next up previous
Next: Enthalpy Up: Classical Thermodynamics Previous: Adiabatic Atmosphere

Internal Energy

Equation (6.5) can be rearranged to give

$\displaystyle dE=T dS - p dV.$ (6.82)

This equation shows how the internal energy, $ E$ , depends on independent variations of the entropy, $ S$ , and the volume, $ V$ . If $ S$ and $ V$ are considered to be the two independent parameters that specify the system then

$\displaystyle E = E(S,V).$ (6.83)

It immediately follows that

$\displaystyle dE = \left(\frac{\partial E}{\partial S}\right)_V dS + \left(\frac{\partial E}{\partial V}\right)_S dV.$ (6.84)

Now, Equations (6.82) and (6.84) must be equivalent for all possible values of $ dS$ and $ dV$ . Hence, we deduce that

$\displaystyle \left(\frac{\partial E}{\partial S}\right)_V$ $\displaystyle = T,$ (6.85)
$\displaystyle \left(\frac{\partial E}{\partial V}\right)_S$ $\displaystyle = -p.$ (6.86)

We also know that

$\displaystyle \frac{\partial^{ 2} E}{\partial V \partial S} = \frac{\partial^{ 2}E}{\partial S \partial V},$ (6.87)

or

$\displaystyle \left(\frac{\partial}{\partial V}\right)_S\left(\frac{\partial E}...
...rac{\partial}{\partial S}\right)_V\left(\frac{\partial E}{\partial V}\right)_S.$ (6.88)

In fact, this is a necessary condition for $ dE$ in Equation (6.84) to be an exact differential. (See Section 4.5.) It follows from Equations (6.85) and (6.86) that

$\displaystyle \left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial p}{\partial S}\right)_V.$ (6.89)


next up previous
Next: Enthalpy Up: Classical Thermodynamics Previous: Adiabatic Atmosphere
Richard Fitzpatrick 2016-01-25