Flux-Surface Average Operator

The flux-surface average operator, $\langle\cdots\rangle$, is defined [8]

\begin{displaymath}\langle A(\varsigma,{\mit\Omega},\zeta,T)\rangle
\equiv \left...
.../2}}\,\frac{d\zeta}{2\pi}
&&{\mit\Omega}> 1
\end{array}\right.,\end{displaymath} (8.67)

where $\zeta_0=\cos^{-1}({\mit\Omega})$ and $0\leq\zeta_0\leq\pi$. It follows that

$\displaystyle \langle\{A,{\mit\Omega}\}\rangle = 0$ (8.68)

for any $A(\varsigma,{\mit\Omega},\zeta,T)$. It is helpful to define

$\displaystyle \tilde{A} \equiv A - \frac{\langle A\rangle}{\langle 1\rangle}.$ (8.69)

It follows that

$\displaystyle \langle \tilde{A}\rangle =0$ (8.70)

for any $A(\varsigma,{\mit\Omega},\zeta,T)$.

Equation (8.66) yields

$\displaystyle {\cal J}_0({\mit\Omega},\zeta,T)= \overline{\cal J}_0({\mit\Omega...
...al_{\mit\Omega}\!\left[M\left(M+\frac{L}{1+\tau}\right)\right]\widetilde{X^2} ,$ (8.71)

where $\overline{{\cal J}}_0({\mit\Omega},T)$ is an undetermined flux-surface function.