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Effect of a resistive vacuum vessel on dynamo mode rotation in reversed
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Locked (i.e., nonrotating dynamo modes give rise to a serious edge loading problem during the
operation of high current reversed field pinches. Rotating dynamo modes generally have a far more
benign effect. A simple analytic model is developed in order to investigate the slowing down effect
of electromagnetic torques due to eddy currents excited in the vacuum vessel on the rotation of
dynamo modes in both the Madison Symmetric TdiMST) [Fusion Technoll19, 131(1991)] and

the Reversed Field ExperimefRFX) [Fusion Eng. Des25, 335 (1995]. This model strongly
suggests that vacuum vessel eddy currents are the primary cause of the observed lack of mode
rotation in RFX. The eddy currents in MST are found to be too weak to cause a similar problem. The
crucial difference between RFX and MST is the presence of a thin, highly resistive vacuum vessel
in the former device. The MST vacuum vessel is thick and highly conducting. Various locked mode
alleviation methods are discussed. 1®99 American Institute of Physics.

[S1070-664X%99)01610-9

I. INTRODUCTION modes resonant in the plasma core. These modes possess a
range of toroidal mode numbers, characterized ty

A reversed field pinchior RFP is a magnetic fusion ~2R,/a. Here,m,n are poloidal and toroidal mode num-
device which is similar to a tokamakn many ways. Like a  bers, respectively, whereasandR, are the minor and major
tokamak, the plasma is confined by a combination of a torradii of the plasma, respectively. The core tearing modes are
oidal magnetic fieldB,, and a poloidal magnetic fiel@,,  responsible for the dynamo action which maintains the field
in an axisymmetric toroidal configurati&nUnlike a toka- reversal, and are, therefore, generally known as dynamo
mak, whereB ,>B,, the toroidal and poloidal field strengths modes>
are comparable, and the RFP toroidal field is largely gener- The Madison Symmetric ToruMST)® and the Re-
ated by currents flowing within the plasma. The RFP conceptersed Field ExperimenRFX)’ are both large RFP experi-
derives its name from the fact that the toroidal magnetic fieldnents of broadly similar size and achieved plasma param-
spontaneously reverses direction in the outer regions of theters. Nevertheless, the observed dynamics of dynamo
plasma. This reversal is a consequence of relaxation to modes in these two devices is strikingly different.
minimum energy state driven by intense magnetohydrody- In MST, the dynamo modes generally rotate, forming a
namical (MHD) mode activity during the plasma start-up toroidally localized, phase-locked structure, known as a
phasé€ Intermittent, relatively low-level, mode activity “slinky mode,”® which also rotates and extends over about
maintains the reversal, by dynamo action, throughout the dusne-fourth of the torug.The dynamo modes continually ex-
ration of the plasma discharge. As a magnetic fusion conecute a so-called sawtooth cycle, in which their typical am-
cept, the RFP has a number of possible advantages relative iitude gradually increases from a small value, until a critical
the tokamak. The magnetic field strength at the coils is relaamplitude is reached at which a rapid global magnetic recon-
tively low, allowing the possibility of a copper-coil, as op- nection event, known as a sawtooth crash, is triggered. After
posed to a super-conducting-coil, reactor. Furthermore, theéhe crash, the mode amplitudes return to their initial values,
plasma current can, in principle, be increased sufficiently tand the process continues ad infinitum. Note that the dynamo
allow ohmic ignition, thus negating the need for auxiliary action which maintains the field reversal is only significant
heating systems. during the sawtooth crashes. The rotation of the dynamo

A conventional RFP plasma is surrounded by a closemodes is briefly arrested at each sawtooth crash, but gener-
fitting, thick, conducting shell whose L/R time is much ally resumes afterward. However, in a small fraction of
longer than the duration of the discharge. Such a shell iplasma discharges the dynamo modes fail to re-rotate after
necessary in order to stabilize external kink modes whichthe crash, setting in train a series of events which eventually
would otherwise rapidly destroy the plasthim the presence leads to the premature termination of the dischdrgée
of the shell, the dominant MHD modes ane=1 tearing percentage of discharges in which this occurs is a sensitive
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function of the plasma parameters and the wall conditioningnamo mode in the presence of a thin resistive vacuum vessel
but generally increases with increasing plasma current.  surrounded by a thick conducting shell. Furthermore, we
In RFX, the dynamo modes form a toroidally localized only consider zergs, large aspect-ratio plasmas. Neverthe-
“slinky mode” which locks to the shel{along with the con- less, we believe that our model is sufficiently realistic to
stituent dynamo modegsluring the plasma start-up phase andallow us to determine whether vacuum vessel eddy currents
remains locked, and, therefore, nonrotating, throughout thean account for the observed difference in dynamo mode
duration of the discharg®. The stationary “slinky mode” dynamics between RFX and MST.
does not significantlyi.e., by more than a factor 2, say
degrade the overall plasma confinemErtiut gives rise to a  Il. PRELIMINARY ANALYSIS
fcoroidally localized, stationary “hot spot” on the plasma fac- o e plasma equilibrium
ing surface, presumably because the radial transport due to
the diffusion of chaotic magnetic field lines peaks at the to- ~ Consider a large aspect-raffdzeroB,'’ RFP plasma
roidal ang|e where the amp”tude of the “S|inky mode” at- equilibrium whose Unperturbed magnetiC flux-surfaces map
tains its maximum value. If the plasma current is made sufout (almosi concentric circles in the poloidal plane. Such an
ficiently large, this “hot spot” overheats the facing surface, €quilibrium is well approximated as a periodic cylinder. Sup-
leading to the influx of impurities into the plasma, and thePose that the minor radius of the plasmaaisStandard cy-
eventual termination of the discharge. Indeed, the maximurfindrical polar coordinatesr(6,z) are adopted. The system
achievable plasma current in RFX is limited by this effect.is assumed to be periodic in tzedirection, with periodicity
Similar edge loading problems are not observed on MSTlength 2Ry, whereR, is the simulated major radius of the
presumably because the “hot spot’ associated with thedlasma. It is convenient to define a simulated toroidal angle
“slinky mode” rotates(since the constituent dynamo modes ¢=2/Rq.
rotate. The equilibrium magnetic field is written
Itis clear, from th_e above discu;sion, that the occurrence  g— [0B4(r),B4(r)]. (1)
of severe edge loading problems in RFX, and the relative o o _
absence of such problems in MST, is a consequence of thE"€ model RFP equilibrium adopted in this paper is the well-
fact that dynamo modes are generally stationary in RFX buknown a— 0, model;* according to which
usually rotate in MST. Note that other RFPs, in particular the  yvOB=¢(r)B, 2)
Toroidal Pinch eXperiment-RXTPE-RX) device'?!® ex-
hibit edge loading problems, associated with locked dynam
modes, which are similar to those observed on RFX. Two
possible explanations have been proposed for the lack of 0=
mode rotation in RFX. The first explanation focuses on the
fact that the stabilizing shell igelatively speakingfarther —Here,0, and« are positive constants.
away from the plasma in RFX than in MST. This can be It is conventiond to parameterize RFP equilibria in
expected to destabilize the dynamo modes in RFX, relativéerms of the pinch parameter,
to those in MST, thereby increasing their saturated ampli- B,(a)
tude, and, hence, making them more prone to lock to stray ©= m (4)
error fields. (Note that the error fields in RFX are only ¢
slightly larger than those in MST. Moreover, the error fieldsand the reversal parameter,

gvhere
20,

a

a

()

in TPE-RX are undoubtedly much less than those in MST. B,(a)
Hence, the different dynamo mode dynamics observed on F= ‘é , (5)
MST, RFX, and TPE-RX cannot be explained in terms of the (By)

intrinsic error-field levels in these devicesdowever, this  where(:--) denotes a volume average.

effect is thought to be too weak to account for the observed

difference in dynamo mode dynamics between MST and. Outline of the problem

RFX.!* The second explanation focuses on the fact that in . .
: . Suppose that the plasma is surrounded by a concentric,

MST the conducting shell is also the vacuum vessel, Whereat%in

. . .S . , resistive vacuum vessel of minor radiusThe vacuum
in RFX a thin resistive vacuum vessel is located between the S .
o vessel is, in turn, surrounded by a concentric, perfectly con-
shell and the edge of the plasma. In tokamaks, it is well-, """ . .
. . - ducting shell of minor radius. The arrangement of conduct-
known that eddy currents induced in a resistive vacuum ves- : L S .
) . : Ing shells surrounding the plasma is illustrated in Fig. 1. This
sel can effectively arrest mode rotation, provided that the

. . . paper investigates the effect of any helical eddy currents ex-
mode amplitude becomes sufficiently largdn this paper, . . : .
. . o X : cited in the vacuum vessel on the rotation of a typical core
we investigate whether similar eddy currents induced in th . i ;
earing mode: than,n mode, say. All other modes in the

RFX vacuum vessel can account for the absence of mOdeIasma are ianored. for the sake of simplicit
rotation in this devicdand the presence of mode rotation in P 9 ' plicity.

MST). g
The model adopted in this paper is rather simplistic. In-c' The perturbed magnetic field
stead of considering a range of unstable=1 modes, we The magnetic perturbation associated with i@ tear-

concentrate on the dynamics of a single representative dyng mode can be written
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FIG. 1. The arrangement of conducting shells surrounding the plasma. s r->

FIG. 2. A typical normalizedn,n tearing eigenfunctionz}zg"'“(r,d), calcu-
lated assuming the presence of a perfectly conducting shell at minor radius

b(r)=b™"(r)e!m*=%), ® q
wherem andn are poloidal and toroidal mode numbers, re-

spectively, and Here,l,, K, represent standard modified Bessel functions.

N A For the special case=0, the most general vacuum solution
b/"'=——, (7) . .
r is written
™ necy™ Py™O=Ae"+Be M (18

mn_ _ +
b m?+n?e’  m?+ne?’ ® o _
D. Standard tearing eigenfunctions
m,ny s m,n
bm,n:nf(’ﬂ ) N mo i . © Let
¢ m’+n’e®  m’+n?e

, Ye(r,d) (19
Here,” denotesd/dr. Furthermore,
represent the normalizesh,n tearing eigenfunction calcu-
e(r)= L_ (10) lated assuming the presence of a perfectly conducting shell at
Ro minor radiusd. In other words,/.""(r,d) is a real solution
In this paper it is assumed that=0. to Newcomb’s equatior{11) which is well behaved as
The linearized magnetic flux functiog™"(r) satisfies ~—0, and satisfies
’ i ~ 00 -~
Newcomb’s equatiof’ JON(TN Ay =1, 20)
d dy™" Zm,n
ar fmn ar —gmny™N=0, (11 e '(d,d)=0. (21
where It is easily demonstrated thi;{;"‘“(r,d) is zero in the region
r>d. In general,y2""(r,d) possesses gradient discontinui-
r ties atr=r2"" andr =d. The quantity
m,n — s
= frnze 13 )
dyd*"(r,d)| st
o 1+ r(neB,+mB,) do E™"(d)= gy (22)
gmn=1 (m*+n?e?)(mB,—neB,) dr s
2mneo ro? can be identified as the standard,n tearing stability

(13 index?° calculated assuming the presence of a perfectly con-
ducting shell at minor radiud. A typical tearing eigenfunc-

As is well-known, Eq.(11) is singular at them/n rational tion, ¢2""(r,d), is sketched in Fig. 2.

surface, minor radius"", which satisfies

+ — .
(m°+n?€®)? m?+n?e

mBy(rg"") —nBy(rg"™=0. (14  E. Modified tearing eigenfunctions
In the vacuum regiolic=0) surrounding the plasma, the In the presence of a resistive vacuum vessel, minor ra-
most general solution to Newcomb’s equation takes the fornglius b, and a perfectly conducting shell, minor radiysthe

most generaim,n tearing eigenfunction is written
Y =W () YRR (rb,e), (29

whereW ™" andW"" are complex parameters which deter-
mine the amplitude and phase of then tearing perturba-
km(ne)=—|ne|K 4 1(|ne)) + mK(|nel). (17 tion at the rational surface and vacuum vessel, respectively.

Y™ "= Ai(ne)+Bky(ne), (15
whereA, B are arbitrary constants, and

im(nf):|n6||m+l(|n6|)+m|m(|n6|)’ (16)
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FIG. 3. A typical normalizedn,n interaction eigenfunction&/g"”(r,b,c).
This eigenfunction parameterizes the interaction betweemtmetearing

Effect of a resistive vacuum vessel on dynamo mode . . . 3881
APT=EMA(p) P ETMp 27)
m,Nne=m,n
Awpr= - BN ymn pmagmn (g
b Em,n(c)_ Em,n(b) b bs s 1
where
dl,//m'n re”
m,n_
AV r ar . (29

o
is a complex parameter which determines the amplitude and

phase of then,n eddy currents flowing in the vicinity of the
m,n rational surface, whereas

dlpm,n b,

AP = F—ar

(30)

b_

mode and any eddy currents flowing in the resistive vacuum vessel, minor

radiusb, in the presence of a perfectly conducting shell of minor radius

Note thatz}ﬂ“”(r ,b,c) is a real solution to Newcomb’s equa-

tion which is well behaved as— 0, and satisfies

(™ b,c)=0, (24)
¢ (b,b,c)=1, (25)
fpg"”(c,b,c)=0. (26)

It is easily demonstrated th&ﬂ"”(r,b,p) is only nonzero for

is a complex parameter which determines the amplitude and
phase of them,n eddy currents flowing in the vacuum ves-
sel. Furthermore,

dg™(r,b,c)
;“5“=(r—b i ) (31
and
[ dgE(rb)
Ebs——(r—dr )b (32)

r in the range ™"<r<c. In general 4™"(r,b,c) possesses are both real parameters.

gradient discontinuities at=rJ"", r=b, andr=c. A typi-
cal interaction eigenfunctionj,""(r,b,c), which parameter-

izes the interaction between tingn tearing mode and any
eddy currents flowing in the resistive vacuum vessel, mino
radiusb, in the presence of a perfectly conducting shell of

minor radiusc, is sketched in Fig. 3.

F. The modified tearing dispersion relation

The dispersion relation for the,n tearing mode in the

presence of the resistive vacuum vessel and perfectly con-

ducting shell takes the form

Km(Né€p)im(ne) —Ky(ne)im(nep)

$™"(a,b)
0 r>b

Y1 b) =

wheree,=al/R,. It follows from Egs.(32) and(33) that

S0 (a,b) (M2 + n2e?)

Ebmén:km(nfb)im(nfa)_km(nfa)im(neb), (36)
y™"(a,b)(m?+n2ed)
o= ve_ank : 37

Km(Nep)im(Ney) —Km(Ney)im(ne,)

For the special case=0,

Km(Ne€p)im(ney) —Ky(Nez)im(nep)

It is easily demonstrated from Newcomb’s equatitm)
that

(M?+n2e2)EN"=(m?+n2e2)EM", (33

r . .
where e,=b/R, and es=r""/R,. It is also easily demon-
strated that

m,n

“m,n _ sb S m,n
(//b (r;bac)_Em,n(c)_Em,n(b){ltbs (r,C)

— g2, b)}. (34)
In the vacuum region outside the plasma
asr<b
: (35)
|
m,0 m,0 5 m,0, M4 g%m
Epe =Egp = Mg (a,b) w (38

It is clear, from the above analysis, that all of the real
parameters appearing in the modifiedn tearing dispersion
relation (27)—(28) [i.e., E™"(b), E™"(c), Epy", EZy"] can
be calculated from a knowledge of the standard tearing
eigenfunctiony""(r,d).
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G. Shell physics I. Viscous torques

Suppose that the vacuum vessel is of radial thickidgss The change in the plasma toroidal angular velocity in-
and conductivityo,. The time constant of the vessel is de- duced by the electromagnetic slowing down torque is written
fined

adr
= Spb. 39 f /fmn riv'sr<a
b7 HoTb% 39 AQ(r)=AQ, rw ° . (49
Adopting the thin-shell approximation, in which it is as-

sumed that there is virtually no radial variation of the tearing
eigenfunctiony™"(r) across the vessel, the dispersion rela-where w(r) is the plasmaperpendicular viscosity profile,
tion of the vacuum vessel takes the form and

AWPT=inQry W, (40 AQ=0s- 0. (50

I’<I’

Here, it is assumed that the,n tearing mode is saturated Here, Q") is the value of), in the absence of eddy currents
(i.e., its amplitude is fixedand co-rotates with the plasma at flowing in the vacuum vessel. In the above, it is assumed that
its associated rational surface. The plasma is assumed to rthe edge plasma rotation is unaffected by the electromagnetic
tate in the toroidal direction only, for the sake of simplicity. slowing down torquéi.e., AQ(a)=0]. The assumptions un-
Although the poloidal rotation in RFPs is generally nonzero,derlying the analysis in this section are described in more
it is usually smaller than the toroidal rotation, so its neglectdetail in Ref. 21. Note, in particular, that it is possible to
is unlikely to dramatically change any of the results obtainedyeneralize the analysis to take account of the fact that tearing

in this paper. In the above, modes do not generally co-rotate with the ion fluid in RFPs

Q=0(r™ (41) W|_thout significantly changing any of the results obtained in
this paper.

is the toroidal angular velocity of the plasma at timen The viscous restoring torque acting in the vicinity of the

rational surface, and)(r) is the plasma toroidal angular rational surface is written
velocity profile. Note that the thin-shell approximation is

i i ,dAQ
valid provided 5T¢vs 4n?R, FMRO = } . (51)
5 m,n
TEN0ery< . (42) y
b It follows from Egs.(49) and (50) that
Equations(27), (28), and(40) yield a dr
2
Em,n c _Em,n b 5T¢VS iy RO[Q S] /fmn (52)
awm= Emng) 4 | (142i)\m'” Ol ymn a9 T
where J. Torque balance
nQr,[E™"(c)—E™"(b)] Torque balance in the vicinity of the rational surface
A= e : (44 requires that
Esb Ebs
The thin-shell approximation is valid provided that ¢>EMJr 5T¢VS 0. (53
AR\ ™ (45) It follows from Egs.(48) and (52) that
where b\ 2 ™"
(AB T+ omZ o) A (54)
mn_ B [E™(c)—E™"(b)] 0
KIS ERMERT 48 \here
(0) EM™N(c)—E™N(b
H. Electromagnetic torques )\?g)” 577l EmB”(Eb:"” ( )], (55
The toroidal electromagnetic slowing down torque act- _ __S _ ° o
ing in the vicinity of them,n rational surface due to eddy Bo is a typical equilibrium magnetic field strength,
currents flowing in the vacuum vessel is giverf by |pmn|
27%R, N b3 = (56)
6T gem= 2 IM{ATIN(P N> (47) s
Mo m?+n?e . . T
is the perturbed radial magnetic field strength at tha
It follows from Eq. (43) that rational surface,
srmn __ 27 Ro MNP AT _ Jropoa 5
(l)EM o m2+n26§ 1+()\m,n)2 TH= BO ( 7)

X[E™"(c)—E™"(b)]. (48  is a typical hydromagnetic time scale,
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pod’ Qs=3+3 V1 (b]VA"By)? (65)
V=0 (58
#(0) where
is a typical viscous diffusion time scaleg is the central )\[‘25)”/\ 21, (NQ©)2 M2+ n2e 1
plasma mass density, and A= =
, , 2 27y ne; EMMEMD
Azl TH m?+ n?e? EN Epy" "
“|“mry nZd [E™(0)-E™(b)? J * p(0) dri 66)
rmnou(r) T
2 w(0) dr]* S N
j i a(r) T (59 Note that whenb{"" exceeds the critical valua’'B,, the
e M mode bifurcates to a slowly rotating state characterized by
Q¢ m,~0(1). This bifurcation is irreversible, in the sense
. ASYMPTOTIC REGIMES FOR SLOWING DOWN that b™" must be reduced substantially before the reverse
VIA VESSEL EDDY CURRENTS bifurcation takes place. Thus, the mode rotation is effectively
A. Introduction arrested whenever
Three separate asymptotic regimes for the slowing down  bJ"">A'By. (67)

of dynamo mode rotation via eddy currents induced in a

7 . o _“Note that bifurcations only occur for
resistive vacuum vessel can be identified from the preceding y

analysis. These regimes, which correspond to different order- )\?2)*)”>3\/§= 5.196. (68
ings for the intrinsic mode rotation paramek{%)“ [see Eq.
(55)], are discussed in the following. D. The thick-shell regime

The thick-shell regime corresponds to the ordering

B. The ultra-thin-shell regime A< (G- (69

The ultra-thin-shell regime corresponds to the ordering In this regime, there is very strong shielding of the tearing
mn perturbation by the vacuum vessel: i.e., the perturbation am-

Moy <1, (€0 plitude is zero in the regioh<r<c. The dispersion relation

in which either the intrinsic plasma rotation is very low or of the shell, Eq(40), is replaced bf?

the vacuum vessel is extremely thin. In this regime, there is

virtually no shielding of the tearing perturbation by the AP =

vacuum vessel: i.e., the perturbation amplitude remains sig-

nificant in the regiorb<<r<c. In this case, the torque bal- It follows that

1/2
inQSTb5—) VAL (70)
b

ance equatiori54) reduces to Emngmn
~ 1 A\P?'nzeiiwm%qf?n . (71)
0= g (61) (NQs7yb/ Sp)
1+(bd""/ABy) Hence,
where
o V2R n[WS2 EQMERS 72
~ 0 SEM™ 7, 2.2 2
QS:Q_((S)) (62) Mo Mo+nel (NQg7,b/ )
s Torque balance vyields
is the normalized dynamo mode rotation velocity. It can be mn 2
. 27 ~ N ’
seen that the mode rotation decreases smoothly and mono- £Ql/z(1_Q )_< s ) (73)
. . nio S s) I 1
tonically as the mode amplitudg" is increased. The rota- 2 A"Byg
tion is significantly reducedcompared to its value in the where
absence of vacuum vessel eddy curremtsenever
™" AB,. 63 e 42 BN 1ybl 5,) Y2 m?+n?el
° 27 v n2e2
C. The thin-shell regime
g 1 a (0 dr|¥?
The thin-shell regime corresponds to the ordering X EMnEmn mn e (74)
sb Ebs rs’ m(ry r

2\ MN oy mn
1<No)<Ae ©®9  Note that wherbg"" exceeds the critical valud”B,, the

In this regime, there is strong shielding of the tearing perturmode bifurcates to a slowly rotating state characterized by
bation by the vacuum vessel: i.e., the perturbation amplitud€)s7,~O(1). This bifurcation is irreversible, in the sense
is insignificant in the regiob<r <c. Nevertheless, the basic that by"" must be reduced substantially before the reverse
thin-shell approximation orderingQ7m,<b/ &, still holds.  bifurcation takes place. Thus, the mode rotation is effectively
In this case, the torque balance equat{b#) reduces to arrested whenever
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bg]’n>A”BO' (75 Q(O)(r)zﬂ(o) 1 r<rg

¢ lIn(r/a)/in(ri/a) r.sr<a’ (79

IV. ESTIMATE OF CRITICAL PLASMA PARAMETERS . ) _
_ In other words, the plasma rotation is uniform in the stochas-
A. Introduction tic core, and highly sheared in the outer regions of the

In order to proceed further, it is necessary to estimate ®lasma. o _ .
number of critical plasma parameters which cannot be di- The viscous diffusion time scalés8) is conveniently

rectly measured on MST or RFX. redefined
2
a
_ | | =20 (80
B. Estimate of the mode rotation velocity Mc

In the preceding ana|ysis7 the paramdﬁp) represents Suppose that the plasma denSity prOfile is approximately uni-
the toroidal angular phase velocity of a typical dynamo moddorm. It follows that the momentum confinement timg
in the absence of vacuum vessel eddy currents. Of coursélefined as the ratio of the net plasma toroidal angular mo-
this quantity can be measured directly in MST, where it ismentum to the toroidal angular momentum injection yase

found thaf® related tor, via

uP=RyQP=10kms . (76) __a’dQ%a)/dr

. VST ROy ™ ®1)

Unfortunately, it is impossible to measufe® on RFX, 0
since dynamo modes are never observed to rotate in thidence,
device. It is, therefore, necessary to estimate what the typical

H . 4TM
toroidal angular phase velocity of dynamo modes would be V. (82)
on RFX in the absence of slowing down torques due to 1-(rc/a)
vacuum vessel eddoy currents. In this paper, it is assumed that

Theoretlcally,usb) is expected to be the sum of the tor-
oidal ECB and electron diamagnetic velocities evaluated in "M~ 7, (83

the plasma coré! However, an RFP is characterized by aherer is the energy confinement tinfehich is measured
stochastic magnetic core generated by overlapping dynam@ poth MST and RFEX This is a plausible assumption, since

modes. The stochastic core gives rise to the development Qfheneverr,, has been measured in toroidal fusion devices it
an ambipolar electric field which reduces outward radialhas peen found to be very similar in magnituderga®®?7 It

electron transport along magnetic field lines to the level ofig|iows that
the corresponding ion transport. TEEB velocity associated
with this_electric field scales like an electron diamagnetic fa n(0) dr (84)
V
r

velocity?® It follows that u’’ should also scale as an elec- mn (@) TOKTE
tron diamagnetic velocity, givin .
9 . giving in Egs.(59), (66), and(74), where
MTgo(eV
nQéO):e%, (77) _ 4in(alry) 5
0 I Ja)?

Here, T4 is the central electron temperature. The factor 6 is

necessary in order to ensure that the above formula yields 5| owING DOWN CALCULATIONS
uP~10kms* for typical MST parameters.

A. The Madison Symmetric Torus
In MST, the plasma is surrounded by a single 5 cm thick
aluminum(alloy 6061-T§ shell which simultaneously plays
Plasma viscosity is not usually directly measured inthe role of the vacuum vessel and the stabilizing shell. Since
RFPs. It is, therefore, necessary to estimate the plasma vithere is no perfectly conducting shell surrounding this finite
cosity in terms of quantities which are measured. resistivity shell, the parametertakes the valuec (i.e., the
Suppose that the plasma viscosity profile takes the fornperfectly conducting shell of the preceding analysis is lo-
cated infinitely far away from the plasmarhe typical shell

C. Estimate of the plasma viscosity

< . .
w(r)= et _ (78) and plasma parameters for M3dre listed in Table I. It
e TesPsa follows that
In other yvords, there is zero momentgm .conflnem(.ant in the /—,U«omp wa -
stochastic corer<r., and the viscosity is approximately TTH= =55x10"" s, (86)

constant in the outer regions of the plasma. Suppose, further, Bo

that the intrinsic plasma rotation at the edge is negligibly
small[i.e., Q(¥(a)=0] and that all of the toroidal momen-

tum input to the plasma takes place inside the core. In this
case, it is easily demonstrated that Tp= oopdpb=0.82 s. (89

Teo(eV
nQ(SO>:6$)=4.OX 10* rads?, (87)

0



Phys. Plasmas, Vol. 6, No. 10, October 1999 Effect of a resistive vacuum vessel on dynamo mode . . . 3885

TABLE I. Typical MST parameters.

Parameter Units Symbol Value
Major radius m Ry 15
Plasma minor radius m a 0.51
Toroidal plasma current kA Iy 340
Equilibrium magnetic field strength T Bo=By(a) = uol 42ma 0.13
Central electron temperature eV Teo 230
Central electron number density I Neo 1x10'°
Energy confinement time ms T 1
Vacuum vessel minor radius m b 0.52
Vacuum vessel thickness cm Sp 5
Vacuum vessel resistivity Om 1o, 4.0x10°8

The typical equilibrium parameters for MST arg 4\2 Tﬁ(”9<50))3/2(7bb/5b)1/2 m2+nze§ 1 12
=0.34,0=3.0,0,=1.71,F=—-0.2, and®=1.59. Here, we = A"= 22 ELeglo
have adopted a somewhat low valuewfn order to com- V27k E n"es sb™=bs
pensate for the absenge qf pressure in our mdtiel final —3.0x10 2. (98)
result turns out to be fairly insensitive to this paramet€he - _
characteristic dynamo mode for this equilibrium is tire  The parametebs™” can be related to the nominal,n mag-

=1, n=6 mode. It is easily demonstrated tha¢® netic island widthwg™" via

=0.338h, so that ne;=0.69. Furthermore, Newcomb’s wmn pmn o pmn 12
equation can be solved to give ; = %m} , (99
0
E'%(b)=1.038, (89) )
where
1,6/ ~) —
E*%c)=17.59, (90) a [d(mB,—neB,)
16 (Fe =g | ——— (100
Eb‘S:5'826’ (91) S BO dr rmn.
ELf=1.614. (92

It is easily demonstrated thaF {9’ =1.44 for the equilib-
Finally, the radius of the stochastic plasma core is taken toium in question. ThusWé*G/az 1.94(b§*6/80)1’2. Further-
ber.=0.7a, yielding more, in the thick-shell regime the amplitudes of the per-
turbed poloidal and toroidal magnetic fields just inside the

K= MZ =28. (93)  aluminum shellwhich is where the Mirnov coils are located
1-(rc/a) in MST) are related tdT"" via
The parameters (3} and A ;° take the values m
(0 rgL§ 16 % =27 2Epg b, (101
16 NQs T[EZYC)—E™A(b)] ®mPinie P
No= ETRETS =5.7x 10" (99)
sb=bs pmn— nep EM.Npm.n (102
and ¢b _m2+n26§ bs Ms -
16 b [EM¥0)—EM(b)] Hence b= 1.0%¢° andbjjp=2.2801°.
)\C —5_ E1’6E1'6 —183, (95)
b sbtbs

respectively. It can be seen that

RN (96)
) . . ) . In RFX, the plasma is surrounded by a high resistivity,
in MST. Thus, the thick-shell regime, discussed in Sec. I Diinconel (alloy 625 vacuum vessel which is, in turn, sur-

is applicable. It follows that the eddy currents which slow rounded by a 6.5 cm thick aluminufalloy 6061-T6 shell.
down the rotation of the 1,6 mode do not penetrate the alu, e foliowing, we ignore the resistivity of the aluminum
minum shell, but are, instead, radially localized within agpe|| compared to that of the vacuum vessel. In other words,
skin-depth of its inner boundary. the aluminum shell is treated as a perfect conductor. The
According to Eq.(73), the relationship between the ical shell and plasma parameters for RFate listed in
mode amplitude parametbi® and the normalized mode ro- apje |1 The chosen values for the effective thickness and

B. The reversed field experiment

tation parametef)s in MST is the effective resistivity of the vacuum vessel are justified in
162 the appendix. It follows that
Eﬁl’2(1—65)= (b;> : (97) i
2 73 A"Byg VsoMpNgg @

=4.0x10"7 s, (103

TH:
where Bo



3886 Phys. Plasmas, Vol. 6, No. 10, October 1999 Fitzpatrick et al.

TABLE II. Typical RFX parameters.

Parameter Units Symbol Value

Major radius m Ro 2.0

Plasma minor radius m a 0.457

Toroidal plasma current kA Iy 600

Equilibrium magnetic field strength T Bo=By(a) = uol 427a 0.26

Central electron temperature eV Teo 230

Central electron number density I Neo 2Xx 10

Energy confinement time ms T 1

Vacuum vessel minor radius m b 0.490

Vacuum vessefeffective thickness mm Sy 3.5

Vacuum vesseleffective resistivity Om 1oy, 64.7x10°8

Stabilizing shell minor radius m c 0.535

Stabilizing shell thickness cm S¢ 6.5

Stabilizing shell resistivity Om llo. 4.4x10°8

0 TeoleV) . 2 m+n’e  EgES [
nQyY =6 —-—=2.5x10" rads?, (104 A=|— o 3 T
a‘By k TpTg  N%€s  [E7((c)—E™I(b)]

Th= oTpSph=3.3X107° s. (105) =1.0x102. (114

The typical equilibrium parameters for RFX aw, It is easily demonstrated thaF{)’=1.73 for the equilib-
=0.23,0=3.5,0,=1.65,F = —0.2, and®=1.56. Here, we  rium in question. ThusWw:%a=1.88b’%By)? where use
have again adopted a somewhat low valuexdh order to  has been made of E¢Q9). Furthermore, since the thin-shell
compensate for the absence of pressure in our model. Thgyproximation is valid, the amplitudes of the perturbed po-
characteristic dynamo mode for this equilibrium is tie  |oidal and toroidal magnetic fields just inside the aluminum
=1, n=9 mode. It is easily demonstrated that®  shell (which is where the Mirnov coils are located in RFX
=0.384, so that ne;=0.79. Furthermore, Newcomb’s are related td"" via
equation can be solved to give

m Egy"
E™9(b)=0.433, (10 b= e T o ebe (119
[
EY9%c)=1.258, (107 Emn
mn___ € = b 116
EL9—5.467, (108 b = nZe (1T (s (
ElP=1.513. (109  where
Finally, the radius of_the_ stochastic plasma core is again £ z:/;’S“'”(a,c)(szr n%e2) 117
taken to ber.=0.7a, yielding k=2.8. ¢S Tk (Neg)im(Nen) — Kn(Nen)im(neg)

The parameters () and\ ¢° take the values

1,9_ G .
000 7 [EM(c)— E%b)] Now, E_;'=6.625 for the equilibrium in question, so

19_ _ 19
A o) ELSEID 8.36, (110 1o 0978 118
S S GC_[1+(8 3& )2]1/2’
and T
2.1%1°
b [E*c)—E™b)] bje= S 119
19_~ — = .
TS EmE 1y 1 (83897
respectively. Note that C. Results
1<)\(1(’f)’< AP, (112 Figure 4 shows the toroidal angular phase velofityof
so the thin-shell regime, discussed in Sec. Ill, is applicablef[he characteristic dynamo mode plotted as a function of the

associated saturated island widty at the rational surface
for both MST and RFX. Note that the characteristic mode is
the 1,6 mode for the case of MST and the 1,9 mode for the

According to Eq.(54), the relationship between the
mode ampIitudeparametbé'9 and the normalized mode ro-
tation parametef) in RFX is

case of RFX.
(1-Q[1+(8.360)2] [ bi®\2 For the case of MST, it can be seen that as the saturated
) VCHE (113 island width is gradually increased, the phase velocity of the
S

characteristic mode is gradually reduced via the action of
where eddy currents excited in the vacuum vessel. Note, however,
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FIG. 4. The toroidal angular phase velocidy of the characteristic dynamo  F|G. 5. The toroidal angular phase velociy of the characteristic dynamo

mode (normalized to the corresponding velocify!” in the absence of mode (normalized to the corresponding velociy®) in the absence of
vacuum vessel eddy currepss a function of the associated saturated islandyacuum vessel eddy currehts a function of the associated perturbed po-

width W, (normalized with respect to the minor radius of the plasma  |oidal magnetic fieldh, seen at the Mirnov coilfnormalized with respect to
calculated for MST(long-dashed lineand RFX(short-dashed line the edge equilibrium magnetic fielB,(a)] calculated for MST(long-

dashed lingand RFX(short-dashed line

that if the phase velocity falls below a certain critical value,

corresponding to one-third of its value in the absence of eddy . .

currents, then a bifurcation to a branch of solutions on whictfiréct consequence of the eddy currents induced in the RFX
the mode is effectively nonrotating is triggered. The bifurca-vacuum vessel. _ ,

tion point is indicated by a triangle in Fig. 4. Likewise, the  Figure S shows the toroidal angular phase velogityof
bifurcation path(from the rotating to the nonrotating branch the characteristic dynamo mode plotted as a function of the
of solutions is shown as a dotted line. The bifurcation is @ssociated perturbed poloidal magnetic fiejdcalculated at
irreversible: i.e., once the mode has made the transition t§'€ radius of the Mirnov cails for both MST and RFX. It can
the nonrotating branch of solutions the saturated island widtR® S€en that rotation is predicted to collapse in MST when
must be reduced substantially before the reverse transitioi€e ratiob,/B(a) exceeds about 3%. Sind#,(a)=1300
takes place. gauss(see Table )l it follows that the critical value ob,

For the case of RFX, it can be seen that as the saturatdeeded to arrest the mode rotation in MST is about 40 gauss.
island width is gradually increased the phase velocity of thelhis is a larger value than is generally observed in MST,
characteristic mode is gradually reduced via the action ofXcept perhaps at sawtooth crashes. Thus, eddy current
eddy currents excited in the vacuum vessel. Note, howeveforques are almost certainly insignificant in MST during the
that this reduction in phase velocity takes place far moresawtooth ramp phase, but may play a role in the sudden
rapidly, and at significantly lower values of the saturatedslowing down of mode rotation seen at sawtooth crashes.
island width, than in MST. This is largely due to the fact that The mode rotation is predicted to collapse in RFX when the
the RFX vacuum vessel is much more resistive than the MSTatio b,/B,(a) exceeds about 0.1%. Sindg,(a)=2600
vessel. As before, if the phase velocity falls below a certairgauss(see Table ), it follows that the critical value ob,
critical value, corresponding to 0.47 of its value in the ab-needed to arrest the mode rotation in RFX is about 3 gauss.
sence of eddy currents, then a bifurcation to a slowly rotatinghis is a significantly smaller value than is generally ob-
branch of solutions is triggered. The bifurcation points areserved in RFX;* which lends further credence to our conjec-
indicated by triangles in Fig. 4. Likewise, the bifurcation ture that vacuum vessel eddy currents are the primary cause
path (from the rapidly to the slowly rotating branch of solu- of the lack of dynamo mode rotation in this device.
tions) is shown as a dotted line. The bifurcation is irrevers-  Figure 6 shows the toroidal angular phase velofityof
ible, in the sense discussed above. the characteristic dynamo mode plotted as a function of the

Now, the typical saturated island width of a dynamo associated perturbed toroidal magnetic fiejgdcalculated at
mode in an RFP plasma is approximately 20% of the minothe radius of the Mirnov coils for both MST and RFX. Note
radius (see, for instance, Figs. 4 and 1 in Refs. 23 and 28thatb,~2b, in both devices.
respectively. Note, from Fig. 4, that iW,/a=0.2 then our Preliminary calculations for TPE-RX indicate that the
model predicts that dynamo mode rotation in MST is virtu-torque curve for this device lies between those for MST and
ally unaffected by vacuum vessel eddy currents, whereas arfgFX. In other words, the slowing down problem in TPE-RX
mode rotation in RFX is essentially eliminated by such cur-is predicted to be significantly worse than that in MST, but
rents. This observation leads us to conjecture that the obrot as bad as that in RFX, in accordance with experimental
served lack of mode rotation in RFX, compared to MST, is aobservations.
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1.0 ===

— decreasing the radial extent of the interspace between the
vacuum vessel and the stabilizing shell; & spinning the
plasma using neutral beams.

Let us examine the scaling of the critical radial magnetic
field at the rational surface™" (normalized with respect to
the scale equilibrium field magnetB,), above which the
rotation of the characteristic dynamo mode is significantly
reduced, with the toroidal plasma currént. It is assumed,
for the sake of simplicity, that the plasma density and the
various equilibrium plasma profiles remain constant ass
varied. According to the well-known Connor—Tayl@on-
stant betascaling law?® Teoex 1, and7eec1 32, It follows that
0 . Boxly, Tl !, andnQ(? is independent of ;. Further-
“0.00 0.02 0.04 0.06 0.08 more, the intrinsic mode rotation paramehé‘g')“ is also in-

b,/By(a) dependent of ;. RFX lies in the thin-shell regime discussed
_ » in Sec. IIl. It is easily demonstrated thf*"/Bgecl, ™ in
FIG. 6. The toroidal angular phase velocfdy, of the characteristic dynamo

mode (normalized to the corresponding velociﬂg‘)) in the absence of thls “mlt'_ Other more empmcal SCEl_|Ing IaV\(e.g., TEOCI_¢)
vacuum vessel eddy curren@s a function of the associated perturbed tor- Yi€ld similar results. Thus, we predict a very strong inverse
oidal magnetic field,, seen at the Mirnov coilfnormalized with respectto ~ scaling of the critical mode amplitude required to cause lock-
the edge equilibrium magnetic fielB,(a)] calculated for MST (long- ing of dynamo modes with increasing plasma current. It
dashed lingand RFX(short-dashed line . . .

should certainly be possible to alleviate locked mode prob-
lems by operating at reduced plasma current. Conversely,
locked mode problems can be expected to worsen dramati-
cally as the plasma current is increased.

Locked (i.e., nonrotatiny dynamo modes give rise to a Let us examine the scaling of""/B, with the toroidal
serious edge loading problem during the operation of higiesistivity R, of the vacuum vessel. It is assumed, for the
current reversed field pinches. Rotating dynamo modes gersake of simplicity, that all of the plasma parameters remain
erally have a far more benign effect. Dynamo modes argonstant aR, is varied. It is also assumed that the poloidal
usually observed to rotate in MST, whereas in RFX thesdesistivity R, of the vessel scales like,. According to the
modes remain locked throughout the duration of the plasmanalysis in Sec. lll, at fixed plasma parameters the eddy cur-
discharge. The locked dynamo modes in RFX are a cause faent slowing down torque acting on the characteristic dy-
concern because they limit the maximum achievable plasmaamo mode attains its maximum value wHepis such that
current. the intrinsic plasma rotation parametef;y' [defined in Eq.

An analytic model has been developed in order to inves{55)] is of order unity. Since)\[‘g)”:S in RFX [see Eq.
tigate the slowing down effect of electromagnetic torques110)], it is clear that the actual resistance of the RFX
due to vacuum vessel eddy currents on the rotation of dyvacuum vessel is somewhat less than the value which maxi-
namo modes in both MST and RFX. Despite the model’smizes the slowing down torque acting on dynamo modes.
simplicity, the results of our investigation are sufficiently Thus, in principle, the severe locked mode problems in RFX
clear-cut to enable us to conclude, with some degree of cegould be alleviated by either making the vacuum vessel
tainty, that vacuum vessel eddy currents are the primarglightly more conducting or far mor@e., by at least a factor
cause of the observed lack of dynamo mode rotation in RFX10) resistive. In practice, it is difficult to see how the RFX
The corresponding eddy currents in MST are found to be togacuum vessel could be made far more resistive: it is already
weak to cause a similar problem. The crucial difference befapricated out of very thin sheets of an extremely high resis-
tween RFX and MST is the presence of a thin, highly resistjyity material (i.e., inconel. On the other hand, the vessel
tive vacuum vessel in the former device. The MST vacuunygyld easily be made more conducting, either by increasing
vessel is thick and highly conducting. its thickness or fabricating it out of a less resistive material.
In the thin-shell regime, it is easily demonstrated that
b"/BoxR,, %= 7%, Note the relatively weak scaling of
bd""/By with 7,. This suggests that increasing the time con-

In the above, we have demonstrated, fairly conclusivelystantr, of the vacuum vessel is not a particularly effective
that vacuum vessel eddy currents are largely responsible favay of alleviating locked mode problems.
the severe locked mode problems encountered in RFX. Note, Let us examine the scaling &f""/B, with the radial
however, that such problems are likely to be generic to anylistanced=c—b between the thick stabilizing shell and the
large RFP equipped with a thin vacuum vessel. In the folthin vacuum vessel. It is assumed, for the sake of simplicity,
lowing, armed with this knowledge, we briefly examine four that all of the plasma parameters remain constantl &s
possible methods for alleviating locked mode problems irvaried. The spacing between the two shells affed§""/B
such RFPs. These methods dii¢:reducing the plasma cur- primarily through the terme™"(c)—E™"(b), which ap-
rent; (ii) decreasing the resistance of the vacuum vesisigl; pears in Eqs(55) and(59). Let us assume, as seems reason-
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able, thatE™"(c)—E™"(b)«d as d—0. RFX lies in the m?+ n2e?
thin-shell regime discussed in Sec. Ill. Unfortunately, there Tb:MORom-
is no dependence df""/B, on d in this regime(since the ¢ o
vacuum vessel fairly efficiently shields the tearing perturbaFOr the case of the RFX vacuum vesssith m=1 andn
tion from the influence of the stabilizing shell in both the =9), We obtainr,=3.33ms. _ .
thin-shell and thick-shell regimgsThis suggests that reduc- In this paper, we define the effective thickness of the
ing the radial spacing between the vacuum vessel and tHgFX vacuum vessel to bé,=3.5mm, which is the total
stabilizing shell is not an effective way of alleviating locked thickness of the inconel which makes up the vessel over
mode problemgunless the vacuum vessel is sufficiently thin most of_ its area. It follows that the effective resistivity of the
and resistive to lie in the ultra-thin-shell regime vessel is given by

Let us, finally, examine the scaling bf""/B, with the 1 ugbé, .
intrinsic (i.e., that in the absence of vacuum vessel eddy U_b: =64.7<10"" Qm. (A2)
currents$ toroidal angular phase veloci()lgo) of the charac-

(A1)

Th
teristic dvnamo mode. It is assumed. for the sake of sim IiC_Note that the effective resistivity is less than the actual resis-
y ' ' P tivity of inconel (128< 108 (0m) in order to take account of

!tY’ that we can |ncreasQS via tgngentlal neutral beam the low resistance paths afforded by the poloidal stiffening
injection without substantially modifying any other plasma .

; . . . fjngs.
parameters. In the thin-shell regime, it is easily demonstrate
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