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Locked ~i.e., nonrotating! dynamo modes give rise to a serious edge loading problem during the
operation of high current reversed field pinches. Rotating dynamo modes generally have a far more
benign effect. A simple analytic model is developed in order to investigate the slowing down effect
of electromagnetic torques due to eddy currents excited in the vacuum vessel on the rotation of
dynamo modes in both the Madison Symmetric Torus~MST! @Fusion Technol.19, 131~1991!# and
the Reversed Field Experiment~RFX! @Fusion Eng. Des.25, 335 ~1995!#. This model strongly
suggests that vacuum vessel eddy currents are the primary cause of the observed lack of mode
rotation in RFX. The eddy currents in MST are found to be too weak to cause a similar problem. The
crucial difference between RFX and MST is the presence of a thin, highly resistive vacuum vessel
in the former device. The MST vacuum vessel is thick and highly conducting. Various locked mode
alleviation methods are discussed. ©1999 American Institute of Physics.
@S1070-664X~99!01610-9#

I. INTRODUCTION

A reversed field pinch~or RFP! is a magnetic fusion
device which is similar to a tokamak1 in many ways. Like a
tokamak, the plasma is confined by a combination of a tor-
oidal magnetic field,Bf , and a poloidal magnetic field,Bu ,
in an axisymmetric toroidal configuration.2 Unlike a toka-
mak, whereBf@Bu , the toroidal and poloidal field strengths
are comparable, and the RFP toroidal field is largely gener-
ated by currents flowing within the plasma. The RFP concept
derives its name from the fact that the toroidal magnetic field
spontaneously reverses direction in the outer regions of the
plasma. This reversal is a consequence of relaxation to a
minimum energy state driven by intense magnetohydrody-
namical ~MHD! mode activity during the plasma start-up
phase.3 Intermittent, relatively low-level, mode activity
maintains the reversal, by dynamo action, throughout the du-
ration of the plasma discharge. As a magnetic fusion con-
cept, the RFP has a number of possible advantages relative to
the tokamak. The magnetic field strength at the coils is rela-
tively low, allowing the possibility of a copper-coil, as op-
posed to a super-conducting-coil, reactor. Furthermore, the
plasma current can, in principle, be increased sufficiently to
allow ohmic ignition, thus negating the need for auxiliary
heating systems.

A conventional RFP plasma is surrounded by a close-
fitting, thick, conducting shell whose L/R time is much
longer than the duration of the discharge. Such a shell is
necessary in order to stabilize external kink modes which
would otherwise rapidly destroy the plasma.4 In the presence
of the shell, the dominant MHD modes arem51 tearing

modes resonant in the plasma core. These modes possess a
range of toroidal mode numbers, characterized byn
;2R0 /a. Here,m,n are poloidal and toroidal mode num-
bers, respectively, whereasa andR0 are the minor and major
radii of the plasma, respectively. The core tearing modes are
responsible for the dynamo action which maintains the field
reversal, and are, therefore, generally known as dynamo
modes.5

The Madison Symmetric Torus~MST!6 and the Re-
versed Field Experiment~RFX!7 are both large RFP experi-
ments of broadly similar size and achieved plasma param-
eters. Nevertheless, the observed dynamics of dynamo
modes in these two devices is strikingly different.

In MST, the dynamo modes generally rotate, forming a
toroidally localized, phase-locked structure, known as a
‘‘slinky mode,’’8 which also rotates and extends over about
one-fourth of the torus.9 The dynamo modes continually ex-
ecute a so-called sawtooth cycle, in which their typical am-
plitude gradually increases from a small value, until a critical
amplitude is reached at which a rapid global magnetic recon-
nection event, known as a sawtooth crash, is triggered. After
the crash, the mode amplitudes return to their initial values,
and the process continues ad infinitum. Note that the dynamo
action which maintains the field reversal is only significant
during the sawtooth crashes. The rotation of the dynamo
modes is briefly arrested at each sawtooth crash, but gener-
ally resumes afterward. However, in a small fraction of
plasma discharges the dynamo modes fail to re-rotate after
the crash, setting in train a series of events which eventually
leads to the premature termination of the discharge.9 The
percentage of discharges in which this occurs is a sensitive
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function of the plasma parameters and the wall conditioning,
but generally increases with increasing plasma current.

In RFX, the dynamo modes form a toroidally localized
‘‘slinky mode’’ which locks to the shell~along with the con-
stituent dynamo modes! during the plasma start-up phase and
remains locked, and, therefore, nonrotating, throughout the
duration of the discharge.10 The stationary ‘‘slinky mode’’
does not significantly~i.e., by more than a factor 2, say!
degrade the overall plasma confinement,11 but gives rise to a
toroidally localized, stationary ‘‘hot spot’’ on the plasma fac-
ing surface, presumably because the radial transport due to
the diffusion of chaotic magnetic field lines peaks at the to-
roidal angle where the amplitude of the ‘‘slinky mode’’ at-
tains its maximum value. If the plasma current is made suf-
ficiently large, this ‘‘hot spot’’ overheats the facing surface,
leading to the influx of impurities into the plasma, and the
eventual termination of the discharge. Indeed, the maximum
achievable plasma current in RFX is limited by this effect.
Similar edge loading problems are not observed on MST,
presumably because the ‘‘hot spot’’ associated with the
‘‘slinky mode’’ rotates~since the constituent dynamo modes
rotate!.

It is clear, from the above discussion, that the occurrence
of severe edge loading problems in RFX, and the relative
absence of such problems in MST, is a consequence of the
fact that dynamo modes are generally stationary in RFX but
usually rotate in MST. Note that other RFPs, in particular the
Toroidal Pinch eXperiment-RX~TPE-RX! device,12,13 ex-
hibit edge loading problems, associated with locked dynamo
modes, which are similar to those observed on RFX. Two
possible explanations have been proposed for the lack of
mode rotation in RFX. The first explanation focuses on the
fact that the stabilizing shell is~relatively speaking! farther
away from the plasma in RFX than in MST. This can be
expected to destabilize the dynamo modes in RFX, relative
to those in MST, thereby increasing their saturated ampli-
tude, and, hence, making them more prone to lock to stray
error fields. ~Note that the error fields in RFX are only
slightly larger than those in MST. Moreover, the error fields
in TPE-RX are undoubtedly much less than those in MST.
Hence, the different dynamo mode dynamics observed on
MST, RFX, and TPE-RX cannot be explained in terms of the
intrinsic error-field levels in these devices.! However, this
effect is thought to be too weak to account for the observed
difference in dynamo mode dynamics between MST and
RFX.14 The second explanation focuses on the fact that in
MST the conducting shell is also the vacuum vessel, whereas
in RFX a thin resistive vacuum vessel is located between the
shell and the edge of the plasma. In tokamaks, it is well-
known that eddy currents induced in a resistive vacuum ves-
sel can effectively arrest mode rotation, provided that the
mode amplitude becomes sufficiently large.15 In this paper,
we investigate whether similar eddy currents induced in the
RFX vacuum vessel can account for the absence of mode
rotation in this device~and the presence of mode rotation in
MST!.

The model adopted in this paper is rather simplistic. In-
stead of considering a range of unstablem51 modes, we
concentrate on the dynamics of a single representative dy-

namo mode in the presence of a thin resistive vacuum vessel
surrounded by a thick conducting shell. Furthermore, we
only consider zero-b, large aspect-ratio plasmas. Neverthe-
less, we believe that our model is sufficiently realistic to
allow us to determine whether vacuum vessel eddy currents
can account for the observed difference in dynamo mode
dynamics between RFX and MST.

II. PRELIMINARY ANALYSIS

A. The plasma equilibrium

Consider a large aspect-ratio,16 zero-b,17 RFP plasma
equilibrium whose unperturbed magnetic flux-surfaces map
out ~almost! concentric circles in the poloidal plane. Such an
equilibrium is well approximated as a periodic cylinder. Sup-
pose that the minor radius of the plasma isa. Standard cy-
lindrical polar coordinates (r ,u,z) are adopted. The system
is assumed to be periodic in thez-direction, with periodicity
length 2pR0 , whereR0 is the simulated major radius of the
plasma. It is convenient to define a simulated toroidal angle
f5z/R0 .

The equilibrium magnetic field is written

B5@0,Bu~r !,Bf~r !#. ~1!

The model RFP equilibrium adopted in this paper is the well-
known a2Q0 model,18 according to which

¹∧B5s~r !B, ~2!

where

s5S 2Q0

a D F12S r

aD aG . ~3!

Here,Q0 anda are positive constants.
It is conventional2 to parameterize RFP equilibria in

terms of the pinch parameter,

Q5
Bu~a!

^Bf&
, ~4!

and the reversal parameter,

F5
Bf~a!

^Bf&
, ~5!

where^¯& denotes a volume average.

B. Outline of the problem

Suppose that the plasma is surrounded by a concentric,
thin, resistive vacuum vessel of minor radiusb. The vacuum
vessel is, in turn, surrounded by a concentric, perfectly con-
ducting shell of minor radiusc. The arrangement of conduct-
ing shells surrounding the plasma is illustrated in Fig. 1. This
paper investigates the effect of any helical eddy currents ex-
cited in the vacuum vessel on the rotation of a typical core
tearing mode: them,n mode, say. All other modes in the
plasma are ignored, for the sake of simplicity.

C. The perturbed magnetic field

The magnetic perturbation associated with them,n tear-
ing mode can be written
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b~r !5bm,n~r !ei ~mu2nf!, ~6!

wherem andn are poloidal and toroidal mode numbers, re-
spectively, and

br
m,n5

icm,n

r
, ~7!

bu
m,n52

m~cm,n!8

m21n2e2 1
nescm,n

m21n2e2 , ~8!

bf
m,n5

ne~cm,n!8

m21n2e2 1
mscm,n

m21n2e2 . ~9!

Here,8 denotesd/dr. Furthermore,

e~r !5
r

R0
. ~10!

In this paper it is assumed thatm>0.
The linearized magnetic flux functioncm,n(r ) satisfies

Newcomb’s equation,19

d

dr F f m,n
dcm,n

dr G2gm,ncm,n50, ~11!

where

f m,n~r !5
r

m21n2e2 , ~12!

gm,n~r !5
1

r
1

r ~neBu1mBf!

~m21n2e2!~mBu2neBf!

ds

dr

1
2mnes

~m21n2e2!22
rs2

m21n2e2 . ~13!

As is well-known, Eq.~11! is singular at them/n rational
surface, minor radiusr s

m,n , which satisfies

mBu~r s
m,n!2nBf~r s

m,n!50. ~14!

In the vacuum region~s50! surrounding the plasma, the
most general solution to Newcomb’s equation takes the form

cm,n5Aim~ne!1Bkm~ne!, ~15!

whereA, B are arbitrary constants, and

i m~ne!5uneuI m11~ uneu!1mIm~ uneu!, ~16!

km~ne!52uneuKm11~ uneu!1mKm~ uneu!. ~17!

Here, I m , Km represent standard modified Bessel functions.
For the special casen50, the most general vacuum solution
is written

cm,05Aem1Be2m. ~18!

D. Standard tearing eigenfunctions

Let

ĉs
m,n~r ,d! ~19!

represent the normalizedm,n tearing eigenfunction calcu-
lated assuming the presence of a perfectly conducting shell at
minor radiusd. In other words,ĉs

m,n(r ,d) is a real solution
to Newcomb’s equation~11! which is well behaved asr
→0, and satisfies

ĉs
m,n~r s

m,n ,d!51, ~20!

ĉs
m,n~d,d!50. ~21!

It is easily demonstrated thatĉs
m,n(r ,d) is zero in the region

r .d. In general,ĉs
m,n(r ,d) possesses gradient discontinui-

ties atr 5r s
m,n and r 5d. The quantity

Em,n~d!5F r
dĉs

m,n~r ,d!

dr
G

r
s2
m,n

r s1
m,n

~22!

can be identified as the standardm,n tearing stability
index,20 calculated assuming the presence of a perfectly con-
ducting shell at minor radiusd. A typical tearing eigenfunc-
tion, ĉs

m,n(r ,d), is sketched in Fig. 2.

E. Modified tearing eigenfunctions

In the presence of a resistive vacuum vessel, minor ra-
dius b, and a perfectly conducting shell, minor radiusc, the
most generalm,n tearing eigenfunction is written

cm,n~r !5Cs
m,nĉs

m,n~r ,b!1Cb
m,nĉb

m,n~r ,b,c!, ~23!

whereCs
m,n andCb

m,n are complex parameters which deter-
mine the amplitude and phase of them,n tearing perturba-
tion at the rational surface and vacuum vessel, respectively.

FIG. 1. The arrangement of conducting shells surrounding the plasma.

FIG. 2. A typical normalizedm,n tearing eigenfunction,ĉs
m,n(r ,d), calcu-

lated assuming the presence of a perfectly conducting shell at minor radius
d.
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Note thatĉb
m,n(r ,b,c) is a real solution to Newcomb’s equa-

tion which is well behaved asr→0, and satisfies

ĉb
m,n~r s

m,n ,b,c!50, ~24!

ĉb
m,n~b,b,c!51, ~25!

ĉb
m,n~c,b,c!50. ~26!

It is easily demonstrated thatĉb
m,n(r ,b,c) is only nonzero for

r in the ranger s
m,n,r ,c. In general,ĉb

m,n(r ,b,c) possesses
gradient discontinuities atr 5r s

m,n , r 5b, andr 5c. A typi-
cal interaction eigenfunction,ĉb

m,n(r ,b,c), which parameter-
izes the interaction between them,n tearing mode and any
eddy currents flowing in the resistive vacuum vessel, minor
radiusb, in the presence of a perfectly conducting shell of
minor radiusc, is sketched in Fig. 3.

F. The modified tearing dispersion relation

The dispersion relation for them,n tearing mode in the
presence of the resistive vacuum vessel and perfectly con-
ducting shell takes the form

DCs
m,n5Em,n~b!Cs

m,n1Esb
m,nCb

m,n , ~27!

DCb
m,n52

Esb
m,nEbs

m,n

Em,n~c!2Em,n~b!
Cb

m,n1Ebs
m,nCs

m,n , ~28!

where

DCs
m,n5F r

dcm,n

dr G
r
s2
m,n

r s1
m,n

~29!

is a complex parameter which determines the amplitude and
phase of them,n eddy currents flowing in the vicinity of the
m,n rational surface, whereas

DCb
m,n5F r

dcm,n

dr G
b2

b1

~30!

is a complex parameter which determines the amplitude and
phase of them,n eddy currents flowing in the vacuum ves-
sel. Furthermore,

Esb
m,n5S r

dĉb
m,n~r ,b,c!

dr
D

r
s1
m,n

~31!

and

Ebs
m,n52S r

dĉs
m,n~r ,b!

dr
D

b2

~32!

are both real parameters.
It is easily demonstrated from Newcomb’s equation~11!

that

~m21n2eb
2!Esb

m,n5~m21n2es
2!Ebs

m,n , ~33!

whereeb5b/R0 and es5r s
m,n/R0 . It is also easily demon-

strated that

ĉb
m,n~r ,b,c!5

Esb
m,n

Em,n~c!2Em,n~b!
$ĉs

m,n~r ,c!

2ĉs
m,n~r ,b!%. ~34!

In the vacuum region outside the plasma

ĉs
m,n~r ,b!5H ĉs

m,n~a,b!
km~neb!i m~ne!2km~ne!i m~neb!

km~neb!i m~nea!2km~nea!i m~neb!
a<r<b

0 r .b

, ~35!

whereea5a/R0 . It follows from Eqs.~32! and ~33! that

Ebs
m,n5

ĉs
m,n~a,b!~m21n2eb

2!

km~neb!i m~nea!2km~nea!i m~neb!
, ~36!

Esb
m,n5

ĉs
m,n~a,b!~m21n2es

2!

km~neb!i m~nea!2km~nea!i m~neb!
. ~37!

For the special casen50,

Ebs
m,05Esb

m,05mĉs
m,0~a,b!

b2m1a2m

b2m2a2m . ~38!

It is clear, from the above analysis, that all of the real
parameters appearing in the modifiedm,n tearing dispersion
relation ~27!–~28! @i.e., Em,n(b), Em,n(c), Ebs

m,n , Esb
m,n] can

be calculated from a knowledge of the standard tearing
eigenfunctionĉs

m,n(r ,d).

FIG. 3. A typical normalizedm,n interaction eigenfunction,ĉb
m,n(r ,b,c).

This eigenfunction parameterizes the interaction between them,n tearing
mode and any eddy currents flowing in the resistive vacuum vessel, minor
radiusb, in the presence of a perfectly conducting shell of minor radiusc.
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G. Shell physics

Suppose that the vacuum vessel is of radial thicknessdb

and conductivitysb . The time constant of the vessel is de-
fined

tb5m0sbdbb. ~39!

Adopting the thin-shell approximation, in which it is as-
sumed that there is virtually no radial variation of the tearing
eigenfunctionĉm,n(r ) across the vessel, the dispersion rela-
tion of the vacuum vessel takes the form

DCb
m,n5 inVstbCb

m,n . ~40!

Here, it is assumed that them,n tearing mode is saturated
~i.e., its amplitude is fixed! and co-rotates with the plasma at
its associated rational surface. The plasma is assumed to ro-
tate in the toroidal direction only, for the sake of simplicity.
Although the poloidal rotation in RFPs is generally nonzero,
it is usually smaller than the toroidal rotation, so its neglect
is unlikely to dramatically change any of the results obtained
in this paper. In the above,

Vs5V~r s
m,n! ~41!

is the toroidal angular velocity of the plasma at them,n
rational surface, andV(r ) is the plasma toroidal angular
velocity profile. Note that the thin-shell approximation is
valid provided

db

b
!nVstb!

b

db
. ~42!

Equations~27!, ~28!, and~40! yield

DCs
m,n5H Em,n~b!1

@Em,n~c!2Em,n~b!#

11 ilm,n J Cs
m,n , ~43!

where

lm,n5
nVstb@Em,n~c!2Em,n~b!#

Esb
m,nEbs

m,n . ~44!

The thin-shell approximation is valid provided that

lm,n!lc
m,n , ~45!

where

lc
m,n5

b

db

@Em,n~c!2Em,n~b!#

Esb
m,nEbs

m,n . ~46!

H. Electromagnetic torques

The toroidal electromagnetic slowing down torque act-
ing in the vicinity of them,n rational surface due to eddy
currents flowing in the vacuum vessel is given by8

dTfEM
m,n 5

2p2R0

m0

n

m21n2es
2 Im$DCs

m,n~Cs
m,n!* %. ~47!

It follows from Eq. ~43! that

dTfEM
m,n 52

2p2R0

m0

nuCs
m,nu2

m21n2es
2

lm,n

11~lm,n!2

3@Em,n~c!2Em,n~b!#. ~48!

I. Viscous torques

The change in the plasma toroidal angular velocity in-
duced by the electromagnetic slowing down torque is written

DV~r !5DVsH E
r

a dr

rmYE
r s
m,n

a dr

rm
r s

m,n<r<a

1 r ,r s
m,n

, ~49!

wherem(r ) is the plasma~perpendicular! viscosity profile,
and

DVs5Vs2Vs
~0! . ~50!

Here,Vs
(0) is the value ofVs in the absence of eddy currents

flowing in the vacuum vessel. In the above, it is assumed that
the edge plasma rotation is unaffected by the electromagnetic
slowing down torque@i.e.,DV(a)50]. The assumptions un-
derlying the analysis in this section are described in more
detail in Ref. 21. Note, in particular, that it is possible to
generalize the analysis to take account of the fact that tearing
modes do not generally co-rotate with the ion fluid in RFPs
without significantly changing any of the results obtained in
this paper.

The viscous restoring torque acting in the vicinity of the
rational surface is written

dTfVS
m,n 54p2R0F rmR0

2 dDV

dr G
r
s2
m,n

r s1
m,n

. ~51!

It follows from Eqs.~49! and ~50! that

dTfVS
m,n 54p2R0

3@Vs
~0!2Vs#YE

r s
m,n

a dr

rm
. ~52!

J. Torque balance

Torque balance in the vicinity of the rational surface
requires that

dTfEM
m,n 1dTfVS

m,n 50. ~53!

It follows from Eqs.~48! and ~52! that

S bs
m,n

LB0
D 2 lm,n

11~lm,n!2 5l~0!
m,n2lm,n, ~54!

where

l~0!
m,n5

nVs
~0!tb@Em,n~c!2Em,n~b!#

Esb
m,nEbs

m,n , ~55!

B0 is a typical equilibrium magnetic field strength,

bs
m,n5

uCs
m,nu

r s
m,n ~56!

is the perturbed radial magnetic field strength at them,n
rational surface,

tH5
Am0r0a

B0
~57!

is a typical hydromagnetic time scale,
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tV5
r0a2

m~0!
~58!

is a typical viscous diffusion time scale,r0 is the central
plasma mass density, and

L5F2
tH

2

tbtV

m21n2es
2

n2es
2

Esb
m,nEbs

m,n

@Em,n~c!2Em,n~b!#2Y
E

r s
m,n

a m~0!

m~r !

dr

r G1/2

. ~59!

III. ASYMPTOTIC REGIMES FOR SLOWING DOWN
VIA VESSEL EDDY CURRENTS

A. Introduction

Three separate asymptotic regimes for the slowing down
of dynamo mode rotation via eddy currents induced in a
resistive vacuum vessel can be identified from the preceding
analysis. These regimes, which correspond to different order-
ings for the intrinsic mode rotation parameterl (0)

m,n @see Eq.
~55!#, are discussed in the following.

B. The ultra-thin-shell regime

The ultra-thin-shell regime corresponds to the ordering

l~0!
m,n!1, ~60!

in which either the intrinsic plasma rotation is very low or
the vacuum vessel is extremely thin. In this regime, there is
virtually no shielding of the tearing perturbation by the
vacuum vessel: i.e., the perturbation amplitude remains sig-
nificant in the regionb,r ,c. In this case, the torque bal-
ance equation~54! reduces to

V̂s.
1

11~bs
m,n/LB0!2 , ~61!

where

V̂s5
Vs

Vs
~0! ~62!

is the normalized dynamo mode rotation velocity. It can be
seen that the mode rotation decreases smoothly and mono-
tonically as the mode amplitudebs

m,n is increased. The rota-
tion is significantly reduced~compared to its value in the
absence of vacuum vessel eddy currents! whenever

bs
m,n@LB0 . ~63!

C. The thin-shell regime

The thin-shell regime corresponds to the ordering

1!l~0!
m,n!lc

m,n . ~64!

In this regime, there is strong shielding of the tearing pertur-
bation by the vacuum vessel: i.e., the perturbation amplitude
is insignificant in the regionb,r ,c. Nevertheless, the basic
thin-shell approximation orderingnVstb!b/db still holds.
In this case, the torque balance equation~54! reduces to

V̂s.
1
21 1

2 A12~bs
m,n/L8B0!2, ~65!

where

L85
l~0!

m,nL

2
5F tH

2 tb~nVs
~0!!2

2tV

m21n2es
2

n2es
2

1

Esb
m,nEbs

m,nY
E

r s
m,n

a m~0!

m~r !

dr

r G1/2

. ~66!

Note that whenbs
m,n exceeds the critical valueL8B0 , the

mode bifurcates to a slowly rotating state characterized by
Vstb;O(1). This bifurcation is irreversible, in the sense
that bs

m,n must be reduced substantially before the reverse
bifurcation takes place. Thus, the mode rotation is effectively
arrested whenever

bs
m,n.L8B0 . ~67!

Note that bifurcations only occur for21

l~0!
m,n.3A355.196. ~68!

D. The thick-shell regime

The thick-shell regime corresponds to the ordering

lc
m,n!l~0!

m,n . ~69!

In this regime, there is very strong shielding of the tearing
perturbation by the vacuum vessel: i.e., the perturbation am-
plitude is zero in the regionb,r ,c. The dispersion relation
of the shell, Eq.~40!, is replaced by22

DCb
m,n5S inVstb

b

db
D 1/2

Cb
m,n . ~70!

It follows that

DCs
m,n.e2 ip/4

Esb
m,nEbs

m,n

~nVstbb/db!1/2Cs
m,n . ~71!

Hence,

dTfEM
m,n .2

A2p2R0

m0

nuCs
m,nu2

m21n2es
2

Esb
m,nEbs

m,n

~nVstbb/db!1/2. ~72!

Torque balance yields

A27

2
V̂s

1/2~12V̂s!5S bs
m,n

L9B0
D 2

, ~73!

where

L95F4A2

A27

tH
2 ~nVs

~0!!3/2~tbb/db!1/2

tV

m21n2es
2

n2es
2

3
1

Esb
m,nEbs

m,nYE
r s
m,n

a m~0!

m~r !

dr

r G 1/2

. ~74!

Note that whenbs
m,n exceeds the critical valueL9B0 , the

mode bifurcates to a slowly rotating state characterized by
Vstb;O(1). This bifurcation is irreversible, in the sense
that bs

m,n must be reduced substantially before the reverse
bifurcation takes place. Thus, the mode rotation is effectively
arrested whenever

3883Phys. Plasmas, Vol. 6, No. 10, October 1999 Effect of a resistive vacuum vessel on dynamo mode . . .

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.83.61.231 On: Wed, 11 Mar 2015 20:05:54



bs
m,n.L9B0 . ~75!

IV. ESTIMATE OF CRITICAL PLASMA PARAMETERS

A. Introduction

In order to proceed further, it is necessary to estimate a
number of critical plasma parameters which cannot be di-
rectly measured on MST or RFX.

B. Estimate of the mode rotation velocity

In the preceding analysis, the parameterVs
(0) represents

the toroidal angular phase velocity of a typical dynamo mode
in the absence of vacuum vessel eddy currents. Of course,
this quantity can be measured directly in MST, where it is
found that23

uf
~0!5R0Vs

~0!.10 km s21. ~76!

Unfortunately, it is impossible to measureVs
(0) on RFX,

since dynamo modes are never observed to rotate in this
device. It is, therefore, necessary to estimate what the typical
toroidal angular phase velocity of dynamo modes would be
on RFX in the absence of slowing down torques due to
vacuum vessel eddy currents.

Theoretically,uf
(0) is expected to be the sum of the tor-

oidal E∧B and electron diamagnetic velocities evaluated in
the plasma core.24 However, an RFP is characterized by a
stochastic magnetic core generated by overlapping dynamo
modes. The stochastic core gives rise to the development of
an ambipolar electric field which reduces outward radial
electron transport along magnetic field lines to the level of
the corresponding ion transport. TheE∧B velocity associated
with this electric field scales like an electron diamagnetic
velocity.25 It follows that uf

(0) should also scale as an elec-
tron diamagnetic velocity, giving

nVs
~0!.6

mTe0~eV!

a2B0
. ~77!

Here,Te0 is the central electron temperature. The factor 6 is
necessary in order to ensure that the above formula yields
uf

(0).10 km s21 for typical MST parameters.

C. Estimate of the plasma viscosity

Plasma viscosity is not usually directly measured in
RFPs. It is, therefore, necessary to estimate the plasma vis-
cosity in terms of quantities which are measured.

Suppose that the plasma viscosity profile takes the form

m~r !5H ` r ,r c

mc r c<r<a
. ~78!

In other words, there is zero momentum confinement in the
stochastic core,r ,r c , and the viscosity is approximately
constant in the outer regions of the plasma. Suppose, further,
that the intrinsic plasma rotation at the edge is negligibly
small @i.e., V (0)(a).0] and that all of the toroidal momen-
tum input to the plasma takes place inside the core. In this
case, it is easily demonstrated that

V~0!~r !5Vc
~0!H 1 r ,r c

ln~r /a!/ ln~r c /a! r c<r<a
. ~79!

In other words, the plasma rotation is uniform in the stochas-
tic core, and highly sheared in the outer regions of the
plasma.

The viscous diffusion time scale~58! is conveniently
redefined

tV5
r0a2

mc
. ~80!

Suppose that the plasma density profile is approximately uni-
form. It follows that the momentum confinement timetM

~defined as the ratio of the net plasma toroidal angular mo-
mentum to the toroidal angular momentum injection rate! is
related totV via

tV52
a3dV~0!~a!/dr

*0
aV~0!rdr

tM . ~81!

Hence,

tV5
4tM

12~r c /a!2 . ~82!

In this paper, it is assumed that

tM.tE , ~83!

wheretE is the energy confinement time~which is measured
in both MST and RFX!. This is a plausible assumption, since
whenevertM has been measured in toroidal fusion devices it
has been found to be very similar in magnitude totE .26,27 It
follows that

tVE
r s
m,n

a m~0!

m~a!

dr

r
→ktE ~84!

in Eqs.~59!, ~66!, and~74!, where

k5
4 ln~a/r c!

12~r c /a!2 . ~85!

V. SLOWING DOWN CALCULATIONS

A. The Madison Symmetric Torus

In MST, the plasma is surrounded by a single 5 cm thick
aluminum~alloy 6061-T6! shell which simultaneously plays
the role of the vacuum vessel and the stabilizing shell. Since
there is no perfectly conducting shell surrounding this finite
resistivity shell, the parameterc takes the valuè ~i.e., the
perfectly conducting shell of the preceding analysis is lo-
cated infinitely far away from the plasma!. The typical shell
and plasma parameters for MST6 are listed in Table I. It
follows that

tH5
Am0mpne0 a

B0
55.531027 s, ~86!

nVs
~0!56

Te0~eV!

a2B0
54.03104 rad s21, ~87!

tb5m0sbdbb50.82 s. ~88!
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The typical equilibrium parameters for MST areea

50.34,a53.0,Q051.71,F520.2, andQ51.59. Here, we
have adopted a somewhat low value ofa in order to com-
pensate for the absence of pressure in our model~the final
result turns out to be fairly insensitive to this parameter!. The
characteristic dynamo mode for this equilibrium is them
51, n56 mode. It is easily demonstrated thatr s

1,6

50.3381a, so that nes50.69. Furthermore, Newcomb’s
equation can be solved to give

E1,6~b!51.038, ~89!

E1,6~c!517.59, ~90!

Ebs
1,655.826, ~91!

Esb
1,651.614. ~92!

Finally, the radius of the stochastic plasma core is taken to
be r c50.7a, yielding

k5
4 ln~a/r c!

12~r c /a!2 52.8. ~93!

The parametersl (0)
1,6 andlc

1,6 take the values

l~0!
1,65

nVs
~0!tb@E1,6~c!2E1,6~b!#

Esb
1,6Ebs

1,6 55.73104, ~94!

and

lc
1,65

b

db

@E1,6~c!2E1,6~b!#

Esb
1,6Ebs

1,6 518.3, ~95!

respectively. It can be seen that

lc
1,6!l~0!

1,6 ~96!

in MST. Thus, the thick-shell regime, discussed in Sec. III D,
is applicable. It follows that the eddy currents which slow
down the rotation of the 1,6 mode do not penetrate the alu-
minum shell, but are, instead, radially localized within a
skin-depth of its inner boundary.

According to Eq. ~73!, the relationship between the
mode amplitude parameterbs

1,6 and the normalized mode ro-
tation parameterV̂s in MST is

A27

2
V̂s

1/2~12V̂s!5S bs
1,6

L9B0
D 2

, ~97!

where

L95F 4A2

A27k

tH
2 ~nVs

~0!!3/2~tbb/db!1/2

tE

m21n2es
2

n2es
2

1

Esb
1,6Ebs

1,6G 1/2

53.031022. ~98!

The parameterbs
m,n can be related to the nominalm,n mag-

netic island widthWs
m,n via

Ws
m,n

a
54F r s

m,n

a

bs
m,n

~Fs
m,n!8B0

G1/2

, ~99!

where

~Fs
m,n!85

a

B0
Fd~mBu2neBf!

dr G
r
s
m,n

. ~100!

It is easily demonstrated that (Fs
1,6)851.44 for the equilib-

rium in question. Thus,Ws
1,6/a51.94(bs

1,6/B0)1/2. Further-
more, in the thick-shell regime the amplitudes of the per-
turbed poloidal and toroidal magnetic fields just inside the
aluminum shell~which is where the Mirnov coils are located
in MST! are related tobs

m,n via

bub
m,n5

m

m21n2eb
2 Ebs

m,nbs
m,n , ~101!

bfb
m,n5

neb

m21n2eb
2 Ebs

m,nbs
m,n . ~102!

Hence,bub
1,651.09bs

1,6 andbfb
1,652.28bs

1,6.

B. The reversed field experiment

In RFX, the plasma is surrounded by a high resistivity,
inconel ~alloy 625! vacuum vessel which is, in turn, sur-
rounded by a 6.5 cm thick aluminum~alloy 6061-T6! shell.
In the following, we ignore the resistivity of the aluminum
shell compared to that of the vacuum vessel. In other words,
the aluminum shell is treated as a perfect conductor. The
typical shell and plasma parameters for RFX7 are listed in
Table II. The chosen values for the effective thickness and
the effective resistivity of the vacuum vessel are justified in
the appendix. It follows that

tH5
Am0mpne0 a

B0
54.031027 s, ~103!

TABLE I. Typical MST parameters.

Parameter Units Symbol Value

Major radius m R0 1.5
Plasma minor radius m a 0.51
Toroidal plasma current kA I f 340
Equilibrium magnetic field strength T B0[Bu(a)5m0I f/2pa 0.13
Central electron temperature eV Te0 230
Central electron number density m23 ne0 131019

Energy confinement time ms tE 1
Vacuum vessel minor radius m b 0.52
Vacuum vessel thickness cm db 5
Vacuum vessel resistivity Vm 1/sb 4.031028
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nVs
~0!56

Te0~eV!

a2B0
52.53104 rad s21, ~104!

tb5m0sbdbb53.331023 s. ~105!

The typical equilibrium parameters for RFX areea

50.23,a53.5,Q051.65,F520.2, andQ51.56. Here, we
have again adopted a somewhat low value ofa in order to
compensate for the absence of pressure in our model. The
characteristic dynamo mode for this equilibrium is them
51, n59 mode. It is easily demonstrated thatr s

1,9

50.384a, so that nes50.79. Furthermore, Newcomb’s
equation can be solved to give

E1,9~b!50.433, ~106!

E1,9~c!51.258, ~107!

Ebs
1,955.467, ~108!

Esb
1,951.513. ~109!

Finally, the radius of the stochastic plasma core is again
taken to ber c50.7a, yielding k52.8.

The parametersl (0)
1,9 andlc

1,9 take the values

l~0!
1,95

nVs
~0!tb@E1,9~c!2E1,9~b!#

Esb
1,9Ebs

1,9 58.36, ~110!

and

lc
1,95

b

db

@E1,9~c!2E1,9~b!#

Esb
1,9Ebs

1,9 514.0, ~111!

respectively. Note that

1!l~0!
1,9!lc

1,9, ~112!

so the thin-shell regime, discussed in Sec. III, is applicable.
According to Eq. ~54!, the relationship between the

mode amplitude parameterbs
1,9 and the normalized mode ro-

tation parameterV̂s in RFX is

~12V̂s!@11~8.36V̂s!
2#

V̂s

5S bs
1,9

LB0
D 2

, ~113!

where

L5F 2

k

tH
2

tbtE

m21n2es
2

n2es
2

Esb
1,9Ebs

1,9

@E1,9~c!2E1,9~b!#2G1/2

51.031023. ~114!

It is easily demonstrated that (Fs
1,9)851.73 for the equilib-

rium in question. Thus,Ws
1,9/a51.88(bs

1,9/B0)1/2, where use
has been made of Eq.~99!. Furthermore, since the thin-shell
approximation is valid, the amplitudes of the perturbed po-
loidal and toroidal magnetic fields just inside the aluminum
shell ~which is where the Mirnov coils are located in RFX!
are related tobs

m,n via

buc
m,n5

m

m21n2ec
2

Ecs
m,n

@11~lm,n!2#1/2bs
m,n , ~115!

bfc
m,n5

nec

m21n2ec
2

Ecs
m,n

@11~lm,n!2#1/2bs
m,n , ~116!

where

Ecs
m,n5

ĉs
m,n~a,c!~m21n2ec

2!

km~nec!i m~nea!2km~nea!i m~nec!
. ~117!

Now, Ecs
1,956.625 for the equilibrium in question, so

buc
1,95

0.975bs
1,9

@11~8.36V̂s!
2#1/2, ~118!

bfc
1,95

2.15bs
1,9

@11~8.36V̂s!
2#1/2. ~119!

C. Results

Figure 4 shows the toroidal angular phase velocityVs of
the characteristic dynamo mode plotted as a function of the
associated saturated island widthWs at the rational surface
for both MST and RFX. Note that the characteristic mode is
the 1,6 mode for the case of MST and the 1,9 mode for the
case of RFX.

For the case of MST, it can be seen that as the saturated
island width is gradually increased, the phase velocity of the
characteristic mode is gradually reduced via the action of
eddy currents excited in the vacuum vessel. Note, however,

TABLE II. Typical RFX parameters.

Parameter Units Symbol Value

Major radius m R0 2.0
Plasma minor radius m a 0.457
Toroidal plasma current kA I f 600
Equilibrium magnetic field strength T B0[Bu(a)5m0I f/2pa 0.26
Central electron temperature eV Te0 230
Central electron number density m23 ne0 231019

Energy confinement time ms tE 1
Vacuum vessel minor radius m b 0.490
Vacuum vessel~effective! thickness mm db 3.5
Vacuum vessel~effective! resistivity Vm 1/sb 64.731028

Stabilizing shell minor radius m c 0.535
Stabilizing shell thickness cm dc 6.5
Stabilizing shell resistivity Vm 1/sc 4.431028
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that if the phase velocity falls below a certain critical value,
corresponding to one-third of its value in the absence of eddy
currents, then a bifurcation to a branch of solutions on which
the mode is effectively nonrotating is triggered. The bifurca-
tion point is indicated by a triangle in Fig. 4. Likewise, the
bifurcation path~from the rotating to the nonrotating branch
of solutions! is shown as a dotted line. The bifurcation is
irreversible: i.e., once the mode has made the transition to
the nonrotating branch of solutions the saturated island width
must be reduced substantially before the reverse transition
takes place.

For the case of RFX, it can be seen that as the saturated
island width is gradually increased the phase velocity of the
characteristic mode is gradually reduced via the action of
eddy currents excited in the vacuum vessel. Note, however,
that this reduction in phase velocity takes place far more
rapidly, and at significantly lower values of the saturated
island width, than in MST. This is largely due to the fact that
the RFX vacuum vessel is much more resistive than the MST
vessel. As before, if the phase velocity falls below a certain
critical value, corresponding to 0.47 of its value in the ab-
sence of eddy currents, then a bifurcation to a slowly rotating
branch of solutions is triggered. The bifurcation points are
indicated by triangles in Fig. 4. Likewise, the bifurcation
path~from the rapidly to the slowly rotating branch of solu-
tions! is shown as a dotted line. The bifurcation is irrevers-
ible, in the sense discussed above.

Now, the typical saturated island width of a dynamo
mode in an RFP plasma is approximately 20% of the minor
radius ~see, for instance, Figs. 4 and 1 in Refs. 23 and 28,
respectively!. Note, from Fig. 4, that ifWs /a.0.2 then our
model predicts that dynamo mode rotation in MST is virtu-
ally unaffected by vacuum vessel eddy currents, whereas any
mode rotation in RFX is essentially eliminated by such cur-
rents. This observation leads us to conjecture that the ob-
served lack of mode rotation in RFX, compared to MST, is a

direct consequence of the eddy currents induced in the RFX
vacuum vessel.

Figure 5 shows the toroidal angular phase velocityVs of
the characteristic dynamo mode plotted as a function of the
associated perturbed poloidal magnetic fieldbu calculated at
the radius of the Mirnov coils for both MST and RFX. It can
be seen that rotation is predicted to collapse in MST when
the ratio bu /Bu(a) exceeds about 3%. SinceBu(a).1300
gauss~see Table I!, it follows that the critical value ofbu

needed to arrest the mode rotation in MST is about 40 gauss.
This is a larger value than is generally observed in MST,
except perhaps at sawtooth crashes. Thus, eddy current
torques are almost certainly insignificant in MST during the
sawtooth ramp phase, but may play a role in the sudden
slowing down of mode rotation seen at sawtooth crashes.9

The mode rotation is predicted to collapse in RFX when the
ratio bu /Bu(a) exceeds about 0.1%. SinceBu(a).2600
gauss~see Table II!, it follows that the critical value ofbu

needed to arrest the mode rotation in RFX is about 3 gauss.
This is a significantly smaller value than is generally ob-
served in RFX,14 which lends further credence to our conjec-
ture that vacuum vessel eddy currents are the primary cause
of the lack of dynamo mode rotation in this device.

Figure 6 shows the toroidal angular phase velocityVs of
the characteristic dynamo mode plotted as a function of the
associated perturbed toroidal magnetic fieldbf calculated at
the radius of the Mirnov coils for both MST and RFX. Note
that bf;2bf in both devices.

Preliminary calculations for TPE-RX indicate that the
torque curve for this device lies between those for MST and
RFX. In other words, the slowing down problem in TPE-RX
is predicted to be significantly worse than that in MST, but
not as bad as that in RFX, in accordance with experimental
observations.

FIG. 4. The toroidal angular phase velocityVs of the characteristic dynamo
mode ~normalized to the corresponding velocityVs

(0) in the absence of
vacuum vessel eddy currents! as a function of the associated saturated island
width Ws ~normalized with respect to the minor radius of the plasmaa!
calculated for MST~long-dashed line! and RFX~short-dashed line!.

FIG. 5. The toroidal angular phase velocityVs of the characteristic dynamo
mode ~normalized to the corresponding velocityVs

(0) in the absence of
vacuum vessel eddy currents! as a function of the associated perturbed po-
loidal magnetic fieldbu seen at the Mirnov coils@normalized with respect to
the edge equilibrium magnetic fieldBu(a)] calculated for MST~long-
dashed line! and RFX~short-dashed line!.
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VI. SUMMARY

Locked ~i.e., nonrotating! dynamo modes give rise to a
serious edge loading problem during the operation of high
current reversed field pinches. Rotating dynamo modes gen-
erally have a far more benign effect. Dynamo modes are
usually observed to rotate in MST, whereas in RFX these
modes remain locked throughout the duration of the plasma
discharge. The locked dynamo modes in RFX are a cause for
concern because they limit the maximum achievable plasma
current.

An analytic model has been developed in order to inves-
tigate the slowing down effect of electromagnetic torques
due to vacuum vessel eddy currents on the rotation of dy-
namo modes in both MST and RFX. Despite the model’s
simplicity, the results of our investigation are sufficiently
clear-cut to enable us to conclude, with some degree of cer-
tainty, that vacuum vessel eddy currents are the primary
cause of the observed lack of dynamo mode rotation in RFX.
The corresponding eddy currents in MST are found to be too
weak to cause a similar problem. The crucial difference be-
tween RFX and MST is the presence of a thin, highly resis-
tive vacuum vessel in the former device. The MST vacuum
vessel is thick and highly conducting.

VII. DISCUSSION

In the above, we have demonstrated, fairly conclusively,
that vacuum vessel eddy currents are largely responsible for
the severe locked mode problems encountered in RFX. Note,
however, that such problems are likely to be generic to any
large RFP equipped with a thin vacuum vessel. In the fol-
lowing, armed with this knowledge, we briefly examine four
possible methods for alleviating locked mode problems in
such RFPs. These methods are:~i! reducing the plasma cur-
rent; ~ii ! decreasing the resistance of the vacuum vessel;~iii !

decreasing the radial extent of the interspace between the
vacuum vessel and the stabilizing shell; and~iv! spinning the
plasma using neutral beams.

Let us examine the scaling of the critical radial magnetic
field at the rational surfacebc

m,n ~normalized with respect to
the scale equilibrium field magneticB0), above which the
rotation of the characteristic dynamo mode is significantly
reduced, with the toroidal plasma currentI f . It is assumed,
for the sake of simplicity, that the plasma density and the
various equilibrium plasma profiles remain constant asI f is
varied. According to the well-known Connor–Taylor~con-
stant beta! scaling law,29 Te0}I f andtE}I f

3/2. It follows that
B0}I f , tH}I f

21, andnVs
(0) is independent ofI f . Further-

more, the intrinsic mode rotation parameterl (0)
m,n is also in-

dependent ofI f . RFX lies in the thin-shell regime discussed
in Sec. III. It is easily demonstrated thatbc

m,n/B0}I f
27/4 in

this limit. Other more empirical scaling laws~e.g., tE}I f)
yield similar results. Thus, we predict a very strong inverse
scaling of the critical mode amplitude required to cause lock-
ing of dynamo modes with increasing plasma current. It
should certainly be possible to alleviate locked mode prob-
lems by operating at reduced plasma current. Conversely,
locked mode problems can be expected to worsen dramati-
cally as the plasma current is increased.

Let us examine the scaling ofbc
m,n/B0 with the toroidal

resistivity Rf of the vacuum vessel. It is assumed, for the
sake of simplicity, that all of the plasma parameters remain
constant asRf is varied. It is also assumed that the poloidal
resistivity Ru of the vessel scales likeRf . According to the
analysis in Sec. III, at fixed plasma parameters the eddy cur-
rent slowing down torque acting on the characteristic dy-
namo mode attains its maximum value whenRf is such that
the intrinsic plasma rotation parameterl (0)

m,n @defined in Eq.
~55!# is of order unity. Sincel (0)

m,n.8 in RFX @see Eq.
~110!#, it is clear that the actual resistance of the RFX
vacuum vessel is somewhat less than the value which maxi-
mizes the slowing down torque acting on dynamo modes.
Thus, in principle, the severe locked mode problems in RFX
could be alleviated by either making the vacuum vessel
slightly more conducting or far more~i.e., by at least a factor
10! resistive. In practice, it is difficult to see how the RFX
vacuum vessel could be made far more resistive: it is already
fabricated out of very thin sheets of an extremely high resis-
tivity material ~i.e., inconel!. On the other hand, the vessel
could easily be made more conducting, either by increasing
its thickness or fabricating it out of a less resistive material.
In the thin-shell regime, it is easily demonstrated that
bc

m,n/B0}Rf
21/2}tb

1/2. Note the relatively weak scaling of
bc

m,n/B0 with tb . This suggests that increasing the time con-
stanttb of the vacuum vessel is not a particularly effective
way of alleviating locked mode problems.

Let us examine the scaling ofbc
m,n/B0 with the radial

distanced[c2b between the thick stabilizing shell and the
thin vacuum vessel. It is assumed, for the sake of simplicity,
that all of the plasma parameters remain constant asd is
varied. The spacingd between the two shells affectsbc

m,n/B0

primarily through the termEm,n(c)2Em,n(b), which ap-
pears in Eqs.~55! and~59!. Let us assume, as seems reason-

FIG. 6. The toroidal angular phase velocityVs of the characteristic dynamo
mode ~normalized to the corresponding velocityVs

(0) in the absence of
vacuum vessel eddy currents! as a function of the associated perturbed tor-
oidal magnetic fieldbf seen at the Mirnov coils@normalized with respect to
the edge equilibrium magnetic fieldBu(a)] calculated for MST~long-
dashed line! and RFX~short-dashed line!.
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able, thatEm,n(c)2Em,n(b)}d as d→0. RFX lies in the
thin-shell regime discussed in Sec. III. Unfortunately, there
is no dependence ofbc

m,n/B0 on d in this regime~since the
vacuum vessel fairly efficiently shields the tearing perturba-
tion from the influence of the stabilizing shell in both the
thin-shell and thick-shell regimes!. This suggests that reduc-
ing the radial spacing between the vacuum vessel and the
stabilizing shell is not an effective way of alleviating locked
mode problems~unless the vacuum vessel is sufficiently thin
and resistive to lie in the ultra-thin-shell regime!.

Let us, finally, examine the scaling ofbc
m,n/B0 with the

intrinsic ~i.e., that in the absence of vacuum vessel eddy
currents! toroidal angular phase velocityVs

(0) of the charac-
teristic dynamo mode. It is assumed, for the sake of simplic-
ity, that we can increaseVs

(0) via tangential neutral beam
injection without substantially modifying any other plasma
parameters. In the thin-shell regime, it is easily demonstrated
thatbc

m,n/B0}Vs
(0) . The relatively strong scaling ofbc

m,n/B0

with increasingVs
(0) suggests that spinning the plasma via

tangential neutral beam injection is a fairly effective way of
alleviating the locked mode problems. A crude estimate of
the neutral beam power required to doubleVs

(0) in RFX is

P05
MufV

ktE
, ~120!

whereM;331027 kg is the plasma mass,uf;5 km s21 is
the intrinsic plasma toroidal velocity,V is the velocity of the
injected particles,k52.8, andtE;1023 s is the energy con-
finement time of the plasma. Now,V;33106 m s21 for 50 k
eV hydrogen beams, givingP0;1.7 MW. We conclude that
at least 2 MW of neutral beam power would be required to
significantly alleviate the locked mode problems in RFX.
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APPENDIX: THE RFX VACUUM VESSEL

The RFX vacuum vessel7 is fabricated out of inconel
~alloy 625!, and consists of a two-shell sandwich structure,
with a 2 mmthick inner shell and a 1 mmthick outer shell
connected together by a 0.5 mm thick corrugated sheet. In
addition, there are 144 poloidal stiffening rings connecting
the inner and outer shells. The spacing between the two
shells is 3 cm. The calculated poloidal and toroidal resis-
tances of the vessel areRu54131026V and Rf51.1
31023V, respectively.7

According to Gimblett,22 the time constant of a shell
whose resistivities differ in the poloidal and toroidal direc-
tions is given by

tb5m0R0

m21n2eb
2

m2Rf1n2Ru
. ~A1!

For the case of the RFX vacuum vessel~with m51 andn
59), we obtaintb53.33 ms.

In this paper, we define the effective thickness of the
RFX vacuum vessel to bedb53.5 mm, which is the total
thickness of the inconel which makes up the vessel over
most of its area. It follows that the effective resistivity of the
vessel is given by

1

sb
5

m0bdb

tb
564.731028 Vm. ~A2!

Note that the effective resistivity is less than the actual resis-
tivity of inconel (12831028 Vm) in order to take account of
the low resistance paths afforded by the poloidal stiffening
rings.
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