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The recently developed Tomuhawc code is designed to investigate the global re-

sistive stability of high temperature tokamak plasmas with realistic equilibria. The

code solves (by means of adaptive-step integration) the linearized, Fourier trans-

formed, marginally-stable (i.e., zero inertia), ideal-MHD equations everywhere in

the plasma except in the immediate vicinity of the various rational magnetic flux-

surfaces, where the equations are singular. The solutions thus obtained are matched

asymptotically across the rational surfaces to determine the elements of the so-called

stability matrix. This matrix is calculated for both tearing and twisting (i.e., inter-

change) parity modes. As an illustration of the use of the code to determine global

resistive stability, the information from the n = 1 stability matrix, calculated for an

up-down symmetric, fixed boundary, JET-like plasma equilibrium, is combined with

a Glasser-Green-Johnson linear resistive layer model.

I. INTRODUCTION

As is well known, the determination of global resistive stability in a high temperature

tokamak plasma can be reduced to an asymptotic matching problem.1 The system is conve-

niently divided into two regions. In the “outer” region, which comprises most of the plasma,

the perturbation is described by the linearized, marginally-stable (i.e., zero inertia), equa-

tions of ideal magnetohydrodynamics (MHD). However, these equations become singular on

so-called “rational” magnetic flux-surfaces. In the “inner” region, which is strongly local-

ized around the various rational surfaces, additional effects such as resistivity and inertia

become important. The non-ideal layer solution in the vicinity of a given rational surface
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can generally be separated into independent tearing and twisting (i.e., interchange) parity

components.2 Finally, simultaneous asymptotic matching of the layer solutions in the in-

ner region to the ideal-MHD solution in the outer region yields a matrix tearing/twisting

dispersion relation.3–9

There are two main techniques for numerically calculating the elements of the tear-

ing/twisting stability matrix. The first employs a finite element method of solution.4–6 The

second reduces the problem to a set of coupled differential equations (in which the indepen-

dent variable is a flux-surface label) that are solved by means of adaptive-step integration.8–10

The latter method was previously implemented in the T7 code.9,10 However, this code only

takes into account the coupling of poloidal harmonics whose mode numbers differ by less

than four. Unfortunately, such an approach can only be justified in a relatively large aspect-

ratio, low beta, weakly shaped, plasma equilibrium. This paper describes a new code, called

Tomuhawc, which is similar to T7, except that there is no restriction on the allowed mode

number difference between coupled poloidal harmonics, and, hence, on the type of plasma

equilibrium.

II. DESCRIPTION OF TOMUHAWC CODE

The analysis underlying the Tomuhawc code is set out in detail in Appendix A. In the

following, all lengths are normalized to the major radius of the plasma magnetic axis, R0, all

magnetic field-strengths to the vacuum toroidal field-strength at the magnetic axis, B0, and

all plasma pressures to B 2
0 /µ0. Tomuhawc employs a right-handed flux coordinate system,

r, θ, φ. Here, r is a flux-surface label with dimensions of length which is such that r = 0 at

the magnetic axis, and r = a at the plasma boundary. Moreover, θ is a “straight” poloidal

angle defined such that θ = 0 on the inboard mid-plane. Finally, φ is the geometric toroidal

angle. The Jacobian of the coordinate system is (see Sect. A 1)

(∇r ×∇θ · ∇φ)−1 = r R 2. (1)

(Here, R, φ, Z is a conventional right-handed cylindrical coordinate system whose symmetry

axis corresponds to the toroidal symmetry axis of the plasma.) The equilibrium magnetic

field is written (see Sect. A 2)

B(r, θ) =
r g

q
∇(φ− q θ)×∇r = ∇φ×∇Ψ + g∇φ, (2)
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where

Ψ (r) = −
∫ a

r

r g

q
dr (3)

is the poloidal magnetic flux, q(r) the safety-factor profile, and g(r) determines the toroidal

magnetic field-strength.

The Tomuhawc code requires the q(r) and dq/dr profiles, as well as the following six

profile functions (see Sect. A 4):

p1(r) = r2, (4)

p2(r) =

(
q

g

)
1

r

dg

dr
=

dg

dΨ
, (5)

p3(r) =

(
q

g

)2
1

r

dP

dr
=

q

g

dP

dΨ
, (6)

p4(r) =

(
q

g

)
r
d

dr

(
g

q

)
, (7)

p5(r) =

(
r g

q

)2

=

(
dΨ

dr

)2

, (8)

p6(r) = Γ P, (9)

where P (r) is the equilibrium plasma pressure, and Γ = 5/3 the plasma ratio of specific

heats. (Note that p1, p2, p3, p4, and p5 correspond to αε, αg, αp, αf , and f 2, respectively,

in Appendix A.) In addition, the code requires the following nine metric functions (see
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Sect. A 4):

M
(1)
jj′ (r) =

∮
R 2 exp [−i (mj −mj′) θ]

dθ

2π
, (10)

M
(2)
jj′ (r) =

∮
|∇r|−2R−2 exp [−i (mj −mj′) θ]

dθ

2π
, (11)

M
(3)
jj′ (r) =

∮
|∇r|−2 exp [−i (m−m′) θ]

dθ

2π
, (12)

M
(4)
jj′ (r) =

∮
|∇r|−2R 2 exp [−i (mj −mj′) θ]

dθ

2π
, (13)

M
(5)
jj′ (r) =

∮
|∇r|−2R 4 exp [−i (mj −mj′) θ]

dθ

2π
, (14)

M
(6)
jj′ (r) =

∮
i r∇r · ∇θ

|∇r| 2 exp [−i (mj −mj′) θ]
dθ

2π
, (15)

M
(7)
jj′ (r) =

∮
i r∇r · ∇θ

|∇r| 2 R 2 exp [−i (mj −mj′) θ]
dθ

2π
, (16)

M (8)(r) =

∮
|∇r| 2 dθ

2π
, (17)

M (9)(r) =

∮
R 4 dθ

2π
. (18)

(Note that the M
(l)
jj′, for l = 1, 7, correspond to the ajj′, bjj′, cjj′, djj′, ejj′, fjj′, and gjj′, re-

spectively, in Appendix A. Furthermore, M
(1)
00 , M

(3)
00 , M

(4)
00 , M

(5)
00 , M

(8), and M (9) correspond

to a0, c0, d0, e0, x0, and y0, respectively, in Appendix B.) Here, the mj , where j = 1, J ,

are the mode numbers of the coupled poloidal harmonics included in the calculation. In

principle, J can be made arbitrarily large. There is no restriction on the equilibrium other

than the requirement that the profile functions, and their first derivatives, be finite and

continuous. The same requirement applies to the metric functions.

The present version of Tomuhawc assumes that the plasma is surrounded by a close

fitting, perfectly conducting wall whose inner surface corresponds to the plasma boundary,

r = a.

Tomuhawc numerically integrates the linearized, Fourier transformed, marginally-

stable, ideal-MHD equations, (A47)–(A48), in the region 0 ≤ r ≤ a using an explicit

embedded Runge-Kutta Prince-Dormand method.11 The solution is required to be well be-

haved at the magnetic axis, r = 0. The physical boundary condition δB ·∇r = 0 is imposed

at r = a. The linearized ideal-MHD equations are singular at plasma rational surfaces,

which satisfy q(rk) = mk/n, for k = 1, K, where 0 ≤ rk ≤ a, Here, mk is one of the mj,
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and n is the common toroidal mode number of the perturbation. The numerical solution in

Tomuhawc excludes the region of the plasma in which |r − rk| < δ, for k = 1, K, where

0 < δ/a � 1. The excluded region effectively constitutes the inner region, whereas the

remainder of the plasma effectively constitutes the outer region. The solution also excludes

the region close to the magnetic axis in which r < ε, where 0 ≤ ε/a � 1.

Writing

δB · ∇r = iR−2
∑
j=1,J

ψj(r)

r
exp[ i (mj θ − nφ)], (19)

the general analytic solution of the linearized ideal-MHD equations in the immediate vicinity

of the kth rational surface is such that (see Sect. A 5)

ψk(r) = Ψ±
k fk |xk| νLk +∆Ψ±

k fk sgn(xk) |xk| νS k + Ak xk + · · · , (20)

where

xk =

(
r − rk
rk

)
, (21)

fk =

(
m 2

k M
(8) + n2 p1

νS k − νLk

)1/2

rk

=

(
m 2

k 〈|∇r| 2〉+ n2 r2

2
√
DI k

)1/2

rk

, (22)

and νLk = 1/2 −
√
DI k, νS k = 1/2 +

√
DI k. Here, 〈· · · 〉 =

∮
(· · · ) dθ/2π is a flux-surface

average operator, and DI k a standard ideal interchange stability parameter evaluated at

the surface [see Eq. (B42)].2 Moreover, the plus superscript refers to the region xk > 0,

whereas the minus superscript refers to the region xk < 0. The above analytic solution is

asymptotically matched to the numerical solution at r = rk ± δ. However, the matching

process employed by Tomuhawc is only valid provided 0 < DI k < 1. The process breaks

down when DI k < 0 because the plasma in the vicinity of the kth rational surface becomes

unstable to localized ideal interchange modes.12 The process breaks down when DI k > 1

because the expansion (20) needs to be carried out to higher order in xk.

It is helpful to define (see Sect. A 6)

Ψ e
k =

1

2

(
Ψ+
k + Ψ−

k

)
, (23)

Ψ o
k =

1

2

(
Ψ+
k − Ψ−

k

)
, (24)

∆Ψ e
k = ∆Ψ+

k +∆Ψ−
k , (25)

∆Ψ o
k = ∆Ψ+

k −∆Ψ−
k . (26)
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The complex quantities Ψ e
k and Ψ o

k parameterize the amount of magnetic reconnection gener-

ated by tearing and twisting parity modes, respectively, at the kth rational surface. (Thus,

in a zero-inertia ideal plasma, Ψ e
k = Ψ o

k = 0, for all k.) Moreover, the complex quantities

∆e
k =

∆Ψ e
k

Ψ e
k

, (27)

∆o
k =

∆Ψ o
k

Ψ o
k

, (28)

are completely determined by the tearing and twisting parity resistive layer solutions, re-

spectively, in the vicinity of the kth rational surface (see Appendix B). When simultaneously

applied to every rational surface in the plasma, the asymptotic matching process leads to a

matrix dispersion relation of the form (see Sect. A 8)

∆e
k Ψ

e
k = ∆Ψ e

k =
∑

k′=1,K

(Ee
kk′ Ψ

e
k′ + Γkk′ Ψ

o
k′) , (29)

∆o
k Ψ

o
k = ∆Ψ o

k =
∑

k′=1,K

(Eo
kk′ Ψ

o
k′ + Γ ′

kk′ Ψ
e
k′) , (30)

for k = 1, K. TheTomuhawc code calculates the elements of the Ee, Eo, Γ, and Γ′ matrices,

which only depend on the numerical solution of the linearized, marginally-stable, ideal-MHD

equations in the outer region. On the other hand, the ∆e
k and ∆o

k values, which depend on

the non-ideal layer solutions in the inner region, are not calculated by Tomuhawc. The

elements of the Ee, Eo, Γ, and Γ′ matrices are independent of the complex growth-rate, γ,

of the instability, whereas the ∆e
k and ∆o

k values are generally functions of γ.

It is easily demonstrated that zero net toroidal electromagnetic torque is exerted on

the plasma in the outer region as a consequence of tearing or twisting perturbations (see

Sect. A 4).9 On the other hand, the net torque exerted on the segment of the inner region

centered on the kth rational surface is (see Sect. A 7)

δTk = 2nπ2 Im [∆Ψ e
k Ψ

e ∗
k +∆Ψ o

k Ψ
o ∗
k ]

= 2nπ2
[
Im(∆e

k) |Ψ e
k | 2 + Im(∆o

k) |Ψ o
k | 2
]
. (31)

Hence, making use of Eqs. (29) and (30), the total toroidal electromagnetic torque acting
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on the plasma is

Tφ =
∑

k=1,K

δTk

= nπ2 Im

{ ∑
k,k′=1,K

[
(Ee

kk′ − Ee ∗
k′k)Ψ

e∗
k Ψ e

k′ + (Eo
kk′ −Eo ∗

k′k)Ψ
o ∗
k Ψ o

k′

+ 2 (Γkk′ − Γ ′ ∗
k′k)Ψ

e∗
k Ψ o

k′

]}
. (32)

However, this total torque must be zero (because a plasma surrounded by a close fitting, ax-

isymmetric, perfectly conducting wall cannot exert a net toroidal torque on itself). Moreover,

this must be the case irrespective of the Ψ e
k and Ψ o

k values. It follows that (see Sect. A 8)

Ee
kk′ = Ee ∗

k′k, (33)

Eo
kk′ = Eo ∗

k′k, (34)

Γ ′
kk′ = Γ ∗

k′k (35)

for k, k′ = 1, K. The extent to which these symmetries are respected is a sensitive test of

the accuracy of the numerical solution in Tomuhawc.

III. PLASMA EQUILIBRIUM

The up-down symmetric plasma equilibrium whose resistive stability is investigated in this

paper is derived from the Chease code.13 The plasma boundary is written parametrically

as

R = Rc

[
1 + ā cos(ω + δ̄ sinω)

]
, (36)

Z = Rc ā κ sinω (37)

for 0 ≤ ω ≤ 2π. Here, ā is the plasma minor radius, κ the elongation, and δ̄ the triangularity.

The parameter Rc is automatically adjusted to ensure that the magnetic axis lies at R = 1.

The chosen equilibrium profiles are

dP

dΨ
= P0

(
Ψ

Ψ0

)
, (38)
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and

g(Ψ )
dg

dΨ
= G0

(
Ψ

Ψ0

)ν

. (39)

Here, Ψ (r) is the poloidal magnetic flux [see Eq. (3)], and Ψ0 ≡ Ψ (0). The parameter G0

is adjusted such that the central safety-factor, q0 ≡ q(0), takes a particular value. The

parameter ν is adjusted such that the edge safety-factor, qa ≡ q(a), takes a particular value.

Finally, the parameter P0 is adjusted such that the normal beta,

βN =
β(%) ā(m)B0(T)

Ip(MA)
, (40)

takes a particular value. Here, the total toroidal current, Ip, and total plasma beta, β, are

defined in Ref. 13.

In the example calculation considered in this paper, the parameters ā, κ, and δ are given

the JET-like values 0.3. 1.8, and 0.25, respectively. Moreover, the chosen values of the

central safety factor, the edge safety factor, and the normal beta are q0 = 1.05, qa = 3.95,

and βN = 1.0, respectively. The equilibrium safety-factor and pressure profiles are shown in

Figs. 1 and 2, respectively, whereas the Tomuhawc flux-coordinate system is illustrated in

Fig. 3. The q = 2 and q = 3 surfaces lie at r/a = 0.7507 and r/a = 0.9211, respectively,

where a = 0.4039.

IV. CALCULATION OF STABILITY MATRICES

Consider the stability of n = 1 resistive modes. The elements of the Ee, Eo, Γ, and Γ′

matrices, calculated by the Tomuhawc code for the plasma equilibrium described in the
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previous section, are as follows:

Ee =


 +1.357× 10+0, −6.058× 10−1

−6.058× 10−1, −1.495× 10+1


 , (41)

Eo =


 +1.046× 10+2, +5.205× 10+1

+5.205× 10+1, +9.950× 10+1


 , (42)

Γ =


 +1.061× 10+2, +1.854× 10+1

−3.107× 10+1, +3.532× 10+2


 , (43)

Γ′ =


 +1.061× 10+2, −3.107× 10+1

+1.854× 10+1, +3.532× 10+2


 . (44)

Here, the first and second row/column of each matrix corresponds to the resonant poloidal

mode numbersm = 2 andm = 3, respectively. The calculation is performed with δ/a = 10−7

and ε/a = 10−4, and includes all poloidal harmonics whose mode numbers lie in the range

−13 to +18. Incidentally, in this example, the elements of the Ee, Eo, Γ, and Γ′ matrices are

all real, because the equilibrium is up-down symmetric. Furthermore, the matrix elements

satisfy the symmetry requirements (33)–(35) to a high degree of accuracy. (If this were not

the case then the most likely cause would be a breakdown of the numerical method used in

the code.) Finally, it has been verified that the above matrix elements are unaffected by any

further decrease in the values of the numerical parameters δ and ε, or any further increase

in the number of poloidal harmonics included in the calculation.

V. DETERMINATION OF LINEAR STABILITY

The complex growth-rates, γ, of n = 1 resistive instabilities in our example equilibrium

are determined by solving the following equation:∣∣∣∣∣∣∣∣∣∣∣∣∣

Ee
11 −∆e

1(γ), Ee
12, Γ11, Γ12

Ee
12, Ee

22 −∆e
2(γ), Γ21, Γ22

Γ11, Γ21, Eo
11 −∆o

1(γ), Eo
12

Γ12, Γ22, Eo
21, Eo

22 −∆o
2(γ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (45)

Here, the complex quantities ∆e
1(γ), ∆

o
1(γ), ∆

e
2(γ), and ∆o

2(γ) are, respectively, the layer

stability parameter for tearing parity modes at the q = 2 surface, the corresponding param-
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eter for twisting parity modes, the layer stability parameter for tearing parity modes at the

q = 3 surface, and the corresponding parameter for twisting parity modes. As described in

Appendix B, these quantities are determined by solving the equations of linearized resistive-

MHD in thin layers centered on the q = 2 and q = 3 surfaces. (In fact, the layer equations

are solved numerically using the finite difference method described in Ref. 14.) In general,

we can write

∆e,o
k = S

(2/3)
√
DI k

k ∆̃e,o
k (Q̃k, Ek + Fk, Hk, Kk Ek −Gk, Kk Fk +Hk, Kk Hk, fAk, fS k), (46)

where

γ = inΩk + Q̃k S
−1/3
k ωAk. (47)

Here, Sk is the magnetic Lundquist number, Ωk the plasma toroidal angular velocity, and

ωAk the shear-Alfvén frequency [see Eq. (B47)], all evaluated at the kth rational surface.

Moreover, Ek, Fk, Gk, Hk, and Kk are standard Glasser-Greene-Johnson layer parameters 2

[see Eqs. (B25)–(B29)], evaluated at the same surface. Note that

DI k =
1

4
− Ek − Fk −Hk. (48)

Finally, the parameters fS k and fAk are defined in Eqs. (B52) and (B53), respectively. The

values of the various layer parameters for the plasma equilibrium under consideration are

listed in Table I.

The dispersion relation (45) can be written∣∣∣∣∣∣∣∣∣∣∣∣∣

Ee
11 − S

(2/3)
√
DI 1

1 ∆̃e
1, Ee

12, Γ11, Γ12

Ee
12, Ee

22 − S
(2/3)

√
DI 2

2 ∆̃e
2, Γ21, Γ22

Γ11, Γ21, Eo
11 − S

(2/3)
√
DI 1

1 ∆̃o
1, Eo

12

Γ12, Γ22, Eo
21, Eo

22 − S
(2/3)

√
DI 2

2 ∆̃o
2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(49)

Here, the normalized layer stability parameters, ∆̃e,o
1,2, as well as the elements of the Ee,o

and Γ matrices, are independent of the Lundquist numbers, S1 and S2, at the two rational

surfaces. Now, it is apparent that, in the limit of very high Lundquist numbers, S1, S2 → ∞,

the four roots of the above dispersion relation correspond to ∆̃e
1 = 0, ∆̃o

1 = 0, ∆̃e
2 = 0, and

∆̃o
2 = 0. Moreover, these roots can be identified as a tearing parity mode that only reconnects

magnetic flux at the q = 2 surface, a twisting parity mode that only reconnects flux at the
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same surface, a tearing parity mode that only reconnects magnetic flux at the q = 3 surface,

and a twisting parity mode that only reconnects flux at the same surface, respectively. The

normalized growth-rates of these four modes are

Q̃e
1 = −8.458× 10−2 ± 1.465× 10−1 i, (50)

Q̃o
1 = −1.488× 10−1 ± 2.578× 10−1 i, (51)

Q̃e
2 = −1.678× 10−2 ± 2.906× 10−2 i, (52)

Q̃o
2 = −3.024× 10−2 ± 5.238× 10−2 i, (53)

respectively. The corresponding unnormalized growth-rates are obtained from Eq. (47).

Thus, it is clear that, in the very high Lundquist number limit, the resistive stability of the

plasma is determined by layer physics at the various rational surfaces within the plasma,

and is completely independent of the outer solution. It follows from Eqs. (50)–(53) that

the particular plasma equilibrium under investigation is stable to n = 1 resistive modes in

the very high Lundquist number limit. This is a general result, and is a consequence of the

stabilizing influence of the characteristic favorable average magnetic field-line curvature of

a tokamak plasma (for q ≥ 1 and dp/dr > 0), which becomes a dominant effect at high

Lundquist number.2

In a realistic tokamak plasma, the Lundquist numbers at the two rational surfaces are

large, but finite, so that 0 ≤ 1/S1, 1/S2 � 1. In this case, the dispersion relation (49)

can have non-trivial roots [i.e., roots significantly different from (50)–(53)] provided that

0 ≤ |∆̃e
1| � 1, or 0 ≤ |∆̃o

1| � 1, or 0 ≤ |∆̃e
2| � 1, or 0 ≤ |∆̃o

2| � 1. Figures 4 and 5 illustrate

the behavior of |∆̃e
1| and |∆̃o

1| in the vicinity of the trivial roots (50) and (51). [The behavior

of |∆̃e
2| and |∆̃o

2| in the vicinity of the roots (52) and (53) is analogous.] It can be seen that

|∆̃o
1| is only small compared to unity when Q̃1 lies extremely close to the root (52). On the

other hand, |∆̃e
1| is generally small compared to unity as long as |Q̃1| is small compared to

unity. Likewise, |∆̃o
2| is only small when Q̃2 lies extremely close to the root (52), whereas

|∆̃e
2| is small as long as |Q̃2| is small. Consequently, at large but finite Lundquist numbers,

the roots of the dispersion relation (49) are given approximately by

∣∣∣∣∣∣
Ee

11 − S
(2/3)

√
DI 1

1 ∆̃e
1, Ee

12

Ee
12, Ee

22 − S
(2/3)

√
DI 2

2 ∆̃e
2

∣∣∣∣∣∣ � 0, (54)
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and

∆̃o
1 � 0, (55)

∆̃o
2 � 0. (56)

However, it is apparent from Eq. (47) that if

n |Ω1 −Ω2| � S
−1/3
1 ωA 1, S

−1/3
2 ωA 2, (57)

as is likely to be the case in a tokamak plasma possessing moderate toroidal velocity shear,

then |∆̃e
2| � 1 whenever |∆̃e

1| � 1, and vice versa (because |Q̃1| � 1 whenever |Q̃2| � 1,

and vice versa).9,10,15 In this situation, the roots of the dispersion relation (49) are given

approximately by

S
(2/3)

√
DI 1

1 ∆̃e
1 ≡ ∆e

1 � Ee
11, (58)

S
(2/3)

√
DI 2

2 ∆̃e
2 ≡ ∆e

2 � Ee
22, (59)

∆o
1 � 0, (60)

∆o
2 � 0. (61)

These roots correspond, respectively, to a tearing parity mode that only reconnects magnetic

flux at the q = 2 surface, a tearing parity mode that only reconnects magnetic flux at the

q = 3 surface, a twisting parity mode that only reconnects magnetic flux at the q = 2 surface,

and a twisting parity mode that only reconnects magnetic flux at the q = 3 surface.

Figure 6 shows the normalized n = 1 growth-rate of the tearing parity mode that recon-

nects magnetic flux at the q = 2 surface, Q̃1, calculated with the resonant layer parameters

listed in Table I as a function of the normalized tearing parity layer stability parameter, ∆̃e
1

(which is assumed to be real). It can be seen that the mode becomes unstable when ∆̃e
1

exceeds the critical value ∆̃e
1 crit = 9.643×10−2. Similarly, the tearing parity mode that recon-

nects magnetic flux at the q = 3 surface becomes unstable when ∆̃e
2 > ∆̃e

2 crit = 4.228×10−2.

We conclude that, for the equilibrium in question, the n = 1 twisting parity modes that only

reconnect magnetic flux at the q = 2 and q = 3 surfaces are both linearly stable [because

Eqs. (60) and (61) are only satisfied by modes whose growth-rates have negative real parts].

Morover, according to Equation (59), the n = 1 tearing parity mode that only reconnects

flux at the q = 3 surface is also linearly stable (because Ee
22 < 0, so it is impossible for ∆̃e

2
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to exceed ∆̃e
2 crit). On the other hand, according to Equation (58), the n = 1 tearing parity

mode that only reconnects flux at the q = 2 surface becomes linearly unstable when the

Lundquist number at the surface in question surface falls below the critical value

S1 crit =

(
Ee

11

∆̃e
1 crit

)(3/2)/
√
DI 1

=

(
1.357× 10+0

9.643× 10−2

)1.5/
√
0.2795

= 1.81× 103. (62)

The eigenfunction of this potentially unstable mode is shown in Fig. 7.

VI. SUMMARY

This paper describes the recently developed Tomuhawc code, which is designed to in-

vestigate the global resistive stability of high temperature tokamak plasmas with realistic

equilibria. The code solves (by means of adaptive-step integration) the linearized, Fourier

transformed, marginally-stable (i.e., zero inertia), ideal-MHD equations everywhere in the

plasma except in the immediate vicinity of the various rational flux-surfaces, where the equa-

tions are singular. The equations are matched asymptotically across the rational surfaces to

determine the elements of the so-called stability matrix. This matrix is calculated for both

tearing and twisting parity modes.

The analysis underlying the Tomuhawc code (including the specification of the metric

data required by the code, and the definition of the stability matrix) is summarized in

Sect. II, and described in detail in Appendix A.

An illustration of the use of the code to determine the linear global resistive stability

of a specified fixed boundary tokamak plasma equilibrium is given in Sects III–V. To be

more exact, in Sect. IV, the n = 1 stability matrix is calculated for an up-down symmetric

JET-like equilibrium containing two coupled rational surfaces (namely, the q = 2 and q = 3

surfaces). The equilibrium itself is described in Sect. III. In Sect. V, the stability matrix data

is combined with a Glasser-Green-Johnson linear layer model (described in Appendix B) to

determine the linear stability of n = 1 resistive modes for the equilibrium in question. It

is demonstrated that the large Lundquist numbers, and moderate levels of toroidal velocity

shear, prevalent in modern tokamak plasmas give rise to a decoupling of tearing and twisting

parity modes that only reconnect magnetic flux at a single rational surface in the plasma, and

whose resistive stability can, therefore, be determined independently. The twisting parity

modes that only reconnect flux at the q = 2 and q = 3 surfaces are found to be robustly
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stable. The tearing parity mode that only reconnects flux at the q = 3 surface is also found

to be robustly stable. Finally, the tearing parity mode that only reconnects flux at the q = 2

surface is found to be stable as long as the Lundquist number at the surface remains above

a critical value that is of order 103.
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Appendix A: Solution of Linearized Marginally-Stable Ideal-MHD Equations

1. Normalization and Coordinates

All lengths are normalized to the major radius of the plasma magnetic axis, R0, all

magnetic field-strengths to the vacuum toroidal field-strength at the magnetic axis, B0, and

all plasma pressures to B 2
0 /µ0.

Let R, φ, Z be right-handed cylindrical coordinates whose symmetry axis corresponds to

the toroidal symmetry axis of the plasma. The Jacobian for these coordinates is

(∇R×∇φ · ∇Z)−1 = R. (A1)

Let r, θ, φ be right-handed flux coordinates whose Jacobian is 8,9

J (r, θ) ≡ (∇r ×∇θ · ∇φ)−1 = r R 2. (A2)

Here, r is a flux-surface label with dimensions of length. Furthermore, θ is a “straight”

poloidal angle. Let r = 0 correspond to the magnetic axis, and θ = 0 to the inboard

midplane.

2. Plasma Equilibrium

Consider an axisymmetric tokamak plasma equilibrium. The magnetic field is written 8,9

B(r, θ) = f(r)∇φ×∇r + g(r)∇φ = f ∇(φ− q θ)×∇r, (A3)

where

q(r) =
r g

f
(A4)

is the safety-factor profile. It is assumed that g = 1 at the plasma boundary.

Equilibrium force balance yields the Grad-Shafranov equation,8,9

1

r

∂

∂r
(r f |∇r| 2) + 1

r

∂

∂θ
(r f ∇r · ∇θ) +

g g′

f
+

(
R

R0

)2
P ′

f
= 0, (A5)

where P (r) is the plasma pressure profile, and ′ ≡ d/dr.
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3. Governing Equations

Consider a small perturbation to the previously described plasma equilibrium. The sys-

tem is conveniently divided into an “outer region” and an “inner region”.1 The outer region

comprises all of the plasma except a number of radially thin layers centered on the various

rational surfaces. The inner region consists of the aforementioned layers. The perturbation

in the outer region is governed by linearized, marginally-stable, ideal-MHD, whereas that in

the inner region is governed by either linear or nonlinear resistive-MHD.1 The overall solu-

tion is constructed by asymptotically matching the ideal-MHD solution in the outer region

to the resistive-MHD solutions in the various segments of the inner region.

The linearized, marginally-stable, ideal-MHD equations that govern the perturbation in

the outer region are 1

δB = ∇× (ξ ×B), (A6)

∇δP = δJ×B+ J× δB, (A7)

δJ = ∇× δB, (A8)

δP = −ξ · ∇P. (A9)

Here, J = ∇×B is the equilibrium current density. Moreover, ξ , δB, δJ, and δP are the

plasma displacement, perturbed magnetic field, perturbed current density, and perturbed

pressure, respectively.

4. Fourier Transformed Equations

Let

f ξ · ∇r = y(r, θ) exp(−inφ), (A10)

R 2 δB · ∇φ = z(r, θ) exp(−inφ), (A11)
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where n > 0 is the toroidal mode number of the perturbation. After considerable algebra,

Eqs. (A6)–(A9) reduce to 8,9

r
∂

∂r

[(
∂

∂θ
− in q

)
y

]
=

∂

∂θ

(
Q

∂z

∂θ

)
+ S z − ∂

∂θ

[
T

(
∂

∂θ
− in q

)
y + U y

]
, (A12)

(
∂

∂θ
− in q

)
r
∂z

∂r
=−

(
∂

∂θ
− in q

)
T ∗ ∂z

∂θ
+ U

∂z

∂θ
+X y

−
(

∂

∂θ
− in q

)
V

(
∂

∂θ
− in q

)
y +W

(
∂

∂θ
− in q

)
y, (A13)

where

Q(r, θ) =
1

in |∇r| 2 , (A14)

S(r, θ) = inαε, (A15)

T (r, θ) =
r∇r · ∇θ

|∇r| 2 − αg

in |∇r| 2 , (A16)

U(r, θ) =
αp

|∇r| 2

(
R

R0

)2

, (A17)

V (r, θ) =
1

|∇r| 2

[
in

(
R0

R

)2

+
α 2
g

in

]
, (A18)

W (r, θ) =
2αg αp

|∇r| 2

(
R

R0

)2

− r
dαg

dr
, (A19)

X(r, θ) = inαp

[
∂

∂θ

{
T ∗
(

R

R0

)2
}

+ r
∂

∂r

(
R

R0

)2

− αf

(
R

R0

)2

− U

(
R

R0

)2
]
, (A20)

and

αε(r) = r2, (A21)

αg(r) =
1

f

dg

dr
, (A22)

αp(r) =
r

f 2

dP

dr
, (A23)

αf(r) =
r2

f

d

dr

(
f

r

)
. (A24)

Let

y(r, θ) =
∑
j=1,J

yj(r) exp( imj θ), (A25)

z(r, θ) =
∑
j=1,J

zj(r) exp( imj θ), (A26)
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where the mj , for j = 1, J , are the various coupled poloidal harmonics included in the

calculation. Equations (A12) and (A13) reduce to

r
d

dr
[(mj − n q) yj] =

∑
j′=1,J

(Bjj′ zj′ + Cjj′ yj′) , (A27)

(mj − n q) r
dzj
dr

=
∑
j′=1,J

(Djj′ zj′ + Ejj′ yj′) , (A28)

for j = 1, J , where

Bjj′(r) =
1

2π i

∮
e−imj θ

(
∂

∂θ
Q

∂

∂θ
+ S

)
e imj′ θ dθ, (A29)

Cjj′(r) =
1

2π i

∮
e−imj θ

[
− ∂

∂θ
T

(
∂

∂θ
− in q

)
− ∂U

∂θ

]
e imj′ θ dθ, (A30)

Djj′(r) =
1

2π i

∮
e−imj θ

[
−
(

∂

∂θ
− in q

)
T ∗ ∂

∂θ
+ U

∂

∂θ

]
e imj′ θ dθ, (A31)

Ejj′(r) =
1

2π i

∮
e−imj θ

[
−
(

∂

∂θ
− in q

)
V

(
∂

∂θ
− in q

)

+ W

(
∂

∂θ
− in q

)
+X

]
e imj′ θ dθ. (A32)

Hence, it follows from Eqs. (A14)–(A20) that

nBjj′ =mj mj′ cjj′ + n2 αε δjj′, (A33)

Cjj′ =mj (mj′ − n q)
(
−fjj′ + n−1 αg cjj′

)
−mj αp djj′, (A34)

Djj′ = − (mj − n q)mj′
(
fjj′ + n−1 αg cjj′

)
+mj′ αp djj′, (A35)

n−1Ejj′ = (mj − n q) (mj′ − n q)
(
bjj′ − n−2 α 2

g cjj′
)
− (mj′ − n q)n−1 r

dαg

dr
δjj′

+ αp

[
(mj −mj′) gjj′ + n−1 αg (mj +mj′ − 2n q) djj′ + r

dajj′

dr

−αf ajj′ − αp ejj′] , (A36)
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where

ajj′(r) =

∮
R 2 exp [−i (mj −mj′) θ]

dθ

2π
, (A37)

bjj′(r) =

∮
|∇r|−2R−2 exp [−i (mj −mj′) θ]

dθ

2π
, (A38)

cjj′(r) =

∮
|∇r|−2 exp [−i (m−m′) θ]

dθ

2π
, (A39)

djj′(r) =

∮
|∇r|−2R 2 exp [−i (mj −mj′) θ]

dθ

2π
, (A40)

ejj′(r) =

∮
|∇r|−2R 4 exp [−i (mj −mj′) θ]

dθ

2π
, (A41)

fjj′(r) =

∮
i r∇r · ∇θ

|∇r| 2 exp [−i (mj −mj′) θ]
dθ

2π
, (A42)

gjj′(r) =

∮
i r∇r · ∇θ

|∇r| 2 R 2 exp [−i (mj −mj′) θ]
dθ

2π
. (A43)

Let

yj =
ψj(r)

mj − n q
, (A44)

zj = n
Zj(r)

mj − n q
− Cjj

Bjj

ψj(r)

mj − n q
. (A45)

It follows that

δB · ∇r = iR−2
∑
j=1,J

ψj

r
exp[ i (mj θ − nφ)]. (A46)

Furthermore, Eqs. (A27) and (A28) transform to

r
dψj

dr
=
∑
j′=1,J

Ljj′ Zj′ +Mjj′ ψj′

mj′ − n q
, (A47)

(mj − n q) r
d

dr

(
Zj

mj − n q

)
=
∑
j′=1,J

Njj′ Zj′ + Pjj′ ψj′

mj′ − n q
, (A48)

for j = 1, J , where

Ljj′(r) =nBjj′, (A49)

Mjj′(r) =Cjj′ + λj′ Ljj′, (A50)

Njj′(r) =Djj′ − λj Ljj′, (A51)

Pjj′(r) =n−1Ejj′ − λj Mjj′ + λj′ Njj′ + λj λj′ Ljj′

− λj n q s δjj′ − (mj − n q) r
dλj

dr
δjj′, (A52)
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with

s(r) =
r q′

q
, (A53)

and

λj(r) = − Cjj

nBjj

= −
[
mj (mj − n q)n−1 αg cjj −mαp djj

m2
j cjj + n2 αε

]
. (A54)

Now, for a general plasma equilibrium, it is easily demonstrated that aj′j = a ∗
jj′, bj′j = b ∗jj′,

cj′j = c ∗
jj′, dj′j = d ∗

jj′, ej′j = e ∗
jj′, fj′j = −f ∗

jj′, gj′j = −g ∗
jj′, for all j, j

′, so that Bj′j = B ∗
jj′,

Cj′j = −D ∗
jj′, Dj′j = −C ∗

jj′, Ej′j = E ∗
jj′, and

Lj′j = L ∗
jj′, (A55)

Mj′j = −N ∗
jj′, (A56)

Nj′j = −M ∗
jj′, (A57)

Pj′j = P ∗
jj′. (A58)

It follows from Eqs. (A47) and (A48) that

r
d

dr

(∑
j=1,J

Z ∗
j ψj − ψ ∗

j Zj

mj − n q

)
= 0. (A59)

The net toroidal electromagnetic torque acting on the region lying within that equilibrium

magnetic flux-surface whose label is r takes the form9

Tφ(r) =

∫ r

0

∮ ∮
R 2∇φ · (δJ× δB)J dr dθ dφ, (A60)

which can be shown to reduce to

Tφ(r) = nπ2 i
∑
j=1,J

Z ∗
j ψj − ψ ∗

j Zj

mj − n q
. (A61)

Hence, we deduce that
dTφ

dr
= 0 (A62)

in the outer region.

5. Behavior in Vicinity of Rational Surface

Let there be K rational surfaces in the plasma. Suppose that the kth surface has the

flux-surface label rk, and the resonant poloidal mode number mk, where q(rk) = mk/n, for

k = 1, K.
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Consider the solution of the outer equations, (A47) and (A48), in the vicinity of the kth

surface. Let x = r − rk. The most general small-|x| solution of the outer equations can be

shown to take the form 9

ψj(x) =A±
Lk |x|νLk (1 + λLk x+ · · · ) + A±

S k sgn(x) |x|νS k (1 + · · · ) + AC k x (1 + · · · ),
(A63)

Zj(x) =A±
Lk |x|νLk(bLk + γLk x+ · · · ) + A±

S k sgn(x) |x|νS k (bS k + · · · )

+BC k x (1 + · · · ) (A64)

if mj = mk, and

ψj(x) =A±
Lk |x|νLk (akj + · · · ) + ψ̄kj (1 + · · · ), (A65)

Zj(x) =A±
Lk |x|νLk (bkj + · · · ) + Z̄kj (1 + · · · ) (A66)

if mj 
= mk. Moreover, the superscripts + and − correspond to x > 0 and x < 0,

respectively. Here,

νLk =
1

2
−
√
DI k, (A67)

νS k =
1

2
+
√

DI k, (A68)

DI k =
1

4
+ L0 k P0 k, (A69)

L0 k = −
(

Lkk

mk s

)
rk

, (A70)

P0 k = −
(

Pkk

mk s

)
rk

. (A71)
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Furthermore,

bLk =
νLk

L0 k
, (A72)

bS k =
νS k

L0 k
, (A73)

AC k = − 1

rk P0 k

mj �=mk∑
j=1,J

1

mj −mk

(
Nk j Z̄kj + Pkj ψ̄kj

)
rk
, (A74)

BC k = − 1

rk L0 k

mj �=mk∑
j=1,J

1

mj −mk

(
Lkj Z̄kj +Mkj ψ̄kj

)
rk
+

AC k

L0 k
, (A75)

λLk =
1

2 rk

[
P1 k L0 k

νLk
+ T1 k + νLk

(
L1 k

L0 k
− 2

)]
rk

− 1

(mk s)rk

1

rk νLk

mj �=mk∑
j=1,J

1

mj −mk
(Pkj Lkj −Mkj Nkj)rk , (A76)

γLk =
1

2 rk

[
(1 + νLk)

(
P1 k

νLk

+
T1 k

L0 k

− νLk

L0 k

)
+ P0 k

(
L1 k

L0 k

− 1

)]
rk

− 1

(mk s)rk

1

rk L0 k

mj �=mk∑
j=1,J

1

mj −mk
(Pkj Lkj −Mkj Nkj)rk , (A77)

akj = − 1

(mk s)rk

(
Mjk

νL k
+

Ljk

L0 k

)
rk

, (A78)

bkj = − 1

(mk s)rk

(
Njk

L0 k

+
Pjk

νLk

)
rk

, (A79)

and

L1 k = lim
x→0

(
Lkk

mk − n q

)
− rk L0 k

x
, (A80)

P1 k = lim
x→0

(
Pkk

mk − n q

)
− rk P0 k

x
, (A81)

T1 k = lim
x→0

(
−n q s

mk − n q

)
− rk

x
. (A82)

The parameters AS k and ALk are identified from the numerical solution of the outer equa-
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tions in the vicinity of the rational surface by taking the limits

ψ̄kj =ψj(rk + δ)− akj ψk(rk + δ), (A83)

Z̄kj =Zj(rk + δ)− bkj ψk(rk + δ), (A84)

A±
S k = ± Zk(rk ± |δ|)− bL k ψk(rk ± |δ|)

(bS k − bLk) |δ|νS k

− [(BC k − bL k AC k) + (γLk − bLk λLk)ψk(rk ± |δ|)] |δ|
(bS k − bL k) |δ|νS k

, (A85)

A±
Lk =

ψk(rk ± |δ|)∓A±
S k|δ|νS k ∓AC k |δ|

(1± |δ| λLk) |δ|νLk
(A86)

as |δ| → 0. The previous analysis is based on the assumption that

0 < DI k < 1. (A87)

If DI k < 0 then the indices νLk and νS k become complex, indicating that the plasma in the

vicinity of the kth rational surface is unstable to ideal interchange modes.12 On the other

hand, if DI k > 1 then the indices νLk and νS k differ by more than 2, and the expansion

(A63)–(A66) must consequently be carried out to higher order in |x|.

6. Asymptotic Matching Across Rational Surface

Consider the resistive layer solution in the vicinity of the kth rational surface. This

solution can be separated into independent tearing and twisting parity components.2 The

even (tearing parity) component is such that ψk(−x) = ψk(x) throughout the layer, whereas

the odd (twisting parity) component is such that ψk(−x) = −ψk(x). It is helpful to define

the quantities

Ae
L k =

1

2
(A+

Lk + A−
Lk), (A88)

Ao
L k =

1

2
(A+

Lk − A−
Lk), (A89)

Ae
S k =

1

2
(A+

S k − A−
S k), (A90)

Ao
S k =

1

2
(A+

S k + A−
S k). (A91)

The even and odd layer solutions determine the ratios 2

∆e
k = rνS k−νLk

k

2Ae
S k

Ae
L k

, (A92)
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and

∆o
k = rνS k−νLk

k

2Ao
S k

Ao
L k

, (A93)

respectively. Moreover, the net toroidal electromagnetic torque acting on the layer can be

shown to take the form 7,9

δTk = 2nπ2

(
νS k − νLk

Lkk

)
rk

[
|Ae

Lk| 2 Im(∆e
k) + |Ao

L k| 2 Im(∆o
k)
]
. (A94)

Let

Ψ e
k = rνLk

k

(
νS k − νLk

Lkk

)1/2

rk

Ae
L k, (A95)

∆Ψ e
k = rνS k

k

(
νS k − νLk

Lkk

)1/2

rk

2Ae
S k, (A96)

Ψ o
k = rνLk

k

(
νS k − νLk

Lkk

)1/2

rk

Ao
L k, (A97)

∆Ψ o
k = rνS k

k

(
νS k − νLk

Lkk

)1/2

rk

2Ao
S k, (A98)

The matching conditions become

∆Ψ e
k = ∆e

k Ψ e
k , (A99)

∆Ψ o
k = ∆o

k Ψ o
k . (A100)

Moreover,7,9

δTk = 2nπ2 Im (Ψ e ∗
k ∆Ψ e

k + Ψ o ∗
k ∆Ψ o

k) . (A101)

7. Toroidal Electromagnetic Torque on Plasma

It follows, from the previous analysis, that the net toroidal electromagnetic torque acting

within that equilibrium magnetic flux-surface whose label is r satisfies7,9

dTφ

dr
=
∑

k=1,K

δTk δ(r − rk), (A102)

where

δTk = 2nπ2 Im (Ψ e ∗
k ∆Ψ e

k + Ψ o ∗
k ∆Ψ o

k) . (A103)
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8. Derivation of Dispersion Relation

Let y(r) represent the 2J-dimensional vector of the ψj(r) and Zj(r) functions that satisfy

the outer equations, (A47) and (A48).

Suppose that the plasma is surrounded by a close fitting, perfectly conducting wall whose

inner surface corresponds to the outermost plasma flux-surface, r = a.

Let us launch J linearly independent, well-behaved solution vectors, ye
j(r), for j = 1, J ,

from the magnetic axis, r = 0, and numerically integrate them to r = a. (It is generally nec-

essary to periodically re-orthogonalize the solution vectors to prevent them from becoming

collinear. See Ref. 10, Appendix A.3.) The jump conditions imposed at the rational surfaces

are

Ψ o
k′ = 0, (A104)

∆Ψ e
k′ = 0, (A105)

for k′ = 1, K.

Next, let us launch a solution vector, ∆ye
k(r), from the kth rational surface, and numer-

ically integrate it to r = a. The jump conditions imposed at the rational surfaces are

Ψ o
k′ = 0, (A106)

∆Ψ e
k′ = δk′k, (A107)

for k′ = 1, K.

We can form a linear combination of solution vectors,

Ye
k(r) =

∑
j=1,J

αe
jk y

e
j +∆ye

k, (A108)

and choose the αe
jk so as to ensure that the physical boundary condition

ψj(a) = 0, (A109)

for j = 1, J , is satisfied. By construction, this solution vector is such that

Ψ o
k′ = 0, (A110)

∆Ψ e
k′ = δk′k, (A111)



26

for k′ = 1, K. Let

Ψ e
k′ = F ee

k′k, (A112)

∆Ψ o
k′ = F oe

k′k, (A113)

for k′ = 1, K. We can associate a Ye
k(r) with each rational surface in the plasma.

Let us launch J linearly independent, well-behaved solution vectors, yo
j (r), for j = 1, J ,

from the magnetic axis, r = 0, and numerically integrate them to r = a. The jump conditions

imposed at the rational surfaces are

Ψ e
k′ = 0, (A114)

∆Ψ o
k′ = 0, (A115)

for k′ = 1, K.

Next, we can launch a solution vector, ∆yo
k(r), from the kth rational surface, and integrate

it to r = a. The jump conditions imposed at the rational surfaces are

Ψ e
k′ = 0, (A116)

∆Ψ o
k′ = δk′k, (A117)

for k = 1, K.

We can form the linear combination of solution vectors,

Yo
k(r) =

∑
j=1,J

αo
jk y

o
j +∆yo

k, (A118)

and choose the αo
jk so as to satisfy the boundary condition (A125). By construction, this

solution vector is such that

Ψ e
k′ = 0, (A119)

∆Ψ o
k′ = δk′k, (A120)

for k′ = 1, K. Let

Ψ o
k′ = F oo

k′k, (A121)

∆Ψ e
k′ = F eo

k′k, (A122)
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for k′ = 1, K. We can associate a Yo
k(r) with each rational surface in the plasma.

The most general well-behaved solution vector that satisfies the boundary condition

(A125) is written

Y(r) =
∑

k=1,K

(ak Y
e
k + bk Y

o
k), (A123)

where the ak and bk are arbitrary. It follows that

Ψ e
k =

∑
k′=1,K

F ee
kk′ ak′, (A124)

Ψ o
k =

∑
k′=1,K

F oo
kk′ bk′ , (A125)

∆Ψ e
k = ak +

∑
k′=1,K

F eo
kk′ bk′ , (A126)

∆Ψ o
k = bk +

∑
k′=1,K

F oe
kk′ ak′ , (A127)

for k = 1, K. Let Ψe, Ψo, ∆Ψe, and ∆Ψo be the K × 1 vectors of the Ψ e
k , Ψ

o
k , ∆Ψ e

k, and

∆Ψ o
k values, respectively. Let F

ee, Feo, Foe, and Foo be the K×K matrices of the F ee
kk′, F

eo
kk′,

F oe
kk′, and F oo

kk′ values, respectively. Equations (A140)–(A143) can be combined to give the

dispersion relation 
∆Ψe

∆Ψo


 =


 Ee Γ

Γ′ Eo




Ψe

Ψo


 , (A128)

where

Ee = (Fee)−1, (A129)

Eo = (Foo)−1, (A130)

Γ = Feo Eo, (A131)

Γ′ = Foe Ee. (A132)

Now, according to Eqs. (A61) and (A125),

Tφ(a) = 0. (A133)

In other words, the net toroidal electromagnetic torque acting on the plasma is zero. Hence,

it follows from Eqs. (A118) and (A119) that

Ψe †∆Ψe −∆Ψe †Ψe +Ψo †∆Ψo −∆Ψo †Ψo = 0. (A134)
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Thus, making use of the dispersion relation (A144), we deduce that4,5,7,9

Ee † = Ee, (A135)

Eo † = Eo, (A136)

Γ′ = Γ†. (A137)

Thus, the dispersion relation can be written3–5,7
 Ee −∆e Γ

Γ′ Eo −∆o




Ψe

Ψo


 =


 0

0


 , (A138)

where ∆e and ∆o are the diagonal K ×K matrices of the ∆e
k and ∆o

k values, respectively.

Note that, according to Eqs. (A151)–(A153), the Ee and Eo matrices are Hermitian, and

the Γ′ matrix is the Hermitian conjugate of the Γ matrix.

Appendix B: Solution of Linearized Resistive-MHD Layer Equations

1. Basic Equations

Let us assume that all perturbed quantities vary in time as exp(γ t), where γ is the

complex growth-rate of the instability. The linearized, resistive-MHD equations that govern

perturbed quantities in the inner region are 2

δB = ∇× (ξ ×B)− η

γ′ ∇× δJ, (B1)

∇δP = δJ×B+ J× δB− ρ γ′ 2 ξ, (B2)

δJ = ∇× δB, (B3)

δP = −ξ · ∇P − Γ P ∇ · ξ. (B4)

Here,

γ′(r) = γ − inΩφ(r), (B5)

where Ωφ(r) is the plasma toroidal angular velocity. (We are neglecting the effect of velocity

shear in the preceding equations.) Moreover, η(r) and ρ(r) are the plasma resistivity and

density profiles, respectively. Finally, Γ = 5/3 is the plasma ratio of specific heats.
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2. Layer Equations

Consider the segment of the inner region centered on the kth rational surface. It is helpful

to define

a0(r) =
〈
R 2
〉
, (B6)

c0(r) =
〈
|∇r|−2

〉
, (B7)

d0(r) =
〈
|∇r|−2R 2

〉
, (B8)

e0(r) =
〈
|∇r|−2R 4

〉
, (B9)

x0(r) = 〈|∇r| 2〉, (B10)

y0(r) =
〈
R 4
〉
, (B11)

as well as

FR(r) =
1 + x0 αε/q

2

c0 + αε/q2
, (B12)

FA(r) =
y0 (1 + x0 αε/q

2)− a 2
0

f 2 FR

, (B13)

and

ωH(r) =
B0

R0

n s√
µ0 ρFA

, (B14)

ωη(r) =
η FR

µ0 r2
, (B15)

L(r) =
ωA

ωη
. (B16)

It is assumed that L � 1.

In the vicinity of the kth rational surface, Eqs. (B1)–(B4) can be shown to reduce to 2

0 =
d2Ψ

dX2
−Hk

dΥ

dX
−Qk (Ψ −X Ξ), (B17)

0 = Q 2
k

d2Ξ

dX2
−Qk X

2Ξ + Ek Υ +Qk X Ψ + Λ, (B18)

0 = Qk
d2Υ

dX2
−X 2 Υ −Gk Q

2
k Υ + (Gk −Kk Ek)Q

2
k Ξ +X Ψ −Kk Q

2
k Λ, (B19)

0 = Hk
d2Λ

dX2
− dΛ

dX
+ Fk

dΥ

dX
. (B20)
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Here,

x = r − rk, (B21)

Ψ (x) = ψk(x), (B22)

X =
(
L 1/3 x

r

)
rk

, (B23)

Qk =

(
L 1/3 γ′

ωH

)
rk

, (B24)

and

Ek =

[
αp

s2

{
(c0 + αε/q

2)

(
−r

da0
dr

+ a0 αf

)
+

a0 s

FR

}]
rk

, (B25)

Fk =

[
α 2
p

s2
(
[c0 + αε/q

2] e0 − d 2
0

)]
rk

, (B26)

Gk =

[
a0 (c0 + αε/q

2)

Γ P

FR

FA

]
rk

, (B27)

Hk =

[
αp

s

(
d0 −

a0
FR

)]
rk

, (B28)

Kk =

[
s2

α 2
p f

2

FR

FA

]
rk

. (B29)

Let us write

Ψ (X) = Ψ e(X) + Ψ o(X) + A0X, (B30)

Ξ(X) = Ξe(X) + Ξo(X) + A0, (B31)

Υ (X) = Υ e(X) + Υ o(X) + A0, (B32)

Λ(X) = Λe(X) + Λo(X)− A0Ek, (B33)

where A0 is an arbitrary constant, and Ψ e(−X) = Ψ e(X), Ψ o(−X) = −Ψ o(X), etc. Equa-

tions (B17)–(B20) can be shown to separate into the following two independent sets of

equations:2

0 =
d2Ψ e,o

dX2
−Hk

dΥ o,e

dX
−Qk (Ψ

e,o −X Ξo,e), (B34)

0 =Q 2
k

d2Ξo,e

dX 2
−Qk X

2Ξo,e + (Ek + Fk) Υ
o,e +Qk X Ψ e,o +Hk

dΨ e,o

dX
, (B35)

0 =Qk
d2Υ o,e

dX 2
−X 2 Υ o,e −Q 2

k (Gk +Kk Fk) Υ
o,e +Q 2

k (Gk −Kk Ek)Ξ
o,e

−Q 2
k Kk Hk

dΨ e,o

dX
, (B36)
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where

Λo,e = Hk
dΨ e,o

dX
+ Fk Υ

o,e. (B37)

The first set (involving Ψ e) governs tearing parity layer solutions, whereas the second (in-

volving Ψ o) governs twisting parity solutions.

3. Asymptotic Matching

In the limit |X| → ∞, the asymptotic behavior of the well-behaved solutions of the layer

equations, (B34)–(B37), is such that

Ψ e(X) → aeL |X|νLk + aeS |X|νS k , (B38)

Ψ o(X) → sgn(X) (aoL |X|νLk + aoS |X|νS k) . (B39)

These solutions are undetermined to an arbitrary multiplicative constant, which means that

the ratios aeS/a
e
L and aoS/a

o
L are fully determined. Here,

νLk = −1

2
−
√
DI k, (B40)

νS k = −1

2
+
√

DI k, (B41)

where

DI k =
1

4
− Ek − Fk −Hk. (B42)

The parameter DI k can be shown to be identical to the corresponding parameter defined in

Section A5. Asymptotic matching to the ideal-MHD solution in the outer region yields

∆e
k = L

(νLk−νLk)/3
k ∆̂e

k, (B43)

∆o
k = L

(νLk−νLk)/3
k ∆̂o

k, (B44)

where Lk = L(rk), and

∆̂e
k =

2 aeS
aeL

, (B45)

∆̂o
k =

2 aoS
aoL

. (B46)
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The hydromagnetic frequency, resistive diffusion rate, and Lundquist number of the

plasma are defined

ωA(r) =
B0

R0

1
√
µ0 ρ

, (B47)

ωR(r) =
η

µ0 ā 2
, (B48)

S(r) =
ωA

ωR

, (B49)

respectively. Here, the plasma minor radius, ā, is specified in Sect. III. It follows that

S = fS L (B50)

ωA = fA ωH, (B51)

where

fS(r) =
F

1/2
A FR

n s

ā 2

r2
, (B52)

fA(r) =
n s

F
1/2
A

. (B53)

Thus, we can write

∆e
k = S

(2/3)
√
DI k

k ∆̃e
k(Q̃k, Ek + Fk, Hk, Kk Ek −Gk, Kk Fk +Gk, Kk Hk, fAk, fS k), (B54)

∆o
k = S

(2/3)
√
DI k

k ∆̃o
k(Q̃k, Ek + Fk, Hk, Kk Ek −Gk, Kk Fk +Gk, Kk Hk, fAk, fS k), (B55)

where

γ = inΩk +
Q̃k

S
1/3
k

ωAk, (B56)

and

Q̃k =

(
f

1/3
S k

fAk

)
Qk, (B57)

∆̃e,o
k =

∆̂e,o
k

f
(2/3)

√
DI k

S k

. (B58)

Here, Sk = S(rk), Ωk = Ω(rk), ωAk = ωA(rk), fAk = fA(rk), and fS k = fS(rk).
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k Ek + Fk Hk Kk Ek −Gk Kk Fk +Gk Kk Hk DI k fAk fS k

2 −0.04765 0.01815 −52.20 50.21 0.7597 0.2795 0.6409 1.478

2 −0.01263 0.005102 −339.3 331.3 3.207 0.2575 0.8904 0.6181

TABLE I. Resonant layer parameters for a plasma equilibrium characterized by ā = 0.3, κ = 1.8,

δ = 0.25, q0 = 1.05, qa = 3.95, and βN = 1.0.

2

3

q

0 0.2 0.4 0.6 0.8 1
r/a

FIG. 1. Safety-factor profile for a plasma equilibrium characterized by ā = 0.3, κ = 1.8, δ = 0.25,

q0 = 1.05, qa = 3.95, and βN = 1.0.
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FIG. 2. Pressure profile for a plasma equilibrium characterized by ā = 0.3, κ = 1.8, δ = 0.25,

q0 = 1.05, qa = 3.95, and βN = 1.0.
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FIG. 3. Flux coordinate system for a plasma equilibrium characterized by ā = 0.3, κ = 1.8,

δ = 0.25, q0 = 1.05, qa = 3.95, and βN = 1.0. The curves show contours of the flux-surface label r,

and the straight poloidal angle θ.
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FIG. 4. Normalized n = 1 layer stability parameters at the q = 2 surface, calculated with the

resonant layer parameters specified in Table I as functions of the real part of the normalized

growth-rate. The dashed curve shows |∆̃e
1| calculated with Im(Q̃1) = ±1.465 × 10−1. The solid

curve shows |∆̃o
1| calculated with Im(Q̃1) = ±2.578 × 10−1.
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FIG. 5. Normalized n = 1 layer stability parameters at the q = 2 surface, calculated with the

resonant layer parameters specified in Table I as functions of the imaginary part of the normalized

growth-rate. The dashed curve shows |∆̃e
1| calculated with Re(Q̃1) = −8.458 × 10−2. The solid

curve shows |∆̃o
1| calculated with Re(Q̃1) = −1.488 × 10−1.
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∆̃e
1

FIG. 6. Normalized n = 1 growth-rate of the tearing parity mode at the q = 2 surface, calculated

with the resonant layer parameters listed in Table I as a function of the real part of the normalized

tearing parity layer stability parameter. The solid curve shows Re(Q̃1), and the dashed curve shows

Im(Q̃1). The imaginary part of ∆̃e
1 is zero.
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FIG. 7. Eigenfunction of the n = 1 tearing parity mode that only reconnects magnetic flux at the

q = 2 surface. The thicker solid black curve shows the resonant m = 2 harmonic. The thiner solid

black curve shows the resonant m = 3 harmonic. The dotted curves show non-resonant harmonics

whose poloidal mode numbers are less than 2. The dashed curves show non-resonant harmonics

whose poloidal mode numbers are greater than 3. The vertical dashed lines indicate the locations

of the q = 2 and q = 3 surfaces.


