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• Ancient Greece -> Two major scientific works: 
Euclid’s Elements and Ptolemy’s “Almagest”.

• Elements -> Compendium of mathematical 
theorems concerning geometry, proportion, number 
theory. Still highly regarded. 

• Almagest -> Comprehensive treatise on ancient 
Greek astronomy. (Almost) universally disparaged.

Euclid’s Elements and Ptolemy’s Almagest

The modern world inherited two major scientific 
works from the civilization of ancient Greece. 
The first is Euclid’s Elements, which is a large 
compendium of mathematical theorems 
regarding geometry, proportion, and number 
theory. The second is the “Almagest” of Claudius 
Ptolemy, which is a comprehensive treatise on 
ancient Greek astronomy. By the way, I’ve put 
Almagest in inverted commas, because the true 
name of this book is Syntaxis Mathematica 
(which means “mathematical treat ise” ) . 
“Almagest” is an Arabic corruption of its Greek 
nickname: “H Megeste” (which means “the 
greatest”—presumably, the greatest treatise). 
This nickname gives some idea of the reputation 
of the Almagest in antiquity. 


Euclid’s Elements is still held in high regard by 
scientists and mathematicians. After all, this 
work was the standard school textbook on 
geometry up to about 100 years ago. Moreover, 
the plane geometry that we teach school kids 
nowadays is essentially a watered down version 
of that presented in the Elements. 


The scientific reputation of Ptolemy’s Almagest 
has not fared as well as that of the Elements. 
Obviously, Ptolemy’s model of the solar system 
has been completely superseded by that of 
Copernicus and Kepler, and is no longer taught. 
Moreover, references to the Almagest in school 
and college textbooks are brief, and almost 
uniformly disparaging in nature.




Popular Modern Criticisms of Ptolemy’s Almagest

• Ptolemy’s approach shackled by Aristotelian philosophy 
-> Earth stationary; celestial bodies move uniformly 
around circular orbits. 

• Mental shackles lead directly to introduction of epicycle 
as kludge to explain retrograde motion without having to 
admit that Earth moves. 

• Ptolemy’s model inaccurate. Lead later astronomers to 
add more and more epicycles to obtain better 
agreement with observations.  

• Final model hopelessly unwieldy. Essentially collapsed 
under own weight, leaving field clear for Copernicus. 

The standard popular modern criticisms of 
Ptolemy’s model of the solar system are as 
follows. First, it is generally thought that 
Ptolemy’s thinking was shackled by accepted 
truths in ancient Greek philosophy (mostly due 
to Aristotle), which held, amongst other things, 
that the Earth was stationary, and that celestial 
bodies were constrained to move uniformly 
around circular orbits. Second, it is supposed 
that these mental shackles directly lead Ptolemy 
to introduce the concept of an epicycle as a sort 
of kludge to explain the observed retrograde 
motion of the superior planets without having to 
admit that this phenomenon was caused by the 
Earth’s motion. Third, it is generally held that 
Ptolemy’s model of the solar system was not 
particularly accurate, leading later Arabic and 
medieval European astronomers to add more 
and more epicycles in order to get better 
agreement with observations. The final version of 
the model is alleged to have contained an 
absurd number of epicycles, and to have 
essentially collapsed under its own weight, 
leaving the field clear for Copernicus and his, 
supposedly, much simpler, and much more 
accurate, heliocentric model of the solar system. 


Needless to say, the popular criticisms of the 
Almagest that I have just outlined are almost 
entirely wrong. What I want to do in this talk is to 
describe what Ptolemy actually did in the 
Almagest, and to contrast this with the mistaken 
popular view of what he did.
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Successive passages though VE every 365.24 days

Before discussing Ptolemy’s model of the solar 
system, in detail, we need to understand the 
observational data that the model is intended to 
account for. Let us start with the apparent orbit of the 
Sun around the Earth. The figure shows the apparent 
orbit of the Sun seen from the north. The motion of the 
Sun is counter-clockwise. There are four cardinal 
points on this orbit. The vernal equinox is the point at 
which the Sun passes through the extension of the 
Earth’s equatorial plane from south to north. The 
summer solstice is the point at which the Sun attains 
its most northern altitude above the Earth’s equatorial 
plane. The autumn equinox is the point at which the 
Sun passes through the equatorial plane from north to 
south, and the winter solstice is the point at which the 
Sun attains its most southern altitude below the 
equatorial plane. Ancient Greek astronomers were able 
to determine the times at which the Sun passes 
though the cardinal points on its orbit to an accuracy 
of about half an hour. In fact, the Almagest explains 
how the times of the equinoxes were determined. They 
found that the period between successive passages of 
the Sun through the vernal equinox is always 365.24 
days: this period is known as a tropical year. However, 
they also noticed that there are small irregularities in 
the Sun’s orbit. It takes 92.8 days for the Sun to travel 
from the vernal equinox to the summer solstice. In 
other words, the season known as Spring is 92.8 days 
long. It takes 93.6 days for the Sun to travel from the 
summer solstice to the autumn equinox. In other 
words, Summer is 93.6 days long. It takes 89.9 days 
for the Sun to travel from the autumn equinox to the 
winter solstice, and its takes 88.9 days for the Sun to 
travel from the winter solstice to the vernal equinox. In 
other words, Autumn is 89.9 days long, and Winter is 
88.9 days long. Of course, we now understand that 
these irregularities are a consequence of the fact that 
the Earth’s orbit around the Sun is not a concentric 
circle, but rather an eccentric ellipse. Incidentally, the 
figures that I have quoted for the lengths of the 
seasons are the modern figures, which are not the 
same as those quoted in the Almagest. The reason for 
this is that the Earth’s orbit about the Sun has changed 
somewhat since Ptolemy’s time. So, the tasks facing 
ancient Greek astronomers when trying to explain the 
Sun’s orbit about the Earth were twofold. First, they 
had to account for the regular features of the orbit: that 
is, the fact that the orbit repeats every tropical year. 
Second, and just as important, they had to to account 
for the slight irregularities in the orbit: that is, the fact 
that the seasons are not equally long



Geocentric Orbit of Mars
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Let us now consider the geocentric orbit of a typical 
superior planet, such as Mars. Of course, a superior 
planet is one whose orbit (in the Copernican model) is 
outside that of the Earth. Generally speaking, Mars 
travels from west to east—that is, in the same direction 
as the Sun—against the backdrop of the fixed stars. 
This type of motion is known as direct motion. 
However, about once every two years, Mars performs 
a little loop the loop relative to the stars. This means 
that, for a brief period of time, Mars is traveling from 
east to west. This type of motion is known as 
retrograde motion. By the way, all the superior planets 
exhibit brief periods of retrograde motion. There are 
three cardinal points on the orbit of Mars. The 
opposition lies, more or less, at the center of the 
retrograde arc. At this point, Mars is directly opposite 
the Sun, relative to the Earth, which means that it is 
making its closest approach to the Earth. The two 
stations are the points at which the orbit of Mars, 
relative to the stars, changes direction, which means 
that Mars appears briefly stationary with respect to the 
stars at these points. The retrograde station is the 
point at which Mars switches from direct to retrograde 
motion, and the direct station is the point at which it 
switches back to direct motion. Ancient Greek 
astronomers were able to measure the positions of the 
martian cardinal points, as well as the times at which 
Mars passes though these points, to fairly good 
accuracy. They found that the average period between 
successive passages of Mars though its opposition is 
780 days. However, the actual period can exceed this 
value by up to about 29 days, and can fall below it by 
about 16 days. Likewise, the mean period between 
passage through the retrograde station and the 
opposition, or the opposition and the direct station, is 
36 days. Again, however, the actual period can 
exceed, or fall below, this value by up to 6 days. 
Finally, ancient Greek astronomers found that, on 
average, the angular size of Mars’ retrograde arc is 
15.5 degrees. However, the arc size can actually 
exceed this value by up to 3 degrees, and fall below it 
by up to 5 degrees. So, again, the challenges facing 
ancient Greek astronomers, when trying to model the 
geocentric orbit of Mars, were, first, to account for the 
regular features of the orbit, and, second, to account 
for the relatively small irregular features. Of course, we 
now understand that the irregular features of the orbit 
are a consequence of the fact that the heliocentric 
orbits of the Earth and Mars are not concentric circles, 
but are, instead, eccentric ellipses.


Incidentally, for the sake of brevity, I am not going to 
discuss the orbits of the inferior planets (that is, 
Mercury and Venus) in this talk. 




• By time of Aristotle, ancient Greeks knew that Earth is spherical. Also, had 
good estimate of its radius.  

• Ancient Greeks calculated that if Earth rotates once every 24 hours then 
person standing on equator moves west to east at about 1000 mph.  

• Aristotle’s On the Heavens -> 1000 mph wind blowing east to west. 
Projectiles throw westward travel much further than those thrown eastward, 
et cetera. 

• Aristotle -> Motion of Earth in space would generate stellar parallax. Not 
detectable (by naked eye). 

• These arguments are not unreasonable, but we now know them to be 
mistaken. Atmosphere co-rotates with Earth because of friction and inertia. 
Projectiles also co-rotate with Earth because of inertia. Stellar parallax 
undetectable by naked eye because of great distances of stars from Earth. 

• Moot point because Earth appears stationary to observer standing on it.

Immovability of Earth
All scientists, when investigating a given phenomenon, 
have certain preconceptions about what they expect to 
find. Ancient Greek astronomers were no exception. 
Their preconceptions were derived from ancient Greek 
philosophy—in particular, the work of Aristotle. (It must 
be appreciated that ancient Greek astronomy did not 
reach its heyday until about a hundred years after the 
death of Aristotle.) According to Aristotelian 
philosophy, the Earth is stationary—that is, it neither 
rotates about its axis nor moves through space. 
Furthermore, celestial objects are constrained to move 
uniformly around circular orbits. Let us briefly examine 
these preconceptions, one by one. 


By the time of Aristotle, the ancient Greeks knew that 
the Earth was spherical, and also had a fairly good 
estimate of its radius. Thus, they were able to calculate 
that if the Earth were rotating about its axis once per 
day then a person standing on the equator would be 
moving from west to east at about 1000 miles per hour. 
As described in Aristotle’s work On the Heavens, the 
ancient Greeks reasoned that such a large velocity 
would have dire consequences. For instance, there 
would be a 1000 mile per hour wind blowing from east 
to west, projectiles thrown westward would travel large 
distances, while projectiles thrown eastward would 
hardly go any distance, and might even go backward. 
Aristotle also argued that any motion of the Earth 
through space would cause a shift in the apparent 
positions of the stars in the sky—an effect known as 
stellar parallax. However, this effect is not detectable 
(at least, by the naked eye.) These arguments are not 
unreasonable. However, we now know them to be 
incorrect. The Earth’s atmosphere co-rotates with the 
Earth as a consequence of friction and inertia, so there 
is no 1000 mile an hour wind. Moreover, projectiles 
share the rotational motion of the Earth, because of 
inertia, so there is no great difference between their 
trajectories when thrown eastward and westward. 
Inc identa l l y, there actua l ly a re observab le 
consequences of the Earth’s rotation, but these are 
much less dramatic than Aristotle supposed. Stellar 
parallax is a real effect, but it is far too small to be 
detected by the naked eye, due to the very large 
distances of the stars from the Earth. These distances 
are much greater than the ancient Greeks supposed. 
Finally, it should be noted that, when attempting to 
construct a model of the motions of the Sun and the 
planets, seen relative to the Earth, the stationarity, or 
otherwise, of the Earth is somewhat of a moot point, 
because the Earth appears stationary to an observer 
standing upon it. 




• Aristotle’s On the Heavens -> heavens (i.e., region 
beyond lunar orbit) and heavenly bodies eternal and 
immutable.  

• Eternal immutable bodies must be perfect. (Imperfect 
bodies would eventually change and ultimately 
disintegrate.)  

• Circles are most perfect closed geometric figure -> 
celestial orbits are circular. 

• Celestial bodies must move uniformly around their 
circular orbits. Non-uniform motion imperfect -> could 
not be eternal.

Necessity for Uniform Circular Motion of Celestial  Bodies
According to Aristotle’s treatise On the Heavens, 
the heavens—in other words, the region situated 
outside the geocentric orbit of the Moon—as 
well as heavenly bodies, are both eternal and 
immutable. Aristotle presumably came to this 
conclusion because the Greeks, and the 
Babylonians and Egyptians before them, never 
observed any permanent or temporary changes 
in the heavens. (Incidentally, they regarded 
comets as atmospheric phenomena.) On the 
other hand, they observed changes—for 
instance, growth and decay—on the Earth all the 
time. Aristotle reasoned that an external and 
immutable body must be perfect, because any 
imperfection would eventually cause it to change 
and ultimately disintegrate. Thus, because a 
circle is the most perfect closed geometric 
figure, a celestial body must move in a circle. 
Everybody knows this. What is less well known 
is the fact that Aristotle also insisted that the 
circular motions of celestial bodies must be 
uniform in nature. He reasoned that if celestial 
bodies were continually speeding up and 
slowing down then these variations would 
eventually build up and destroy the motion. By 
analogy, if we saw a rotating flywheel that was 
wobbling then we would likely expect the 
wobbles to gradually get worse and worse until 
something disastrous happened. 
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The model for the geocentric orbit of the Sun 
described in the Almagest actually predates the 
Almagest by about 300 years, and is generally 
credited to Hipparchus of Nicaea. According to 
this model, the Sun moves uniformly about a 
circular orbit of center C, say. But, the Earth is 
shifted from the center of the orbit, as shown in 
the figure. This shift leads to a shift of the 
cardinal points on the orbit: that is, the vernal 
equinox, summer solstice, autumn equinox, and 
winter solstice. The period between successive 
passages through the vernal equinox is still 
365.24 days. However, the lengths of the 
seasons are now in proportion to the lengths of 
the arcs between the relevant two cardinal 
points, and these arc lengths are no longer 
equal, because the Earth is no longer at the 
center of the orbit. The ancient Greeks 
calculated that, supposing the radius of the orbit 
to be 1 unit, the magnitude of the shift needs to 
be 0.0334, and the angle A, shown in the figure, 
which determines the direction of the shift, 
needs to be 77.1 degrees. This magnitude and 
direction of the shift gives rise to correct 
predictions for the lengths of all the seasons. 
Here, I am, again, giving the modern figures for 
the magnitude and direction of the shift. The 
figures quoted in the Almagest are different, 
because the Earth’s orbit about the Sun has 
changed somewhat since Ptolemy’s time. The 
Almagest model of the geocentric solar orbit is 
surprisingly accurate. It can predict the position 
of the Sun, relative to the stars, to an accuracy 
of about 1 arc minute. That is, about 1/60 th of a 
degree. 


We can see that, in order to take account of the 
slightly different lengths of the seasons, the 
ancient Greeks had to slightly mar the prefect 
symmetry of their model of the heavens by 
making the Sun’s geocentric orbit an eccentric 
circle. However, the orbit is, at least, still circular, 
and, more importantly, the Sun’s motion around 
it is still uniform, relative to the center of the 
circle. Hence, there is no direct conflict with 
Aristotelian philosophy. 




Origin of Epicycle-Deferent Model
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Let now consider the origin of Ptolemy’s epicycle-
deferent model. The left diagram shows a heliocentric 
model of the solar system seen from the north. All 
orbital motion is counter-clockwise. To determine the 
position of Mars. denoted M, relative to the Earth, 
denoted E, we move from the Earth to the Sun, 
denoted S, and then from the Sun to Mars. In other 
words, in vector notion, the Earth-Mars vector, EM, is 
the sum of the Earth-Sun vector, ES, and the Sun-Mars 
vector, SM. However, one thing we know about vector 
addition is that it does not matter in which order we 
add the component vectors. In other words, if EM 
equals ES plus SM then EM also equals SM plus ES. 
This leads to the picture shown on the right. Mars 
moves around a circular epicycle whose center P 
moves around a larger circular deferent centered on 
the Earth. Moreover, the vector EP is equal to the 
vector SM—in other words, P stands to the Earth as 
Mars stands to the Sun—and the vector PM is equal to 
the vector ES—in other words, Mars stands to P as the 
Sun stands to the Earth. Of course, when observed 
from the Earth, the apparent motion of Mars consists 
of two components—the first is the actual motion of 
Mars around the Sun, and the second is the actual 
motion of the Earth around the Sun. These motions are 
represented by the deferent and the epicycle, 
respectively, in Ptolemy’s model. Once we understand 
this, we can immediately appreciate that adding 
additional epicycles to the model would be pointless—
this would be equivalent to giving Mars a third, 
completely spurious, apparent motion. So, why did 
Arabic and Medieval European astronomers add more 
and more epicycles to Ptolemy’s model? Actually, they 
didn’t. This story is a complete myth. 


You might think that we have now come to the end of 
our story. By analogy with Hipparchus’ model for the 
geocentric solar orbit, which you will recall is pretty 
accurate, all we need to do, in order to take the slight 
irregularities of the martian orbit into account, is to 
appropriately displace the Earth from the center of the 
deferent, displace the point P from the center of the 
epicycle, and then have P and M rotate uniformly 
relative to the geometric centers of the deferent and 
the epicycle, respectively. Unfortunately, this scheme 
does not work very well. In particular, it is incapable of 
accounting for the observed variations in the angular 
size of Mars’ retrograde arc. In order to understand 
why this approach fails, we need to learn a little about 
the true orbits of the planets, which are, of course, 
Keplerian ellipses. 
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Keplerian Orbit
Consider a planet, denoted P, in a Keplerian orbit 
around the Sun, denoted S. As is well known, 
the shape of the orbit is an ellipse. However, the 
Sun is not located at the geometric center of the 
ellipse, denoted C. Instead, supposing that the 
mean radius of the ellipse is 1 unit, the Sun is 
displaced along the ellipse’s major axis a 
distance e, where e is denoted the eccentricity of 
the orbit, and is generally very much less than 
unity. For instance, the eccentricity of the Earth’s 
orbit is 0.0167, whereas that of Mars’ orbit is 
0.0934. The difference between the major radius 
of the ellipse, CA, and its minor radius, CB, is 
second order in e. In other words, it is 
proportional to e-squared, which implies that the 
ellipse is virtually indistinguishable from a circle. 
This leads to the important conclusion that—far 
from being a major weakness, as is generally 
supposed—Ptolemy’s assumption that celestial 
bodies move in circular orbits is the main 
strength of his model. According to Kepler’s 
second law of planetary motion, the line SP 
sweeps out equal areas in equal time intervals. 
This means that, to first order in e, the motion of 
P is non-uniform about both the Sun, S, and the 
geometric center of the orbit, C, but appears 
uniform about a point, known as the equant, Q, 
which is diagrammatically opposite the Sun 
relative to the center. 
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as Sun, S, stands to Earth, E. 

• Ptolemy’s model is poor 
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Ptolemy’s Epicycle Model
We have seen that a superior planet stands to 
the center of its epicycle as the Sun stands to 
the Earth. Thus, if we can model the motion of 
the Sun relative to the Earth then we can use this 
to determine the motion of a planet relative to 
the center of its epicycle. Ptolemy’s model of the 
geocentric solar orbit can be recognized as a 
relatively poor approximation to a low-
eccentricity Keplerian ellipse that represents the 
actual orbit of the Earth around the Sun. The 
orbit is circular because a low-eccentricity 
Keplerian ellipse is a circle to very high accuracy. 
Suppose that radius of the orbit is 1 unit. The 
Earth, E, is shifted a distance 2e from the 
geometric center of the orbit, C, where e is the 
eccentricity of the Earth’s heliocentric orbit. 
Given that e equals 0.0167, this means that the 
appropriate shift is 0.0334 (as we saw in Slide 8). 
Finally, the Sun, S, rotates uniformly around the 
point C. In other words, the geometric center of 
the orbit has been shifted onto the equant. This 
simple scheme gets the angular position of the 
Sun relative to the Earth correct to first order in 
e. Unfortunately, it exaggerates the first-order 
variation in the Earth-Sun distance by a factor of 
2. However, this does not really matter, because 
the only thing that the Earth-Sun distance affects 
is the apparent angular size of the Sun, which 
the ancient Greeks could not measure to any 
accuracy. For the case of an epicycle, the 
exaggerated variation of the radial distance of 
the planet from the epicycle center introduces an 
error into the model. However, if the radius of the 
epicycle is small compared to the radius of the 
deferent, as is the case for all of the superior 
planets, then this error is relatively small. 
(Actually, somewhat inconsistently, Ptolemy did 
not include the 2e shift in his epicycle model. 
This leads to an error of similar magnitude to 
that involved in using a Hipparchian orbit.)
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• Center of epicycle, P, stands to 
Earth, E, as planet stands to Sun. 

• Ptolemy’s model is good 
approximation to low-eccentricity 
Keplerian orbit. 

• Orbit is eccentric circle. Earth 
shifted e from geometric center, C. 

• P rotates uniformly around equant, 
Q, which is geometrically opposite 
E w.r.t. C. 

• Model gets both relative angular 
location and relative distance of EP 
correct to first order in e. No other 
placement of Q or E does better 
job.

Ptolemy’s Deferent Model
We have seen that the center of the epicycle, P, of a 
superior planet stands to the Earth, E,  as the planet in 
question stands to the Sun. However, in this case, it is 
vitally important to accurately represent the variation of 
distance EP, as well as the angular position of P 
relative to E. The reason for this is that the distance EP 
affects the apparent angular size of the epicycle seen 
from the Earth. Thus, if, for instance, we exaggerated 
the variation of this distance by a factor 2, as we did 
on the previous slide, then we would also exaggerate 
the variation of the size of the planet’s retrograde arcs 
by the same factor, which would not agree with 
observations. Ptolemy’s method of solving this 
problem is, in effect, to make the deferent a relatively 
good approximation to a low-eccentricity Keplerian 
ellipse. The deferent is circular because it represents 
the low-eccentricity orbit of the planet in question 
about the Sun, and such an orbit is circular to high 
accuracy. Suppose that the radius of the orbit is 1 unit. 
The Earth is shifted a distance e from the geometric 
center of the orbit, C. However, the center of the 
epicycle rotates uniformly about another point, Q, 
which is geometrically opposite the Earth relative to C. 
As has already been mentioned, this point is known as 
the equant. (The name derives from the Latin punctum 
aequans.) This scheme gets the angular position of P, 
relative to E, as well as the distance EP, correct to first 
order in e. Furthermore, it can be demonstrated that no 
other placement of the Earth, or the equant, gives rise 
to a better approximation (i.e., a lower second-order 
error) to the orbit. In other words, this is the optimum 
scheme—at least, to second order in the eccentricity. 
The invention of the equant is Ptolemy’s greatest claim 
to fame. Of course, the fact that P is rotating uniformly 
about Q means that it is not moving uniformly around 
the deferent. In other words, this scheme is in serious 
conflict with the tenants of Aristotelian philosophy, 
which hold that heavenly motion must be uniform. In 
fact, Ptolemy was roundly criticized (on philosophical 
grounds) by later Arabic and medieval European 
astronomers, including Copernicus, for this feature of 
his model. They introduced many other schemes 
whose purpose was to do away with the equant, and 
to revert to a model in which the motion of heavenly 
bodies was a superposition of various uniform circular 
motions. These schemes, including Copernicus’, are 
all simultaneously more complicated, and less 
accurate, than Ptolemy’s. Incidentally, when Ptolemy’s 
model is applied to Mars, it is capable of predicting the 
position of this planet, relative to the fixed stars, with a 
maximum error of about 14 arc minutes. In other 
words, about half the apparent size of the Moon’s disk. 
However, the mean error is much smaller than this.




Summary and Conclusions
• Ptolemy’s thinking not completely shackled by Aristotelian philosophy.       

Fact that model is geocentric irrelevant, because purpose of model is to 
determine positions of celestial bodies relative to Earth.                    
Constraint that deferents and epicycles must be circular actually excellent 
approximation.                                                                                        
Ptolemy introduced equant, in direct violation of Aristotle’s maxim of uniform 
heavenly motion, because this was only simple way of getting agreement with 
observations.

• Epicycle of superior planet not a kludge -> represents Earth’s orbit around 
Sun, just as deferent represents planet’s orbit around Sun.

• Ptolemy’s model actually very accurate. Certainly sufficient for naked eye 
observations. 

• Story that later astronomers had to add more and more epicycles to 
Ptolemy’s model to get decent agreement with observations has no basis in 
fact.

There are a number of final points that I would 
like to make. 


First, it is not true that Ptolemy’s thinking was 
completely shackled by Aristotelian philosophy. 
As I have already mentioned, the fact that his 
model of the solar system is geocentric is 
somewhat of a moot point, because the purpose 
of the model is to determine the positions of 
heavenly bodies relative to the Earth, and to an 
observed standing on the Earth, the Earth 
appears stationary. The constraint that the 
epicycles and deferents in the model must be 
circular actually turns out to be an excellent 
approximation, because low-eccentricity 
Keplerian orbits are circular to high accuracy. 
Finally, Ptolemy introduced the equant into his 
model, in direct violation of Aristotle’s maxim 
that heavenly bodies must move uniformly 
around circular orbits, because this was the only 
simple way he could get his model to agree with 
observations. It is worth noting that no 
subsequent astronomer, even Copernicus, was 
able to come up with an more accurate 
approximation to a Keplerian orbit until Kepler 
himself. 


Second, the introduction of the epicycle into 
Ptolemy’s model is not a kludge whose purpose 
is to avoid admitting that the Earth moves. The 
epicycle of a superior planet actually represents 
the Earth’s orbit around the Sun, just as the 
deferent represents the planet’s orbit around the 
Sun.


Third, Ptolemy’s model is surprisingly accurate. 
It is certainly sufficiently accurate to give 
excel lent  agreement with naked eye 
observations. It is worth noting that Kepler 
inherited naked eye data from Tycho Brahe of 
hitherto unprecedented accuracy, and this was 
still only just good enough to for him to detect a 
slight disagreement between the predictions of 
Ptolemy’s model and the observed orbit of Mars 
(which has a particularly high eccentricity). 


Finally, the story that later astronomers has to 
add more and more epicycles to Ptolemy’s 
mode l to ge t decent ag reement w i th 
observations has no basis in fact, and is actually 
completely ridiculous. 


