next up previous
Next: Geometric Planetary Orbit Models Up: Dates Previous: Introduction

Determination of Julian Day Numbers

The Julian day number of a given day can be determined from Tables 27-29. The date must be expressed in terms of the Gregorian calendar.

The procedure is as follows:

  1. Enter the table of century years (Table 27) with the century year immediately preceding the date in question, and take out the tabular value. If the century year is marked with a $\dag $, note this fact for use in step 2.
  2. Enter the table of years of the century (Table 28) with the last two digits of the year in question, and take out the tabular value. If the century year used in step 1 was marked with a $\dag $, diminish the tabular value by one day, unless the tabular value is zero. If the year in question is a leap year, marked with a $\ast$, note this fact for use in step 3.

  3. Enter the table of the days of the year (Table 29) with the day in question, and take out the tabular value. If the year in question is a leap year and the table entry falls after February 28, add one day to the tabular value. The sum of the values obtained in steps 1, 2, and 3 then gives the Julian day number of the date in question.

 
Example 1: June 10, 1992 CE:
 
1. Century year $^\dag $1900   2415020
2. Year of the century $^\ast$92 33603 - 1 = 33602
3. Day of the year June 10 161+1 = 162
Julian day number     2448784
       

Observe that in step 2 the tabular value has been diminished by 1 because 1900 is a common year (marked with a $\dag $ in Table 27). In step 3, the tabular value has been increased by 1 because 1992 is a leap year (marked with a $\ast$ in Table 28), and the date falls after February 28.

 
Example 2: January 18, 1824 CE:
 
1. Century year $^\dag $1800   2378496
2. Year of the century $^\ast$24 8766 - 1 = 8765
3. Day of the year January 18 18 = 18
Julian day number     2387279
       

Observe that in step 2 the tabular value has been diminished by 1 because 1800 is a common year (marked with a $\dag $ in Table 27). In step 3, the tabular value has not been increased by 1, despite the fact that 1824 is a leap year (marked with an $\ast$ in Table 28), because the date falls before February 28.

We can specify the time of day (in universal time), as well as the date, by means of fractional Julian day numbers. For instance, $t=2\,448\,784.0$ JD corresponds to 12:00 UT on June 10, 1992 CE, whereas $t=2\,448\,784.5$ JD corresponds to 24:00 UT later the same day.


Table 27: Julian Day Number: Century Years. $\dag$Common years. All years are CE. From ``The History and Practice of Ancient Astronomy", J. Evans (Oxford University Press, Oxford UK, 1998).
$^\dag $1800 2378496
$^\dag $1900 2415020
2000 2451544






Table 28: Julian Day Number: Years of the Century. $\ast$Leap year. $S$Leap year unless century is marked $\dag$. In centuries marked $\dag$, subtract one day from the tabulated values for the years 1 through 99. From ``The History and Practice of Ancient Astronomy", J. Evans (Oxford University Press, Oxford UK, 1998).
$^\S$0 0 $^\ast$20 7305 $^\ast$40 14610 $^\ast$60 21915 $^\ast$80 29220
1 336 21 7671 41 14976 61 22281 81 29586
2 731 22 8036 42 15341 62 22646 82 29951
3 1096 23 8401 43 15706 63 22011 83 30316
                   
$^\ast$4 1461 $^\ast$24 8766 $^\ast$44 16071 $^\ast$64 23376 $^\ast$84 30681
5 1827 25 9132 45 16437 65 23742 85 31047
6 2192 26 9497 46 16802 66 24107 86 31412
7 2557 27 9862 47 17167 67 24472 87 31777
                   
$^\ast$8 2922 $^\ast$28 10227 $^\ast 48$ 17532 $^\ast 68$ 24837 $^\ast$88 32142
9 3288 29 10593 49 17898 69 25203 89 32508
10 3653 30 10958 50 18263 70 25568 90 32873
11 4018 31 11323 51 18628 71 25933 91 33238
                   
$^\ast$12 4383 $^\ast$32 11688 $^\ast$52 18993 $^\ast$72 26298 $^\ast$92 33603
13 4749 33 12054 53 19359 73 26664 93 33969
14 5114 34 12419 54 19724 74 27029 94 34334
15 5479 35 12784 55 20089 75 27394 95 34699
                   
$^\ast$16 5844 $^\ast$36 13149 $^\ast$56 20454 $^\ast$76 27759 $^\ast$96 35064
17 6210 37 13515 57 20820 77 28125 97 35430
18 6575 38 13880 58 21185 78 28490 98 35795
19 6940 39 14245 59 21550 79 28855 99 36160



Table 29: Julian Day Number: Days of the Year. $\ast$In leap year, after February 28, add 1 to the tabulated value. From ``The History and Practice of Ancient Astronomy", J. Evans (Oxford University Press, Oxford UK, 1998).
Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
                         
1 1 32 60 91 121 152 182 213 244 274 305 335
2 2 33 61 92 122 153 183 214 245 275 306 336
3 3 34 62 93 123 154 184 215 246 276 307 337
4 4 35 63 94 124 155 185 216 247 277 308 338
5 5 36 64 95 125 156 186 217 248 278 309 339
                         
6 6 37 65 96 126 157 187 218 249 279 310 340
7 7 38 66 97 127 158 188 219 250 280 311 341
8 8 39 67 98 128 159 189 220 251 281 312 342
9 9 40 68 99 129 160 190 221 252 282 313 343
10 10 41 69 100 130 161 191 222 253 283 314 344
                         
11 11 42 70 101 131 162 192 223 254 284 315 345
12 12 43 71 102 132 163 193 224 255 285 316 346
13 13 44 72 103 133 164 194 225 256 286 317 347
14 14 45 73 104 134 165 195 226 257 285 318 348
15 15 46 74 105 135 166 196 227 258 288 319 349
                         
16 16 47 75 106 136 167 197 228 259 289 320 350
17 17 48 76 107 137 168 198 229 260 290 321 351
18 18 49 77 108 138 169 199 230 261 291 322 352
19 19 50 78 109 139 170 200 231 262 292 323 353
20 20 51 79 110 140 171 201 232 263 293 324 354
                         
21 21 52 80 111 141 172 202 233 264 294 325 355
22 22 53 81 112 142 173 203 234 265 295 326 356
23 23 54 82 113 143 174 204 235 266 296 327 357
24 24 55 83 114 144 175 205 236 267 297 328 358
25 25 56 84 115 145 176 206 237 268 298 329 359
                         
26 26 57 85 116 146 177 207 238 269 299 330 360
27 27 58 86 117 147 178 208 239 270 300 331 361
28 28 59 87 118 148 179 209 240 271 301 332 362
29 29 $\ast$ 88 119 149 180 210 241 272 302 333 363
30 30   89 120 150 181 211 242 273 303 334 364
31 31   90   151   212 243   304   365



next up previous
Next: Geometric Planetary Orbit Models Up: Dates Previous: Introduction
Richard Fitzpatrick 2010-07-21