Fundamentals of Magnetic Island Theory in Tokamaks

RICHARD FITZPATRICK

Institute for Fusion Studies
University of Texas at Austin
Austin, TX, USA

Talk available at

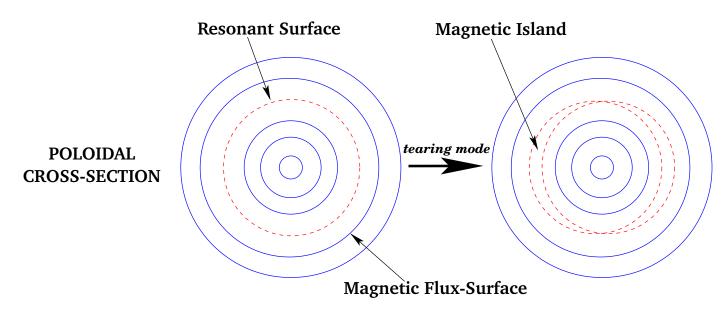
http://farside.ph.utexas.edu/talks/talks.html

Macroscopic Instabilities

- Two main types of macroscopic instabilities in tokamaks: a
 - Catastrophic "ideal" (i.e., non-reconnecting) instabilities,
 which disrupt plasma in few micro-seconds. Can be avoided by
 limiting plasma pressure and current.
 - Slowly growing "tearing" instabilities, which reconnect magnetic flux-surfaces to form *magnetic islands*, thereby degrading their confinement properties. Much harder to avoid.

^aMHD Instabilities, G. Bateman (MIT, 1978).

Magnetic Islands



- Helical structures, centered on rational magnetic flux-surfaces which satisfy $\vec{k} \cdot \vec{B} = 0$, where \vec{k} is wavenumber of mode, and \vec{B} is equilibrium magnetic field.
- Effectively "short-circuit" confinement by allowing heat/particles to radially transit island region by rapidly flowing along magnetic field-lines, rather than slowly diffusing across flux-surfaces.

Need for Magnetic Island Theory

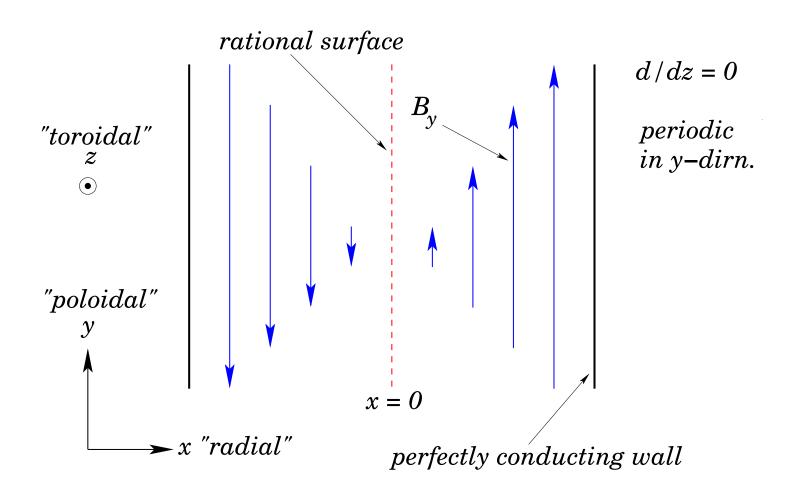
- Magnetic island formation associated with nonlinear phase of tearing mode growth (i.e., when radial island width becomes greater than linear layer width at rational surface).
- In very hot plasmas found in modern-day tokamaks, linear layers so thin that tearing mode already in nonlinear regime when first detected.
- Linear tearing mode theory largely irrelevant. Require nonlinear magnetic island theory to explain experimental observations.

MHD Theory

- Tearing modes are macroscopic instabilities which affect whole plasma. Natural to investigate them using some form of *fluid-theory*.
- Simplest fluid theory is well-known *magnetohydrodynamical* approximation, a which effectively treats plasma as *single-fluid*.
- Shall also use slab approximation to simplify analysis.

^aPlasma Confinement, R.D. Hazeltine, and J.D. Meiss (Dover, 2003).

Slab Approximation



Slab Model

- Cartesian coordinates: (x, y, z). Let $\partial/\partial z \equiv 0$.
- Assume presence of dominant uniform "toroidal" $\vec{B}_z \vec{z}$.
- All field-strengths normalized to B_z.
- All lengths normalized to equilibrium magnetic shear-length:

$$L_s = B_z/B_y'(0).$$

- All times normalized to shear-Alfvén time calculated with B_z .
- Perfect wall boundary conditions at $x = \pm a$.
- Wavenumber of tearing instability: $\vec{k} = (0, k, 0)$, so $\vec{k} \cdot \vec{B} = 0$ at x = 0. Hence, rational surface at x = 0.

Model MHD equations

- Let $\vec{\mathrm{B}}_{\perp} = \nabla \psi \times \vec{z}$ and $\vec{\mathrm{V}} = \nabla \phi \times \vec{z}$, where $\vec{\mathrm{V}}$ is $\vec{\mathrm{E}} \times \vec{\mathrm{B}}$ velocity.
- $\vec{B} \cdot \nabla \psi = \vec{V} \cdot \nabla \varphi = 0$, so ψ maps magnetic flux-surfaces, and φ maps stream-lines of $\vec{E} \times \vec{B}$ fluid.
- Incompressible MHD equations: ^a

$$\begin{split} \frac{\partial \psi}{\partial t} &= [\phi, \psi] + \eta J, \\ \frac{\partial U}{\partial t} &= [\phi, U] + [J, \psi] + \mu \nabla^2 U, \end{split}$$

where $J = \nabla^2 \psi$, $U = \nabla^2 \phi$, and $[A, B] = A_x B_y - A_y B_x$. Here, η is resistivity, and μ is viscosity. In normalized units: $\eta, \mu \ll 1$.

• First equation is z-component of Ohm's law. Second equation is z-component of curl of plasma equation of motion.

^aPlasma Confinement, R.D. Hazeltine, and J.D. Meiss (Dover, 2003).

Outer Region

- In "outer region", which comprises most of plasma, non-linear, non-ideal (η and μ), and inertial ($\partial/\partial t$ and $\vec{V}\cdot\nabla$) effects negligible.
- Vorticity equation reduces to

$$[J,\psi]\simeq 0.$$

• When linearized, obtain $\psi(x,y)=\psi^{(0)}(x)+\psi^{(1)}(x)\cos(ky)$, where $B_y^{(0)}=-d\psi^{(0)}/dx$, and

$$\left(\frac{d^2}{dx^2} - k^2\right)\psi^{(1)} - \left(\frac{d^2 B_y^{(0)}/dx^2}{B_y^{(0)}}\right)\psi^{(1)} = 0.$$

• Equation is *singular* at rational surface, x = 0, where $B_y^{(0)} = 0$.

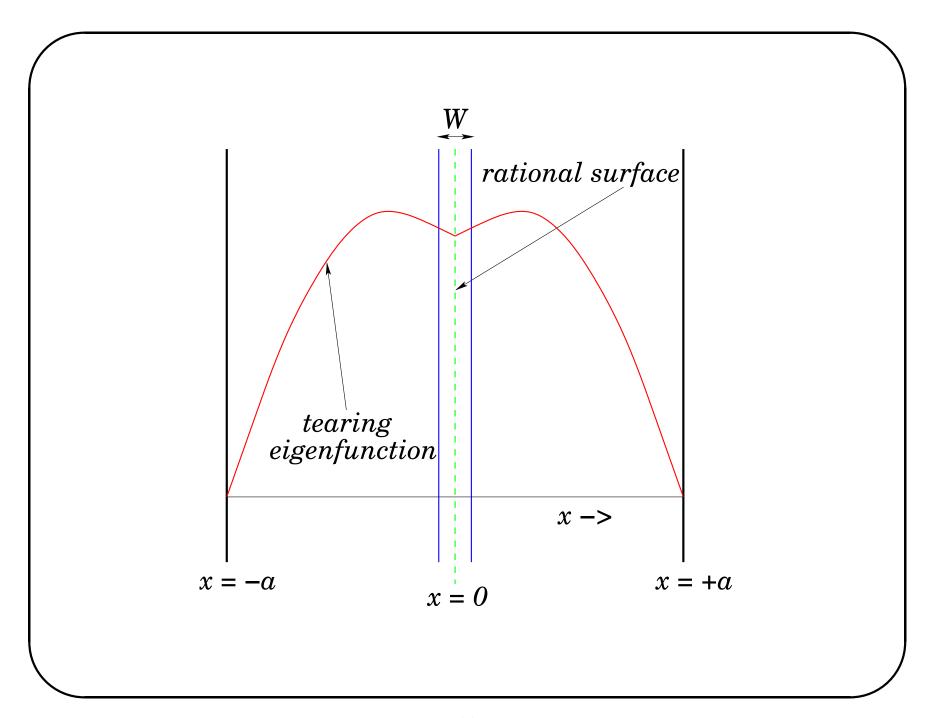
Tearing Stability Index

- Find tearing eigenfunction, $\psi^{(1)}(x)$, which is continuous, has tearing parity $[\psi^{(1)}(-x) = \psi^{(1)}(x)]$, and satisfies boundary condition $\psi^{(1)}(\alpha) = 0$ at conducting wall.
- In general, eigenfunction has *gradient discontinuity* across rational surface (at x=0). Allowed because tearing mode equation singular at rational surface.
- Tearing stability index:

$$\Delta' = \left[\frac{\mathrm{d}\ln\psi^{(1)}}{\mathrm{d}x}\right]_{0-}^{0+}.$$

• According to conventional MHD theory,^a tearing mode is unstable if $\Delta' > 0$.

^aH.P. Furth, J. Killeen, and M.N. Rosenbluth, Phys. Fluids **6**, 459 (1963).



Inner Region

- "Inner region" centered on rational surface, x = 0. Of extent, $W \ll 1$, where W is magnetic island width (in x).
- In inner region, non-ideal effects, non-linear effects, and plasma inertia can all be important.
- Inner solution must be asymptotically matched to outer solution already obtained.

Constant- ψ **Approximation**

• $\psi^{(1)}(x)$ generally does not vary significantly in x over inner region:

$$|\psi^{(1)}(W) - \psi^{(1)}(0)| \ll |\psi^{1}(0)|.$$

- Constant- ψ approximation: treat $\psi^{(1)}(x)$ as constant in x over inner region.
- Approximation valid provided

$$|\Delta'| W \ll 1$$
,

which is easily satisfied for conventional tearing modes.

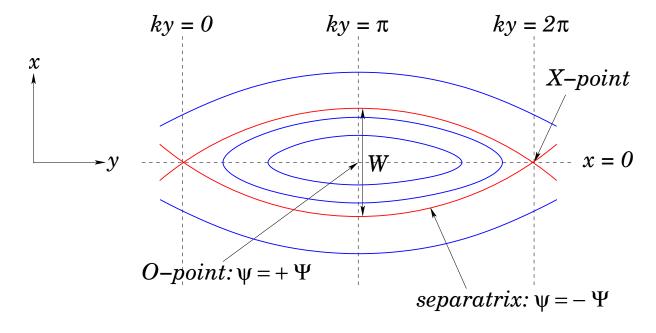
Constant- ψ **Magnetic Island**

• In vicinity of rational surface, $\psi^{(0)} \rightarrow -x^2/2$, so

$$\psi(x, y, t) \simeq -x^2/2 + \Psi(t) \cos \theta$$
,

where $\Psi = \psi^{(1)}(0)$ is "reconnected flux", and $\theta = ky$.

• Full island width, $W = 4\sqrt{\Psi}$.



Flux-Surface Average Operator

• Flux-surface average operator is annihilator of Poisson bracket $[A, \psi] \equiv \vec{B} \cdot \nabla A \equiv k \, \chi \, (\partial A/\partial \theta)_{\psi}$ for any A: *i.e.*,

$$\langle [A, \psi] \rangle \equiv 0.$$

Outside separatrix:

$$\langle f(\psi, \theta) \rangle = \oint \frac{f(\psi, \theta)}{|x|} \frac{d\theta}{2\pi}.$$

• Inside separatrix:

$$\langle f(s, \psi, \theta) \rangle = \int_{-\theta_0}^{\theta_0} \frac{f(s, \psi, \theta) + f(-s, \psi, \theta)}{2|x|} \frac{d\theta}{2\pi},$$

where $s = \operatorname{sgn}(x)$, and $x(s, \psi, \theta_0) = 0$.

MHD Flow -I

- Move to island frame. Look for steady-state solution: $\partial/\partial t = 0$.
- Ohm's law:

$$0 \simeq [\phi, \psi] + \eta J.$$

- Since $\eta \ll 1$, first term potentially much larger than second.
- To lowest order:

$$[\phi, \psi] \simeq 0.$$

Follows that

$$\phi = \phi(\psi)$$
:

i.e., MHD flow constrained to be around flux-surfaces.

^aF.L. Waelbroeck, and R. Fitzpatrick, Phys. Rev. Lett. 78, 1703 (1997).

MHD Flow - II

Let

$$M(\psi) = \frac{d\phi}{d\psi}.$$

Easily shown that

$$V_y = x M$$
.

• By symmetry, $M(\psi)$ is *odd* function of x. Hence,

$$M = 0$$

inside separatrix: *i.e.*, no flow inside separatrix in island frame. Plasma *trapped* within magnetic separatrix.

MHD Flow - III

Vorticity equation:

$$0 \simeq [-M U + J, \psi] + \mu \nabla^4 \phi.$$

• Flux-surface average, recalling that $\langle [A, \psi] \rangle = 0$:

$$\langle \nabla^4 \phi \rangle \equiv -\frac{\mathrm{d}^2}{\mathrm{d}\psi^2} \left(\langle x^4 \rangle \, \frac{\mathrm{d}M}{\mathrm{d}\psi} \right) \simeq 0.$$

Solution outside separatrix:

$$M(\psi) = \mathrm{sgn}(x) \, M_0 \, \int_{-\Psi}^{\psi} d\psi / \langle x^4 \rangle \Bigg/ \int_{-\Psi}^{-\infty} d\psi / \langle x^4 \rangle.$$

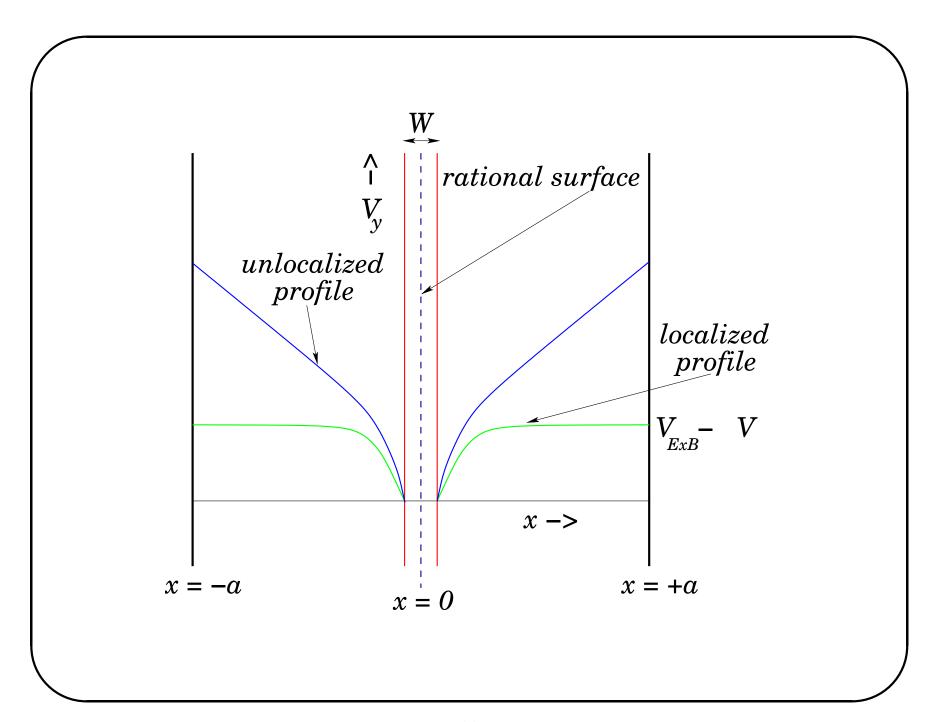
MHD Flow - IV

• Note that

$$V_y = x \, M \to |x| \, M_0$$

as $|x|/W \to \infty$.

- V-shaped velocity profile which extends over whole plasma.
- Expect *isolated* magnetic island to have *localized* velocity profile. Suggests that $M_0 = 0$ for isolated island.
- Hence, zero MHD flow in island frame: *i.e.*, island propagates at local $\vec{E} \times \vec{B}$ velocity.



Rutherford Equation - I

• Asymptotic matching between inner and outer regions yields:

$$\Delta' \Psi = -4 \int_{+\Psi}^{-\infty} \langle J \cos \theta \rangle d\psi.$$

• In island frame, in absence of MHD flow, vorticity equation reduces to

$$[J,\psi]\simeq 0.$$

Hence,

$$J = J(\psi)$$
.

Rutherford Equation - II

• Ohm's law:

$$\frac{d\Psi}{dt}\cos\theta \simeq [\phi,\psi] + \eta J(\psi).$$

- Have shown there is no MHD-flow [i.e., $\phi \sim O(1)$], but can still be resistive flow [i.e., $\phi \sim O(\eta)$].
- Eliminate resistive flow by flux-surface averaging:

$$\frac{d\Psi}{dt}\left\langle\cos\theta\right\rangle\simeq\eta\,J(\psi)\left\langle1\right\rangle.$$

Hence,

$$\Delta' \Psi \simeq -\frac{4}{\eta} \frac{d\Psi}{dt} \int_{+\Psi}^{-\infty} \frac{\langle \cos \theta \rangle^2}{\langle 1 \rangle} d\psi.$$

Rutherford Equation - III

• Use $W=4\sqrt{\Psi}$, and evaluate integral. Obtain *Rutherford island* width evolution equation: ^a

$$\frac{0.823}{\eta} \frac{\mathrm{d}W}{\mathrm{d}t} \simeq \Delta'.$$

- According to Rutherford equation, island grows algebraically on resistive time-scale.
- Rutherford equation does not predict island saturation.

^aP.H. Rutherford, Phys. Fluids **16**, 1903 (1973).

Rutherford Equation - IV

 Higher order asymptotic matching between inner and outer regions yields: ^a

$$\frac{0.823}{\eta} \frac{dW}{dt} \simeq \Delta' - 0.41 \left(-\frac{d^4 B_y^{(0)} / dx^4}{d^2 B_y^{(0)} / dx^2} \right)_{x=0} W.$$

• Hence, saturated (d/dt = 0) island width is

$$W_0 = \frac{\Delta'}{0.41} \left(-\frac{d^2 B_y^{(0)} / dx^2}{d^4 B_y^{(0)} / dx^4} \right)_{x=0}.$$

^aF. Militello, and F. Porcelli, Phys. Plasmas **11**, L13 (2004). D.F. Escande, and M. Ottaviani, Physics Lett. A **323**, 278 (2004).

MHD Theory: Summary

- Tearing mode unstable if $\Delta' > 0$.
- \bullet Island propagates at local $\vec{E}\times\vec{B}$ velocity at rational surface.
- Island grows algebraically on resistive time-scale.
- Saturated island width:

$$W_0 = \frac{\Delta'}{0.41} \left(-\frac{\mathrm{d}^2 B_y^{(0)} / \mathrm{d} x^2}{\mathrm{d}^4 B_y^{(0)} / \mathrm{d} x^4} \right)_{x=0}.$$

Drift-MHD Theory

- In drift-MHD approximation, analysis retains *charged particle drift* velocities, in addition to $\vec{E} \times \vec{B}$ velocity.
- Essentially two-fluid theory of plasma.
- Characteristic length-scale, ρ , is ion Larmor radius calculated with electron temperature.
- Characteristic velocity is diamagnetic velocity, V_* , where

n e
$$\vec{V}_* \times \vec{B} = \nabla P$$
.

• Normalize all lengths to ρ , and all velocities to V_* .

Basic Assumptions

- Retain slab model, for sake of simplicity.
- Assume parallel electron heat transport sufficiently strong that $T_e = T_e(\psi).$
- Assume $T_i/T_e = \tau = {\rm constant}$, for sake of simplicity.

Basic Definitions

Variables:

- $-\psi$ magnetic flux-function.
- J parallel current.
- ϕ guiding-center (*i.e.*, MHD) stream-function.
- U parallel ion vorticity.
- -n electron number density (minus uniform background).
- $-V_z$ parallel ion velocity.

Parameters:

- $\alpha = (L_n/L_s)^2$, where L_n is equilibrium density gradient scale-length.
- η resistivity. D (perpendicular) particle diffusivity. $\mu_{i/e}$ (perpendicular) ion/electron viscosity.

Drift-MHD Equations - I

• Steady-state drift-MHD equations: a

$$\begin{split} \psi &= -x^2/2 + \Psi \cos \theta, \quad U = \nabla^2 \phi, \\ 0 &= [\phi - n, \psi] + \eta J, \\ 0 &= [\phi, U] - \frac{\tau}{2} \left\{ \nabla^2 [\phi, n] + [U, n] + [\nabla^2 n, \phi] \right\} \\ &+ [J, \psi] + \mu_i \nabla^4 (\phi + \tau n) + \mu_e \nabla^4 (\phi - n), \\ 0 &= [\phi, n] + [V_z + J, \psi] + D \nabla^2 n, \\ 0 &= [\phi, V_z] + \alpha [n, \psi] + \mu_i \nabla^2 V_z. \end{split}$$

^aR.D. Hazeltine, M. Kotschenreuther, and P.J. Morrison, Phys. Fluids **28**, 2466 (1985).

Drift-MHD Equations - II

- Symmetry: ψ , V_z even in x. ϕ , η , U odd in x.
- Boundary conditions as $|x|/W \to \infty$:

$$- n \rightarrow -(1+\tau)^{-1} x$$
.

-
$$\phi \rightarrow -V \chi$$
.

-
$$J, U, V_z \rightarrow 0$$
.

- Here, V is island phase-velocity in $\vec{E} \times \vec{B}$ frame.
- V=1 corresponds to island propagating with electron fluid. $V=-\tau$ corresponds to island propagating with ion fluid.
- Expect

$$1 \gg \alpha \gg \eta, D, \mu_i, \mu_e$$
.

Electron Fluid

• Ohm's law:

$$0 = [\phi - n, \psi] + \eta J.$$

- Since $\eta \ll 1$, first term potentially much larger than second.
- To lowest order:

$$[\phi - n, \psi] \simeq 0.$$

Follows that

$$n = \phi + H(\psi)$$
:

i.e., electron stream-function $\phi_e = \phi - n$ is flux-surface function. Electron fluid flow constrained to be around flux-surfaces.

Sound Waves

• Parallel flow equation:

$$0 = [\phi, V_z] + \alpha [n, \psi] + \mu_i \nabla^2 V_z.$$

Highlighted term dominant provided

$$W \gg \alpha^{-1/2} = L_s/L_n.$$

If this is case then to lowest order

$$n = n(\psi)$$
,

which implies n = 0 inside separatrix.

• So, if island sufficiently wide, *sound-waves* able to *flatten density profile* inside island separatrix.

Subsonic vs. Supersonic Islands

Wide islands satisfying

$$W \gg L_s/L_n$$

termed *subsonic* islands. Expect such islands to exhibit flattened density profile within separatrix. Subsonic islands strongly coupled to both electron and ion fluids.

Narrow islands satisfying

$$W \ll L_s/L_n\,$$

termed *supersonic* islands. No flattening of density profile within separatrix. Supersonic islands strongly coupled to electron fluid, but only weakly coupled to ion fluid.

Subsonic Islands ^a

To lowest order:

$$\phi = \phi(\psi), \quad n = n(\psi).$$

- Follows that both electron stream-function, $\phi_e = \phi n$, and ion stream-function, $\phi_i = \phi + \tau n$, are flux-surface functions. Both electron and ion fluid flow constrained to follow flux-surfaces.
- Let

$$M(\psi) = d\phi/d\psi$$
, $L(\psi) = dn/d\psi$.

Follows that

$$V_{E \times B y} = x M$$
, $V_{e y} = x (M - L)$, $V_{i y} = x (M + \tau L)$.

^aR. Fitzpatrick, F.L. Waelbroeck, Phys. Plasmas 12, 022307 (2005).

Density Flattening

• By symmetry, both $M(\psi)$ and $L(\psi)$ are *odd* functions of x. Hence,

$$M(\psi) = L(\psi) = 0$$

inside separatrix: *i.e.*, no electron/ion flow within separatrix in island frame.

- Electron/ion fluids constrained to propagate with island inside separatrix.
- Density profile flattened within separatrix.

Analysis - I

Density equation reduces to

$$0 \simeq [V_z + J, \psi] + D \nabla^2 n.$$

Vorticity equation reduces to

$$0 \simeq \left[-M U - (\tau/2)(L U + M \nabla^2 n) + J, \psi \right]$$
$$+\mu_i \nabla^4 (\phi + \tau n) + \mu_e \nabla^4 (\phi - n).$$

• Flux-surface average both equations, recalling that $\langle [A, \psi] \rangle = 0$.

Analysis - II

Obtain

$$\langle \nabla^2 \mathbf{n} \rangle \simeq 0,$$

and

$$(\mu_{i} + \mu_{e}) \langle \nabla^{4} \phi \rangle + (\mu_{i} \tau - \mu_{e}) \langle \nabla^{4} n \rangle \simeq 0.$$

• Solution outside separatrix:

$$M(\psi) = -\frac{(\mu_i \tau - \mu_e)}{(\mu_i + \mu_e)} L(\psi) + F(\psi),$$

where

$$L(\psi) = -\operatorname{sgn}(x) L_0/\langle x^2 \rangle,$$

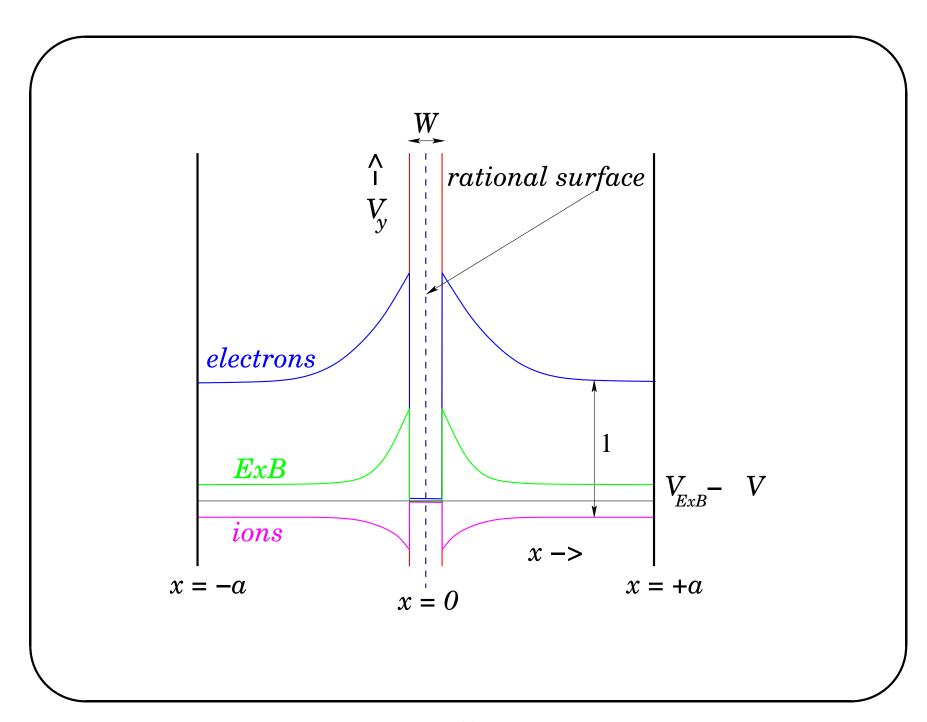
and $F(\psi)$ is previously obtained MHD profile:

$$F(\psi) = \mathrm{sgn}(x) \, F_0 \, \int_{-\Psi}^{\psi} d\psi / \langle x^4 \rangle \Bigg/ \int_{-\Psi}^{-\infty} d\psi / \langle x^4 \rangle.$$

Velocity Profiles

- As $|x|/W \to \infty$ then $x \to L_0$ and $x \to |x| F_0$.
- $L(\psi)$ corresponds to *localized* velocity profile. $F(\psi)$ corresponds to *non-localized* profile. Require localized profile, so $F_0 = 0$.
- Velocity profiles outside separatrix (using b.c. on n):

$$\begin{split} V_{y\,i} &\simeq &+ \frac{\mu_e}{\mu_i + \mu_e} \frac{|x|}{\langle x^2 \rangle}, \\ V_{y\,E\times B} &\simeq &- \frac{(\mu_i\,\tau - \mu_e)}{(1+\tau)\,(\mu_i + \mu_e)} \frac{|x|}{\langle x^2 \rangle}, \\ V_{y\,e} &= &- \frac{\mu_i}{\mu_i + \mu_e} \frac{|x|}{\langle x^2 \rangle}. \end{split}$$



Island Propagation

- As $|x|/W \to \infty$ expect $V_{y \ E \times B} \to V_{EB} V$, where V_{EB} is unperturbed (*i.e.*, no island) $\vec{E} \times \vec{B}$ velocity at rational surface (in lab. frame), and V is island phase-velocity (in lab. frame).
- Hence

$$V = V_{EB} + \frac{(\mu_i \tau - \mu_e)}{(1 + \tau)(\mu_i + \mu_e)}.$$

But unperturbed ion/electron fluid velocities (in lab. frame):

$$V_i = V_{EB} + \tau/(1+\tau), \quad V_e = V_{EB} - 1/(1+\tau).$$

Hence

$$V = \frac{\mu_i}{\mu_i + \mu_e} V_i + \frac{\mu_e}{\mu_i + \mu_e} V_e.$$

So, island phase-velocity is *viscosity weighted average* of unperturbed ion/electron fluid velocities.

Polarization Term - I

Vorticity equation yields

$$J_{c} \simeq \frac{1}{2} \left(x^{2} - \frac{\langle x^{2} \rangle}{\langle 1 \rangle} \right) \frac{d[M(M + \tau L)]}{d\psi} + I(\psi)$$

outside separatrix, where J_c is part of J with $\cos \theta$ symmetry.

• As before, flux-surface average of Ohm's law yields:

$$\langle J_c \rangle = I(\psi)\langle 1 \rangle = \eta^{-1} \frac{d\Psi}{dt} \langle \cos \theta \rangle.$$

Hence

$$J_{c} \simeq \frac{1}{2} \left(x^{2} - \frac{\langle x^{2} \rangle}{\langle 1 \rangle} \right) \frac{d[M (M + \tau L)]}{d\psi} + \eta^{-1} \frac{d\Psi}{dt} \frac{\langle \cos \theta \rangle}{\langle 1 \rangle}.$$

Polarization Term - II

Asymptotic matching between inner and outer regions yields:

$$\Delta' \Psi = -4 \int_{+\Psi}^{-\infty} \langle J_c \cos \theta \rangle d\psi.$$

• Evaluating flux-surface integrals, making use of previous solutions for M and L, obtain modified Rutherford equation:

$$\frac{0.823}{\eta} \frac{dW}{dt} \simeq \Delta' + 1.38 \, \beta \, \frac{(V - V_{EB}) \, (V - V_i)}{(W/4)^3}.$$

• New term is due to *polarization current* associated with ion fluid flow around curved island flux-surfaces (in island frame). Obviously, new term is zero if island propagates with ion fluid: *i.e.*, $V = V_i$.

Drift-MHD Theory: Summary

- Results limited to large islands: *i.e.*, large enough for sound waves to flatten density profile.
- Island propagates at (perpendicular) viscosity weighted average of unperturbed (no island) ion and electron fluid velocities.
- Bootstrap term in Rutherford equation is destabilizing.
- Polarization term in Rutherford equation is stabilizing provided ion (perpendicular) viscosity greatly exceeds electron (perpendicular) viscosity (which is what we expect), and destabilizing otherwise.