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ABSTRACT

Following Greene et al. [Phys. Fluids 14, 671 (1971)] and Connor et al. [Phys. Plasmas 31, 577 (1988); Plasma Phys. Control. Fusion 34, 161
(1992); and Nucl. Fusion 33, 1533 (1993)], the Grad-Shafranov equation for an axisymmetric tokamak plasma equilibrium is solved via an
expansion in the, supposedly small, inverse aspect-ratio of the plasma, �. The displacements of equilibrium magnetic flux-surfaces due to
plasma shaping are assumed to be Oð�Þ smaller than the minor radii of the surfaces, but no other restriction is placed on the nature of the
shaping. The solution of the Grad-Shafranov equation is matched to a vacuum solution that extends to infinity, and consists of an expansion
in toroidal functions. The external poloidal magnetic field generated by a finite set of discrete external poloidal magnetic field-coils is calcu-
lated, and incorporated into the toroidal function expansion. In this manner, the shape of a large aspect-ratio tokamak plasma is directly
related to the currents flowing in the external poloidal field-coils. Finally, a pedestal in the plasma pressure, and the associated spike in the
bootstrap current, are incorporated into the model.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0215345

I. INTRODUCTION

In a celebrated paper, published in 1971, Greene, Johnson, and
Weimer (GJW) developed a theory of axisymmetric tokamak equilib-
ria that is based on an expansion of the Grad–Shafranov equation (see
Sec. IID) in the inverse aspect-ratio of the plasma (i.e., the ratio of the
minor to the major radius of the plasma torus).1 In addition, GJW
demonstrated how to match the plasma magnetic field to a curl-free
magnetic field, in the vacuum region exterior to the plasma, by distin-
guishing between the field generated in the vacuum region by currents
flowing within the plasma and the field generated by external magnetic
field-coils.

GJW assumed that the horizontal (Shafranov) shift2 of the plasma
magnetic flux-surfaces is Oð�Þ smaller than the minor radius, where
� � 1 is the inverse aspect-ratio. Furthermore, GJW assumed that the
ellipticity of the flux-surfaces is Oð�Þ smaller than the horizontal shift.
This latter assumption was reasonable for the tokamak plasmas, char-
acterized by almost circular boundaries in the poloidal plane, that were
prevalent in the 1960s and 1970s. Nowadays, however, tokamak plas-
mas are highly elongated and strongly shaped in the poloidal plane.3

Starting in 1985, in a series of papers, Connor et al. (CHA) generalized
the GJW analysis to allow for flux-surface elongation and triangularity
that is of the same order of magnitude as the horizontal shift.4–7

However, CHA did not perform the vacuum matching procedure.
Moreover, CHA assumed that the plasma is up-down symmetric.

Nowadays, however, tokamak plasmas tend to have a lower magnetic
null on the plasma boundary that render them significantly up-down
asymmetric.3 Tokamak plasmas also generally feature a pedestal in the
plasma pressure, close to the plasma boundary, with an associated
spike in the parallel current density due to the bootstrap current.3

The aim of this paper is to generalize the analysis of GJW and
CHA so as to allow for strong magnetic flux-surface shaping of a gen-
eral nature, lack of up-down symmetry, and the presence of a pedestal
in the plasma pressure profile. Furthermore, we wish to perform the
matching to the vacuum solution, with the eventual aim of directly
relating the shape of the plasma to currents flowing in a set of discrete
external poloidal magnetic field-coils.

Despite the widespread availability of fast numerical solvers for
the Grad–Shafranov equation,8,9 analytic model equilibria are still
widely used by fusion scientists,10–12 particularly in preliminary design
studies. Most of these model equilibria are extensions of the model
equilibria first discovered by Solov’ev in the 1960s.10 Solov’ev-type
equilibria have the property that the plasma current profile extends all
the way to the plasma boundary, necessitating a large discontinuous
jump in the current density across the plasma/vacuum interface. Such
a jump has a highly destabilizing influence on ideal external-kink
modes,13 which generally means that Solov’ev-type equilibria are
unsuitable for free-boundary plasma stability calculations. On the
other hand, the aspect-ratio expanded model equilibria of GJW and
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CHA allow the plasma current density to go to zero at the plasma
boundary, eliminating the need for a discontinuous jump in the
plasma current density across the plasma/vacuum interface. Hence,
such equilibria are quite suitable for free-boundary plasma stability
calculations.

Conventional numerical solvers for the Grad–Shafranov equa-
tion, such as HELENA and CHEASE,8,9 only calculate the solution
inside the plasma boundary, and, hence, do not provide the vacuum
solution outside the boundary. Reference 14 demonstrates how a vac-
uum solution can be added to a Solov’ev solution by means of a
Green’s function. Moreover, Ref. 15 shows how this vacuum solution
can be related to currents flowing in a finite set of discrete poloidal
magnetic field-coils surrounding the plasma. Such a vacuum solution
can easily be added to a HELENA or a CHEASE solution using similar
techniques. Unfortunately, the numerical implementation of a general
Green’s function solution is extremely time consuming. One of the
main advantages of the GJW and CHA model equilibria is that most
of the hard work entailed in the calculation of the vacuum solution can
be performed by means of analysis, so that the numerical implementa-
tion of the solution can be carried out very rapidly.

This paper is organized as follows: In Sec. II, we discuss the equi-
librium solution inside the plasma. In Sec. III, we match the plasma
solution to a generic vacuum solution outside the plasma. In Sec. IV,
we match the plasma solution to the vacuum solution generated by a
set of discrete external poloidal magnetic field-coils. Pedestal physics is
discussed in Sec. V. In Sec. VI, we describe some example calculations.
(Note that, given the great efficiency of the analytic expansion method
described in this paper, all of these calculations can be performed in a
fraction of a second on an ordinary laptop computer.) Finally, the
paper is summarized, and conclusions are drawn, in Sec. VII.

II. PLASMA SOLUTION
A. Coordinates

Consider a tokamak plasma confined on a set of nested, axisym-
metric, magnetic flux-surfaces. Let R, /, Z be right-handed cylindrical
coordinates whose symmetry axis corresponds to the common sym-
metry axis of the flux-surfaces. Let us define right-handed flux-coordi-
nates, r, h, /, where r(R, Z) is a magnetic flux-surface label with the
dimensions of length, and hðR;ZÞ a poloidal angle. Let4,5,7

J � ðrr �rh � r/Þ�1 � R
@R
@h

@Z
@r

� @R
@r

@Z
@h

� �
¼ r R 2

R0
(1)

be the Jacobian of the flux-coordinate system. Here, ðR0; 0Þ are the
(R, Z) coordinates of the magnetic axis of the nested magnetic flux-
surfaces. The axis corresponds to r¼ 0 in the flux-coordinate system.
Note that jr/j ¼ R�1.

B. Equilibrium magnetic field and current

The divergence-free equilibriummagnetic field is written1

B ¼ B0 R0 f ðrÞr/�rr þ gðrÞr/½ �; (2)

where f(r) and g(r) are free (dimensionless) flux-surface functions, and
B0 is the toroidal magnetic field-strength at the magnetic axis.

It is helpful to define the toroidal magnetic flux (divided by 2p)
contained within the magnetic flux-surface whose label is r,

WtðrÞ ¼ B0

ðr
0
r0 gðr0Þ dr0; (3)

and the corresponding poloidal magnetic flux (divided by 2p),

WpðrÞ ¼ B0 R0

ðr
0
f ðr0Þ dr0: (4)

The safety-factor of the flux-surface (which is the inverse of the rota-
tional transform),16

qðrÞ � dWt

dWp
¼ r g

R0 f
; (5)

is directly related to these two fluxes.
It follows from Eqs. (1), (2), and (5) that

B ¼ B0 R0 f ðrÞrr �rðq h� /Þ; (6)

which implies that

B � rh
B � r/

¼ 1
qðrÞ : (7)

Consequently, if the equilibrium magnetic field-lines within a given
magnetic flux-surface are plotted in the h-/ plane then they appear as
parallel straight lines whose pitch is determined by the surface’s safety-
factor (or rotational transform).

It is also helpful to define the toroidal plasma current flowing
within the flux-surface whose label is r,

ItðrÞ ¼ 1
2p

ðr
0
j � r/J dr dh d/ ¼ 2pB0

l0
r f ðrÞ hjrrj2iðrÞ; (8)

and the corresponding poloidal plasma current,

IpðrÞ ¼ 1
2p

ðr
0
j � rhJ dr dh d/ ¼ 2pB0 R0

l0
1� gðrÞ½ �: (9)

Here, j is the equilibrium plasma current density. Moreover,
hXiðrÞ � Þ Xðr; hÞ dh=2p. Note that gð0Þ ¼ 1, by convention, so as to
ensure that B0 is indeed the toroidal magnetic field-strength on the
magnetic axis.

C. Equilibrium magnetic flux-surfaces

The loci of the equilibrium magnetic flux-surfaces are written in
the parametric form1,4–7

Rðr;xÞ ¼ R0 � r cosxþ
X
n>0

HnðrÞ cos ðn� 1Þx½ �

þ
X
n>1

VnðrÞ sin ðn� 1Þx½ � þ LðrÞ cosx; (10)

Zðr;xÞ ¼ r sinxþ
X
n>1

HnðrÞ sin ðn� 1Þx½ �

�
X
n>1

VnðrÞ cos ðn� 1Þx½ � � LðrÞ sinx: (11)

Here, H1ðrÞ controls the relative horizontal locations of the flux-
surface centroids, respectively, H2ðrÞ and V2ðrÞ control the up-down
symmetric and asymmetric flux-surface ellipticities, respectively, and
H3ðrÞ V3ðrÞ control the up-down symmetric and asymmetric
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flux-surface triangularities, respectively, etc., whereas L(r) is a relabel-
ing parameter. Moreover, xðR;ZÞ is a poloidal angle that is distinct
from h.

Let

Jðr;xÞ ¼ @R
@x

@Z
@r

� @R
@r

@Z
@x

(12)

be the Jacobian of the r, x coordinate system. We can transform to the
r, h coordinate system by writing

hðr;xÞ ¼ 2p
ðx
0

Jðr;x0Þ
Rðr;x0Þ dx

0
�þ

Jðr;xÞ
Rðr;xÞ dx; (13)

r
R0

¼ 1
2p

þ
Jðr;xÞ
Rðr;xÞ dx: (14)

This transformation ensures that

@h
@x

¼ J R0

r R
; (15)

and, hence, that

J � R
@R
@h

@Z
@r

� @R
@r

@Z
@h

� �
¼ R J

@x
@h

¼ r R 2

R0
; (16)

in accordance with Eq. (1).

D. Grad–Shafranov equation

Equilibrium force balance within the plasma, and the surround-
ing vacuum, is governed by the Grad–Shafranov equation,1,4–7

f
r
@

@r
ðr f jrrj2Þ þ f

r
@

@h
ðr f rr � rhÞ ¼ �g

dg
dr

� l0
B 2
0

R
R0

� �2 dp
dr

;

(17)

where p(r) is the equilibrium plasma pressure. Note that we can easily
extend the Grad–Shafranov equation to include the centrifugal effect
of plasma flows on the equilibrium.17,18 We choose not to do this in
the present calculation because such effects are generally negligible in a
reactor-sized tokamak.

E. Normalization

Let r¼ a correspond to the plasma/vacuum boundary, and let

� ¼ a
R0

(18)

be the inverse-aspect ratio of the plasma. It is assumed that � � 1.
Furthermore, let R ¼ R0 R̂; Z ¼ R0 Ẑ ; r ¼ a r̂ ; r ¼ a�1 r̂, Hn

¼ � a Ĥn; Vn ¼ � a V̂ n, and L ¼ � 2 a L̂. The parametric equations of
the flux-surfaces, (10) and (11), become6,7

R̂ðr̂ ;xÞ ¼ 1� � r̂ cosxþ � 2
X
n>0

Ĥnðr̂Þ cos ðn� 1Þx½ �

þ � 2
X
n>1

V̂ nðr̂Þ sin ðn� 1Þx½ � þ � 3 L̂ðr̂Þ cosx; (19)

Ẑðr̂ ;xÞ ¼ � r̂ sinxþ � 2
X
n>1

Ĥnðr̂Þ sin ðn� 1Þx½ �

� � 2
X
n>1

V̂ nðr̂Þ cos ðn� 1Þx½ � � � 3 L̂ðr̂Þ sinx: (20)

It is assumed that, other than �, all quantities appearing in the previous
two expressions areOð1Þ.

F. Metric elements

We can determine the metric elements of the flux-coordinate sys-
tem by combining the previous two equations with Eqs. (13) and (14).
Evaluating the elements up toOð�Þ, but retainingOð� 2Þ contributions
to terms that are independent ofx, we obtain,6,7

L̂ðr̂Þ ¼ r̂ 3

8
� r̂ Ĥ 1

2
� 1
2

X
n>1

ðn� 1Þ Ĥ
2
n

r̂
� 1
2

X
n>1

ðn� 1Þ V̂
2
n

r̂
; (21)

h ¼ xþ � r̂ sinx� �
X
n>0

1
n

Ĥ
0
n � ðn� 1Þ Ĥn

r̂

� �
sinðnxÞ

þ �
X
n>1

1
n

V̂
0
n � ðn� 1Þ V̂ n

r̂

� �
cosðnxÞ; (22)

jr̂ r̂ j2 ¼ 1þ 2 �
X
n>0

Ĥ
0
n cosðnhÞ þ 2 �

X0
n>1

V̂
0
n sinðnhÞ

þ � 2
3 r̂2

4
� Ĥ 1 þ 1

2

X
n>0

Ĥ
02
n þ ðn2 � 1Þ Ĥ

2
n

r̂ 2

" #0
@

þ 1
2

X
n>1

V̂
02
n þ ðn2 � 1Þ V̂

2
n

r̂ 2

" #1
A; (23)

r̂ r̂ � r̂h ¼ � sin h� �
X
n>0

1
n

Ĥ
00
n þ

Ĥ
0
n

r̂
þ ðn2 � 1Þ Ĥn

r̂ 2

" #
sinðnhÞ

þ �
X
n>1

1
n

V̂
00
n þ

V̂
0
n

r̂
þ ðn2 � 1Þ V̂ n

r̂ 2

" #
cosðnhÞ

þ � 2
1
2

X
n>1

ðn� 1Þ V̂
0
n Ĥn

r̂ 2 � Ĥ
0
n V̂ n

r̂ 2

 !
þ
X
n>1

n� 1
n

� �2
4

� V̂
00
n Ĥn

r̂
� Ĥ

00
n V̂ n

r̂

 !
þ
X
n>1

1
n

V̂
00
n Ĥ

0
n � Ĥ

00
n V̂

0
n

� �35;
(24)

R̂
2 ¼ 1� 2 � r̂ cos h� � 2

r̂ 2

2
� r̂ Ĥ

0
1 � 2 Ĥ 1

� �
: (25)

Here, 0 � d=dr̂ , and n is a non-negative integer.

G. Expansion of Grad–Shafranov equation

Let us write

r̂ f ðr̂Þ ¼ � f1ðr̂Þ þ � 3 f̂ 3ðr̂Þ þ � � � ; (26)

gðr̂Þ ¼ 1þ � 2 g2ðr̂Þ þ � 4 g4ðr̂Þ þ � � � ; (27)

l0 pðr̂Þ
B 2
0

¼ � 2 p2ðr̂Þ þ � 4 p4ðr̂Þ þ � � � ; (28)

where f1, f3, g2, g4, p2, and p4 are all Oð1Þ. It follows from Eq. (5) that,
to lowest order in our expansion, the safety-factor profile is given by
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q0ðr̂Þ ¼ r̂ 2

f1ðr̂Þ ; (29)

whereas, to second order, the profile takes the modified form

q2ðr̂Þ ¼ r̂ 2

f1ðr̂Þ 1þ � 2 g2ðr̂Þ � � 2
f3ðr̂Þ
f1ðr̂Þ

� �
: (30)

Expanding the Grad–Shafranov equation, (17), order by order in
the small parameter �, making use of Eqs. (23)–(25), we obtain1,4–6

g 02 ¼ �p02 �
f1 f 01
r̂ 2 ; (31)

Ĥ
00
1 ¼ � 2 f 01

f1
� 1
r̂

� �
Ĥ

0
1 � 1þ 2 r̂ 3 p02

f 21
; (32)

Ĥ
00
n ¼ � 2 f 01

f1
� 1

r̂

� �
Ĥ

0
n þ ðn2 � 1Þ Ĥn

r̂ 2 for n > 1; (33)

V̂
00
n ¼ � 2 f 01

f1
� 1

r̂

� �
V̂

0
n þ ðn2 � 1Þ V̂ n

r̂ 2 for n > 1; (34)

r̂2 p04 þ r̂2 g 04 þ ð f1 f3Þ0 ¼ F3ðr̂Þ; (35)

where

F3ðr̂Þ ¼ � f 21
r̂

3r̂ 2

2
� 2r̂ Ĥ

0
1 þ

X
n>0

Ĥ
02
n þ 2 ðn2 � 1Þ Ĥ

0
n Ĥn

r̂

"0
@

�ðn2 � 1Þ Ĥ
2
n

r̂ 2

#
þ
X
n>1

V̂
02
n þ 2 ðn2 � 1Þ V̂

0
nV̂ n

r̂

"

�ðn2 � 1Þ V̂
2
n

r̂ 2

#1Aþ f1 f
0
1 g2 � 3r̂ 2

4
þ Ĥ 1

0
@

þ 1
2

X
n>0

3Ĥ
02
n � ðn2 � 1Þ Ĥ

2
n

r̂ 2

" #

þ 1
2

X
n>1

3V̂
02
n � ðn2 � 1Þ V̂

2
n

r̂ 2

" #1
A

þr̂ 2 p02 g2 þ r̂ 2

2
� 3r̂ Ĥ

0
1 � 2Ĥ 1

� �
: (36)

Note that the relative horizontal shift of magnetic flux-surfaces, Ĥ 1,
otherwise known as the Shafranov shift,2 is driven by toroidicity [the
second term on the right-hand side of Eq. (32)], and plasma pressure
gradients (the third term). All of the other shaping terms (i.e., the Ĥn

for n> 1, and the V̂ n for n> 1) are driven by currents flowing in
external magnetic field-coils.

In the present study, it is convenient to set g4 ¼ p4 ¼ 0.
However, other choices are possible.

H. Plasma interior

Let us regard f1ðr̂Þ and p2ðr̂Þ as the two free flux-surface func-
tions that determine the equilibrium. In the plasma interior, which
corresponds to 0 � r̂ � 1, Eq. (31) yields

g2ðr̂Þ ¼ p2ð0Þ � p2ðr̂Þ �
ð r̂
0

f1ðr̂ 0Þ f 01ðr̂ 0Þ
r̂ 02

dr̂ 0: (37)

At small r̂ , assuming that f1ðr̂Þ ¼ f1 c r̂
2 and p2ðr̂Þ ¼ p2 c

þð1=2Þ p002 c r̂ 2, where f1 c; p2 c; p002 c are constants that can be deter-
mined from the given f1ðr̂Þ and p2ðr̂Þ functions, we deduce that
g2ðr̂Þ ¼ �ðf 21 c þ p002 c=2Þ r̂ 2. Note that we have set g2 ¼ 0 at r̂ ¼ 0 in
order to ensure that B0 is indeed the toroidal magnetic field-strength
on the magnetic axis. Equation (32) must be solved subject to the
boundary conditions that

Ĥ 1ðr̂Þ ¼ 1
8

2 p002 c
f 21 c

� 1

� �
r̂ 2 (38)

at small r̂ . Likewise, Eqs. (33) and (34) must be solved subject to the
small-̂r boundary conditions that

Ĥnðr̂Þ ¼ Ĥn c r̂
n�1 for n > 1; (39)

V̂ nðr̂Þ ¼ V̂ n c r̂
n�1 for n > 1: (40)

Here, Ĥn c and V̂ n c are arbitrary constants. It turns out that the only
solution of Eq. (34) for n¼ 1 that does not blow up at r̂ ¼ 0 is the triv-
ial solution V̂ 1ðr̂Þ ¼ V̂ 1 c. However, we wish to set Ĥ 1 ¼ V̂ 1 ¼ 0 at
r̂ ¼ 0, in order to ensure that r̂ ¼ 0 is indeed the magnetic axis.
Hence, we are forced to conclude that V̂ 1ðr̂Þ ¼ 0, which accounts for
the absence of this term in our analysis. Once we have determined
g2ðr̂Þ, as well as the Ĥnðr̂Þ and the V̂ nðr̂Þ functions, we can integrate
Eq. (35) to give

f3ðr̂Þ ¼ 1
f1ðr̂Þ

ð r̂
0
F3ðr̂ 0Þ dr̂ 0: (41)

Note that f3ðr̂Þ ¼ �f1 c ðĤ 2
2 c þ V̂

2
2 cÞ r̂ 2 at small r̂ . Furthermore, we

have conveniently set f̂ 3 ¼ 0 at r̂ ¼ 0, which ensures that qð0Þ
¼ ½1þ � 2 ðĤ 2

2 c þ V̂
2
2 cÞ�=f1 c.

I. Near-vacuum region

We expect

p2ðr̂Þ ¼ 0 (42)

in the vacuum region immediately surrounding the plasma, which cor-
responds to 1 < r̂ � ��1. We also expect this so-called near-vacuum
region to be current-free, which implies that Itðr̂Þ ¼ Itð1Þ and Ipðr̂Þ
¼ Ipð1Þ for r̂ > 1. It follows from Eq. (9) that

g2ðr̂Þ ¼ g2a (43)

in the near-vacuum region, where g2a ¼ g2ð1Þ is a constant deter-
mined from Eq. (37). Likewise, Eq. (8) requires that

d
dr̂

r̂ f hjr̂rj2i
	 


¼ 0 (44)

in the region r̂ > 1. Making use of the orderings introduced in Sec.
IIG, we deduce that

f1ðr̂Þ ¼ f1a (45)

to lowest order, where f1a ¼ f1ð1Þ is a constant that can be determined
from the given f1ðr̂Þ profile, and

f 03ðr̂Þ ¼ �f1a
dhjr̂ r̂ j2i2

dr̂
(46)
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to next order. Here,

hjr̂r̂ j2i2 ¼
3r̂2

4
� Ĥ 1 þ 1

2

X
n>0

Ĥ
02
n þ ðn2 � 1Þ Ĥ

2
n

r̂ 2

" #

þ 1
2

X
n>1

V̂
02
n þ ðn2 � 1Þ V̂

2
n

r̂ 2

" #
(47)

is the component of hjr̂ r̂ j2i that is second order in �. [See Eq. (23).]
The toroidal and poloidal current profiles in the plasma can be

written ItðrÞ ¼ � 2 ðB0 R0=l0Þ Î tðr̂Þ and IpðrÞ ¼ � 2 ðB0 R0=l0Þ Î pðr̂Þ,
respectively. It follows from Eqs. (8) and (9) that the total normalized
toroidal and poloidal plasma currents flowing in the plasma are

Î ta ¼ 2p f1 1þ � 2 hjr̂r̂ j2i2
� �

þ � 2 f3
h i

r̂¼1
; (48)

Î pa ¼ 2p g2a; (49)

respectively.
In this paper, we shall assume that the equilibrium plasma cur-

rent density is continuous across the plasma/vacuum interface, as is
generally the case in a realistic tokamak plasma (assuming that the
plasma current profile has been given sufficient time to diffuse across
the plasma). Given that the current density is zero in the vacuum
region, it follows that the current density must be zero just inside the
plasma boundary. In other words, we require that Î

0
tð1Þ ¼ Î

0
pð1Þ ¼ 0.

Thus, making use of Eqs. (8) and (9), we deduce that g 02ð1Þ ¼ 0,

f 01ð1Þ ¼ 0; (50)

and also that Eq. (46) must be satisfied at r̂ ¼ 1. Finally, Eq. (31) yields

p02ð1Þ ¼ 0: (51)

Note that Eq. (31) is automatically satisfied in the near-vacuum
region. Equations (32)–(34), combined with Eq. (42) and (45), yield

Ĥ
00
1 ¼ Ĥ

0
1

r̂
� 1; (52)

Ĥ
00
n ¼ Ĥ

0
n

r̂
þ ðn2 � 1Þ Ĥn

r̂ 2 for n > 1; (53)

V̂
00
n ¼

V̂
0
n

r̂
þ ðn2 � 1Þ V̂ n

r̂ 2 for n > 1; (54)

which can be solved to give1

Ĥ 1ðr̂Þ ¼ Ĥ 1a � r̂ 2

2
ln r̂ þ 1

4
2 Ĥ

0
1a þ 1

� �
ðr̂ 2 � 1Þ; (55)

Ĥnðr̂Þ ¼ Ĥna� r̂ nþ1 � Ĥnaþ r̂ 1�n for n > 1; (56)

V̂ nðr̂Þ ¼ V̂ na� r̂ nþ1 � V̂ naþ r̂ 1�n for n > 1; (57)

in the near-vacuum region. Here,

Ĥna� ¼ Ĥ
0
na þ ðn� 1Þ Ĥna

2n
; (58)

Ĥnaþ ¼ Ĥ
0
na � ðnþ 1Þ Ĥna

2n
; (59)

V̂ na� ¼ V̂
0
na þ ðn� 1Þ V̂ na

2n
; (60)

V̂ naþ ¼ V̂
0
na � ðnþ 1Þ V̂ na

2n
: (61)

Moreover, Ĥna ¼ Ĥnð1Þ; Ĥ 0
na ¼ Ĥ

0
nð1Þ; V̂ na ¼ V̂ nð1Þ, and V̂

0
na

¼ V̂
0
nð1Þ are constants determined from the solutions of Eqs. (32)–

(34) in the plasma interior, subject to the boundary conditions (38)–
(40). It follows from Eqs. (35), (36), (42), and (45) that

f 03ðr̂Þ¼�f1a
r̂

3r̂ 2

2
�2r̂ Ĥ

0
1þ
X
n>0

Ĥ
02
n þ2ðn2�1ÞĤ

0
nĤn

r̂

"0
@

�ðn2�1ÞĤ
2
n

r̂ 2

#
þ
X
n>1

V̂
02
n þ2ðn2�1ÞV̂

0
n V̂ n

r̂
�ðn2�1Þ V̂

2
n

r̂ 2

" #1
A:

(62)

However, Eqs. (46)–(47) and (52)–(54) can be combined to give
exactly the same relation, which confirms that zero toroidal current
flows in the near-vacuum region, and also that the toroidal current
density is zero at the plasma boundary. Equations (55)–(57) and (62)
can be integrated to give

f3ðr̂Þ ¼ f3a � f1a
2

�
1� 2 Ĥ

0
1a

� �
r̂ 2 ln r̂ þ r̂ 2 ln2 r̂

þ ð1� Ĥ
0
1a þ Ĥ

02
1aÞ ðr̂ 2 � 1Þ þ

X
n>1

2 n ðnþ 1Þ

� Ĥ
2
na� ðr̂ 2 n � 1Þ þ

X
n>1

2 n ðn� 1Þ Ĥ 2
naþ ðr̂ �2 n � 1Þ

þ
X
n>1

2 n ðnþ 1Þ V̂ 2
na� ðr̂ 2 n � 1Þ

þ
X
n>1

2 n ðn� 1Þ V̂ 2
naþ ðr̂ �2 n � 1Þ

�
(63)

in the near-vacuum region. Here, f3a ¼ f3ð1Þ is a constant determined
from Eq. (41).

Let WpðrÞ ¼ � 2 B0 R 2
0 Ŵpðr̂Þ. It follows from Eqs. (4), (26), (45),

and (63) that

Ŵpðr̂Þ ¼ F1a þC1 þ f1a ln r̂ þ �2 ðF3aþC3Þþ �2 f3a ln r̂

� �2 f1a
2

�
�
�
1� Ĥ

0
1a þ Ĥ

02
1a þ

X
n>1

2nðnþ 1Þ Ĥ 2
na�

þ
X
n>1

2n ðn� 1Þ Ĥ 2
naþ þ

X
n>1

2nðnþ 1Þ V̂ 2
na�

þ
X
n>1

2n ðn� 1Þ V̂ 2
naþ

�
ln r̂ � Ĥ

0
1a r̂

2 ln r̂ þ 1
2
r̂ 2 ln 2 r̂

þ 1
2
ð1þ Ĥ

02
1aÞðr̂ 2� 1Þþ

X
n>1

ðnþ 1Þ Ĥ 2
na� ðr̂ 2n� 1Þ

þ
X
n>1

ðn� 1Þ Ĥ 2
naþ ð1� r̂ �2nÞþ

X
n>1

ðnþ 1Þ V̂ 2
na� ðr̂ 2n� 1Þ

þ
X
n>1

ðn� 1Þ V̂ 2
naþ ð1� r̂ �2nÞ

�
(64)

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 082505 (2024); doi: 10.1063/5.0215345 31, 082505-5

VC Author(s) 2024

 10 August 2024 15:59:46

pubs.aip.org/aip/php


in the near-vacuum region, where

F1a ¼
ð1
0

f1ðr̂Þ
r̂

dr̂ ; (65)

F3a ¼
ð1
0

f3ðr̂Þ
r̂

dr̂ : (66)

Here, C1 and C3 are arbitrary constants.

III. MATCHING TO VACUUM SOLUTION
A. Toroidal coordinates

The r, h, / coordinate system becomes singular in the vacuum
region at large r̂ [i.e., r̂ 	 Oð��1Þ]. Thus, in order to find a global vac-
uum solution, we need to match our previous near-vacuum solution to
a vacuum solution calculated using a coordinate system that is nonsin-
gular throughout the vacuum region.

An appropriate choice of a nonsingular vacuum coordinates is
orthogonal toroidal coordinates,1,7 l, g, /, which are defined such that19

R̂ ¼ sinh l
cosh l� cos g

; (67)

Ẑ ¼ sin g
cosh l� cos g

: (68)

Here, lðR̂; ẐÞ ! 0 corresponds to either R̂ ! 0 or ðR̂ 2 þ Ẑ
2Þ1=2

! 1 (i.e., an approach to the toroidal symmetry axis or to infinity),
whereas lðR̂; ẐÞ ! 1 corresponds to ðR̂; ẐÞ ! ð1; 0Þ (i.e., an
approach to the magnetic axis). Furthermore, gðR̂; ẐÞ is an angular
variable in the poloidal plane.

B. Vacuum solution

According to Eqs. (2), (4), (27), and (43), the equilibrium mag-
netic field in the vacuum region can be written

B ¼ r/�rWp þ Ia r/; (69)

where Ia ¼ B0 B0 ð1þ � 2 g2aÞ is a constant. It follows that

r� B ¼ R 2 r � rWp

R 2

� �
r/: (70)

Hence, the condition that must be satisfied in order to ensure that no
current flows in the vacuum isr � ðrWp=R 2Þ ¼ 0, which implies that

r̂ � r̂Ŵp

R̂
2

 !
¼ 0: (71)

When expressed in the toroidal coordinate system, the previous
equation yields1

@

@l
cosh l� cos g

sinh l

@Ŵp

@l

 !
þ @

@g
cosh l� cos g

sinh l

@Ŵp

@g

 !
¼ 0:

(72)

If we write

Ŵpðl; gÞ ¼
X
n
0

sinh l

ðcosh l� cos gÞ1=2
vnðcosh lÞ eing; (73)

where n is an integer (as must be the case to render the normalized
poloidal magnetic flux, Ŵp, single-valued in g), then we obtain

ð1� z2Þ d
2vn
dz2

� 2z
dvn
dz

þ n2 � 1
4
� 1
1� z2

� �
vn ¼ 0; (74)

where z ¼ cosh l. The previous equation can be recognized as an asso-
ciated Legendre function of degree n� 1=2 and order 1.20 The inde-
pendent solutions of this equation are the so-called toroidal functions
P1
n�1=2ðzÞ and Q1

n�1=2ðzÞ.21 Note that P1
n�1=2ðzÞ is well behaved in the

limit z ! 1, whereas Q1
n�1=2ðzÞ is badly behaved. Conversely,

P1
n�1=2ðzÞ is badly behaved in the limit z ! 1, whereas Q1

n�1=2ðzÞ is
well behaved.

According to the previous analysis, the most general expression
for the normalized poloidal magnetic flux in the vacuum region is1

Ŵpðz; gÞ

¼ z2 � 1
z � cos g

� �1=2
(X

n
0

pcnP
1
n�1=2ðzÞ þ qcnQ

1
n�1=2ðzÞ

h i
cosðngÞ

þ
X
n>0

psnP
1
n�1=2ðzÞ þ qsnQ

1
n�1=2ðzÞ

h i
sinðngÞ

)
; (75)

where n is a non-negative integer. Here, the pcn; qcn; psn, and qsn are
arbitrary coefficients. Moreover, it is clear from the asymptotic behav-
iors of the P1

n�1=2ðzÞ and the Q1
n�1=2ðzÞ functions that the terms in the

previous series that involve the pcn and psn represent the magnetic field
generated in the vacuum region by currents flowing in the plasma,
whereas the terms involving the qcn and qsn represent the magnetic
field generated in the vacuum region by currents flowing in external
magnetic field-coils. We now need to match expression (75) to expres-
sion (64). Note that the latter expression is only valid in the near-
vacuum region, 1 � r̂ � ��1

a , whereas the former expression is valid
throughout the whole vacuum region.

C. Transformation of coordinates

In the immediate vicinity of the plasma boundary, Eqs. (19), (20),
(21), (67), and (68) can be combined to give

x ¼ p� gþ � Fgðr̂ ; gÞ þ Oð� 2Þ; (76)

where

Fgðr̂ ; gÞ ¼ � r̂
2
sin gþ

X
n>0

cosðnpÞ Ĥn

r̂
sinðngÞ

þ
X
n>1

cosðnpÞ V̂ n

r̂
cosðngÞ: (77)

Furthermore,

z ¼ nðr̂ ; gÞ
� r̂

; (78)

where

nðr̂ ; gÞ ¼ 1þ �
r̂
2
cos gþ

X
n>0

cos ðnpÞ Ĥn

r̂
cosðngÞ

"

�
X
n>1

cos ðnpÞ V̂ n

r̂
sinðngÞ

#

þ � 2
5r̂ 2

16
� Ĥ 1

4
þ 3
4

X
n>0

Ĥ
2
n

r̂ 2 þ 3
4

X
n>1

V̂
2
n

r̂ 2

 !
: (79)
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Note that r̂ 	 Oð1Þ in the near-vacuum region, which implies that
z � 1.

D. Toroidal functions

In the limit z � 1, the toroidal functions P1
n�1=2ðzÞ and

Q1
n�1=2ðzÞ have the following asymptotic behaviors:22,23

ðz2 � 1Þ1=2 P1
�1=2ðzÞ

z 1=2
¼ 1ffiffiffi

2
p

p
2� lnð8zÞ � 1� lnð8zÞ

16z2
þOðz�4Þ

� �
;

(80)

ðz2 � 1Þ1=2 P1
n�1=2ðzÞ

z 1=2

¼ ðn� 1Þ! 2n z nffiffiffiffiffi
2p

p
Cðn� 1=2Þ þ Oðz n�2Þ for n > 0; (81)

ðz2 � 1Þ1=2 Q1
�1=2ðzÞ

z 1=2
¼

ffiffiffi
p

p
Cð3=2Þffiffiffi
2

p 1� 1
16 z2

þOðz�4Þ
� �

; (82)

ðz2� 1Þ1=2Q1
n�1=2ðzÞ

z 1=2
¼

ffiffiffi
p

p
Cðnþ 3=2Þz�n

2nþ1=2 n!
þOðz�n�2Þ for n> 0:

(83)

Note that there is a factor
ffiffiffiffiffiffi�1

p
difference between the definition of

the P1
n�1=2ðzÞ used in this paper and that employed in Ref. 22.

Moreover, CðzÞ is a Gamma function.24

E. Poloidal magnetic flux in near-vacuum region

Let

pc 0 ¼ pffiffiffi
2

p p̂c 0; (84)

pcn ¼
ffiffiffiffiffi
2p

p
Cðn� 1=2Þ � 1þn

ðn� 1Þ! 2n p̂cn for n > 0; (85)

psn ¼
ffiffiffiffiffi
2p

p
Cðn� 1=2Þ � 1þn

ðn� 1Þ! 2n p̂sn for n > 0; (86)

qc 0 ¼
ffiffiffi
2

pffiffiffi
p

p
Cð3=2Þ q̂0; (87)

qcn ¼ 2 nþ1=2 n! � 1�nffiffiffi
p

p
Cðnþ 3=2Þ q̂cn for n > 0; (88)

qsn ¼ 2 nþ1=2 n! � 1�nffiffiffi
p

p
Cðnþ 3=2Þ q̂sn for n > 0: (89)

Here, the p̂cn; p̂sn; q̂cn, and q̂sn coefficients are assumed to beOð1Þ.
It follows from Eqs. (75), (78), and (80)–(89) that

Ŵpðr̂ ;gÞ¼ 1�� r̂
n
cosg

� ��1=2
(
p̂c0 1�1

2
ln

8
�

� �
þ1
2
ln r̂�1

2
lnn

� �

� p̂c0
32

1� ln
8
�

� �
þ ln r̂� lnn

� �
� r̂
n

� �2

þ q̂c0 1� 1
16

� r̂
n

� �2
" #

þ�
X
n>0

p̂cn
n
r̂

� �n

cosðngÞ

þ �
X
n>0

q̂cn
r̂
n

� �n

cosðngÞþ �
X
n>0

p̂sn
n
r̂

� �n

sinðngÞ

þ �
X
n>0

q̂sn
r̂
n

� �n

sinðngÞ
)

(90)

in the near-vacuum region.
Making use of Eq. (79), the most general expression for the nor-

malized poloidal magnetic flux in the near-vacuum region becomes

Ŵpðr̂ ; gÞ ¼ Ŵp0ðr̂Þ þ �
X
n>0

Ŵp1cnðr̂ÞcosðngÞ

þ �
X
n>0

Ŵp1snðr̂ÞsinðngÞ þ �2Ŵp2ðr̂Þ; (91)

where

Ŵp0ðr̂Þ ¼ p̂c00 1� ln
8
�

� �
þ lnr̂

2

� �
þ q̂c00; (92)

Ŵpc1ðr̂Þ ¼ p̂c00
4

r̂ þ 2Ĥ 1

r̂
� ln

8
�

� �
r̂ þ r̂ lnr̂

" #
þ p̂c1

r̂

þ q̂c00
2

þ q̂c1

� �
r̂ ; (93)

Ŵpcnðr̂Þ ¼ �p̂c00 cosðnpÞ
Ĥn

2r̂
þ p̂cnr̂

�n þ q̂cnr̂
n for n > 1; (94)

Ŵpsnðr̂Þ ¼ p̂c 00 cosðnpÞ V̂ n

2 r̂
þ p̂sn r̂

�n þ q̂sn r̂
n for n > 0; (95)

Ŵps2ðr̂Þ¼ p̂c02 1� ln
8
�

� �
þ ln r̂

2

� �
þ q̂c02

þ p̂c00 �5 r̂ 2

32
� 3

8
þ ln

8
�

� �� �
Ĥ 1þĤ 1

8
ln r̂

 

�
X
n>0

Ĥ
2
n

4 r̂ 2
�
X
n>1

V̂
2
n

4 r̂ 2

!
þ q̂c00

2
þ q̂c1

� �
Ĥ 1

2
þ p̂c1

2

þ
X
n>0

p̂cn cosðnpÞ
nĤn

2
r̂�1�n�

X
n>1

q̂cn cosðnpÞ
nĤn

2
r̂�1þn

�
X
n>1

p̂sn cosðnpÞ
nV̂ n

2
r̂�1�nþ

X
n>1

q̂sn cosðnpÞ
nV̂ n

2
r̂�1þn:

(96)

Here, we have written

p̂c 0 ¼ p̂c 00 þ � 2 p̂c 02; (97)

q̂c 0 ¼ q̂c 00 þ � 2 q̂c 02; (98)

where p̂c 00; p̂c 02; q̂c 00, and q̂c 02 are allOð1Þ. Note that we have evalu-
ated Ŵpðr̂ ; gÞ up to Oð�Þ, and retained Oð� 2Þ contributions to those
terms that are independent of g.

F. Comment

We now have two expressions for the poloidal magnetic flux in
the near-vacuum region. The first, (64), is the extension of the
Grad–Shafranov solution inside the plasma into the near-vacuum
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region. The second, (91), is the near-vacuum limit of the general vac-
uum solution (75). We require these two solutions to be identically
equal to one another throughout the whole of the near-vacuum region.
At first sight, it might seem that the problem is over-determined,25

because there are far more distinct functional forms that require
matching than there are free parameters in the problem. Fortunately,
as described in GJW, if the matching is performed in systematic
manner then exact matching is achieved, showing that the apparent
over-determined nature of the problem is illusory. In fact, the achieve-
ment of exact matching is a very powerful internal self-consistency
check on the whole calculation, because any algebraic error in the vari-
ous terms that makeup the two solutions would lead to residual
unmatched terms.

G. Matching

We must now match expression (91) to expression (64), assum-
ing that the Ĥnðr̂Þ and V̂ nðr̂Þ functions takes the forms specified in
Eqs. (55)–(57) in the near-vacuum region.

To zeroth order in �, the matching yields

F1a þ C1 þ f1a ln r̂ ¼ p̂c 00 1� 1
2
ln

8
�

� �
þ 1
2
ln r̂

� �
þ q̂c 00: (99)

Separately equating the coefficients of ln r̂ and r̂ 0, we obtain1

p̂c 00 ¼ 2 f1a; (100)

q̂c 00 ¼ F1a þ C1 � 2 f1a 1� 1
2
ln

8
�

� �� �
: (101)

To first order in �, matching the coefficients of cos g yields

p̂c1 � f1a
1
4
þ Ĥ

0
1a

2
� Ĥ 1a

 !" #
r̂ �1

þ q̂c1 þ
q̂c 00
2

� f1a
2

ln
8
�

� �
� 3
2
� Ĥ

0
1a

� �� �
r̂ ¼ 0: (102)

Separately equating the coefficients of r̂ �1 and r̂ 1, we obtain1

p̂c1 ¼ f1a
1
4
þ Ĥ

0
1a

2
� Ĥ 1a

 !
; (103)

q̂c1 þ
q̂c 00
2

¼ f1a
2

ln
8
�

� �
� 3
2
� Ĥ

0
1a

� �
: (104)

To first order in �, matching the coefficients of cosðngÞ, where
n> 1, yields

p̂cn þ f1a cosðnpÞ Ĥnaþ
h i

r̂ �n þ q̂cn � f1a cosðnpÞ Ĥna�
h i

r̂ n ¼ 0:

(105)

Separately equating the coefficients of r̂ �n and r̂ n, we obtain

p̂cn ¼ �f1a cosðnpÞ Ĥnaþ; (106)

q̂cn ¼ f1a cosðnpÞ Ĥna�: (107)

To first order in �, matching the coefficients of sin g yields

p̂s 1 r̂
�1 þ q̂c1 r̂ ¼ 0; (108)

where we have made use of the fact that V̂ 1 ¼ 0. Separately equating
the coefficients of r̂ �1 and r̂ , we obtain

p̂s 1 ¼ 0; (109)

q̂s 1 ¼ 0: (110)

To first order in �, matching the coefficients of sinðngÞ, where
n> 1, yields

p̂sn � f1a cosðnpÞ V̂ naþ
h i

r̂ �n þ q̂cn þ f1a cosðnpÞ V̂ na�
h i

r̂ n ¼ 0:

(111)

Separately equating the coefficients of r̂ �n and r̂ n, we obtain

p̂sn ¼ f1a cosðnpÞ V̂ naþ; (112)

q̂sn ¼ �f1a cosðnpÞ V̂ na�: (113)

Finally, to second order in �, the matching yields

p̂c 02 1� ln
8
�

� �
þ ln r̂

2

� �
þ q̂c 02 ¼ ac 02 ln r̂ þ bc 02; (114)

where

ac 02 ¼ F3a þ C3 þ f1a

 
3
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4
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1a Ĥ 1a

2
þ Ĥ 1a

4
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n� 1
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� �
Ĥ

2
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(115)

bc 02 ¼ f3a þ f1a

 
5
8
� Ĥ

0
1a

4
þ Ĥ

02
1a

2
� Ĥ 1a

2

þ
X
n>1

n ðn� 1Þ Ĥ 2
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na�
h i

þ
X
n>1

n ðn� 1Þ V̂ 2
naþ þ n ðnþ 1Þ V̂ 2

na�
h i!

: (116)

Note that many terms proportional to r̂ 2 ln2 r̂ and r̂ 2 ln r̂ and r̂ �2n

and r̂ 2n have canceled one another in expression (114) on the basis of
the previous matching (see Sec. III F). Separately equating the coeffi-
cients of ln r̂ and r̂ 0, we obtain

p̂c 02 ¼ 2 ac 02; (117)

q̂c 02 ¼ bc 02 � 2 ac 02 1� 1
2
ln

8
�

� �� �
: (118)

It is convenient to set the value of the arbitrary constant C3 so as to
ensure that q̂c 02 ¼ 0, which implies that

ac 02 ¼ bc 02

�
2 1� 1

2
ln

8
�

� �� �� �
; (119)

F3a þ C3 ¼ bc 02

�
2 1� 1

2
ln

8
�

� �� �� �
� cc 02; (120)
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where

cc 02 ¼ f1a
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(121)

We have now completed the matching process.

H. Externally generated magnetic field

Let

R̂ ¼ 1þ � q cosX; (122)

Ẑ ¼ � q sinX; (123)

where qðR;ZÞ measures radial distance from the magnetic axis, and
XðR;ZÞ is a geometric poloidal angle that is distinct from both h and
x. Using similar analysis to that employed in Secs. IIIC–III E, we
deduce that the normalized poloidal magnetic flux generated by the
currents flowing in the external magnetic field-coils takes the form

Ŵxðq;XÞ ¼ q̂c 00 þ �
q̂c 00
2

þ q̂c1

� �
q cosXþ �

X
n>1

q̂cn q
n cosðnXÞ

þ �
X
n>1

q̂sn q
n sinðnXÞ þ � 2 q̂c 02 þ � 2

q̂c 00
2

þ q̂c1

� �
q 2

4

(124)

in the immediate vicinity of the magnetic axis. If we write

x̂ ¼ q cosX (125)

ẑ ¼ q sinX; (126)

then we obtain

Ŵxðx̂; ẑÞ ¼ q̂c 00 þ �
f1a
2

ln
8
�

� �
� 3
2
þ Ĥ

0
1a

� �
x̂

þ � f1a
X
n>1

cos ðnpÞ Ĥna� Pcnðx̂; ẑÞ

� � f1a
X
n>1

cos ðnpÞ V̂ na� Psnðx̂; ẑÞ þ � 2 q̂c 02

þ � 2
f1a
8

ln
8
�

� �
� 3
2
þ Ĥ

0
1a

� �
ðx̂ 2 þ ẑ 2Þ; (127)

where26

Pcnðx̂; ẑÞ ¼ x̂ n � n
2

� �
x̂ n�2 ẑ 2 þ n

4

� �
x̂ n�4 ẑ 4 þ � � � ; (128)

Psnðx̂; ẑÞ ¼ n x̂ n�1 ẑ � n
3

� �
x̂ n�3 ẑ 3 þ n

5

� �
x̂ n�5 ẑ 5 þ � � � ; (129)

and use has been made of the results of Sec. IIIG. Here, x̂ and ẑ mea-
sure horizontal and vertical distance from the magnetic axis,

respectively. In particular, if Ĥna� ¼ V̂ na� ¼ 0 for n> 3 then expres-
sion (127) reduces to

Ŵxðx̂; ẑÞ ¼ q̂c 00 þ � 2 q̂c 02 þ �
f1a
2

ln
8
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� �
� 3
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þ Ĥ

0
1a

� �
x̂

þ � 2
f1a
8
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8
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� �
� 3
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þ Ĥ
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ðx̂ 2 þ ẑ 2Þ

þ � f1a Ĥ 2 a� ðx̂ 2 � ẑ 2Þ � � f1a V̂ 2 a� 2 x̂ ẑ

� � f1a Ĥ 3 a� ðx̂ 3 � 3 x̂ ẑ 2Þ þ � f1a V̂ 3 a� ð3 x̂ 2 ẑ � ẑ 3Þ:
(130)

Let Bx ¼ B0 B̂x be the magnetic field generated by the external
field-coils in the immediate vicinity of the magnetic axis. It is easily
seen from Eqs. (2), (4), (122), (123), (125), and (126) that

B̂x ¼ @Ŵx

@ẑ
eR � @Ŵx

@x̂
eZ

� �
1þ � x̂ð Þ�1

; (131)

where eR ¼ rR and eZ ¼ rZ. Hence,

B̂x ¼ ��
f1a
2

ln
8
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� �
� 3
2
þ Ĥ
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� �
eZ

þ � 2
f1a
4

ln
8
�

� �
� 3
2
þ Ĥ

0
1a

� �
ðẑ eR þ x̂ eZÞ

� � 2 f1a Ĥ 2 a� ðẑ eR þ x̂ eZÞ � � 2 f1a V̂ 2 a� ðx̂ eR � ẑ eZÞ
þ � 3 f1a Ĥ 3 a� 2 x̂ ẑ eR þ ðx̂ 2 � ẑ 2Þ eZ

� �
þ � 3 f1a V̂ 3 a� ðx̂ 2 � ẑ 2Þ eR � 2 x̂ ẑ eZ

� �
: (132)

Here, the first term on the right-hand side of the previous equation is
the vertical field that counteracts the hoop stress in the plasma
torus.1,13 The second term is the higher order quadrupole correction to
the vertical field. The third and the fourth terms are quadrupole mag-
netic fields that control the up-down symmetric and asymmetric ellip-
ticities of the plasma equilibrium magnetic flux-surfaces, respectively.
Note that these fields are mutually orthogonal. In fact, one can be
transformed into the other via a rotation in the poloidal plane through
90�. Finally, the fifth and the sixth terms are sextupole magnetic fields
that control the up-down symmetric and asymmetric triangularities of
the equilibrium magnetic flux-surfaces, respectively. As before, the
fields are mutually orthogonal, and one can be transformed into the
other via a rotation in the poloidal plane through 90�.

IV. EXTERNAL MAGNETIC FIELD-COILS
A. External magnetic field-coil

Suppose that the set of magnetic field-coils that generate the
external poloidal magnetic field, discussed in Sec. IIIH, that supports
the plasma equilibrium are discrete and located a finite distance from
the plasma.

Let us crudely model a given magnetic field-coil as made up of a
number of toroidal loops, of zero cross-section in the poloidal plane,
that we shall term strands. See Fig. 1. Suppose that a given strand car-
ries a toroidal current Ix, and is located at coordinates (Rx, Zx) in the
cylindrical system. The strand is located at coordinates ðlx; gxÞ in the
toroidal system, where27
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zx � cosh lx ¼
d21 þ d22
2 d1 d2

; (133)

cos gx ¼
d 2
1 þ d 2

2 � 4
2 d1 d2

; (134)

d 2
1 ¼ ðR̂x þ 1Þ2 þ Ẑ

2
x ; (135)

d 2
2 ¼ ðR̂x � 1Þ2 þ Ẑ

2
x : (136)

Here, R̂x ¼ Rx=R0 and Ẑ x ¼ Zx=R0. Obviously, the strand is assumed
to lie outside the plasma.

B. Amp�ere–Maxwell equation

Combining Eq. (70) with the Amp�ere–Maxwell equation, we
obtain

Rr � rWx

R 2

� �
¼ l0 Ix dðl� lxÞ dðg� gxÞ

h2
; (137)

where WxðR;ZÞ is the poloidal magnetic flux generated by the strand,
and

h ¼ R0

cosh l� cos g
(138)

is the poloidal scale-factor for the toroidal coordinate system.27 Now,28

r � rWx

R 2

� �
¼ 1

R h2
@

@l
1
R
@Wx

@l

� �
þ @

@g
1
R
@Wx

@g

� �� �
: (139)

Hence, if we write Wx ¼ � 2 B0 R 2
0 Ŵx and Ix ¼ � 2 ðB0 R0=l0Þ Î x then

we obtain

@

@z
ðz � cos gÞ @Ŵx

@z

� �
þ 1
z2 � 1

@

@g
ðz � cos gÞ @Ŵx

@g

" #

¼ Î x dðz � zxÞ dðg� gxÞ; (140)

where z ¼ cosh l.

C. Determination of matching coefficients

Let

Ŵxðz; gÞ ¼ z2 � 1
z � cos g

� �1=2

vxðz; gÞ: (141)

Equation (140) transforms to give

ð1� z2Þ @
2vx
@z2

� 2z
@vx
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� 1
4
þ 1
1� z2
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vx �

@2vx
@g2

¼ �Î x
z 2
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 !1=2

dðz � zxÞ dðg� gxÞ: (142)

Now,29

dðg� gxÞ ¼
1
2p

þ 1
p

X
n¼1;1

cos n ðg� gxÞ½ �: (143)

Let

vxðz; gÞ ¼
X
n¼0;1

vx nðzÞ cos n ðg� gxÞ½ �: (144)

The previous three equations yield

ð1� z2Þ d
2vx n
dz2

� 2 z
dvx n
dz

þ n2 � 1
4
� 1
1� z2

� �
vx n

¼ � fn
p

Î x
z 2
x � 1

zx � cos gx

 !1=2

dðz � zxÞ; (145)

where

fn ¼ 1=2; n ¼ 0;
1; n > 0:

�
(146)

The solution of Eq. (145) that is well-behaved as z ! 1 and z ! 1,
and is continuous at z¼ zx, is

20,21

vxnðzÞ ¼ An

Q1
n�1=2ðzxÞ P1

n�1=2ðzÞ; z < zx;

Q1
n�1=2ðzÞ P1

n�1=2ðzxÞ; z > zx:

(
(147)

Integration of Eq. (145) across z¼ zx reveals that

An ð1� z 2
x Þ Pn�1=2

dQ1
n�1=2

dz
� Q1

n�1=2

dP1
n�1=2

dz

� �
z¼zx

¼ � fn
p

Î x
z 2
x � 1

zx � cos gx

 !1=2

: (148)

FIG. 1. The blue curves show the internal magnetic flux-surfaces of an axisymmet-
ric tokamak plasma equilibrium characterized by � ¼ 0:25; qc ¼ 1:0; � ¼ 3:0; pc
¼ 0:25; l ¼ 2:1, and Dped ¼ 0. The red curve denotes the plasma boundary, and
the red dot corresponds to the magnetic axis. Here, OH is the Ohmic heating coil,
and P1 through P6 are the six poloidal field-coils. Each green dot corresponds to a
constituent strand (of zero poloidal cross-sectional area) of a given field-coil that
carries the same toroidal current. The relative weights of the net toroidal currents
flowing in OH and P1 to P6 are 0.80, 0.02, 0.01, �0.01, �0.02, 0.65, and 0.75,
respectively.
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However,30

Pn�1=2

dQ1
n�1=2

dz
� Q1

n�1=2

dP1
n�1=2

dz
¼ n2 � 1=4

1� z2
; (149)

which yields

An ¼ � fn
p ðn2 � 1=4Þ Î x

z 2
x � 1

zx � cos gx

 !1=2

: (150)

The previous analysis implies that, in the region interior to the
strand,

Ŵxðz; gÞ ¼ �Î x
z2 � 1

z � cos g

� �1=2 z 2
x � 1

zx � cos gx

 !1=2
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n�1=2ðzxÞ

�
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n¼0;1
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p ðn2 � 1=4Þ Q

1
n�1=2ðzÞ

� cosðn gxÞ cosðngÞ þ sinðn gxÞ sinðngÞ½ �: (151)

A comparison with expression (75) reveals that the contributions of
the strand to the matching coefficients that characterize the external
magnetic field are

qcn ¼ � fn
p ðn2 � 1=4Þ Î x

z 2
x � 1

zx � cos gx

 !1=2

P1
n�1=2ðzxÞ cosðn gxÞ;

(152)

qsn ¼ � fn
p ðn2 � 1=4Þ Î x

z 2
x � 1

zx � cos gx

 !1=2

P1
n�1=2ðzxÞ sinðn gxÞ:

(153)

Finally, making use of the normalizations (87)–(89), we obtain

q̂c 0 ¼
2Cð3=2Þffiffiffiffiffi

2p
p Î x

z 2
x � 1

zx � cos gx

 !1=2

P1
�1=2ðzxÞ; (154)

q̂cn ¼ � Cðnþ 3=2Þ � n�1ffiffiffiffiffi
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p
2n n! ðn2 � 1=4Þ Î x
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x � 1
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� P1
n�1=2ðzxÞ cosðn gxÞ for n > 0; (155)

q̂sn ¼� Cðnþ 3=2Þ�n�1ffiffiffiffiffi
2p

p
2n n! ðn2� 1=4Þ Î x

z 2x � 1
zx � cosgx

 !1=2

� P1
n�1=2ðzxÞ sinðngxÞ for n> 0: (156)

Suppose, finally, that the external magnetic field-coils are made
up of K strands. Let the kth strand carry the toroidal current Ik
¼ � 2 ðB0 R0=l0Þ Î k and be located at z¼ zk and g ¼ gk. It follows that

q̂c 0 ¼
2Cð3=2Þffiffiffiffiffi

2p
p

X
k¼1;K

Î k
z 2
k � 1

zk � cos gk

 !1=2

P1
�1=2ðzkÞ; (157)

q̂cn ¼ � Cðnþ 3=2Þ � n�1ffiffiffiffiffi
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Î k
z 2
k � 1

zk � cos gk

 !1=2

� P1
n�1=2ðzkÞ cosðn gkÞ for n > 0; (158)

q̂sn ¼ � Cðnþ 3=2Þ � n�1ffiffiffiffiffi
2p

p
2n n! ðn2 � 1=4Þ

X
k¼1;K

Î k
z 2
k � 1

zk � cos gk

 !1=2

� P1
n�1=2ðzkÞ sinðn gkÞ for n > 0: (159)

D. Matching

Wemust now match our coil-generated poloidal magnetic flux to
our previous plasma solution.

Given that we adjusted the value of the arbitrary constant C3 to
ensure that q̂c 02 ¼ 0, in Sec. IIIG, it follows from Eq. (98) that
q̂c 00 ¼ q̂c 0. Equations (101) and (157) yield

F1a þ C1 ¼ 1ffiffiffi
2

p
X
k¼1;K

Î k
z 2
k � 1

zk � cos gk

 !1=2

P1
�1=2ðzkÞ

þ 2 f1a 1� 1
2
ln

8
�
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: (160)

The previous equation implies that, adopting the convention that the
poloidal magnetic flux is zero at infinity, the normalized poloidal mag-
netic flux at the plasma boundary (including both plasma and vacuum
contributions) is

Ŵpa ¼ 1ffiffiffi
2

p
X
k¼1;K

Î k
z 2k � 1

zk� cosgk

 !1=2
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�1=2ðzkÞþ 2 f1a 1� 1

2
ln

8
�

� �� �

þ �2 bc02

�
2 1� 1

2
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8
�
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� cc02

" #
: (161)

[See Eqs. (64), (116), and (121).]
Equations (157) and (159) give

q̂c1 þ
q̂c 00
2

¼ 1ffiffiffi
8

p
X
k¼1;K

Î k
z 2
k � 1

zk � cos gk

 !1=2

� P1
�1=2ðzkÞ � P1

1=2ðzkÞ cos gk
h i

: (162)

It follows from Eq. (104) that

X
k¼1;K

Î k
z 2
k � 1
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1=2ðzkÞ cos gk
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¼ ffiffiffi
2

p
f1a ln

8
�

� �
� 3
2
� Ĥ

0
1a

� �
: (163)

The previous equation is the condition that must be satisfied in order
for the plasma to be in a state of horizontal force balance.

Equations (110) and (159) yield

X
k¼1;K

Î k
z 2
k � 1

zk � cos gk

 !1=2

P1
1=2ðzkÞ sin gk ¼ 0: (164)

The previous equation is the condition that must be satisfied in order
for the plasma to be in a state of vertical force balance.
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Equations (107) and (158) give

Ĥna� ¼ � Cðnþ 3=2Þ � n�1ffiffiffiffiffi
2p

p
2n n! ðn2 � 1=4Þ

cosðnpÞ
f1a

�
X
k¼1;K

Î k
z 2
k � 1

zk � cos gk

 !1=2

P1
n�1=2ðzkÞ cosðn gkÞ (165)

for n> 1. The previous equation determines the up-down symmetric
shaping of the plasma equilibrium.

Finally, Eqs. (113) and (159) yield

V̂ na� ¼ Cðnþ 3=2Þ � n�1ffiffiffiffiffi
2p

p
2n n! ðn2 � 1=4Þ

cosðnpÞ
f1a

�
X
k¼1;K

Î k
z 2
k � 1

zk � cos gk

 !1=2

P1
n�1=2ðzkÞ sinðn gkÞ (166)

for n> 1. The previous equation determines the up-down asymmetric
shaping of the plasma equilibrium. We have now completed the
matching process.

V. PEDESTAL PHYSICS
A. Introduction

Tokamak plasmas possessing magnetic nulls on the plasma/vac-
uum interface generally operate in the so-called H-mode regime.3,31 In
this regime, a transport barrier forms just inside the plasma boundary,
giving rise to a narrow edge region in which the (negative) equilibrium
pressure gradient is much larger than that in the plasma interior. This
high-gradient region is known as the pedestal. The non-inductive boot-
strap current32 is a parallel plasma current that is driven by pressure
gradients.33 Hence, as a consequence of the bootstrap current, as well
as the strong pressure gradients present in the pedestal, H-mode toka-
mak plasmas generally contain a localized spike in the equilibrium par-
allel plasma current in the pedestal. We wish to incorporate these
features of realistic tokamak plasma equilibria into our model.

B. Pedestal model

In order to incorporate the pedestal in the plasma pressure into
our model, we can modify our normalized pressure profile as follows:

p2ðr̂Þ ¼ p2 originalðr̂Þ þ Dp2ðr̂Þ; (167)

where

Dp2ðr̂Þ ¼ Dped

2d̂ped

ð1
r̂

1� r̂ 0 2

1� r̂ 2
ped

 !
dr̂ 0

cosh2 ðr̂ 0 � r̂pedÞ=d̂ped
h i : (168)

Here, Dped; d̂ped, and r̂ped are the normalized height, width, and radius
of the pedestal, respectively. Note that it is still the case that p02ð1Þ ¼ 0,
assuming that p02 originalð1Þ ¼ 0, which ensures that the poloidal current
density at the plasma boundary remains zero. [See Eq. (51).] In the
limit that d̂ped � 1, the previous two expressions reduce to

p2ðr̂Þ ’ p2 originalðr̂Þ þ Dped

2
1� tanh

r̂ � r̂ped

d̂ped

 !" #
: (169)

Clearly, we have effectively introduced into the plasma pressure profile
a negative step of height Dped at the pedestal radius.

C. Bootstrap current model

The flux-surface averaged parallel plasma current density can be
written,7

R
R0

� �2

j � B
� �

¼ B 2
0

l0

g2

r
d
dr

r f
g

hjrrj2i
� �

: (170)

To lowest order in our expansion, the previous equation yields

jk ’ B0 �

l0 a
1
r̂
df1
dr̂

: (171)

Now, a fairly primitive expression for the bootstrap current density is34

jbs ¼ �1:46
ð� r̂Þ 1=2

Bh

dp
dr

: (172)

To lowest order in our expansion, the previous equation gives

jbs ’ �1:46
B0 �

3=2

l0 a
r̂ 3=2

f1

dp2
dr̂

: (173)

A comparison between Eqs. (171) and (173) reveals that we can incor-
porate the change in the bootstrap current profile associated with the
pedestal in the plasma pressure into our model by modifying our f1ðr̂Þ
profile as follows:

1
2
f 21 ðr̂Þ ¼

1
2
f 21 originalðr̂Þ � 1:46 � 1=2

ð r̂
0
r̂ 0 5=2

dDp2
dr̂ 0

dr̂ 0: (174)

Note that it is still the case that f 01ð1Þ ¼ 0, assuming that
f 01 originalð1Þ ¼ 0, and given that Dp02ð1Þ ¼ 0, which ensures that the
toroidal current density at the plasma boundary remains zero [See
Eq. (50)].

VI. EXAMPLE CALCULATIONS
A. Introduction

The example calculations described in this sections are made for
illustrative purpose only, and are not intended to be particularly
realistic.

B. Model profiles

Our model lowest-order toroidal current and pressure profiles
are35

f1ðr̂Þ ¼ 1
� qc

1� ð1� r̂ 2Þ�
� �

; (175)

p2ðr̂Þ ¼ pc ð1� r̂ 2Þl; (176)

respectively. Here, � 2 ðB 2
0 =l0Þ pc is the central plasma pressure, and qc

the safety-factor on the magnetic axis. Note that the model profiles sat-
isfy the constraints (50) and (51) provided that � > 2 and l > 2.

C. Coil set

Our model coil set consists of a 29-strand Ohmic heating coil
located within the plasma torus, plus six 5-strand poloidal field-coils
arrayed around the outer side of the plasma torus. See Fig. 1. Each con-
stituent strand of a given field-coil carries the same toroidal current.
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D. Example 1

Figure 1 shows an example axisymmetric tokamak equilibrium
characterized by � ¼ 0:25; qc ¼ 1:0; � ¼ 3:0; pc ¼ 0:25; l ¼ 2:1,
and Dped ¼ 0.

The equilibrium pictured in Fig. 1 is calculated as follows. First,
the total toroidal currents flowing in the Ohmic heating coil, OH, and

the six poloidal field-coils, P1 to P6, are given the relative weights 0.80,
0.02, 0.01, �0.01,�0.02, 0.65, and 0.75, respectively. Next, Eq. (163) is
used to determine the total toroidal current that must flow in the
whole coil-set in order for the plasma to be in horizontal force balance.
Next, the coil-set is shifted vertically (which is equivalent to shifting
the plasma vertically) until the vertical force-balance constraint (164)

FIG. 2. Values of the shaping functions at
the plasma boundary for the example
tokamak plasma equilibrium shown in
Fig. 1. Here, the Hna control the up-down
symmetric shaping of magnetic flux-
surfaces, whereas the Vna control the up-
down asymmetric shaping. Moreover, n is
a poloidal mode number.

FIG. 3. Various characteristic profiles for
the example tokamak plasma equilibrium
shown in Fig. 1. Here, p2 is the normalized
plasma pressure profile, g2 controls the
variation of the toroidal magnetic field-
strength, f1 and f3 control the variation of
the poloidal magnetic field-strength, q0
and q2 are the lowest-order and corrected
safety-factor profiles, respectively, and Î t
and Î p are the normalized toroidal and
poloidal currents, respectively, flowing
within flux-surfaces. Finally, r̂ is a flux-
surface label that is zero at the magnetic
axis, and unity at the plasma boundary.
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is satisfied [adjusting the total toroidal current flowing in the coil-set
such that Eq. (163) is always satisfied]. Finally, the shape of the plasma
boundary is deduced from Eqs. (165) and (166).

In this particular example, the normalized vertical field is B̂v

¼ �0:168, the normalized total toroidal plasma current is Î ta ¼ 2:11,
the normalized total poloidal plasma current is Î pa ¼ 6:98� 10�2, and
the value of the safety-factor at the plasma boundary is q2ð1Þ ¼ 4:91.

Figure 2 shows the values of the shaping functions at the plasma
boundary, Ĥna and V̂ na, for the example equilibrium pictured in
Fig. 1. It can be seen that Ĥ 1a < 0, which corresponds to the usual out-
ward horizontal shift of the plasma axis with respect to the plasma
boundary. Moreover, Ĥ 2a > 0, which corresponds to a vertical elonga-
tion of the plasma boundary. It can be seen that the V̂ na are finite, but
generally much smaller in magnitude than the Ĥna, indicating a

modest up-down asymmetry of the plasma (due to the slight up-down
asymmetry of the currents flowing in the poloidal field-coils). Finally,
it is clear that the Ĥna and the V̂ na are negligible for n> 10. This
implies that, despite the fairly strong flux-surface shaping evident in
Fig. 1, the plasma equilibrium can be accurately described in terms of a
few shaping harmonics.

Finally, Fig. 3 shows various characteristic profiles for the exam-
ple equilibrium pictured in Fig. 1. It can be seen that the corrected
safety-factor profile, q2ðr̂Þ, climbs more steeply in the edge regions of
the plasma than the lowest-order profile, q0ðr̂Þ. Moreover, the normal-
ized toroidal and poloidal plasma current profiles, Î tðr̂Þ and Î pðr̂Þ,
respectively, have zero gradients at the plasma boundary, implying
that the plasma current density is continuous across the plasma/vac-
uum interface.

E. Example 2

In our second example calculation, we add a pedestal character-
ized by Dped ¼ 0:05; d̂ped ¼ 0:025, and r̂ped ¼ 0:95 to the plasma
equilibrium shown in Fig. 1. The resulting equilibrium is illustrated in
Figs. 4–6. The pedestal in the plasma pressure is clearly evident in the
top left-hand panel of Fig. 6, whereas the spike in the bootstrap current
can be seen in the bottom left-hand panel. Note that, as a consequence
of the bootstrap current spike, the safety-factor profile becomes slightly
non-monotonic in the pedestal. In this particular example, the normal-
ized vertical field is B̂v ¼ �0:199, the normalized total toroidal plasma
current is Î a ¼ 2:80, the normalized total poloidal plasma current is
Î pa ¼ �2:19� 10�2, and the value of the safety-factor at the plasma
boundary is q2ð1Þ ¼ 3:67.

VII. SUMMARY AND DISCUSSION

Following Greene et al. (GJW)1 and Connor et al.4–7 we have
solved the Grad–Shafranov equation for an axisymmetric tokamak
plasma equilibrium via an expansion in the, supposedly small, inverse
aspect-ratio of the plasma, �. We have assumed that the displacements
of equilibrium magnetic flux-surfaces due to plasma shaping are Oð�Þ
smaller than the minor radii of the surfaces, but have, otherwise, placed
no restriction on the nature of the shaping. In particular, we allow for
an infinite number of shaping harmonics, and also for a lack of
up-down symmetry of the plasma. Following GJW, we have matched

FIG. 4. Internal magnetic flux-surfaces of a axisymmetric tokamak plasma equilib-
rium characterized by � ¼ 0:25; qc ¼ 1:0; � ¼ 3:0; pc ¼ 0:25; l ¼ 2:1,
Dped ¼ 0:05; d̂ped ¼ 0:025, and r̂ ped ¼ 0:95. See Fig. 1 caption.

FIG. 5. Values of the shaping functions at
the plasma boundary for the example
tokamak equilibrium shown in Fig. 4. See
Fig. 2 caption.
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our solution of the Grad–Shafranov equation to a vacuum solution
that extends to infinity, and consists of an expansion in toroidal func-
tions. We have also calculated the external poloidal magnetic field gen-
erated by a finite set of discrete external poloidal magnetic field-coils,
and incorporated that calculation into our toroidal function expansion.
In this manner, we are able to directly relate the shape of a large
aspect-ratio tokamak plasma to the currents flowing in the external
poloidal field-coils. Finally, we have incorporated a pedestal in the
plasma pressure, located in the outer regions of the plasma, and the
associated spike in the bootstrap current, into our model.

The main value of our calculation lies in the fact that it can
directly determine the metric elements of the plasma equilibrium via
Eqs. (21)–(25). This implies that the calculation can be used as the basis
for an aspect-ratio-expanded determination of the tearing mode stabil-
ity of the plasma equilibrium, as described in Ref. 7, or an aspect-ratio-
expanded calculation of the response of the equilibrium to an
externally applied resonant magnetic perturbation (RMP), along the
lines of Ref. 36. In future work, we intend to perform these calculations.
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