next up previous
Next: Motion in a General Up: Planetary Motion Previous: Orbital Energies

Kepler Problem

In a nutshell, the so-called Kepler problem consists of determining the radial and angular coordinates, $r$ and $\theta $, respectively, of an object in a Keplerian orbit about the Sun as a function of time.

Consider an object in a general Keplerian orbit about the Sun which passes through its perihelion point, $r=r_p$ and $\theta=0$, at $t=0$. It follows from the previous analysis that

\begin{displaymath}
r = \frac{r_p\,(1+e)}{1+e\,\cos\theta},
\end{displaymath} (276)

and
\begin{displaymath}
{\cal E} = \frac{\dot{r}^{\,2}}{2} + \frac{h^2}{2\,r^2} - \frac{G\,M}{r},
\end{displaymath} (277)

where $e$, $h = \sqrt{G\,M\,r_p\,(1+e)}$, and ${\cal E} = G\,M\,(e-1)/(2\,r_p)$ are the orbital eccentricity, angular momentum per unit mass, and energy per unit mass, respectively. The above equation can be rearranged to give
\begin{displaymath}
\dot{r}^{\,2} = (e-1)\,\frac{G\,M}{r_p} - (e+1)\,\frac{r_p\,G\,M}{r^2}
+ \frac{2\,G\,M}{r}.
\end{displaymath} (278)

Taking the square-root, and integrating, we obtain
\begin{displaymath}
\int_{r_p}^r\frac{r\,dr}{[2\,r + (e-1)\,r^2/r_p - (e+1)\,r_p]^{1/2}} =
\sqrt{G\,M}\,\,t.
\end{displaymath} (279)

Consider an elliptical orbit characterized by $0<e < 1$. Let us write

\begin{displaymath}
r = \frac{r_p}{1-e}\,(1-e\,\cos E),
\end{displaymath} (280)

where $E$ is termed the elliptic anomaly. In fact, $E$ is an angle which varies between $-\pi$ and $+\pi$. Moreover, the perihelion point corresponds to $E=0$, and the aphelion point to $E=\pi$. Now,
\begin{displaymath}
dr = \frac{r_p}{1-e}\,e\,\sin E\,dE,
\end{displaymath} (281)

whereas
$\displaystyle 2\,r + (e-1)\,\frac{r^2}{r_p}- (e+1)\,r_p$ $\textstyle =$ $\displaystyle \frac{r_p}{1-e}\,e^2\,(1-\cos^2 E)$  
  $\textstyle =$ $\displaystyle \frac{r_p}{1-e}\,e^2\,\sin^2E.$ (282)

Thus, Equation (279) reduces to
\begin{displaymath}
\int_0^E (1-e\,\cos E)\,dE = \left(\frac{G\,M}{a^3}\right)^{1/2} t,
\end{displaymath} (283)

where $a = r_p/(1-e)$. This equation can immediately be integrated to give
\begin{displaymath}
E - e\,\sin E = 2\pi\left(\frac{t}{T}\right),
\end{displaymath} (284)

where $T= 2\pi\,(a^3/GM)^{1/2}$ is the orbital period. Equation (284), which is known as Kepler's equation, is a transcendental equation which does not possess a simple analytic solution. Fortunately, it is fairly straightforward to solve numerically. For instance, using an iterative approach, if $E_n$ is the $n$th guess then
\begin{displaymath}
E_{n+1} = 2\pi\left(\frac{t}{T}\right) + e\,\sin E_n.
\end{displaymath} (285)

The above iteration scheme converges very rapidly (except in the limit as $e\rightarrow 1$).

Equations (276) and (280) can be combined to give

\begin{displaymath}
\cos\theta = \frac{\cos E - e}{1-e\,\cos E}.
\end{displaymath} (286)

Thus,
\begin{displaymath}
1+\cos\theta = 2\,\cos^2(\theta/2) = \frac{2\,(1-e)\,\cos^2( E/2)}{1-e\,\cos E},
\end{displaymath} (287)

and
\begin{displaymath}
1-\cos\theta = 2\,\sin^2(\theta/2) = \frac{2\,(1+e)\,\sin^2 (E/2)}{1-e\,\cos E}.
\end{displaymath} (288)

The previous two equations imply that
\begin{displaymath}
\tan (\theta/2) = \left(\frac{1+e}{1-e}\right)^{1/2}\tan (E/2).
\end{displaymath} (289)

We conclude that, in the case of an elliptical orbit, the solution of the Kepler problem reduces to the solution of the following three equations:

$\displaystyle E - e\,\sin E$ $\textstyle =$ $\displaystyle 2\pi\left(\frac{t}{T}\right),$ (290)
$\displaystyle r$ $\textstyle =$ $\displaystyle a\,(1-e\,\cos E),$ (291)
$\displaystyle \tan(\theta/2)$ $\textstyle =$ $\displaystyle \left(\frac{1+e}{1-e}\right)^{1/2} \tan (E/2).$ (292)

Here, $T= 2\pi\,(a^3/GM)^{1/2}$ and $a = r_p/(1-e)$. Incidentally, it is clear that if $t\rightarrow t+T$ then $E\rightarrow E + 2\pi$, and $\theta\rightarrow
\theta+2\pi$. In other words, the motion is periodic with period $T$.

For the case of a parabolic orbit, characterized by $e=1$, similar analysis to the above yields:

$\displaystyle P + \frac{P^3}{3}$ $\textstyle =$ $\displaystyle \left(\frac{G\,M}{2\,r_p^{\,3}}\right)^{1/2} t,$ (293)
$\displaystyle r$ $\textstyle =$ $\displaystyle r_p\,(1+P^2),$ (294)
$\displaystyle \tan(\theta/2)$ $\textstyle =$ $\displaystyle P.$ (295)

Here, $P$ is termed the parabolic anomaly, and varies between $-\infty$ and $+\infty$, with the perihelion point corresponding to $P=0$. Note that Equation (293) is a cubic equation, possessing a single real root, which can, in principle, be solved analytically. However, a numerical solution is generally more convenient.

Finally, for the case of a hyperbolic orbit, characterized by $e>1$, we obtain:

$\displaystyle e\,\sinh H - H$ $\textstyle =$ $\displaystyle \left(\frac{G\,M}{a^3}\right)^{1/2} t,$ (296)
$\displaystyle r$ $\textstyle =$ $\displaystyle a\,(e\,\cosh H - 1),$ (297)
$\displaystyle \tan(\theta/2)$ $\textstyle =$ $\displaystyle \left(\frac{e+1}{e-1}\right)^{1/2} \tanh (H/2).$ (298)

Here, $H$ is termed the hyperbolic anomaly, and varies between $-\infty$ and $+\infty$, with the perihelion point corresponding to $H=0$. Moreover, $a=r_p/(e-1)$. As in the elliptical case, Equation (296) is a transcendental equation which is most easily solved numerically.


next up previous
Next: Motion in a General Up: Planetary Motion Previous: Orbital Energies
Richard Fitzpatrick 2011-03-31