Electromagnetic Torques

The flux-surface integrated poloidal and toroidal electromagnetic torque densities acting on the plasma can be written

$\displaystyle T_\theta(r,t)$ $\displaystyle = \left\{ r\,{\bf j}\times {\bf B}\cdot {\bf e}_\theta\right\}$ (3.129)
$\displaystyle T_z(r,t)$ $\displaystyle = \left\{ R_0\,{\bf j}\times {\bf B}\cdot {\bf e}_z\right\},$ (3.130)

respectively, where

$\displaystyle \left\{\cdots\right\} \equiv \oint\oint r\,R_0\,\cdots\,d\theta\,d\varphi$ (3.131)

is a flux-surface integration operator. However, according to the equations of marginally-stable ideal-MHD, (2.375)–(2.380), both the plasma equilibrium and the tearing perturbation satisfy the force balance criterion

$\displaystyle {\bf j}\times {\bf B} \simeq \nabla p.$ (3.132)

Given that the scalar pressure is a single-valued function of $\theta$ and $\varphi $, it immediately follows that $T_\theta=T_z = 0$ throughout the plasma [4]. The only exception to this rule occurs in the immediate vicinity of the rational surface, where Equation (3.132) breaks down. It follows that we can write

$\displaystyle T_\theta(r,t)$ $\displaystyle = T_{\theta\,s}(t)\,\delta(r-r_s),$ (3.133)
$\displaystyle T_z(r,t)$ $\displaystyle = T_{z\,s}(t)\,\delta(r-r_s),$ (3.134)

where

$\displaystyle T_{\theta\,s}$ $\displaystyle = \frac{1}{4}\int_{r_{s-}}^{r_{s+}}\oint\oint R_0\,r^{\,2}\,(\del...
...!j_r\,\delta B_z^\ast-\delta\!j_r^{\,\ast}\,\delta B_z)\,dr\,d\theta\,d\varphi,$ (3.135)
$\displaystyle T_{z\,s}$ $\displaystyle = \frac{1}{4}\int_{r_{s-}}^{r_{s+}}\oint\oint R_0^{\,2}\,r\,(\del...
...a B_r^{\,\ast} - \delta\! j_\theta^{\,\ast}\,\delta B_r)\,dr\,d\theta\,d\varphi$ (3.136)

are the net poloidal and toroidal torques, respectively, acting at the rational surface. Note that the zeroth-order (in perturbed quantities) torques are zero because $B_r=j_r=0$. Furthermore, the linear (in perturbed quantities) torques average to zero over the flux-surface. Hence, the largest non-zero torques are quadratic in perturbed quantities.

Now, it follows from Equations (3.32)–(3.38) that

$\displaystyle \delta\! j_z\,\delta B_r^{\,\ast} + \delta\! j_z^{\,\ast}\,\delta B_r -\delta\!j_r\,\delta B_z^\ast-\delta\!j_r^{\,\ast}\,\delta B_z$ $\displaystyle \simeq \frac{{\rm i}\,m}{\mu_0\,r^2}\,\frac{\partial}{\partial r}...
...artial \delta\psi^\ast}{\partial r}\,\delta\psi\right)+{\cal O}(n\,\epsilon)^2,$ (3.137)
$\displaystyle \delta \!j_r\,\delta B_\theta^\ast+\delta \! j_r^{\,\ast}\,\delta...
...delta \! j_\theta\,\delta B_r^{\,\ast} - \delta\! j_\theta^{\,\ast}\,\delta B_r$ $\displaystyle \simeq -\frac{{\rm i}\,n\,\epsilon}{\mu_0\,r^2}\frac{\partial}{\p...
...ta\psi^\ast-
r\,\frac{\partial \delta\psi^\ast}{\partial r}\,\delta\psi\right).$ (3.138)

The previous four equations yield [4]

$\displaystyle T_{\theta\,s}$ $\displaystyle = -\frac{2\pi^2\,R_0\,m}{\mu_0}\,{\rm Im}({\mit\Delta\Psi}_s\,{\mit\Psi}_s^{\,\ast}),$ (3.139)
$\displaystyle T_{z\,s}$ $\displaystyle = \frac{2\pi^2\,R_0\,n}{\mu_0}\,{\rm Im}({\mit\Delta\Psi}_s\,{\mit\Psi}_s^{\,\ast}).$ (3.140)

where use has been made of Equations (3.72) and (3.73).

The net poloidal and toroidal electromagnetic torques acting on the resistive wall can be written

$\displaystyle T_{\theta\,w}$ $\displaystyle = \frac{1}{4}\int_{r_{w-}}^{r_{w+}}\oint\oint R_0\,r^{\,2}\,(\del...
...!j_r\,\delta B_z^\ast-\delta\!j_r^{\,\ast}\,\delta B_z)\,dr\,d\theta\,d\varphi,$ (3.141)
$\displaystyle T_{z\,w}$ $\displaystyle = \frac{1}{4}\int_{r_{w-}}^{r_{w+}}\oint\oint R_0^{\,2}\,r\,(\del...
... B_r^{\,\ast} - \delta\! j_\theta^{\,\ast}\,\delta B_r)\,dr\,d\theta\,d\varphi.$ (3.142)

Making use of Equations (3.32), (3.82), and (3.105)–(3.107), we obtain [4]

$\displaystyle T_{\theta\,w}$ $\displaystyle = -\frac{2\pi^2\,R_0\,m}{\mu_0}\,{\rm Im}({\mit\Delta\Psi}_w\,{\mit\Psi}_w^{\,\ast}),$ (3.143)
$\displaystyle T_{z\,w}$ $\displaystyle = \frac{2\pi^2\,R_0\,n}{\mu_0}\,{\rm Im}({\mit\Delta\Psi}_w\,{\mit\Psi}_w^{\,\ast}),$ (3.144)

The net poloidal and toroidal electromagnetic torques acting on the magnetic field-coil can be written

$\displaystyle T_{\theta\,c}$ $\displaystyle = \frac{1}{4}\int_{r_{c-}}^{r_{c+}}\oint\oint R_0\,r^{\,2}\,(\del...
...!j_r\,\delta B_z^\ast-\delta\!j_r^{\,\ast}\,\delta B_z)\,dr\,d\theta\,d\varphi,$ (3.145)
$\displaystyle T_{z\,c}$ $\displaystyle = \frac{1}{4}\int_{r_{c-}}^{r_{c+}}\oint\oint R_0^{\,2}\,r\,(\del...
... B_r^{\,\ast} - \delta\! j_\theta^{\,\ast}\,\delta B_r)\,dr\,d\theta\,d\varphi.$ (3.146)

Making use of Equations (3.32), (3.109)–(3.111), (3.120), and (3.122), we obtain [4]

$\displaystyle T_{\theta\,c}$ $\displaystyle = -\frac{2\pi^2\,R_0\,m}{\mu_0}\,{\rm Im}({\mit\Delta\Psi}_c\,{\mit\Psi}_c^{\,\ast}),$ (3.147)
$\displaystyle T_{z\,c}$ $\displaystyle = \frac{2\pi^2\,R_0\,n}{\mu_0}\,{\rm Im}({\mit\Delta\Psi}_c\,{\mit\Psi}_c^{\,\ast}).$ (3.148)

It follows from Equations (3.123)–(3.125) that

$\displaystyle {\rm Im}({\mit\Delta\Psi}_s\,{\mit\Psi}_s^{\,\ast})$ $\displaystyle = E_{sw}\,{\rm Im}({\mit\Psi}_w\,{\mit\Psi}_s^{\,\ast}),$ (3.149)
$\displaystyle {\rm Im}({\mit\Delta\Psi}_w\,{\mit\Psi}_w^{\,\ast})$ $\displaystyle = E_{ws}\,{\rm Im}({\mit\Psi}_s\,{\mit\Psi}_w^{\,\ast})+E_{wc}\,{\rm Im}({\mit\Psi}_c\,{\mit\Psi}_w^{\,\ast}),$ (3.150)
$\displaystyle {\rm Im}({\mit\Delta\Psi}_c\,{\mit\Psi}_c^{\,\ast})$ $\displaystyle =E_{cw}\,{\rm Im}({\mit\Psi}_w\,{\mit\Psi}_c^{\,\ast}).$ (3.151)

Thus,

$\displaystyle {\rm Im}({\mit\Delta\Psi}_s\,{\mit\Psi}_s^{\,\ast})+ {\rm Im}({\m...
...w\,{\mit\Psi}_w^{\,\ast}) + {\rm Im}({\mit\Delta\Psi}_c\,{\mit\Psi}_c^{\,\ast})$ $\displaystyle = (E_{sw}-E_{ws})\,{\rm Im}({\mit\Psi}_w\,{\mit\Psi}_s^{\,\ast})$    
  $\displaystyle \phantom{=}+ (E_{wc}-E_{cw})\,{\rm Im}({\mit\Psi}_c\,{\mit\Psi}_w^{\,\ast}).$ (3.152)

However, according to Equations (3.90), (3.127), and (3.128), $E_{sw}=E_{ws}$ and $E_{wc}=E_{cw}$. We deduce that

$\displaystyle {\rm Im}({\mit\Delta\Psi}_s\,{\mit\Psi}_s^{\,\ast})+ {\rm Im}({\m...
...{\mit\Psi}_w^{\,\ast}) + {\rm Im}({\mit\Delta\Psi}_c\,{\mit\Psi}_c^{\,\ast})=0.$ (3.153)

Hence, Equations (3.139), (3.140), (3.143), (3.144), (3.147), and (3.148) yield [4]

$\displaystyle T_{\theta\,s} + T_{\theta\,w}+T_{\theta\,c}$ $\displaystyle =0,$ (3.154)
$\displaystyle T_{z\,s} + T_{z\,w}+T_{z\,c}$ $\displaystyle = 0.$ (3.155)

In other words, the plasma/resistive wall/field-coil system exerts zero net poloidal electromagnetic torque, and zero net toroidal electromagnetic torque, on itself.