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1 Fundamental Plane
Consider Fig. 1. Let E be the center of the Earth, and let all other points in the diagram lie on
the surface of a sphere whose center is E. EC is a straight line that is parallel to the straight line
passing through the apparent (i.e., as seen from the Earth, taking aberration into account) centers
of the Sun and the Moon. DBA is a plane, perpendicular to EC, that passes through E. This plane
is known as the fundamental plane. Let FCPB be the arc of a great circle, centered on E, and
let EP be directed toward the northern celestial pole. Let the plane DΥFYHA coincide with the
Earth’s equatorial plane, let EΥ be directed towards the vernal equinox, and let the arc of the great
circle PH lie in the plane of the Greenwich meridian. Finally, let X be a celestial body (either the
Sun or the Moon), and let PXY , CX, and AX be the arcs of great circles.
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Figure 1: The fundamental plane.
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All arcs referred to in the following are the arcs of great circles. It is clear, from the previous
description, that the arcs FA, CB, PA, PH, PY , and PF are all 90◦. Let d and a denote the
declination and right ascension of point C. It follows that arc CF is d, arc PC is 90◦ − d, and arc
PB is d. Furthermore, arc ΥF is a. Let δ and α denote the apparent declination and right ascension
of X, respectively. It follows that arc XY is δ, and arc XP is 90◦ − δ. Furthermore, arc ΥY is α,
arc FY is α − a, and arc YA is 90◦ − α + a. Now, the spherical angles APB and APC are both
90◦. However, the spherical angle XPA is 90◦ − α + a (because the arc YA, whose pole is P, is
90◦ − α + a). Hence, the spherical angles XPB and XPC are 180◦ − α + a and α − a, respectively.

Let us define a right-handed Cartesian coordinate system, x, y, z, whose origin is E, and which
is such that the x-axis corresponds to EA, the y-axis to EB, and the z-axis to EC. These axes are
referred to as fundamental axes, and the corresponding Cartesian coordinate system is known as
the fundamental system. Let X correspond to the center of the Sun, and let x, y, z be its coordinates
in the fundamental system. It follows that

x = r cos AX, (1)

y = r cos BX, (2)

z = r cos CX, (3)

where r is the Sun’s apparent geocentric distance. Note that δ and α now refer to the apparent
declination and right ascension of the Sun, respectively.

Now, in the spherical triangle XPA, sides PA and XP are 90◦ and 90◦ −δ, respectively, whereas
angle XPA is 90◦ − α + a. Hence,

cos AX = cos PA cos XP + sin PA sin XP cos XPA

= cos δ sin(α − a). (4)

In the spherical triangle XPB, sides PB and XP are d and 90◦ −δ, respectively, whereas angle XPB
is 180◦ − α + a. Hence,

cos BX = cos PB cos XP + sin PB sin XP cos XPB

= cos d sin δ − sin d cos δ cos(α − a). (5)

Finally, in the spherical triangle XPC, sides PC and XP are 90◦ − d and 90◦ − δ, respectively,
whereas angle XPC is α − a. Hence,

cos CX = cos PC cos XP + sin PC sin XP cos XPC

= sin d sin δ + cos d cos δ cos(α − a). (6)

It follows that the Cartesian coordinates of the Sun in the fundamental system are

x = r cos δ sin(α − a), (7)

y = r [sin δ cos d − cos δ sin d cos(α − a)] , (8)

z = r [sin δ sin d + cos δ cos d cos(α − a)] . (9)
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Let x1, y1, z1 be the Cartesian coordinates of the center of the Moon in the fundamental system.
By analogy with the previous analysis, we can write

x1 = r1 cos δ1 sin(α1 − a), (10)

y1 = r1 [sin δ1 cos d − cos δ1 sin d cos(α1 − a)] , (11)

z1 = r1 [sin δ1 sin d + cos δ1 cos d cos(α1 − a)] , (12)

where r1 is the Moon’s apparent geocentric distance, whereas δ1 and α1 are its apparent declination
and right ascension, respectively.

Now, because the z-axis is parallel to the straight line joining the centers of the Sun and the
Moon, it follows that

x = x1, (13)

y = y1. (14)

Furthermore, (x1, y1) are the coordinates of the center of the shadow of the Moon cast by the Sun
on the fundamental plane.

Equations (7), (10), and (13) yield

r cos δ sin(α − a) = r1 cos δ1 sin(α1 − a), (15)

or
r cos δ (sinα cos a − cosα sin a) = r1 cos δ1 (sinα1 cos a − cosα1 sin a), (16)

which can be rearranged to give

sin a
cos a

=
r cos δ sinα − r1 cos δ1 sinα1

r cos δ cosα − r1 cos δ1 cosα1
. (17)

Equations (8), (11), and (14) yield

r [sin δ cos d − cos δ sin d cos(α − a)] = r1 [sin δ1 cos d − cos δ1 sin d cos(α1 − a)], (18)

which can be rearranged to give

tan d =
r sin δ − r1 sin δ1

r cos δ cos(α − a) − r1 cos δ1 cos(α1 − a)
. (19)

If we define

X = r cos δ cosα − r1 cos δ1 cosα1, (20)

Y = r cos δ sinα − r1 cos δ1 sinα1, (21)

Z = r sin δ − r1 sin δ1, (22)
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then it is clear from Eq. (17) that

cos a =
X

(X 2 + Y 2)1/2 , (23)

sin a =
Y

(X 2 + Y 2)1/2 . (24)

Furthermore,

r cos δ cos(α − a) − r1 cos δ1 cos(α1 − a) = X cos a + Y sin a =
(
X 2 + Y 2

)1/2
, (25)

Hence, Eq. (19) yields

tan d =
Z

(X 2 + Y 2)1/2 . (26)

It follows that

sin a
cos a

=
Y
X
, (27)

sin d =
Z

(X 2 + Y 2 + Z 2)1/2 . (28)

Equations (27) and (28) enable the right ascension and declination of point C to be calculated
directly from the apparent positions of the Sun and the Moon.

Let G denote Greenwich apparent sidereal time. It follows that, in Fig. 1, the arc HΥ is G
(converted into an angle). Moreover, arc FΥ is a. Let µ denote the hour angle of point C at the
Greenwich meridian. It follows that arc HF is µ. Hence,

µ = G − a. (29)

2 Geometry of Moon’s Shadow in Fundamental Plane
Referring to Fig. 2, AS A′ represents the Sun, whose center is at S . Likewise, BMB′ represents
the Moon, whose center is at M. BTRV2B′B is the Moon’s umbra, whose vertex is V2. Like-
wise, BHCDKB′B is the Moon’s penumbra, whose virtual vertex is V1. The fundamental plane
corresponds CRFD, and F is the center of the Moon’s shadow in this plane.

Let f1 be the half-angle of the penumbral cone. It follows that angles AV1S and MV1B are both
equal to f1. Moreover, angles S AV1 and MBV1 are both 90◦ (since AV1 and BV1 are tangents to the
Sun and Moon, respectively). Simple trigonometry reveals that

sin f1 =
R

S V1
=

k
V1M

=
R + k
S M
, (30)

where R is the radius of the Sun, and k the radius of the Moon. Now,

S M = z − z1. (31)
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Figure 2: The Moon’s shadow.

Hence, we obtain

sin f1 =
R + k
z − z1

. (32)

Let f2 be the half-angle of the umbral cone. It follows that angles A′V2S and BV2M are both
equal to f2. Moreover, angles S A′V2 and MBV2 are both 90◦ (since A′V2 and BV2 are tangents to
the Sun and Moon, respectively). Simple trigonometry reveals that

sin f2 =
R

S V2
=

k
V2M

=
R − k
S M
. (33)

Hence,

sin f2 =
R − k
z − z1

. (34)

Again referring to Fig. 2, FM = z1, where z1 is the Moon’s z-coordinate in the fundamental
system, and V1M = k/ sin f1. Let us denote the distance FV1, which is the z-coordinate of the
virtual vertex of the penumbral cone, as c1. It follows that

c1 = z1 +
k

sin f1
. (35)

Now, V2M = k/ sin f2. Let us denote the distance −FV2, which is the z-coordinate of the vertex
of the umbral cone as c2. It follows that

c2 = z1 − k
sin f2

. (36)

Note that c2 is positive when the vertex lies in front (i.e., on the positive z side) of the fundamental
plane, and vice versa.

5



Let l1 = FC be the radius of the intersection of the penumbral cone with the fundamental plane.
It follows that

l1 = c1 tan f1, (37)

which implies that

l1 = z1 tan f1 +
k

cos f1
. (38)

Let l2 = −FR be minus the radius of the intersection of the umbral cone with the fundamental
plane. It follows that

l2 = c2 tan f2, (39)

which implies that

l2 = z1 tan f2 − k
cos f2

. (40)

Note that l1 is always positive. On the other hand, l2 is positive when the vertex of the umbral cone
lies in front of the fundamental plane, and vice versa.

The quantities x, y, d, µ, f1, f2, l1, and l2 are known as the Besselian elements of the eclipse.

3 Geometry of Moon’s Shadow in Observation Plane
Consider an observer on the surface of the Earth. Let the observer’s coordinates in the fundamental
system be ξ, η, ζ. Let the observer lie somewhere in the plane KGT H, shown in Fig. 2, which is
parallel to the fundamental plane, and is known as the observation plane. Here, point G is the center
of the Moon’s shadow in the observation plane. It follows that the equation of the observation plane
is z = ζ.

Let L1 = GH be the radius of the intersection of the penumbral cone with the observation plane.
Now, FG = ζ and FV1 = c1, so GV1 = c1 − ζ, and

L1 = (c1 − ζ) tan f1, (41)

which implies that
L1 = l1 − ζ tan f1. (42)

Let L2 = −GT be minus the radius of the intersection of the umbral cone with the observation
plane. Now, FG = ζ and FV2 = −c2, so GV2 = ζ − c2, and

L2 = −(ζ − c2) tan f2, (43)

which implies that
L2 = l2 − ζ tan f2. (44)

Note that L1 is always positive. On the other hand, L2 is negative when the vertex of the umbral
cone lies behind the observation plane, and vice versa. This implies that the eclipse is total when
L2 < 0, and annular when L2 > 0.
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4 Observer Coordinates
Let us reinterpret Fig. 1. Now, all points except E (which again represents the center of the Earth)
lie on the surface of the Earth. As before, EC is parallel to the straight line joining the apparent
centers of the Sun and the Moon, DBA is the fundamental plane, EΥ is directed toward the vernal
equinox, and PH lies in the plane of the Greenwich meridian. However, P is now the Earth’s
northern geographic pole, DΥF Y HA the Earth’s equator, and X the position of the observer. As
before, the arc HF is equal to µ. Let φ′ and λ be the observer’s geocentric latitude and longitude
(measured westward from the Greenwich meridian), respectively. It follows that arc XY is φ′, and
arc XP is 90◦ − φ′. Moreover, arc HY is λ, which implies that arc YF is µ − λ. Let

h = µ − λ. (45)

It follows that the spherical angle XPC is h, whereas the spherical angle XPA is 90◦ − h, and,
finally, the spherical angle XPB is 180◦ − h.

The Cartesian components of the observer in the fundamental system are written

ξ = ρ cos AX, (46)

η = ρ cos BX, (47)

ζ = ρ cos CX, (48)

where ρ is the observer’s geocentric distance.
Now, in the spherical triangle XPA, sides PA and XP are 90◦ and 90◦−φ′, respectively, whereas

angle XPA is 90◦ − h. Hence,

cos AX = cos PA cos XP + sin PA sin XP cos XPA

= cosφ′ sin h. (49)

In the spherical triangle XPB, sides PB and XP are d and 90◦ − φ′, respectively, whereas angle
XPB is 180◦ − h. Hence,

cos BX = cos PB cos XP + sin PB sin XP cos XPB

= cos d sinφ′ − sin d cos φ′ cos h. (50)

Finally, in the spherical triangle XPC, sides PC and XP are 90◦ − d and 90◦ − φ′, respectively,
whereas angle XPC is h. Hence,

cos CX = cos PC cos XP + sin PC sin XP cos XPC

= sin d sinφ′ + cos d cosφ′ cos h. (51)

It follows that the Cartesian coordinates of the observer in the fundamental system are

ξ = ρ cos φ′ sin h, (52)

η = ρ
(
sinφ′ cos d − cos φ′ sin d cos h

)
, (53)

ζ = ρ
(
sinφ′ sin d + cosφ′ cos d cos h

)
. (54)
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Figure 3: The figure of the Earth.

5 Figure of Earth
Figure 3 represents a meridian cross-section of the Earth. C is the Earth’s center, N its north pole,
and S its south pole. The straight line ECF is perpendicular to the straight line NCS , HK is the
horizontal plane of the observer, O, and OP is perpendicular to HK. The line OM, parallel to S N,
subtends an angle with OH that is the altitude of the northern celestial pole, and is, by definition,
the observer’s geographic latitude, φ. Angle OPF is also equal to φ. The radius vector OC, which
is of magnitude ρ, joins the observer to the center of the Earth, and subtends an angle with CF that,
by definition, is the observer’s geocentric latitude, φ′.

Let a = CF be the Earth’s equatorial radius, and b = NC the Earth’s polar radius. We can write

b
a
= 1 − f , (55)

where
f =

1
298.257

(56)

is the Earth’s flattening factor.
Let us define Cartesian coordinates such that CF is the X-axis, and CN the Z-axis. Assuming

that the Earth is spheroidal, the equation of its surface is

X 2

a 2 +
Z 2

b 2 = 1. (57)

Thus, at point O,

tan φ′ =
Z
X
. (58)
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Recall that the slope of the tangent line at a point is dZ/dX, and that the slope of the normal line at
the same point is −dX/dZ. Hence,

tanφ = −dX
dZ
. (59)

However, according to Eqs. (57) and (58),

dX
dZ
= −a 2

b 2

Z
X
= −a 2

b 2 tan φ′. (60)

Hence,
tanφ′ = (1 − f ) 2 tanφ, (61)

where use has been made of Eq. (55).
The equation of the Earth’s surface can also be written in parametric form:

X = a cos u, (62)

Z = b sin u. (63)

It follows that
tan φ′ =

Z
X
=

b
a

tan u. (64)

Hence,

tanφ′ = (1 − f ) tan u, (65)

tanφ =
tan u
1 − f

, (66)

and

X ≡ ρ cosφ′ = a cos u, (67)

Z ≡ ρ sinφ′ = b sin u = a (1 − f ) sin u, (68)

where ρ is the observer’s geocentric distance.
Finally, it follows from Eqs. (52)–(54) and (67)–(68) that the observer’s coordinates in the

fundamental system can be written

ξ = cos u sin h, (69)

η = (1 − f ) sin u cos d − cos u sin d cos h, (70)

ζ = (1 − f ) sin u sin d + cos u cos d cos h. (71)

Here, and in the following, all lengths are expressed as fractions of the Earth’s equatorial radius,

a = 6378.14 km. (72)
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6 Determination of Observer Latitude and Longitude
Consider an observer on the near (to the Sun and Moon) side of the Earth’s surface whose coordi-
nates in the fundamental system are (ξ, η, ζ). It follows from Eqs. (69) and (70) that

ξ = cos u sin h, (73)

η = (1 − f ) sin u cos d − cos u sin d cos h. (74)

Eliminating h between the previous two equations, we obtain
[
η − (1 − f ) sin u cos d

] 2
= cos2 u sin2 d − ξ 2 sin2 d. (75)

It is convenient to make the following definitions:

ω =
[
1 − f (2 − f ) cos2 d

]−1/2
, (76)

η1 = ωη, (77)

b1 = ω sin d, (78)

b2 = (1 − f )ω cos d. (79)

Note that b 2
1 + b 2

2 = 1. The previous five equations can be combined to give

sin2 u − 2 b2 η1 sin u + η 2
1 + b 2

1 (ξ 2 − 1) = 0. (80)

It follows that
sin u = b2 η1 ± b1 B, (81)

where
B =

(
1 − ξ 2 − η 2

1

)1/2
. (82)

Now, Eq. (73) gives

sin h =
ξ

cos u
, (83)

whereas Eqs. (74), (77)–(79), and (81) imply that

cos h =
±b2 B − b1 η1

cos u
. (84)

Finally, Eqs. (71), (78), (79), (81), and (84) can be combined to give

ζ = −ω f (2 − f ) cos d sin d η1 ± ω (1 − f ) B. (85)

The previous equation gives the z-coordinates (in the fundamental system) of the two intersec-
tion points of the straight line, normal to the fundamental plane, that passes through the point (ξ,
η) in the plane. The upper sign corresponds to a point on the near side of the Earth, whereas the
lower sign corresponds to a point on the far side. Obviously, it is only possible to observe a solar
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eclipse on the near side of the Earth. Hence, we must select the upper signs in Eqs. (81), (84), and
(85). Note that these expressions are only valid if

∆ ≡ 1 − ξ 2 − η 2
1 ≥ 0. (86)

If ∆ < 0 then this indicates that the previously mentioned straight line does not intersect the surface
of the Earth. Assuming that the previous inequality is satisfied, the observer’s geographic latitude
and longitude can be deduced from the following equations:

sin u = b1 B + b2 η1, (87)

sin h
cos h

=
ξ

b2 B − b1 η1
, (88)

tanφ =
tan u
1 − f

, (89)

λ = µ − h. (90)

Here, use has been made of Eqs. (45), (66), (81), (83), and (84).

7 Eclipse Magnitude
The magnitude of a solar eclipse,M, is defined as the faction of the solar diameter that is obscured.
Consider the magnitude of an annular (say) eclipse for an observer, O, situated inside the penum-
bral cone, but outside the umbral cone, as shown in Fig. 4. In this figure, AS D′A′ represents the
Sun, whose center is S , and B′MB represents the Moon, whose center is M. POUGU′T ′ is the
observation plane, UU′ and PP′ are the projections of the Moon’s umbra and penumbra on this
plane, respectively, and G is the center of the Moon’s shadow. V1 is the virtual vertex of the Moon’s
penumbra. Finally, V2 is the vertex of the Moon’s umbra, which lies in front of the observation
plane for the case of an annular eclipse. Point O has the coordinates (ξ, η, ζ), in the fundamental
system, whereas point G has the coordinates (x, y, ζ). Thus, the distance GO = m can be written

m =
[
(ξ − x) 2 + (η − y) 2

] 1/2
. (91)

According to Sect. 3, GU = GU′ = L2 and GP = GP′ = L1. Consider the similar triangles
AD′B′ and U′OB′. We can write

AD′

U′O
=

MS
MG
. (92)

Consider the similar triangles D′A′B′ and OPB′. We can write

D′A′

OP
=

MS
MG
. (93)

It follows that

M = D′A′

AD′ + D′A′
=

OP
U′O + OP

=
GP −GO

GU′ +GO + (GP −GO)
=

GP −GO
GU′ +GP

. (94)
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Figure 4: Eclipse magnitude.

Hence,

M = L1 − m
L1 + L2

. (95)

If the observer were situated on the edge of the umbral cone at U or U′ then m = L2, and the
previous formula yields

M = L1 − L2

L1 + L2
. (96)

In fact, this equation applies throughout the annular phase of the eclipse.
If the central phase is total, rather than annular, then m = −L2 when the observer lies on the

edge of the umbral cone. Consequently, the eclipse magnitude is unity, and remains so throughout
the total phase. However, the previous formula can also be applied to total eclipses. In this case,
it yields the factor by which the apparent size of the Moon exceeds that of the Sun, as seen by an
observer on the eclipse’s central line.

8 Eclipse Duration
Consider a point of given geographic latitude and longitude on the Earth’s surface. Suppose that
this point coincides with the center of the Moon’s shadow at t = 0. It follows that x = ξ and y = η
at t = 0. Let us calculate the duration of the total or annular phase of the eclipse seen at this point.
By definition, when the total or annular phase of the eclipse is just beginning or ending, the point in
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question lies at the edge of the umbral cone. Now, the umbral cone intersects the observation plane,
z = ζ, in a circle of radius L2 = l2 − ζ tan f2, centered on point (x, y). Moreover, the coordinates of
the observation point in this plane are (ξ, η). Thus, at the beginning or end of the total or annular
phase,

(x − ξ)2 + (y − η)2 = (l2 − ζ tan f2) 2. (97)

According to Eqs. (69)–(71), and (90), at constant u and λ,

ξ′ = µ′ (ζ cos d − η sin d), (98)

η′ = µ′ ξ sin d − d′ ζ, (99)

ζ′ = −µ′ ξ cos d + d′ η, (100)

where ′ denotes a time derivative. It follows that, to first order in t,

x − ξ = a t, (101)

y − η = b t, (102)

where

a =
[
x′ + µ′ (y sin d − ζ cos d)

]
t=0 , (103)

b =
(
y′ − µ′ x sin d + d′ ζ

)
t=0 . (104)

Hence, Eq. (97) reduces to (
a 2 + b 2

)
t 2 = (L2 + c t) 2, (105)

where
L2 = (l2 − ζ tan f2)t=0, (106)

and
c = l′2 +

(
µ′ x cos d − d′ y

)
t=0 tan f2. (107)

Here, we have neglected the relatively weak time variation in f2 during the total or annular phase.
It follows that (

n 2 − c 2
)

t 2 − 2 L2 c t − L 2
2 = 0, (108)

where
n =

(
a 2 + b 2

) 1/2
. (109)

Thus, the times at which the total or annular phase begin and end are

t = ±
( L2

n ± c

)
. (110)

The duration of the phase in question is thus

τ =
2 |L2| n
n 2 − c 2 . (111)

If all time derivatives are expressed in units of inverse days then Eq. (111) yields

τ(second) =
172800 |L2| n

n 2 − c 2 . (112)

Note that the eclipse is total if L2 < 0, and annular if L2 > 0.

13



9 Contact Times
Consider an observer situated at the edge of the penumbral cone. Let (ξ, η) be the observer’s
fundamental coordinates in the observation plane, z = ζ. The fundamental coordinates of the
center of the Moon’s shadow in the observation plane are (x, y). It follows that

[
(ξ − x) 2 + (η − y) 2

] 1/2
= L1. (113)

Hence, we can write

ξ = x + L1 cosα, (114)

η = y + L1 sinα. (115)

Consider the quantity [see Eq. (86)]

∆1(α, L1) ≡ 1 − ξ 2 − ω 2 η 2 = 1 − (x + L1 cosα) 2 − ω 2 (y + L1 sinα) 2. (116)

This quantity attains its maximal value when

(x + L1 cosα) sinα = ω 2 (y + L1 sinα) cosα. (117)

Let

r =
(
x 2 + y 2

) 1/2
, (118)

sin θ
cos θ

=
y

x
. (119)

It follows that ∆1(α, L1) is maximized when

α = αmax = θ + π − sin−1(Ω1), (120)

and
Ω1 =

(
ω 2 − 1

) (
sin θ +

L1

r
sinα

)
cosα. (121)

Likewise, ∆1(α, L1) is minimized when

α = αmin = θ + sin−1(Ω1). (122)

The previous three equations can be conveniently solved by iteration.
At a given time, the points on the Earth’s surface at which ∆1(α, L1) = 0 correspond to those

points at which the partial phase of the eclipse is either beginning or ending, either at sunrise or
sunset. The instants in time at which ∆1(αmax, L1) = 0 corresponds to the first and last external
contacts of the penumbral cone with the Earth’s surface. These times are denoted P1 and P4, re-
spectively. The instants in time at which ∆1(αmin, L1) = 0 corresponds to the first and last internal
contacts of the penumbral cone with the Earth’s surface. These times are denoted P2 and P3, re-
spectively. Points on the Earth’s surface at which the partial phase of the eclipse is either beginning
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or ending at sunset only exist between times P1 and P2. Likewise, points on the Earth’s surface at
which the partial phase of the eclipse is either beginning or ending at sunrise only exist between
times P3 and P4.

Consider an observer situated at the edge of the umbral cone. By analogy with the previous
analysis, we can write

ξ = x + |L2| cosα, (123)

η = y + |L2| sinα. (124)

Consider the quantity [see Eq. (86)]

∆2(α, L2) ≡ 1 − ξ 2 − ω 2 η 2 = 1 − (x + |L2| cosα) 2 − ω 2 (y + |L2| sinα) 2. (125)

This quantity is maximized when

α = αmax = θ + π − sin−1(Ω2), (126)

and

Ω2 =
(
ω 2 − 1

) (
sin θ +

|L2|
r

sinα
)

cosα. (127)

Likewise, ∆2(α, L2) is minimized when

α = αmin = θ + sin−1(Ω2). (128)

Here, r and θ are defined in Eqs. (118) and (119), respectively. The previous three equations can
be conveniently solved by iteration.

At a given time, the points on the Earth’s surface at which ∆2(α, L2) = 0 correspond to those
points at which the total/annular phase of the eclipse is either beginning or ending, either at sun-
rise or sunset. The instants in time at which ∆2(αmax, L2) = 0 corresponds to the first and last
external contacts of the umbral cone with the Earth’s surface. These times are denoted U1 and
U4, respectively. The instants in time at which ∆2(αmin, L2) = 0 corresponds to the first and last
internal contacts of the umbral cone with the Earth’s surface. These times are denoted U2 and U3,
respectively. Points on the Earth’s surface at which the total/annular phase of the eclipse is either
beginning or ending at sunset only exist between times U1 and U2. Likewise, points on the Earth’s
surface at which the total/annular phase of the eclipse is either beginning or ending at sunrise only
exist between times U3 and U4.

10 Maximum Eclipse
According to Sect. 7, the eclipse magnitude can be written

M = L1 − m
L1 + L2

, (129)
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where
m =

[
(ξ − x) 2 + (η − y) 2

] 1/2
. (130)

Let (ξ, η, ζ) be the coordinates of all points on the Earth’s surface at which the eclipse magnitude
takes the valueM. It follows that

ξ = x + m cosα, (131)

η = y + m sinα, (132)

where
m = L1 − (L1 + L2)M. (133)

At fixed location, the time of maximum eclipse magnitude corresponds to

M′ = 0, (134)

where ′ denotes a time derivative. It follows from Eq. (129) thatM′ = 0 when

m′ =
(

L′1 L2 − L1 L′2
L1 + L2

)
+ m

(
L′1 + L′2
L1 + L2

)
. (135)

Here, making use of Eqs. (42) and (44),

L′1 = l′1 − ζ′ tan f1, (136)

L′2 = l′2 − ζ′ tan f2, (137)

where we have neglected any time variation of the quantities f1 and f2.
Let u = ξ − x, u′ = ξ′ − x′, v = η − y, and v′ = η′ − y′. It follows from Eq. (130) that

m′m = u u′ + v v′. (138)

Let

n = (u′ 2 + v′ 2) 1/2, (139)

sin θ
cos θ

= −u′

v′
. (140)

It follows that u = m cosα, v = m sinα, u′ = −n sin θ, and v′ = n cos θ. Hence, Eq. (135) yields

sin(α − θ) = 1
n

(
L′1 L2 − L1 L′2

L1 + L2

)
+

m
n

(
L′1 + L′2
L1 + L2

)
. (141)

Hence, the eclipse magnitude is maximized when α = α±, where

α+ = θ + sin−1(Λ), (142)

α− = θ + π − sin−1(Λ), (143)

and

Λ =
1
n

(
L′1 L2 − L1 L′2

L1 + L2

)
+

m
n

(
L′1 + L′2
L1 + L2

)
. (144)
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