## **External Modes and Resistive Wall Modes**

**Richard Fitzpatrick** 

Institute for Fusion Studies Department of Physics University of Texas at Austin Austin TX, USA

# **External Kink Modes**

• Principal figure of merit in tokamak plasma is

 $\beta = \frac{\text{plasma energy density}}{\text{magnetic energy density}}.$ 

- Main β-limiting instability is *external-kink mode*. This is *ideal* instability driven by radial *pressure and current gradients*.
- Talk will concentrate on current driven instabilities, since these can be described by *cylindrical theory*.
- Hope is that physics of pressure (*i.e.*, β) driven instabilities is analogous to that of current driven instabilities.

# **Cylindrical Theory**

- Treat plasma as periodic cylinder of radius a (minor radius) and periodicity length  $2\pi R_0$  (major radius).
- Adopt cylindrical polar coordinates  $(r, \theta, z)$ .
- Equilibrium magnetic field:  $\mathbf{B} = (0, B_{\theta}(r), B_z)$ .
- Normalize all lengths to a, all magnetic fields to  $B_z$ , all mass densities to central plasma mass density  $\rho_0$ , all times to hydromagnetic time  $\tau_H = R_0 \sqrt{\mu_0 \rho_0}/B_z$ .

### **Plasma Equilibrium**

• Density profile:

$$\rho = (1 - r^2)^{\alpha}.$$

• Safety-factor ( $q = r B_z/R_0 B_{\theta}$ ) profile: <sup>a</sup>

$$q(r) = \frac{q_a}{1 - (1 - r^2)q_a/q_0},$$

where  $q_0$  is central-q and  $q_a$  is edge-q.

• Toroidal plasma current:

$$J_z = J_0 \, (1 - r^2)^{q_a/q_0 - 1}$$

<sup>a</sup>J.A. Wesson, Nucl. Fusion 18, 87 (1978).

### Ideal Magnetohydrodynamics

- Consider external-kink mode with m periods in poloidal direction and n periods in toroidal direction.
- According to ideal-MHD, radial displacement in plasma  $\xi$  satisfies  $\frac{d}{dr} \left[ r \left( \rho \, \gamma^2 + Q^2 \right) \frac{d(r \, \xi)}{dr} \right] - \left[ m^2 \left( \rho \, \gamma^2 + Q^2 \right) + r \, \frac{dQ^2}{dr} \right] \xi = 0.$
- Here,  $\gamma$  is growth-rate (in plasma frame), and

$$Q = \frac{m}{q} - n.$$

• No resonant surface (where Q = 0) in plasma for external-kink mode.

# **Edge Boundary Condition**

- $\lambda(\gamma) = -\left(\frac{d[\ln(r \, Q \, \xi)]}{m \, dr}\right)_{r=1}.$
- If plasma surrounded by thin resistive wall of radius  $r_w$  and time-constant  $\tau_w$  then

• Let

$$\lambda(\gamma) = \frac{1 + (\gamma \tau_w/2m) (1 + r_w^{-2m})}{1 + (\gamma \tau_w/2m) (1 - r_w^{-2m})}.$$

• Above dispersion relation can be solved (*e.g.*, via Newton iteration) to give growth-rate  $\gamma$  of external-kink mode.



### **Resistive Wall Mode**

- External kink mode stabilized by close-fitting perfectly conducting wall (*i.e.*,  $\tau_w \to \infty$ ).
- Suggests that close-fitting conducting wall (*e.g.*, vacuum vessel) might increase β-limit.
- Unfortunately, conducting walls posses finite *resistivity*. Resistive wall has finite time-constant  $\tau_w$  which is generally much greater than  $\tau_H$  but still much less than pulse length of discharge.
- Resistive wall does not stabilize external kink mode. Instead, converts mode into slowly growing  $(\gamma \sim \tau_w^{-1})$  resistive wall mode.



### **Plasma Rotation**

- Tokamak plasmas rotate toroidally at few percent of Alfvèn speed.
- Plasma rotation either intrinsic (not well understood) or due to unbalanced neutral beam injection.
- Since resistive wall mode is plasma instability, would expect plasma rotation to give mode *real frequency*.
- If real frequency exceeds  $\tau_w^{-1}$  then resistive wall effectively acts as ideal wall. Rotation could stabilize resistive wall mode.
- Rotation introduced into theory by simply doppler-shifting plasma:

 $\lambda(\gamma) \to \lambda(\gamma - \mathrm{i} \, n \, \Omega),$ 

where  $\Omega$  is plasma toroidal angular velocity.



# **Plasma Dissipation**

- Plasma rotation alone incapable of stabilizing resistive wall mode.
- However, plasma rotation coupled with *plasma dissipation* can stabilize resistive wall mode.<sup>a</sup>

<sup>a</sup>A. Bondeson, and D.J. Ward, Phys. Rev. Lett. **72**, 2709 (1994).



### **Dissipation via Charge Exchange with Cold Neutrals**

- All tokamak plasmas have cold neutrals close to edge.
- Hot plasma ion near edge can charge exchange with cold neutral. Neutral gains momentum and is ejected from plasma. Net effect is damping of edge plasma toroidal rotation.
- Damping rate:

#### $\nu \sim n_n v_i \sigma_x,$

where  $n_n$  is number density of neutrals,  $v_i$  is thermal velocity of edge ions, and  $\sigma_x$  is charge exchange cross-section.

### **Modeling Charge Exchange Dissipation**

• Charge exchange dissipation can be included in plasma response equation by making substitution:

$$\rho \gamma'^2 \to \rho \, (\gamma'^2 + \nu \, \gamma'),$$

where  $\gamma' = \gamma - i n \Omega$ , and  $\nu$  is charge exchange damping rate normalized to  $\tau_H$ .



### **Charge Exchange Dissipation in HBT-EP**

- HBT-EP is small tokamak operated by Columbia University. Parameters:  $R_0 = 0.92$  m, a = 0.15 m,  $B_z = 0.35$  T,  $n_e(0) \simeq 8 \times 10^{18} \text{ m}^{-3}$ ,  $n_e(a) \simeq 2 \times 10^{18} \text{ m}^{-3}$ ,  $T_i(a) \simeq 10$  eV,  $\tau_w \simeq 1$  ms,  $r_w \simeq 1.1 a$ .
- Assuming cold neutral density at edge is 1% of local electron number density, charge-exchange damping rate is  $\nu \sim 400 \, {
  m s}^{-1}$ . Hydromagnetic time is  $\tau_H \sim 3 \times 10^{-7}$  s.
- Normalized charge exchange damping rate is

### $\nu \sim 10^{-4}$

This is order of magnitude *too small* to stabilize resistive wall mode.

# **Dissipation via Neoclassical Flow Damping**

- Ion neoclassical parallel stress tensor damps poloidal component of perturbed flow associated with resistive wall mode. Also gives rise to perturbed radial current.
- Net effect is enhancement of plasma inertia by factor  $(B_z/B_\theta)^2$ , plus small dissipation.<sup>a</sup>

<sup>a</sup>K.C. Shiang, Phys. Plasmas **11**, 5525 (2004).

## **Modeling Neoclassical Dissipation**

 Neoclassical dissipation can be included in plasma response equation by making substitution: <sup>a</sup>

$$\rho \gamma'^2 \to \rho \gamma'^2 \left( 1 + \frac{q^2}{\epsilon_0^2} \frac{\mu}{\gamma' + r^2 \mu} \right),$$

where  $\gamma' = \gamma - i n \Omega$ ,  $\epsilon_0 = a/R_0$ , and  $\mu$  is edge neoclassical poloidal damping rate normalized to  $\tau_H$ .

• For collisional edge,

$$\mu \simeq \frac{\epsilon_0^2 \,\nu_{tr}^2}{\nu_{ii}},$$

where  $\nu_{tr}$  is ion transit frequency, and  $\nu_{ii}$  is ion-ion collision frequency.

<sup>a</sup>K.C. Shiang, Phys. Plasmas **11**, 5525 (2004).



### **Neoclassical Dissipation in HBT-EP**

- Edge of HBT-EP is in *collisional* regime. Edge neoclassical poloidal damping rate is  $\mu \sim 200 \, {\rm s}^{-1}$ .
- Normalized neoclassical damping rate is

 $\mu \sim 8 \times 10^{-5}.$ 

This is sufficient to stabilize resistive wall mode in HBT-EP at rotation velocities which are *few percent* of Alfvèn velocity.



# **Other Dissipation Mechanisms**

- Alfvènic damping at toroidally coupled internal rational surface.<sup>a</sup>
- Sound wave damping at toroidally coupled internal rational surface.<sup>b</sup>
- Kinetic damping due to resonance of rwm with bounce/transit/precession frequency of thermal ions inside plasma.<sup>c d</sup>

<sup>a</sup>A. Bondeson, and D.J. Ward, Phys. Rev. Lett. **72**, 2709 (1994).
<sup>b</sup>R. Betti, J.P. Freidberg, Phys. Rev. Lett. **74**, 2949 (1995).
<sup>c</sup>A. Bondeson, *et al.*, Plasma Phys. Control. Fusion **45**, A253 (2003).
<sup>d</sup>B. Hu, *et al.*, Phys. Plasmas **12**, 157301 (2005).

### Summary

- Resistive wall mode stabilized by combination of *plasma rotation* and *plasma dissipation*.
- Typical rotation rate required to stabilize mode is

 $\Omega_c \sim k_{\parallel} v_A,$ 

where  $k_{||}$  is parallel wave-vector at edge of plasma, and  $v_A$  is Alfvèn velocity.

- Dissipation via charge exchange with cold edge neutrals too small to stabilize rwm (in HBT-EP).
- Dissipation via neoclassical poloidal flow damping has about right magnitude to stabilize mode (in HBT-EP).