � � ð2� sÞ ðj7n qÞ

j

� ð1� sÞ ðH0
j 6 iV 0

j Þ � ðj2 � 1Þ Hj 6 iVj

r̂

� �� �
for j > 1:

(282)

Here, the coupling coefficients are evaluated to Oð�Þ, while retaining
Oð�2Þ contributions to diagonal terms.4,6 Note that the coupling coeffi-
cients exactly satisfy the symmetry requirements (110)–(113).

F. Behavior close to magnetic axis

In the limit r̂ � 1, a well-behaved solution of the outer-region o.
d.e.s, (102) and (103), with a dominant poloidal mode number m > 0
is such that6

Zmðr̂Þ ’ m� n q
m

wmðr̂Þ; (283)

wmþ1ðr̂Þ ’ ��
r̂ ½ðm� n qÞ � 2 p002 q

2�
2 ðm� n qÞ wmðr̂Þ; (284)
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wmþjðr̂Þ ’ �
2 r̂2 q00 ðH 0

j � iV 0
j Þ

ðm� n qÞ ðmþ 1Þ q wmðr̂Þ for j > 1; (285)

to lowest order, with all of the other Zm and wm approximately zero. A
well-behaved solution with a dominant poloidal mode number m < 0
is such that

Zmðr̂Þ ’ m� n q
jmj wmðr̂Þ; (286)

wm�1ðr̂Þ ’ ��
r̂ ½ðm� n qÞ þ 2 p002 q

2�
2 ðm� n qÞ wmðr̂Þ; (287)

wm�jðr̂Þ ’ ��
2 r̂2 q00 ðH0

j þ iV 0
j Þ

ðm� n qÞ ðjmj þ 1Þ q wmðr̂Þ for j > 1; (288)

to lowest order, with all of the other Zm and wm approximately zero.
For the special case in which the dominant poloidal mode number is
zero, the well-behaved solution is

Z0ðr̂Þ ’ constant (289)

to lowest order, with all of the other Zm and wm approximately zero.
Note that the solutions (283)–(288) only exhibit “outward” cou-

pling of different poloidal harmonics (i.e., coupling in the direction
away from the m ¼ 0 harmonic). However, the solutions whose cen-
tral poloidal mode numbers are m ¼ 61 are special cases, and also
exhibit inward coupling. Thus, in addition, to the couplings described
in Eqs. (283)–(285), anm ¼ 1 solution drives the harmonics

w1�jðr̂Þ ’ 2 � ðH0
j � iV 0

j Þw1ðr̂Þ for j > 1: (290)

Likewise, in addition to the couplings described in Eqs. (286)–(288),
anm ¼ �1 solution drives the harmonics

w�1þjðr̂Þ ’ 2 � ðH0
j þ iV 0

j Þw�1ðr̂Þ for j > 1: (291)

G. Plasma/vacuum interface

We require the equilibrium plasma current to be zero at the
plasma/vacuum interface, r̂ ¼ 1, which implies that g 0ð1Þ ¼ P0ð1Þ
¼ 0 (see Sec. II B). It follows from Eqs. (246)–(248) and (252) that we
need6

p02ð1Þ ¼ 0; (292)

sð1Þ ¼ 2þ �2

 
3 r̂2

2
� 2 r̂ H0

1

þ
X
j>0

H02
j þ 2 ðj2 � 1Þ H

0
j Hj

r̂
� ðj2 � 1Þ H

2
j

r̂2

" #

þ
X
j>1

V 02
j þ 2 ðj2 � 1Þ V

0
j Vj

r̂
� ðj2 � 1Þ V

2
j

r̂2

" #!
r̂¼1

þOð�4Þ:

(293)

VIII. CALCULATION OF TEARING MODE DISPERSION
RELATION
A. Introduction

Let the mj, for j ¼ 0; J , be the poloidal mode numbers included
in the calculation. Here, it is assumed that mjþ1 ¼ mj þ 1 for

j ¼ 0; J � 1. Let there be K rational surfaces in the plasma, and let the
kth surface lie at radius r̂ k, for k ¼ 1;K . Here, it is assumed that
r̂ kþ1 > r̂ k for k ¼ 1;K � 1.

B. Well-behaved solutions launched from magnetic
axis

Let us launch J þ 1 linearly independent, well-behaved solutions
of the outer-region o.d.e.s, (102) and (103), from the magnetic axis, as
described in Sec. VII F. Let us then numerically integrate these solu-
tions to the plasma/vacuum interface. The poloidal harmonics of the
solutions are denoted wa

mj0mj
ðr̂Þ and Za

mj0mj
ðr̂Þ, for j; j0 ¼ 0; J . Here,mj0

is the poloidal mode number of the harmonic, whereasmj is the domi-
nant poloidal mode number of the solution close to the magnetic axis.
The asymptotic matching conditions imposed at the rational surfaces
are

A�
Lk ¼ Aþ

Lk; (294)

DWk ¼ 0; (295)

for k ¼ 1;K . [Eqs. (184)–(191) specify how these matching conditions
are implemented at a given rational surface.] LetPa

kj, for k ¼ 1;K and
j ¼ 0; J , be the value ofWk at the kth rational surface associated with a
solution launched from the magnetic axis with dominant poloidal
mode numbermj.

A scheme similar to A.H. Glasser’s “fixups”13 is employed to
periodically re-orthogonalize the set of solutions. These re-
orthogonalizations are implemented at user-defined locations between
the magnetic axis and the plasma/vacuum interface. At each re-
orthogonalization location, the matrix of solutions is forced to become
upper triangular, via a process similar to Gaussian elimination, such
that only one solution has a non-zero amount of the highest poloidal
harmonic, two solutions have non-zero amounts of the next highest
harmonic, and so on. The solutions are then renormalized to their
largest component. The re-orthogonalizations are necessary to prevent
the solutions from becoming colinear as a result of rounding errors,
given the significantly different rates at which poloidal harmonics with
different poloidal mode numbers grow with increasing r̂ close to the
magnetic axis. (In fact, a harmonic with mode number m grows as
r̂ jmj. Hence, an m ¼ 10 harmonic grows far faster than an m ¼ 1 har-
monic. Unchecked, each solution would quickly become dominated by
its component with the largest mode number.)

C. Small solutions launched from rational surfaces

Let us launch a “small” solution of the outer-region o.d.e.s from
each rational surface in the plasma, as described in Secs. VB and VC,
and numerically integrate it to the plasma/vacuum interface. The
poloidal harmonics of the solutions are denoted ws

mjkðr̂Þ and Zs
mjk

ðr̂Þ,
for j ¼ 0; J and k ¼ 1;K . Here,mj is the poloidal mode number of the
harmonic, whereas k is the index of the rational surface from which
the solution is launched. The launch conditions are

A�
Lk ¼ Aþ

Lk ¼ A�
Sk ¼ 0; (296)

DWk ¼ 1: (297)

[These launch conditions can be implemented at a given rational sur-
face using Eqs. (192)–(195).] The asymptotic matching conditions
imposed at the other rational surfaces are
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A�
Lk0 ¼ Aþ

Lk0 ; (298)

DWk0 ¼ 0; (299)

for k0 ¼ kþ 1;K . [Eqs. (184)–(191) again specify how these matching
conditions are implemented at a given rational surface.] Let Ps

k0k, for
k0 ¼ 1;K and k ¼ 1;K , be the value ofWk0 at the k0 th rational surface
associated with a small solution launched from the kth rational surface.
Note thatPs

k0k ¼ 0 for k0 	 k.

D. Homogeneous toroidal tearing mode dispersion
relation

The most general expression for the solution of the outer-region
o.d.e.s at the plasma/vacuum interface is

wmj
ð1Þ ¼

X
j0¼0;J

wa
mjmj0

ð1Þ aj0 þ
X
k¼1;K

ws
mjkð1ÞDWk; (300)

Zmjð1Þ ¼
X
j0¼0;J

Za
mjmj0

ð1Þ aj0 þ
X
k¼1;K

Zs
mjkð1ÞDWk; (301)

for j ¼ 0; J , where the aj are complex coefficients. However, the solu-
tion must satisfy the homogeneous boundary condition (215). It fol-
lows that X

j0¼0;J

Xjj0 aj0 ¼
X
k¼1;K

Yjk DWk (302)

for j ¼ 0; J , where

Xjj0 ¼
Za
mjmj0

ð1Þ
mj � n qð1Þ �

X
j00¼0;J

Hmjmj00 w
a
mj00mj0

ð1Þ; (303)

Yjk ¼
X
j0¼0;J

Hmjmj0 w
s
mj0 k

ð1Þ �
Zs
mjk

ð1Þ
mj � n qð1Þ ; (304)

for j; j0 ¼ 0; J and k ¼ 1;K . Thus, we can write

aj ¼
X
k¼1;K

Xjk DWk (305)

for j ¼ 0; J , where X
j0¼0;J

Xjj0 Xj0k ¼ Yjk (306)

for j ¼ 0; J and k ¼ 1;K . Our general solution is now free of arbitrary
coefficients. Finally, making use of the definitions of the Pa

kj and the
Ps

kk0 given in Secs. VIIIB and VIII C, we obtain the homogenous toroi-
dal tearing mode dispersion relation3–6

Wk ¼
X
k0¼1;K

Fkk0 DWk0 ; (307)

for k; k0 ¼ 1;K , where

Fkk0 ¼
X
j¼0;J

Pa
kj Xjk0 þPs

kk0 : (308)

Equation (307) specifies the reconnected helical magnetic flux, Wk,
driven at each rational surface in the plasma as a consequence of the

current sheets, DWk, flowing at the surfaces. It is clear that Fkk0 is a
dimensionless inductance matrix.38

We can construct the “fully reconnected” tearing eigenfunction6

associated with the kth rational surface, which is defined to have the
following properties:

Wk0 ¼ Fk0k; (309)

DWk0 ¼ dk0k; (310)

for k0 ¼ 1;K , as follows:

wf
mjk

ðr̂Þ ¼ ws
mjkðr̂Þ þ

X
j0¼0;J

wa
mjmj0

ðr̂ÞXj0k; (311)

Zf
mjk

ðr̂Þ ¼ Zs
mjkðr̂Þ þ

X
j0¼0;J

Za
mjmj0

ðr̂ÞXj0k; (312)

for j ¼ 0; J . Here, dkk0 is a unit matrix. Note that the fully reconnected
solution associated with the kth rational surface only has a current
sheet at that surface. (The current sheets at the other surfaces are all
zero.)

The homogeneous toroidal tearing mode dispersion relation can
be written in the alternative form3,6

DWk ¼
X
k0¼1;K

Ekk0 Wk0 ; (313)

for k ¼ 1;K , where Ekk0 is the inverse of Fkk0 . The previous equation
specifies the current sheets driven at each rational surface in the
plasma as a consequence of the reconnected fluxes at the surfaces.

We can construct the “unreconnected” tearing eigenfunction6

associated with the kth rational surface, which is defined to have the
following properties:

Wk0 ¼ dk0k; (314)

DWk0 ¼ Ek0k; (315)

for k0 ¼ 1;K , as follows:

wu
mjkðr̂Þ ¼

X
k0¼1;K

wf
mjk0 ðr̂Þ Ek0k; (316)

Zu
mjkðr̂Þ ¼

X
k0¼1;K

Zf
mjk0 ðr̂Þ Ek0k; (317)

for j ¼ 0; J . Note that the unreconnected solution associated with the
kth rational surface only has reconnected flux at that surface. (The
reconnected fluxes at the other surfaces are all zero.)

Let

Dk ¼ DWk

Wk
(318)

be the complex quantity that characterizes the tearing response of the
resonant layer at the kth rational surface to the ideal-MHD solution in
the outer region.1 In general, Dk is a function of the growth-rate and
phase-velocity of the reconnected helical magnetic flux at the sur-
face.6,39,40 Equations (313) and (318) can be combined to give the ulti-
mate form of the tearing mode dispersion relationX

k0¼1;k

ðDk dkk0 � Ekk0 ÞWk0 ¼ 0; (319)
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for k ¼ 1;K . It is clear that Ekk is the tearing stability index
1 at the kth

rational surface when magnetic reconnection takes place at this sur-
face, but is suppressed at the other surfaces (as is likely to be the case
in the presence of sheared plasma rotation6).

E. Toroidal electromagnetic torques

According to Eqs. (199) and (313), the net toroidal electromag-
netic torque exerted on an isolated plasma in the immediate vicinity of
the kth rational surface is

dTk ¼ 2p2 n
X
k0¼1;K

ImðW�
k Ekk0 Wk0 Þ: (320)

The total electromagnetic torque exerted on the plasma is

T/ð1Þ ¼
X
k¼1;K

dTk ¼ 2p2 n
X

k;k0¼1;K

ImðW�
k Ekk0Wk0 Þ: (321)

However, we have already established that this total torque is zero, irre-
spective of the values of theWk [see Eq. (218)]. Thus, it follows that

Ekk0 ¼ E�
k0k: (322)

In other words, as a consequence of the conservation of toroidal elec-
tromagnetic angular momentum, the matrix Ekk0 must be Hermitian,6

which implies that Fkk0 is also Hermitian (as ought to be the case if Fkk0
can be interpreted as a dimensionless inductance matrix).

IX. RESONANT MAGNETIC PERTURBATION COILS
A. Introduction

Suppose that the plasma is subject to a static, non-axisymmetric,
resonant magnetic perturbation (RMP), with n periods in the toroidal
direction, that is generated by currents flowing in magnetic field coils
external to the plasma. Let us, rather simplistically, model these RMP
coils as a set of L toroidal strands of negligible cross section in the R, Z
plane. Suppose that the lth strand is located at R ¼ Rl , Z ¼ Zl , and
carries a net current Il expð�i n/Þ. Here, the complex quantity Il
specifies the amplitude and phase of the non-axisymmetric current
flowing in the strand.

B. Externally generated perturbed magnetic field

Reusing the analysis of Sec. A of Ref. 41, the non-axisymmetric
magnetic field generated by the currents flowing in the external mag-
netic field coils can be written bxðR;/;ZÞ ¼ bxðR;ZÞ expð�i n/Þ,
where

bxðR;ZÞ ¼ rðRA/Þ � r/; (323)

A/ðR;ZÞ ¼
X
l¼1;L

Il GðR;Z;Rl;ZlÞ; (324)

GðR;Z;R0;Z0Þ ¼ ð�1Þnþ1 ffiffiffi
p

p
RR0

4Cðnþ 1=2Þ
coshg

R2 þ R02 þ ðZ � Z0Þ2
" #1=2

� ðn� 1=2ÞPn�1
�1=2ðcoshgÞ þ

Pnþ1
�1=2ðcoshgÞ
nþ 1=2

" #
;

(325)

tanh g ¼ 2RR0

R2 þ R02 þ ðZ � Z0Þ2 : (326)

Here, the Pn
�1=2ðzÞ are toroidal functions.34

C. Inhomogeneous boundary condition at plasma/
vacuum interface

According to Eqs. (2), (46), (78), (80), and (99)–(101), the mag-
netic perturbation at the plasma/vacuum interface generated by the
currents flowing in the RMP coils is characterized by

wx
mð1Þ ¼ �i

þ
r̂¼1

J bx � rr expð�im hÞ dh
2p

; (327)

Zx
mð1Þ

m� n qð1Þ ¼ n�1
þ
r̂¼1

R2 bx � r/ expð�im hÞ dh
2p

: (328)

It follows from Eqs. (2) and (323) that

wx
mð1Þ ¼ m

þ
r̂¼1

RA/ expð�im hÞ dh
2p

; (329)

Zx
mð1Þ

m� n qð1Þ ¼ 0; (330)

where we have integrated by parts.
In the presence of the perturbed magnetic field generated by the

RMP coils, the homogenous boundary condition at the plasma/vac-
uum interface (215) is modified to give the following inhomogeneous
boundary condition:

Zmð1Þ
m� n qð1Þ ¼

X
m0

Hmm0 wm0 ð1Þ � wx
m0 ð1Þ


 �
: (331)

D. Inhomogeneous toroidal tearing mode dispersion
relation

The previous boundary condition can be combined with the anal-
ysis of Sec. VIIID to produce the following inhomogeneous toroidal
tearing mode dispersion relation:16,41

DWk ¼
X
k0¼1;K

Ekk0 Wk0 þ vk; (332)

for k ¼ 1;K , where

vk ¼
X
k0¼1;K

Ekk0 Kk0 ; (333)

Kk ¼
X
j¼0;J

Pa
kj � j; (334)

X
j0¼0;J

Xjj0 � j0 ¼ Nj; (335)

Nj ¼
X
j0¼0;J

Hmjmj0 w
x
mj0
ð1Þ; (336)

for k ¼ 1;K and j ¼ 0; J .
The general tearing eigenfunction in the presence of the RMP can

be written as
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wmj
ðr̂Þ ¼

X
k¼1;K

wu
mjkðr̂ÞWk þ wrmp

mj
ðr̂Þ; (337)

Zmjðr̂Þ ¼
X
k¼1;K

Zu
mjkðr̂ÞWk þ Zrmp

mj
ðr̂Þ; (338)

for j ¼ 0; J , where

wrmp
mj

ðr̂Þ ¼
X
j0¼0;J

X
k¼1;K

wu
mjkðr̂Þ � wa

mjmj0
ðr̂Þ

� �
� j0 ; (339)

Zrmp
mj

ðr̂Þ ¼
X
j0¼0;J

X
k¼1;K

Zu
mjkðr̂Þ � Za

mjmj0
ðr̂Þ

� �
� j0 ; (340)

for j ¼ 0; J . Here, wrmp
mj

ðr̂Þ and Zrmp
mj ðr̂Þ represent the ideal MHD

response of the plasma (i.e., the response in the absence of driven mag-
netic reconnection at the various rational surfaces in the plasma) to the
currents flowing in the RMP coils.

E. Toroidal electromagnetic torques

Making use of Eqs. (199), (318), and (332), the toroidal electro-
magnetic torque exerted by the RMP coils at the kth rational surface in
the plasma is

dTk ¼ 2p2 n ImðDkÞ jWkj2; (341)

where X
k0¼1;K

ðDk dkk0 � Ekk0 ÞWk0 ¼ vk; (342)

for k ¼ 1;K . In situations in which driven magnetic reconnection at
the various rational surface in the plasma is strongly shielded by
plasma rotation,16,28 so that jDkj 
 jEkk0 j, for all k, k0, Eq. (341) sim-
plifies to give

dTk ’ 2p2 n
ImðDkÞ
jDkj2

jvkj2: (343)

X. TJ CODE
A. Introduction

The first computer code that was developed in order to calculate
the tearing mode stability of an aspect-ratio expanded tokamak plasma
equilibrium was the T3 code (1998). The T3 code solves a set of cou-
pled first-order o.d.e.s associated with the resonant poloidal harmonics
at the various rational surfaces in the plasma, together with their upper
and lower sidebands driven by toroidal coupling.4 The T3 code was
quickly followed by the T7 code (1993), which extends the calculation
to describe the coupling of poloidal harmonics associated with the
elliptic and triangular shaping of up-down-symmetric equilibrium
magnetic flux-surfaces, necessitating seven coupled poloidal harmonics
for each rational surface in the plasma.6

Unfortunately, both the T3 and T7 codes were formulated incor-
rectly, causing them to only conserve toroidal electromagnetic angular
momentum at unrealistically low values of the inverse aspect ratio.
The origin of the problem is apparent from the following equation,
which can be derived from Eqs. (102), (103), and (117):

dT/

dr
¼ ip2 n

X
m;m0¼m1 ;m2

ðPm
m0 �Pm0�

m Þw�
mwm0 þ ðMm

m0 þNm0�
m Þwm Z�

m0

ðm�nqÞðm0 �nqÞ

"

(344)

�ðNm
m0 þMm0�

m ÞZm w�
m0 � ðLmm0 � Lm

0�
m ÞZm Z�

m0

ðm� n qÞ ðm0 � n qÞ

#
: (345)

Here, we have truncated the number of poloidal harmonics included
in the calculation such that only harmonics whose mode numbers lie
in the range m1–m2 are included. Of course, such a truncation is a
practical necessity. However, despite the truncation, toroidal angular
momentum is conserved (i.e., dT/=dr ¼ 0 between rational surfaces)
because of the symmetry properties of the coupling matrices, (110)–
(113). In fact, in order to conserve angular momentum, it is necessary
to include all couplings between poloidal harmonics whose mode
numbers lie in a certain range, but to neglect any stray couplings to
harmonics whose mode numbers lie outside this range. However, the
T3/T7 code solutions are constructed from unbreakable triplets/sextu-
plets of coupled harmonics, whose mode numbers are grouped around
a some central mode number. Moreover, the T3/T7 truncation scheme
limits the number of triplets/sextuplets included in the calculation to
those whose central mode numbers lie in a certain range. However,
such a truncation scheme inevitably include stray couplings to poloidal
harmonics whose mode numbers lie outside this range.

The recently developed TJ code (2024), which is an implementa-
tion of the analysis of Secs. II–IX of this paper, calculates the tearing
stability of an aspect-ratio expanded tokamak equilibrium with mag-
netic flux surfaces of arbitrary shape. Moreover, the code has been for-
mulated in such a fashion that it conserves toroidal electromagnetic
angular momentum at realistic values of the inverse aspect ratio
(because it includes all couplings between poloidal harmonics whose
mode numbers lie in a given range and neglects couplings to harmon-
ics whose mode numbers lie outside this range). As will become clear
in the following discussion, conservation of angular momentum is a
vitally important property of a toroidal tearing mode code.

B. Example plasma equilibrium

Let us investigate the stability of an example tokamak equilibrium
to n ¼ 1 tearing modes.

The example equilibrium is characterized by � ¼ 0:2, H2ð1Þ
¼ 1:0, V2ð1Þ ¼ 0:2, H3ð1Þ ¼ 0:5, V3ð1Þ ¼ �0:375, and Hjð1Þ
¼ Vjð1Þ ¼ 0 for all j > 3 (see Sec. VIIA). The equilibrium is calcu-
lated, according to the method set out in Ref. 36, using the following
model pressure and lowest-order (i.e., cylindrical) safety-factor
profiles:

p2ðr̂Þ ¼ 0:1 ð1� r̂Þ3; (346)

q0ðr̂Þ ¼ 3:15 r̂2

1� ð1� r̂2Þ3:5 : (347)

Figure 1 shows the p2ðr̂Þ profile, as well as the final safety-factor pro-
file, qðr̂Þ. These two functions are used to calculate all of the aspect-
ratio expanded quantities described in Sec. VII.

The r̂-h flux-coordinate system associated with the equilibrium is
shown in Fig. 2. It can be seen that the plasma equilibrium is not up-
down-symmetric, and also has a fairly realistic shape.
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The locations of the four n ¼ 1 rational surfaces in the plasma, as
well as the locations of the four toroidal strands that make up the RMP
coil system, are shown in Fig. 2.

Finally, the normalized plasma inductance and b values for the
example equilibrium are li ¼ 1:55, bt ¼ 1:97� 10�3, bp ¼ 0:415,
and bN ¼ 0:713.

C. Vacuum response matrix

As described in Sec. VI, the conservation of toroidal electromag-
netic angular momentum requires the vacuum response matrix,
Hmjmj0 � Hjj0 , defined in Eq. (216), to be Hermitian. Here, the mj, for
j ¼ 0; J are the poloidal harmonics included in the calculation. In the
present case, J ¼ 40, and the mj range from �15 to þ25. (Hence, in
accordance with the T3/T7 nomenclature, this particular instance of
the TJ code could be referred to as the T41 code.) It should be noted
that this number of included poloidal harmonics is found to be more
than sufficient to obtain converged results for the example equilibrium
under investigation.

Consider

Ajj0 ¼
X
j00¼0;J

P�
j00 j Rj00j0 ; (348)

where Pjj0 � Pmj0
mj and Rjj0 � Rmj0

mj are defined in Sec. VID. It is
clear from Eq. (216), as well as some standard matrix analysis, that if
Hjj0 is Hermitian then Ajj0 must also be Hermitian. Figure 3 shows
the elements of the Ajj0 matrix, as well as its anti-Hermitian
component,

~Ajj0 ¼ 1
2

Ajj0 � A�
j0 j

� 	
; (349)

calculated for the example equilibrium. It can be seen that the elements
of ~Ajj0 are all considerably smaller than those of Ajj0 , indicating that Ajj0

is Hermitian to a very good approximation. Let

Âjj0 ¼ 1
2

Ajj0 þ A�
j0 j

� 	
(350)

be the Hermitian component of Ajj0 . We can ensure that Hjj0 is exactly
Hermitian by solving

X
j00¼0;J

P�
j00 j R̂ j00j0 ¼ Âjj0 ; (351)

FIG. 1. Normalized pressure and safety-factor profiles for the example tokamak equilibrium.

FIG. 2. Flux-coordinate system calculated for the example tokamak equilibrium.
Surfaces of constant r̂ are shown as blue curves, whereas surfaces of constant h
are shown as green curves. The red curves show the positions of the four n ¼ 1
rational magnetic flux surfaces in the plasma. The black dot shows the location of
the magnetic axis. The red and blue dots show the positions of the four toroidal
strands that make up the RMP coil system. Blue indicates that the toroidal current
flowing in the strand is positive, whereas red indicates that it is negative. The mag-
nitudes of the currents are equal.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 102507 (2024); doi: 10.1063/5.0231715 31, 102507-20

VC Author(s) 2024

 25 O
ctober 2024 20:18:43

pubs.aip.org/aip/php


X
j00¼0;J

R̂�
j00 j Hj00j0 ¼ P�

j0 j (352)

to obtain first R̂jj0 and then Hjj0 . Here, use has been made of Eq. (216).
The elements of the resulting, exactly Hermitian, vacuum response
matrix,Hjj0 , are shown in Fig. 4.

D. Solution of outer-region O.D.E.s

As described in Sec. VII F, the tearing mode eigenfunctions are
constructed by launching a set of J þ 1 linearly independent, well-
behaved solutions of the outer-region o.d.e.s from the magnetic axis,
and then integrating them to the plasma boundary. At each rational

FIG. 3. Elements of the n ¼ 1 vacuum matrix Ajj0 , as well as its anti-Hermitian component, ~Ajj00 , calculated for the example tokamak equilibrium specified in the previous two
figures.

FIG. 4. Elements of the n ¼ 1 vacuum response matrix, Hjj0 , calculated for the example tokamak equilibrium specified in Figs. 1 and 2.
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surface in the plasma, the solutions satisfy jump conditions that ensure
that the coefficients of the large and the small solutions are continuous
across the surface. Now, each one of these solutions must conserve the
toroidal electromagnetic angular momentum flux, T/ðrÞ, that is
defined in Eq. (117). This follows because T/ðrÞ is exactly conserved
by the outer-region o.d.e.s (102) and (103), provided that the coupling
coefficients appearing in these equations satisfy the symmetry con-
straints (110)–(113) (which they do—see Sec. VII E). Moreover, this
conservation property holds irrespective of how many poloidal har-
monics are included in the calculation. The jump conditions ensure
continuity of T/ðr̂Þ across the rational surfaces. However, the launch
conditions at the magnetic axis imply that T/ð0Þ ¼ 0 (see Sec. VII F).
Thus, we conclude that every independent solution of the outer-region
o.d.e.s, launched from the magnetic axis, and integrated to the plasma
boundary, should be characterized by T/ðr̂Þ ¼ 0 throughout the
plasma. Obviously, this is a very stringent and powerful test that the
integration of the outer-region o.d.e.s is accurate, and also that
the jump conditions imposed at the rational surfaces have been cor-
rectly formulated.

Figure 5 shows a well-behaved solution of the outer-region o.d.e.
s, launched from the magnetic axis, and integrated to the plasma
boundary. This particular solution is dominated by the m ¼ 1 har-
monic close to the axis. It can be seen that T/ðr̂Þ is constant between
rational surfaces. This demonstrates that the Cash-Karp embedded
RK4/RK5 adaptive-step integration scheme press used to solve the

outer-region o.d.e.s does so in an accurate manner.42 It can also be
seen that there are small jumps in T/ðr̂Þ across the rational surfaces.
This occurs because the jump conditions specified in Sec. V are based
on an expansion in d (the closest distance that the outer-region solu-
tion approaches the rational surface) and are, therefore, only approxi-
mate. However, the spurious jumps in T/ðr̂Þ across the rational
surfaces are relatively insignificant (a jump of unity would be signifi-
cant). Moreover, these jumps can be made arbitrarily small by decreas-
ing d (in the present case d ¼ 10�9) because the accuracy of the
expansion becomes greater as d decreases. Of course, decreasing d
causes the adaptive integration routine to spend more time in the
vicinity of the rational surfaces (recall that the outer-region o.d.e.s are
singular at the rational surfaces), so a compromise has to be made.
Under normal circumstances, the choice 10�8 	 d 	 10�9 ensures
accurate conservation of angular momentum without unduly slowing
down the calculation. (Note that the major results of the code exhibit
no dependence on d when it is this small.)

The construction of the tearing mode eigenfunctions also requires
a set of small solutions of the outer-region o.d.e.s, launched from each
rational surface in the plasma, and integrated to the plasma boundary
(see Sec. VIIIC). The launch conditions ensure that the flux of toroidal
angular momentum from the rational surface is zero. At each subse-
quent rational surface in the plasma that the solutions are integrated
over, the solutions satisfy jump conditions that ensure that the coeffi-
cients of the large and the small solutions are continuous across the

FIG. 5. Poloidal harmonics of a solution of the n ¼ 1 outer-region o.d.e.s, launched from the magnetic axis in such a manner that it is dominated by the m ¼ 1 harmonic close
to the axis. Black curves correspond to m ¼ 1, red to m ¼ 0 or m ¼ 2, green to m ¼ �1 or m ¼ 3, blue to m ¼ �2 or m ¼ 4, yellow to m ¼ �3 or m ¼ 5, cyan to
m ¼ �4 or m ¼ 6, magenta to m ¼ �5 or m ¼ 7, black to m ¼ �6 or m ¼ 8, etc. The vertical dashed lines show the locations of the n ¼ 1 rational surfaces. Here, T/ ð̂r Þ
is the toroidal electromagnetic angular momentum flux associated with the solution.
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surface. Thus, by analogy with the previous discussion, each small
solution launched from a rational surface should be characterized by
T/ðr̂Þ ¼ 0 throughout the plasma. Again, this is a very stringent test
of both the integration algorithm and the jump conditions.

Figure 6 shows a small solution launched from the q ¼ 2 surface.
It can be seen that T/ðr̂Þ is very small throughout the plasma, indicat-
ing that integration algorithm and jump conditions are working
properly.

E. Tearing eigenfunctions

As described in Sec. VIIID, an unreconnected tearing eigenfunc-
tion is constructed from a linear combination of the well-behaved solu-
tions of the outer-region o.d.e.s launched from the magnetic axis, and
small solutions launched from the rational surfaces. The mix of the
various solutions that make up the combination is influenced by the
vacuum response matrix. There is an independent unreconnected tear-
ing eigenfunction for each rational surface in the plasma.

Figures 7 and 8 show the unreconnected tearing eigenfunctions
associated with the q ¼ 1 and the q ¼ 2 rational surfaces. Both of
these solutions should be associated with zero toroidal electromagnetic
angular momentum flux throughout the plasma. It can be seen that
this is the case, to a very good approximation. Figure 9 shows the toroi-
dal electromagnetic angular momentum flux, T/ðr̂Þ, associated with a

general complex linear combination of the unreconnected eigenfunc-
tions pictured in Figs. 7 and 8. This figure exhibits three key features:

1. T/ðr̂Þ is constant between rational surfaces: this must be the case
because the outer-region o.d.e.s exactly conserve T/.

2. T/ðr̂Þ is zero inside the innermost rational surface: this must be
the case otherwise a net electromagnetic torque would be exerted
at the magnetic axis, which is unphysical.

3. T/ðr̂Þ is zero outside the outermost rational surface: this must be
the case otherwise there would be a flux of toroidal electromag-
netic angular momentum across the plasma boundary, implying
that the plasma exerts a net toroidal electromagnetic torque on
itself, which is unphysical.

The fact that T/ðr̂Þ is non-zero and constant between the q ¼ 1
and q ¼ 2 surfaces implies that these surfaces (or, to be more exact,
the non-ideal plasmas in the inner regions centered on these surfaces)
exert equal and opposite toroidal electromagnetic torques on one
another. Note that the toroidal angular momentum flux calculated
from every possible pair of tearing eigenfunctions must satisfy the pre-
vious three criteria. This constitutes an important self-consistency
check on the calculation. Incidentally, the T3 and T7 codes fail this test
badly, except at very small values of the inverse aspect ratio (i.e.,
�/ 0:01).

FIG. 6. Poloidal harmonics of a “small” solution of the n ¼ 1 outer-region o.d.e.s, launched from the q ¼ 2 surface. Black curves correspond to m ¼ 2, red to m ¼ 1 or
m ¼ 3, green to m ¼ 0 or m ¼ 4, blue to m ¼ �1 or m ¼ 5, yellow to m ¼ �2 or m ¼ 6, cyan to m ¼ �3 or m ¼ 7, magenta to m ¼ �4 or m ¼ 8, black to m ¼ �5 or
m ¼ 9, etc. The vertical dashed lines show the locations of the n ¼ 1 rational surfaces. Here, T/ ð̂r Þ is the toroidal electromagnetic angular momentum flux associated with the
solution.
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F. Toroidal tearing mode stability matrix

As described in Sec. VIIID, the general homogeneous toroidal
tearing mode dispersion relation can be written asX

k0¼1;4

ðDk dkk0 � Ekk0 ÞWk0 ¼ 0: (353)

for k ¼ 1; 4. Here, k indexes the four n ¼ 1 rational surfaces in the
plasma: namely, the m ¼ 1=n ¼ 1, m ¼ 2=n ¼ 1, m ¼ 3=n ¼ 1, and
m ¼ 4=n ¼ 1 surfaces. Moreover, Dk is the complex inner-region
layer response index at the kth rational surface,6 whereas Wk is the
reconnected helical magnetic flux at the surface. Finally, Ekk0 is the
toroidal tearing mode stability matrix.3,6 As discussed in Sec. VIIIE,
the Ekk0 matrix must be Hermitian; otherwise, an isolated tokamak
plasma would be able to exert a net toroidal electromagnetic torque on
itself, which is unphysical.

Table I shows the toroidal tearing mode matrix calculated for the
example equilibrium. It can be seen that the matrix is Hermitian to a
very high degree of accuracy. This constitutes yet another important
internal check on the accuracy of the calculation.

Now, the Dk indices are functions of the angular phase velocity,
x, of the tearing mode.6,28 Tokamak plasmas generally contain suffi-
cient levels of sheared plasma rotation to ensure that if x is chosen in
such a manner as to make Dk � Oð1Þ at the kth rational surface then

jDk0 6¼kj 
 1 at the other rational surfaces.6,38 Under these circumstan-
ces, the dispersion relation (353) yields

Wk0

Wk
’ Ek0k

Dk0
� 1; (354)

for k0 6¼ k, and

Dk ’ Ekk: (355)

In other words, we obtain a tearing mode that only reconnects signifi-
cant amounts of magnetic flux at the kth rational surface, and satisfies
the quasi-cylindrical dispersion relation (355).1 This dispersion rela-
tion ensures thatx is determined by the plasma flow at the kth rational
surface.6 It follows that the real quantity Ekk can be interpreted as the
effective “tearing stability index” for a mode that only reconnects mag-
netic flux at the kth rational surface. To be more exact, Ekk is a measure
of the amount of free energy available in the outer region, due to cur-
rent gradients and pressure gradients,43 to drive magnetic reconnec-
tion at the kth rational surface.

In accordance with the previous discussion, the fact that E11 > 0,
E22 > 0, E33 < 0, and E44 < 0 in Table I suggests that the plasma is
subject to four essentially uncoupled n ¼ 1 tearing modes. There is an
intrinsically unstable (i.e., possessing positive free-energy from the
outer region) m ¼ 1=n ¼ 1 mode that only reconnects magnetic flux

FIG. 7. Poloidal harmonics of the “unreconnected” n ¼ 1 tearing eigenfunction associated with the q ¼ 1 surface. Black curves correspond to m ¼ 1, red to m ¼ 0 or m ¼ 2,
green to m ¼ �1 or m ¼ 3, blue to m ¼ �2 or m ¼ 4, yellow to m ¼ �3 or m ¼ 5, cyan to m ¼ �4 or m ¼ 6, magenta to m ¼ �5 or m ¼ 7, black to m ¼ �6 or
m ¼ 8, etc. The vertical dashed lines show the locations of the n ¼ 1 rational surfaces. Here, T/ ð̂r Þ is the toroidal electromagnetic angular momentum flux associated with the
eigenfunction.
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at the q ¼ 1 surface,1 an intrinsically unstable m ¼ 2=n ¼ 1 mode
that only reconnects magnetic flux at the q ¼ 2 surface, as well as
intrinsically stable m ¼ 3=n ¼ 1 and m ¼ 4=n ¼ 1 modes. It is inter-
esting to note that the inevitable presence of sheared plasma rotation
in tokamak plasmas allows the n ¼ 1 tearing stability of a general

equilibrium to be described by a small number of real stability indices,
namely, the diagonal elements of the Ekk0 matrix.6 In fact, there are
only as many indices as there are n ¼ 1 rational surfaces in the plasma.
Of course, this constitutes a tremendous simplification over the general
case.

Although assuming a “fixed” boundary, which would be the case
were the plasma immediately surrounded by a perfectly conducting

FIG. 8. Poloidal harmonics of the “unreconnected” n ¼ 1 tearing eigenfunction associated with the q ¼ 2 surface. Black curves correspond to m ¼ 2, red to m ¼ 1 or m ¼ 3,
green to m ¼ 0 or m ¼ 4, blue to m ¼ �1 or m ¼ 5, yellow to m ¼ �2 or m ¼ 6, cyan to m ¼ �3 or m ¼ 7, magenta to m ¼ �4 or m ¼ 8, black to m ¼ �5 or m ¼ 9,
etc. The vertical dashed lines show the locations of the n ¼ 1 rational surfaces. Here, T/ ð̂r Þ is the toroidal electromagnetic angular momentum flux associated with the
eigenfunction.

FIG. 9. Toroidal electromagnetic angular momentum flux associated with the tearing
eigenfunction pictured in Fig. 7 added to i times the eigenfunction pictured in Fig. 8.
The vertical dashed lines show the locations of the n ¼ 1 rational surfaces.

TABLE I. Free boundary n ¼ 1 toroidal tearing mode stability matrix for the example
tokamak equilibrium specified in Figs. 1 and 2.

ReðEkk0 Þ:
þ1:334� 101 �2:282� 100 þ8:248� 10�1 �3:997� 10�1

�2:282� 100 þ3:731� 100 �2:195� 100 þ2:821� 100

þ8:247� 10�1 �2:195� 100 �4:319� 100 �2:370� 100

�3:996� 10�1 þ2:821� 100 �2:370� 100 �1:286� 101

ImðEkk0 Þ:
�1:442� 10�6 þ4:470� 10�2 þ3:801� 10�2 �9:714� 10�2

�4:470� 10�2 þ4:900� 10�8 þ9:925� 10�2 þ2:826� 10�1

�3:801� 10�2 �9:925� 10�2 �1:607� 10�8 þ2:811� 10�1

þ9:713� 10�2 �2:826� 10�1 �2:811� 10�1 �1:146� 10�8
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wall (which mandates that w ¼ 0 at r̂ ¼ 1), is not particularly realistic,
we have calculated the fixed-boundary tearing stability matrix of the
example equilibrium for the sake of comparison (see Table II). It can
be seen that the diagonal elements of the stability matrix are all more
negative than the corresponding values shown in Table I, as a conse-
quence of the stabilizing effect of the wall. As expected, the effect is
much more marked for modes whose rational surfaces lie closer to the
plasma boundary.

G. Response to RMP

As described in Sec. IXE, if the plasma is subject to an n ¼ 1
RMP generated by non-axisymmetric currents flowing in external
magnetic field coils then, in the presence of sheared plasma rotation,
the reconnected magnetic flux driven by the RMP at the kth n ¼ 1
rational surface is given by

Wk ’ vk
Dk

; (356)

whereas the toroidal electromagnetic locking torque exerted by the
RMP at the surface is written

dTk ’ 2p2 n
ImðDkÞ
jDkj2

jvkj2: (357)

Now, in general, vk is proportional to the current, Irmp, circulating
around the RMP coils. Thus, we can write

vk ¼ Irmp v̂k; (358)

where v̂k is calculated on the assumption that unit current circulates
around the RMP coils.

Table III shows the jv̂kj parameters calculated for the example
plasma equilibrium and n ¼ 1 RMP coil set pictured in Figs. 1 and 2.

It is interesting to note that, despite the complexity of the RMP (which
requires a great number of poloidal harmonics to fully describe it), and
despite the complexity of the plasma response to the RMP (which is a
linear combination of 45 independent solutions of the outer-region o.
d.e.s, each possessing 41 poloidal harmonics), the ability of the n ¼ 1
RMP to either drive magnetic reconnection or to exert electromagnetic
locking torques at the four n ¼ 1 rational surfaces in the plasma is
encapsulated by just four complex numbers, v̂k. Again, this constitutes
a tremendous simplification.

XI. SUMMARY

In Secs. II–IX, the tearing mode stability of an inverse aspect-
ratio expanded tokamak plasma equilibrium with magnetic flux
surfaces of general shape is investigated using asymptotic matching
techniques. The crucial role played by the conservation of toroidal elec-
tromagnetic angular momentum is emphasized throughout the inves-
tigation. Note that the inverse aspect-ratio expansion is only
introduced in Sec. VII. So, all of the analysis prior to this section is
completely general.

The TJ code, which is a specific implementation of the analysis of
Secs. II–IX, is described in Sec. X. This code, which is freely available at
https://github.com/rfitzp/TJ, represents a significant improvement on
the previous T34 and T76 inverse aspect-ratio expanded toroidal tear-
ing mode codes, because it is constructed in such a manner as to
strictly conserve toroidal electromagnetic angular momentum. In fact,
as described in Sec. X, the requirement of angular momentum conser-
vation leads to a large number of stringent self-consistency checks that
the TJ code must pass in order for its results to be credible.
Fortunately, the TJ code passes all of these checks for the example cal-
culation presented in this paper. Unlike the T3 and T7 codes, the TJ
code can deal with equilibrium magnetic flux surfaces of arbitrary
shape, and, in particular, is not restricted to up-down-symmetric
plasma equilibria. Furthermore, unlike the much more general PEST-
III,7 RDCON,19 and STRIDE18 toroidal tearing mode codes, the TJ
code is comparatively lightweight (there are only about 7000 lines of
code) and can easily be run on a laptop computer. Thus, the TJ code is
ideal for optimization studies.

In future work, we intend to benchmark the TJ code against the
RDCON code. We also intend to add a layer physics module to the
code. The layer module will be based on the reduced-MHD analysis of
Ref. 44 and will allow us to calculate tearing mode growth-rates, as
well as the locking torques generated at the various rational surfaces in
the plasma by an RMP. It turns out that the information generated by
the TJ code can, in principle, be used to calculate the ideal-MHD dW
matrix.25 Hence, we intend to add an ideal stability module to the code
(because there is little point in studying the resistive stability of an ide-
ally unstable plasma). Other envisaged improvements to the code
include the addition of a resistive wall, as well as the calculation of neo-
classical viscous torques.
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TABLE II. Fixed boundary n ¼ 1 toroidal tearing mode stability matrix for the exam-
ple tokamak equilibrium specified in Figs. 1 and 2.

ReðEkk0 Þ:
þ1:312� 101 �1:784� 100 þ4:305� 10�1 �1:194� 10�1

�1:784� 100 þ1:165� 100 �1:043� 100 þ1:161� 100

þ4:305� 10�1 �1:043� 100 �1:212� 101 �9:685� 10�1

�1:194� 10�1 þ1:161� 100 �9:685� 10�1 �5:383� 101

ImðEkk0 Þ:
�8:534� 10�7 �1:716� 10�1 þ2:297� 10�1 �1:339� 10�1

þ1:716� 10�1 þ1:567� 10�7 þ1:292� 10�1 þ1:206� 10�2

�2:297� 10�1 �1:292� 10�1 þ1:211� 10�7 þ6:702� 10�1

þ1:339� 10�1 �1:206� 10�2 �6:702� 10�1 �2:545� 10�7

TABLE III. RMP drive parameters at the n ¼ 1 rational surfaces for the example
tokamak equilibrium and n ¼ 1 RMP coil set specified in Figs. 1 and 2.

jv̂kj:
9:008� 10�3 1:294� 10�2 1:262� 10�2 1:176� 10�2
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APPENDIX: NONORTHOGONAL CURVILINEAR
COORDINATES

Consider the nonorthogonal curvilinear coordinate system, r,
h, and /, introduced in Sec. II A, and let J ¼ ðrr �rh � r/Þ�1.

Let

A ¼ Ar J rh�r/þ Ah J r/�rr þ A/ J rr �rh; (A1)

A ¼ Ar rr þ Ah rhþ A/ r/; (A2)

where A is a general vector. It is easily demonstrated that

A � B ¼ Ar B
r þ Ah B

h þ A/ B
/ ¼ Ar Br þ Ah Bh þ A/ B/; (A3)

ðA� BÞr ¼ J ðAh B/ � A/ BhÞ; (A4)

ðA� BÞh ¼ J ðA/ Br � Ar B/Þ; (A5)

ðA� BÞ/ ¼ J ðAr Bh � Ah BrÞ; (A6)

J ðA� BÞr ¼ Ah B/ � A/ Bh; (A7)

J ðA� BÞh ¼ A/ Br � Ar B/; (A8)

J ðA� BÞ/ ¼ Ar Bh � Ah Br; (A9)

where B is another general vector. Furthermore,

J r � C ¼ @ ðJ CrÞ
@r

þ @ ðJ ChÞ
@h

þ @ ðJ C/Þ
@/

; (A10)

J ðr � CÞr ¼ @C/

@h
� @Ch

@/
; (A11)

J ðr � CÞh ¼ @Cr

@/
� @C/

@r
; (A12)

J ðr � CÞ/ ¼ @Ch

@r
� @Cr

@h
; (A13)

where CðrÞ is a general vector field.
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