Useful Identities

The following identities are useful:

$\displaystyle {\bf A}$ $\displaystyle = A^{\,r}\,{\cal J}\,\nabla\theta\times\nabla\varphi
+ A^{\,\thet...
...bla\varphi\times\nabla r
+ A^{\,\varphi}\,{\cal J}\,\nabla r\times\nabla\theta,$ (14.4)
$\displaystyle {\bf A}$ $\displaystyle = A_r\,\nabla r+A_\theta\,\nabla\theta+A_\varphi\,\nabla\varphi,$ (14.5)
$\displaystyle {\bf A}\cdot{\bf B}$ $\displaystyle = A_r\,B^{\,r}+A_\theta \,B^{\,\theta}+A_\varphi\,B^{\,\varphi}=A^{\,r}\,B_r+A^{\,\theta}\,B_{\theta}+A^{\,\varphi}\,B_\varphi,$ (14.6)
$\displaystyle ({\bf A}\times {\bf B})_r$ $\displaystyle = {\cal J}\,(A^{\,\theta}\,B^{\,\varphi}-A^{\,\varphi}\,B^{\,\theta}),$ (14.7)
$\displaystyle ({\bf A}\times {\bf B})_\theta$ $\displaystyle = {\cal J}\,(A^{\,\varphi}\,B^{\,r}-A^{\,r}\,B^{\,\varphi}),$ (14.8)
$\displaystyle ({\bf A}\times {\bf B})_\varphi$ $\displaystyle = {\cal J}\,(A^{\,r}\,B^{\,\theta}-A^{\,\theta}\,B^{\,r}),$ (14.9)
$\displaystyle {\cal J}\,({\bf A}\times {\bf B})^{\,r}$ $\displaystyle = A_{\theta}\,B_{\varphi}-A_{\varphi}\,B_{\theta},$ (14.10)
$\displaystyle {\cal J}\,({\bf A}\times {\bf B})^{\,\theta}$ $\displaystyle = A_{\varphi}\,B_{r}-A_{r}\,B_{\varphi},$ (14.11)
$\displaystyle {\cal J}\,({\bf A}\times {\bf B})^{\,\varphi}$ $\displaystyle =A_{r}\,B_{\theta}-A_{\theta}\,B_{r},$ (14.12)
$\displaystyle {\cal J}\,\nabla \cdot{\bf A}$ $\displaystyle = \frac{\partial\,({\cal J}\,A^{\,r})}{\partial r} +
\frac{\parti...
...\partial \theta}+
\frac{\partial\,({\cal J}\,A^{\,\varphi})}{\partial \varphi},$ (14.13)
$\displaystyle {\cal J}\,(\nabla\times {\bf A})^{\,r}$ $\displaystyle = \frac{\partial A_\varphi}{\partial \theta}
-\frac{\partial A_\theta}{\partial \varphi},$ (14.14)
$\displaystyle {\cal J}\,(\nabla\times {\bf A})^{\,\theta}$ $\displaystyle = \frac{\partial A_r}{\partial \varphi}
-\frac{\partial A_\varphi}{\partial r},$ (14.15)
$\displaystyle {\cal J}\,(\nabla\times {\bf A})^{\,\varphi}$ $\displaystyle = \frac{\partial A_\theta}{\partial r}
-\frac{\partial A_r}{\partial \theta}.$ (14.16)

Here, ${\bf A}$ and ${\bf B}$ are arbitrary vector fields. Moreover, subscript/superscript $r$, $\theta$, $\varphi $ refer to covariant/contravariant components of a vector in the $r$, $\theta$, $\varphi $ coordinate system.