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The effect of a partial resistive shell on the magnetohydrodynamical
stability of tokamak plasmas

Richard Fitzpatrick
Institute for Fusion Studies, Department of Physics, The University of Texas at Austin, Austin, Texas 78712

~Received 23 May 1997; accepted 7 July 1997!

A comprehensive theory is developed to determine the effect of a partial resistive shell on the
growth rate of the external kink mode in a low-b, large aspect-ratio, circular flux-surface tokamak.
In most cases, it is possible to replace a partial shell by a complete ‘‘effective shell’’ of somewhat
larger radius. In fact, the radius of the effective shell can be used to parametrize the ability of a
partial shell to moderate the growth of the external kink mode. It is necessary to draw a distinction
between ‘‘resonant shells,’’ for which the eddy currents excited in the shell are able to flow in
unidirectional continuous loops around the plasma, and ‘‘nonresonant shells,’’ for which this is not
possible. As a general rule, resonant shells perform better than similar nonresonant shells. The
theory is used to derive some general rules regarding the design of incomplete passive stabilizing
shells. The theory is also employed to determine the effectiveness of two realistic feedback
stabilization schemes for the resistive shell mode, both of which only require a relatively small
number of independent feedback controlled conductors external to the plasma. ©1997 American
Institute of Physics.@S1070-664X~97!03211-4#

I. INTRODUCTION

The influence of acompleteexternal resistive shell on
the magnetohydrodynamical~MHD! stability of a toroidal
pinch plasma has been extensively studied in the magnetic
fusion literature.1–27 It is well established that eddy currents
induced in the shell can moderate the growth of an otherwise
ideally unstable external kink mode, so that it evolves on the
characteristicL/R time of the shell, instead of a much shorter
time scale determined by plasma inertia. Such slowed down
modes are usually referred to as ‘‘resistive shell modes.’’
Stabilization of the resistive shell mode is vital to the success
of the ‘‘advanced tokamak’’ concept,28 which aims to simul-
taneously maximize the plasma beta,29 the energy confine-
ment time, and the fraction of the current due to the nonin-
ductive bootstrap effect.30 The eventual aim is, of course, to
design an attractive fusion power plant which can operate in
steady state, at high fusion power density, with low recircu-
lating power.31 The interaction of a rotating magnetic island
~i.e., the nonlinear phase of a conventional tearing mode32,33!
with eddy currents induced in the shell generates a nonlinear
slowing down torque which effectively brakes the rotation
once a critical island width is exceeded.21,24 This effect is of
importance because a nonrotating~or ‘‘locked’’ ! tearing
mode is generally more unstable than an analogous rapidly
rotating tearing mode~and, hence, the saturated island width
is larger in the former case!, since the latter mode is unable
to penetrate through the shell.11

The aim of this paper is to develop a comprehensive
theory of the interaction of MHD instabilities of a large
aspect-ratio, low-b, tokamak plasma34 ~in particular, external
kink modes! with a partial resistive shell. This investigation
is relevant to magnetic fusion plasma physics because some
existing tokamaks possess partial shells~for instance, the
Princeton Beam Experiment, PBX-M,35 and the Columbia
High Beta Tokamak, HBT-EP36!. Moreover, advanced toka-
mak designs invariably incorporate close fitting passive sta-

bilizing shells with incomplete poloidal and toroidal
coverage.37 Finally, in most tokamak reactor designs the
‘‘first wall’’ is constructed out of some highly conducting
material, and is both modular in nature and partial in
coverage.38 This investigation is also relevant to the feed-
back stabilization of MHD instabilities using a set of external
windings with incomplete poloidal and toroidal coverage.

II. PRELIMINARY ANALYSIS

A. Introduction

Consider a large aspect-ratio, low-b, tokamak plasma
whose magnetic flux surfaces map out~almost! concentric
circles in the poloidal plane. Such a plasma is well approxi-
mated as a periodic cylinder. Suppose that the minor radius
of the plasma isa. Standard cylindrical polar coordinates
(r ,u,f) are adopted. The system is assumed to be periodic
in thez direction, with periodicity length 2pR0 , whereR0 is
the simulated major radius of the plasma. It is convenient to
define a simulated toroidal anglef5z/R0 .

B. Basic definitions

The perturbed magnetic field is written as

dB5“∧~c ẑ![“c∧ ẑ, ~1!

wherec(r ,u,f) is the perturbed poloidal magnetic flux. The
magnetic field can only be written in this form provided that

U1r ]c

]uU@U 1

R0

]c

]fU. ~2!

Suppose that the plasma is surrounded by a concentric
cylindrical shell made of a rigid conducting material such as
a metal. For the sake of simplicity, the analysis is performed
in the ‘‘thin shell’’ limit, in which the skin depth of the
perturbed magnetic field in the shell material is much greater
than the thickness of the shell but much less than its radius.
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In this limit, there is negligible radial variation of the per-
turbed flux c across the shell. It is, therefore, possible to
unambiguously define a ‘‘shell flux,’’

Cw~u,f![c~r w ,u,f!, ~3!

wherer w is the shell minor radius. Note that even thoughc
is continuous across the shell, in general, its radial derivative
is discontinuous.

In the thin shell limit the eddy currents induced in the
shell have no significant radial variation. Consequently, the
radially integrated eddy current density can be written as

m0dIw5“∧~Jwr̂ ![“Jw∧ r̂ , ~4!

where Jw(u,f) is the eddy current stream function. It is
helpful to define the quantity

DCw~u,f!5F r
]c~r ,u,f!

]r G
r w2

r w1

, ~5!

which parametrizes the jump in the radial derivative ofc
across the shell. The nonuniform ‘‘time constant’’ of the
shell is defined as

tw~u,f!5m0r wswdw , ~6!

wheresw(u,f) anddw(u,f) are the shell electrical conduc-
tivity and radial thickness, respectively.

C. Basic physics

Ampère’s law radially integrated across the shell yields

DCw5
]Jw

]u
~7!

in the large aspect-ratio tokamak limit. Ohm’s law combined
with Faraday’s law gives

r w
2
“–S 1

gtw
“JwD5

]Cw

]u
, ~8!

where all perturbed quantities are assumed to vary with time
like exp(gt).

Fourier transformation of the perturbed poloidal flux
yields

c~r ,u,f!5(
m,n

Cm,n~r !exp@ i ~mu2nf!#. ~9!

In the large aspect-ratio tokamak limit, characterized by@see
Eq. ~2!#

umu@unuew , ~10!

whereew5r w /R0!1, the functionCm,n(r ) obeys the ‘‘cy-
lindrical tearing mode equation,’’39

1

r

d

dr S r
dCm,n

dr D2
m2

r 2 Cm,n1
m0Jf8

Bu~nq/m21!
Cm,n50.

~11!

Here, B5@0,Bu(r ),Bf# is the equilibrium magnetic field,
q(r )5rBf /R0Bu is the ‘‘safety factor,’’ andJf8 [dJf /dr is
the radial gradient of the equilibrium ‘‘toroidal’’ plasma cur-
rent, m0Jf(r )5(1/r )d(rBu)/dr. The cylindrical tearing
mode equation is basically the perturbed force balance equa-

tion for an inviscid, massless, perfectly conducting fluid. The
large aspect-ratio, low-b, tokamak ordering requires that
Bu /Bf!1 and also thatq;O(1). The safety factor is a
convenient measure of the helical pitch of the equilibrium
magnetic field lines.

Equation~11! is manifestly singular at any ‘‘rational flux
surface,’’ for whichq5m/n, except when such surfaces are
situated in the vacuum region outside the plasma~where
Jf50!. An acceptable solution of Eq.~11! must satisfy
physical boundary conditions atr 50 andr 5`, with Cm,n

continuous across the shell. In addition,Cm,n must be zero at
any rational surface lying inside the plasma. The latter con-
straint comes about because modes which interact strongly
with the shell tend to be very slowly rotating in the labora-
tory frame and, therefore, do not reconnect magnetic flux
inside the plasma, which is usually rotating substantially
faster than the rate of resistive reconnection.24 In general,
there is a discontinuity in the radial derivative ofCm,n at r
5r w . The parameter

Dw
m,n5F r

dCm,n

dr Y Cm,nG
r w2

r w1

~12!

can be uniquely defined for everym,n pair, except for those
involving m50. The m50 harmonic is a special case be-
cause the inequality~10! is not satisfied for this poloidal
harmonic, so the usual large aspect-ratio tokamak approxi-
mations break down.

It is helpful to Fourier transform the shell fluxCw(u,f)
and the functionDCw(u,f):

Cw~u,f!5(
m,n

Cw
m,n exp@ i ~mu2nf!#, ~13a!

DCw~u,f!5(
m,n

DCw
m,n exp@ i ~mu2nf!#. ~13b!

Thus, from Eq.~12!,

Dw
m,n5DCw

m,n/Cw
m,n . ~14!

It follows from Eq. ~7! that

DCw
m,n5Dw

m,nCw
m,n5 imJw

m,n . ~15!

D. The resistive shell mode

Consider the simple case in which the time constanttw

of the shell, as defined by Eq.~6!, is uniform. In this situa-
tion, Eq. ~8! can be Fourier transformed to give

imJw
m,n5gtwCw

m,n , ~16!

where O(new) terms have been neglected with respect to
O(m) terms, in accordance with the inequality~10!. Equa-
tion ~16! can be combined with Eq.~15! to give a dispersion
relation for them,n mode:

gtw5Dw
m,n . ~17!

According to this dispersion relation, anonrotating mode,
growing on the characteristic time constant of the shell, be-
comes unstable whenever the parameterDw

m,n is positive.
This instability is usually termed the resistive shell mode,
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and Dw
m,n is called the ‘‘shell stability index’’ for them,n

mode. Recall thatDw
m,n is determined by solving the ordinary

differential equation~11! subject to suitable boundary condi-
tions. In general, for physically plausible plasma current pro-
files, at mostoneof theDw

m,n is positive at any given time.40

Suppose thatDw
m0 ,n0.0, with Dw

m,n,0 for mÞm0 and n
Þn0 . Here,m0 ,n0 is termed the ‘‘central harmonic.’’ In the
presence of acompleteshell of time constanttw the m0 ,n0

resistive shell mode is unstable with growth rate

gtw5Dw
m0 ,n0, ~18!

and all other resistive shell modes are stable.
In the vacuum region outside the plasma the perturbed

poloidal flux eigenfunction for the central harmonic can be
written as

c~r ,u,f!5F S 11
gtw

2um0u D ĉplasma~r !

2
gtw

2um0u
ĉshell~r !Gexp@ i ~m0u2n0f!#, ~19!

where the Fourier amplitudeCw
m0 ,n0 is normalized to unity.

Here,

ĉplasma~r !5S r

r w
D 2um0u

~20!

represents that part of the radial eigenfunction which is
maintained by plasma currents, and

ĉshell~r !5 H ~r /r w!1um0u

~r /r w!2um0u
for r ,r w

for r>r w
~21!

represents that part which is maintained by eddy currents
flowing in the shell.

E. A simple model for a partial shell

Consider, now, the more complicated situation in which
the plasma is surrounded by apartial shell. Suppose, for the
sake of simplicity, that the thickness and conductivity of the
metal parts of the shell are uniform. This implies that
tw(u,f) is a constant~t̃w , say! over the metal parts of the
shell, but is zero in the vacuum gaps.

It is possible to formulate a very simplistic model which
describes the stability of them0 ,n0 resistive shell mode in
the presence of a partial shell. Suppose that, in the immediate
vicinity of the shell, the perturbed poloidal flux at angular
coordinates corresponding toconductingsections of the shell
has an analogous form to that for a complete shell. Hence
@see Eq.~19!#,

c~metal!5F S 11
gt̃w

2um0u D ĉplasma~r !

2
gt̃w

2um0u
ĉshell~r !Gexp@ i ~m0u2n0f!#. ~22!

Suppose, further, that the perturbed poloidal flux at angular
coordinates corresponding tovacuum gapsin the shell has an
analogous form to that for a complete shell, except that the

part which is generated by eddy currents flowing in the shell
is missing~since there are no eddy currents flowing in the
vacuum gaps!. Hence@see Eq.~19!#,

c~gap!5F S 11
gt̃w

2um0u D ĉplasma~r !Gexp@ i ~m0u2n0f!#.

~23!

Them,n harmonic of the perturbed poloidal flux is given
by

Cm,n~r !5R R c~r ,u,f!exp@2 i ~mu2nf!#
du

2p

df

2p
.

~24!

It follows from Eqs.~22! to ~24! that

Cm0 ,n0~r !5S 11
gt̃w

2um0u D ĉplasma~r !

2~12 f !
gt̃w

2um0u
ĉshell~r !, ~25!

in the immediate vicinity of the shell, wheref is the area
fraction of vacuum gaps in the shell. According to Eqs.~3!,
~5!, ~13!, ~20!, and~21!,

Cw
m0 ,n0511 f

gt̃w

2um0u
, ~26a!

DCw
m0 ,n05~12 f !gt̃w . ~26b!

The dispersion relation is obtained via Eq.~15!:

gtw5
Dw

m0 ,n0

12Dw
m0 ,n0/Dc

m0 ,n0
, ~27!

where

tw5~12 f !t̃w , ~28!

and

Dc
m0 ,n052um0uS 1

f
21D . ~29!

Here,tw is the time constant of a uniform shell which con-
tains the same amount of metal as the partial shell. It is easily
demonstrated from Eqs.~22! and ~23! that the ratio of the
amplitudes of the perturbed poloidal flux in the metal and
gap sections of the shell is given by

Cgap

Cmetal
511

gt̃w

2um0u
. ~30!

Suppose that the shell stability index for the central har-
monic, Dw

m0 ,n0, is gradually increased from a small positive
value. Initially, the poloidal flux is evenly distributed over
the metal and gap sections of the shell@see Eq.~30!# and the
partial shell acts like a uniform shell containing an equal
amount of metal~i.e.,gtw.Dw

m0 ,n0!. However, as them0 ,n0

mode becomes more unstable the poloidal flux starts to con-
centrate in the gap sections of the shell and the growth rate
accelerates. Eventually, at a critical shell stability index,
Dc

m0 ,n0, the poloidal flux is entirely concentrated in the gap
sections of the shell and the resistive growth rate becomes
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infinite. It is easily demonstrated from Newcomb’s
criterion27,41 that them0 ,n0 ideal external kink mode is un-
stable forDw

m0 ,n0.Dc
m0 ,n0. Thus, when the shell stability in-

dex exceeds the critical valueDc
m0 ,n0 the mode ‘‘explodes’’

through the gaps in the shell with an ideal growth rate.
The dispersion relation~27! can be rewritten as

gt̃w5D̃w
m0 ,n0, ~31!

where

D̃w
m0 ,n05

~ r̃ w /r w!2um0uDw
m0 ,n0

12~Dw
m0 ,n0/2um0u!@~ r̃ w /r w!2um0u21#

~32!

is the shell stability index for them0 ,n0 mode calculated for
a shell located at radius

r̃ w5r wS 11
2um0u

Dc
m0 ,n0D 1/2um0u

5r wS 1

12 f D
1/2um0u

. ~33!

According to Eq.~31!, a partial shell acts like a complete
shell whose radiusr̃ w is somewhat larger thanr w ~the actual
radius of the shell!, and whose time constant is that of the
conducting sections of the partial shell. The ideal stability
limit corresponds toD̃w

m0 ,n0→`. Note that the ideal mode
escapes through the gaps in the partial shell, so it is not
shielded from the regionr .r w , as is the case for a complete
shell.

F. Discussion

The main results of this section@i.e., Eqs.~27!–~33!#
were obtained using a rather heuristic argument. However,
for the special case of a shell containingtoroidal gaps~i.e.,
gaps which extend over specific ranges of toroidal angle! it is
possible to derive the same results via an exact analytic
argument.40 This derivation is only valid in the limit in
which the toroidal lengths of all metal and gap sections of
the shell are much greater than the poloidal half-wavelength
of the mode. Thus, ifLf is the minimum toroidal length of
the metal or gap sections then it is necessary that

Lf@
pr w

um0u
. ~34!

The derivation also makes use of the ‘‘single harmonic ap-
proximation,’’ in which it is assumed that the shell stability
indices for all harmonics, apart from the central harmonic,
take their vacuum values,Dw

m,n522umu. ~In fact, the model
presented in Sec. II E tacitly assumes thatDw

m,n522umu for
all harmonics apart from the central harmonic.! Preliminary
analysis has suggested that under some circumstances Eqs.
~27!–~33! also hold for shells containing gaps ofarbitrary
shape.42 In Sec. III a more wide-ranging inquiry is made in
order to determine to what extent this is the case.

III. SHELLS CONTAINING HELICAL GAPS

A. Introduction

Consider a shell which possessesM ,N helical symme-
try, so that

tw~u12p/M ,f12p/N!5tw~u,f! ~35!

for all values ofu andf. It is convenient to define a helical
angle

z5u2
N

M
f, ~36!

and to express shell quantities as functions of (r ,z,f) in-
stead of (r ,u,f). In addition, shell quantities are assumed to
vary with f like exp(2in*f). Note thatn* is not necessarily
an integer, although it must be a rational number. Thus,
Cw5Cw(z)exp(2in*f), DCw5DCw(z)exp(2in*f), and
Jw5Jw(z)exp(2in*f). Equation ~35! implies that tw

5tw(z).
In terms of the new variables, Ampe`re’s law @Eq. ~7!# is

written as

DCw5
]Jw

]z
, ~37!

while Eq. ~8! becomes

F11S ew

N

M D 2G ]

]z S 1

gtw

]Jw

]z D1 in* ew
2 N

M F ]

]z S Jw

gtw
D

1
1

gtw

]Jw

]z G2
~n* ew!2

gtw
Jw5

]Cw

]z
. ~38!

B. Conducting segments and vacuum gaps

Suppose that at any given toroidal anglef the shell con-
sists ofM conducting segments of uniform time constantt̃w

separated by vacuum gaps. Let thekth segment extend from
uk2 to uk1 , where

uk65
2p~k21!

M
6

Du

2
1

N

M
f ~39!

for k51 to M . Of course,Du,2p/M . In ~z,f! space the
kth segment lies at constantz, and extends fromzk2 to zk1 ,
where

zk65
2p~k21!

M
6

Du

2
~40!

for k51 to M .
Now, from Eq.~4!,

m0dIw52 i
n*
R0

Jwû2
1

r

]Jw

]z
f* , ~41!

where the vector

f* 5f̂1ew

N

M
û ~42!

runs parallel to the edges of the helical segments in~u,f!
space.

It follows from Eq. ~41! that ]Jw /]z is zero in the
vacuum gaps, since no eddy currents can flow in these re-
gions. Furthermore, ifn* Þ0, thenJw must also be zero in
the gaps. However, ifn* 50, then this constraint does not
apply, and Jw is merely required to be constant in the
vacuum gaps. The essential distinction between then* 50
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case and then* Þ0 case is obvious from Eq.~41!. In the
former case, the eddy currents flow parallel to the edges of
the helical segments which make up the shell. In the latter
case, the currents flow at an angle to the edges of the helical
segments. Thus, in the former case it is possible for the eddy
currents to flow in a unidirectional continuous loop around
each helical segment of the shell, whereas in the latter case
this is impossible because the helicity of the currents does
not match that of the shell segments. A shell for whichn*
50 is termed a ‘‘resonant shell.’’ Likewise, a shell for which
n* Þ0 is termed a ‘‘nonresonant shell.’’

C. Nonresonant shells

In the large aspect tokamak limit, characterized by the
inequality ~10!, with the additional constraint

uM u@uNuew , ~43!

Eq. ~38! yields

]Jw

]z
5gt̃wHCw1ck zk2<z<zk1

0, otherwise , ~44!

for k51 to M . Here, theck are constants. Consider a non-
resonant shell, for whichn* Þ0, andJw is consequently zero
in the vacuum gaps. In this case,

m0I fk~f!5E
zk2

zk1

m0dIw•f̂ r w dz

5@Jw~zk2!2J~zk1!#exp~2 in* f!50, ~45!

sinceJw(z) is a continuous function. Here,I fk(f) is the net
toroidal current flowing in thekth conducting segment of the
shell at toroidal anglef. It is clear that zero net toroidal
current flows in each helical segment of the shell. This is true
at all toroidal angles. Equations~44! and ~45! can be com-
bined to give

]Jw

]z
5gt̃wH Cw2E

zk2

zk1

Cw~z8!
dz8

Du
, zk2<z<zk1

0, otherwise
~46!

for k51 to M .
Let

Cw~z,f!5(
m

Cw
m;n

* ei ~mz2n
*

f!, ~47a!

DCw~z,f!5(
m

DCw
m;n

* ei ~mz2n
*

f!, ~47b!

Jw~z,f!5(
m

Jw
m;n

* ei ~mz2n
*

f!, ~47c!

wherem is the conventional poloidal mode number, andn*
is related to the conventional toroidal mode numbern via

n* 5n2m
N

M
. ~48!

By analogy with Eq.~14!,

Dw
m;n

* 5DCw
m;n

* /Cw
m;n

* . ~49!

It follows from Eq. ~37! that

Dw
m;n

* Cw
m;n

* 5 imJw
m;n

* . ~50!

Equation~46! yields

imJw
m;n

* 5 R ]Jw

]z
e2 imz

dz

2p

5gt̃w

MDu

2p (
j

F~m,m1 jM !Cw
m1 jM ;n

* ,

~51!

where

F~m,m8!5sinc@~m2m8!Du/2#

2sinc~mDu/2!sinc~m8Du/2!, ~52!

and sincx[sinx/x. Here, use has been made of Eq.~40!.
Note thatF(m,m8)50 whenm50 or m850. This im-

plies that the 0;n* harmonic completely decouples from the
problem. In fact, the value ofCw

0;n
* is arbitrary. However, it

is convenient to adopt the convention

R h~z!Cw~z!dz50, ~53!

where

h~z!5 H1,
0,

zk2<z<zk1

otherwise ~54!

for k51 to M . It follows from Eq. ~40! that

Cw
0;n

* 52(
j Þ0

sinc~ jM Du/2!Cw
jM ;n

* . ~55!

Integration of Eq.~38! over all values ofz yields

R @12h~z!#Jw~z!dz50, ~56!

assuming thatn* Þ0. It follows that

Jw
0;n

* 5
MDu/2p

12MDu/2p (
j Þ0

sinc~ jM Du/2!Jw
jM ;n

* . ~57!

D. Resonant shells

Consider a resonant shell, for whichn* 50, andJw is
consequently constant in the vacuum gaps. In principle,Jw

can take a different value in each gap. It follows from Eq.
~45! that

m0I fk~f!5@Jw~zk2!2Jw~zk1!#Þ0. ~58!

Thus, a nonzero, constant~in f!, toroidal current flows in
each helical segment of the shell. However, as is easily dem-
onstrated by summing the above expression fromk51 to N
and making use of the fact thatJw(z) is a single-valued
function, the total toroidal current flowing in the shell is zero
at all toroidal angles, i.e.,

(
k51,N

I fk~f!50. ~59!
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Clearly, in a resonant shell the constraint that zero net toroi-
dal current must flow in each segment of the shell is relaxed
to the far less stringent constraint that zero net toroidal cur-
rent must flow in the shell as a whole. By analogy with Eq.
~46!, this implies

]Jw

]z

52gt̃wH Cw2 R h~z8!Cw~z8!
dz8

MDu
, zk2<z<zk1

0, otherwise

~60!

for k51 to M . It follows that

imJw
m;05gt̃w

MDu

2p (
j

F~m,m1 jM !Cw
m1 jM ;0, ~61!

where

F~m,m8!5sinc@~m2m8!Du/2# ~62!

provided thatmÞ jM . Here, j is an integer. Ifm5 jM , then
F(m,m8) is again given by Eq.~52!. Note that the 0;0 har-
monic decouples from the problem. In fact, the values of
Cw

0;0 and Jw
0;0 are arbitrary, but are conveniently fixed by

adopting the conventions~53! and ~56!, in which caseCw
0;0

andJw
0;0 are determined by Eqs.~55! and ~57!, respectively

~with n* 50!.

E. Reduction to a matrix eigenvalue problem

Equations~50!–~52!, ~61! and ~62! yield the following
dispersion relation for the resistive shell mode:

Dw
m0 ,n0 Cw

m0 ,n05gtw(
j

F~m0 ,m01 jM !Cw
m01 jM ,n01 jN ,

~63!

where j is an integer, and the ‘‘equivalent time constant’’

tw5
MDu

2p
t̃w5~12 f !t̃w ~64!

is the time constant of a uniform shell of radiusr w which
contains the same amount of metal as the segmented shell.
The fraction of gaps in the shell is given by

f 512
MDu

2p
. ~65!

Note that the above dispersion relation is written in terms of
conventional poloidal and toroidal mode numbers,m5m0

1 jM and n5n01 jN, respectively. Recall that the central
harmonicm0 ,n0 is the only intrinsically unstable harmonic;
i.e., the only harmonic for whichDw

m0 ,n0.0. Thus, a positive
growth rate is only possible when the dispersion relation
couples to the central harmonic. The functionF(m,m8) is
given by Eq.~62! for shells which resonate with the central
harmonic, i.e., shells which satisfy

n0M2m0N50. ~66!

For shells which do not resonate with the central harmonic
~or resonant shells for whichm5 jM ! F(m,m8) is given by
Eq. ~52!.

The dispersion relation~63! can be written as a matrix
eigenvalue problem:

~F2lD!Cw50, ~67!

where

l5
1

gtw
, ~68!

Cw is the vector of theCw
m01 jM ,n01 jN values,F is the matrix

of the F(m01 jM ,m01kM) values, andD is the diagonal
matrix of theDw

m01 jM ,n01 jN values. Here,j and k are inte-
gers. The fact thatF(m8,m)5F(m,m8) implies thatF is
Hermitian, and hence thatl and g are real quantities. The
nonzero Fourier harmonics of the eddy current stream func-
tion are given by

Jw
m01 jM ,n01 jN

52 i
Dw

m01 jM ,n01 jN
Cw

m01 jM ,n01 jN

m01 jM
, ~69!

where j is an integer.
For the special casem05 lM , wherel is an integer, the

0, n02 lN harmonic couples into the eigenvalue problem.
Note thatCw

0,n02 lN is not determined by the solution to Eq.
~67!, sinceF(0,m01kM)5F(m01 jM ,0)50. Furthermore,
Jw

0,n02 lN is not determined by Eq.~69!, which is invalid for
m50. However, Eqs.~55! and ~57! yield

Cw
0,n02 lN

52(
j Þ0

sinc~ jM Du/2!Cw
jM ,n01~ j 2 l !N , ~70!

and

Jw
0,n02 lN

5S 1

f
21D (

j Þ0
sinc~ jM Du/2!Jw

jM ,n01~ j 2 l !N ,

~71!

respectively.
In principle, F is an infinite dimensional square matrix.

In practice,F can be approximated as a large, but finite,
dimensional square matrix without unduly affecting the
physically significant eigenvalues of Eq.~67!. This is equiva-
lent to the neglect of high mode number harmonics in the
eigenvalue problem.
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F. Numerical results

1. Wesson profiles

The matrix eigenvalue problem described above has
been solved numerically using a ‘‘Wesson-like’’ plasma cur-
rent profile,39

Jf~r !5Jf~0!H ~12r 2/a2!qa /q021, r<a

0, r.a, ~72!

wherea is the minor radius of the plasma. The associated
safety factor profile takes the form

q~r !5qaH r 2/a2

12~12r 2/a2!qa /q0
, r<a

r 2/a2, r .a

. ~73!

Here, q0 and qa are the values of the safety factor on the
magnetic axis and at the plasma boundary, respectively. Suf-
ficient helical harmonics are included in the calculation to
determine the growth rate of the resistive shell mode to an
accuracy of less than 1%. Typically, this requires about 160
harmonics.

2. Axisymmetric shells

In axisymmetric shells~i.e., N50 shells! the conducting
segments and the vacuum gaps lie at constant poloidal angle.
In this situation, the resonance condition~66! is only satis-
fied by axisymmetric modes~i.e., n050 modes!. In fact,
such modes are intrinsically stable for the large aspect-ratio,
low-b, circular flux surface tokamak equilibria considered in
this paper.39 The intrinsically unstable modes for such equi-
libria all possess helical symmetry~i.e., n0Þ0!, and do not,
therefore, resonate with the shell.

Figure 1 shows the growth rate of the resistive shell

mode plotted as a function of the shell radius for a plasma
equilibrium characterized byq051.3 andqa52.9. The cen-
tral harmonic for this equilibrium ism053, n051, i.e.,
Dw

3,1.0, whereasDw
mÞ3,nÞ1,0. The growth rate is calculated

for seven different shells, each of which has the same
‘‘equivalent time constant’’tw . The first shell is uniform
~i.e., f 51!. The remainder are axisymmetric partial shells
made up of uniform, identical, and equally spaced~in u!
conducting segments whose total angular extent~in u! is
180° ~i.e., f 50.5!. In other words, the partial shells possess
M ,0 symmetry, whereM is the number of segments. Also
shown is the growth rate predicted by the analytic formula
~27! for f 50.5.

It can be seen that the analytic approximation~27! is in
excellent agreement with the exact numerical result for the
partial shells consisting of two or less segments. For the shell
consisting of three segments the agreement is less impres-
sive. The analytic formula is significantly in error for the
shells consisting of more than three segments. Thus, Eq.~27!
appears to be a good approximation provided that the poloi-
dal lengths of all metal and gap sections of the shell are
greater than the poloidal half-wavelength of the central har-
monic,pr w /um0u. In other words, provided that the angular
extents of the metal and gaps sections are greater than 60°
~sincem053 in this case!.

Figure 2 shows the growth rate of the resistive shell
mode plotted as a function of the shell radius for a plasma
equilibrium characterized byq052.92 andqa55.98. The
central harmonic for this equilibrium ism056, n051. The
growth rate is calculated for six different shells with the
same equivalent time constanttw . The first shell is uniform
~i.e., f 51!. The others are axisymmetric partial shells made
up of uniform, identical, and equally spaced~in u! conduct-
ing segments whose total angular extent~in u! is 180° ~i.e.,

FIG. 1. The growth rateg of the resistive shell mode plotted as a function of
the shell radiusr w for a plasma equilibrium characterized byq051.3 and
qa52.9. Data are shown for seven shells with the same equivalent time
constanttw . The solid curve shows the growth rate for a uniform shell. The
other curves show the growth rate for axisymmetric partial shells made up
of uniform, identical, and equally spaced~in u! conducting segments whose
total angular extent~in u! is 180°. The number of segments are one~dotted
curve!, two ~short-dashed curve!, three~long-dashed curve!, four ~dot short-
dashed curve!, five ~dot long-dashed curve!, and six ~short-dashed, long-
dashed curve!. The open circles show the growth-rate predicted by the ana-
lytic formula ~27! for f 50.5.

FIG. 2. The growth rateg of the resistive shell mode plotted as a function of
the shell radiusr w for a plasma equilibrium characterized byq052.92 and
qa55.98. Data are shown for six shells with the same equivalent time con-
stanttw . The solid curve shows the growth rate for a uniform shell. The
other curves show the growth rate for axisymmetric partial shells made up
of uniform, identical, and equally spaced~in u! conducting segments whose
total angular extent~in u! is 180°. The number of segments are one~dotted
curve!, three~short-dashed curve!, six ~long-dashed curve!, nine ~dot short-
dashed curve!, and twelve~dot long-dashed curve!. The open circles show
the growth rate predicted by the analytic formula~27! for f 50.5.
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f 50.5!. Thus, the partial shells again possessM ,0 symme-
try, whereM is the number of segments. Also shown is the
growth rate predicted by the analytic formula~27! for f
50.5.

The analytic formula is in excellent agreement with the
exact numerical result for the partial shells consisting of
three or less segments. For the shell consisting of six seg-
ments the agreement is not as good. The analytic formula is
a poor approximation for the shells consisting of more than
six segments. Again, Eq.~27! seems to be valid whenever
the poloidal lengths of all metal and gap sections of the shell
are greater than the poloidal half-wavelength of the central
harmonic. In other words, provided that the angular extents
of the metal and gaps sections are greater than 30°~since
m056 in this case!.

Figures 3–6 show the shell fluxCw(u) and the eddy
current stream functionJw(u) evaluated for axisymmetric
partial shells located at two different radii. In both cases, the
plasma equilibrium is that characterized byq051.3 andqa

52.9. The central harmonic for this equilibrium ism053,
n051. The Fourier amplitudeCw

3,1 is conveniently normal-
ized to unity. Both partial shells consist of a 180° uniform
conducting section and a 180° vacuum gap~i.e., both shells
possesses 1,0 helical symmetry!. It can be seen that when
such a shell is situated close to the plasma~i.e., r w /a51!, in
which case the 3,1 shell stability index is relatively small~in
fact, Dw

3,151.010!, the eddy currents induced in the shell are
fairly weak and the structure of the mode is not strongly
distorted from that of a 3,1 mode. On the other hand, when
the same shell is situated further away from the plasma~i.e.,
r w /a51.22!, so that the 3,1 shell stability index becomes
relatively large~in fact, Dw

3,155.426!, strong eddy currents
are induced in the shell and the mode structure deviates
markedly from that of a 3,1 mode. It is clear that the eddy
currents tend to expel magnetic flux from the conducting
sections of the shell, forcing the flux to concentrate in the
vacuum gaps. In fact, forr w /a*1.235 the flux is completely
excluded from the conducting sections of the shell, and the

mode ‘‘explodes’’ through the vacuum gaps with an ideal
growth rate. Note that the behavior shown in Figs. 3–6 is
exactly that predicted by the simple analytic model intro-
duced in Sec. II E.

3. Resonant shells

According to Eq.~66!, a resonant shell satisfiesM ,N
5m(m0 ,n0), where m is a rational number. Forn051
modes, which are generally the most unstable modes in con-
ventional tokamak plasmas, the only allowed values ofm are
the positive integers 1,2,3,... .

Consider the casem51, for whichM ,N5m0 ,n0 . This a
special case, because one of the harmonics which couples
into the problem@see Eq.~63!# is the2m0 ,2n0 harmonic,
i.e., the harmonic with the opposite helicity to the central

FIG. 3. The shell fluxCw evaluated as a function of the poloidal angleu for
an axisymmetric partial shell of radiusr w /a51. The plasma equilibrium is
characterized byq051.3 andqa52.9. The solid and dashed curves show the
flux evaluated at two toroidal locations 90° apart~in f!. The heavy curve
indicates the position of the conducting segment of the shell.

FIG. 4. The eddy current stream functionJw evaluated as a function of the
poloidal angleu for an axisymmetric partial shell of radiusr w /a51. The
plasma equilibrium is characterized byq051.3 andqa52.9. The solid and
dashed curves show the stream function evaluated at two toroidal locations
90° apart~in f!. The heavy curve indicates the position of the conducting
segment of the shell.

FIG. 5. The shell fluxCw evaluated as a function of the poloidal angleu for
an axisymmetric partial shell of radiusr w /a51.22. The plasma equilibrium
is characterized byq051.3 andqa52.9. The solid and dashed curves show
the flux evaluated at two toroidal locations 90° apart~in f!. The heavy curve
indicates the position of the conducting segment of the shell.
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harmonic. Note that the cylindrical tearing mode equation
~11! is invariant under the transformationm,n→2m,2n.
This implies thatDw

2m0 ,2n05Dw
m0 ,n0. In other words, instead

of their being a single intrinsically unstable harmonic~i.e.,
the m0 ,n0 harmonic! in the problem, there are nowtwo in-
trinsically unstable harmonics, albeit with identical positive
stability indices,Dw

m0 ,n0. This allows the growth rate of the
resistive shell mode to depend on thephaseof the mode with
respect to the shell. In fact, for a shell which couples the
m0 ,n0 harmonic to the2m0 ,2n0 harmonic~i.e., any reso-
nant shell for which 2m05 jM , where j is an integer!, a
general resistive shell mode is a linear superposition oftwo
independent modes withdifferent growth rates; an ‘‘even
mode’’ @i.e., a mode for whichCw(z) is even~in z! across
each helical segment of the shell, whereasJw(z) is odd#, and
an ‘‘odd mode’’ @i.e., a mode for whichCw(z) is odd~in z!
across each helical segment of the shell, whereasJw(z) is
even#. For a shell which does not couple them0 ,n0 harmonic
to the2m0 ,2n0 harmonic, a general resistive shell mode is
a linear combination of two independent modes with exactly
the same growth rate~see Figs. 3–6!.

Figure 7 shows the growth rate of the resistive shell
mode plotted as a function of the shell radius for a plasma
equilibrium characterized byq051.3 andqa52.9. The cen-
tral harmonic for this equilibrium ism053, n051. The
growth rate is calculated for four different shells, each of
which has the same equivalent time constanttw . The first
shell is uniform~i.e., f 51!. The remainder are partial shells
containingthreeevenly spaced helical gaps whose total an-
gular extent~in z! is 180° ~i.e., f 50.5!. In other words, the
partial shells possess 3,N symmetry. Also shown is the
growth rate predicted by the analytic formula~27! for f
50.5.

It can be seen that for the case of the two nonresonant
partial shells~i.e., the 3,0 and the 3,2 shells! the growth rate
of the resistive shell mode agrees with that described in Sec.
III F 2. In other words, since the poloidal lengths of the

metal and gap sections of both shells are the same as the
poloidal half-wavelength of the central harmonic, the growth
rate is in good, but not excellent, agreement with the analytic
approximation~27!. On the other hand, for the case of the
resonant partial shell~i.e., the 3,1 shell! the growth rate of
the resistive shell mode deviates markedly from that de-
scribed in Sec. III F 2. As mentioned above, there are, in
fact, two growth rates associated with the 3,1 shell. The
growth rate of the ‘‘odd mode’’ is markedly less than that
predicted by the analytic approximation~27!, whereas the
growth rate of the ‘‘even mode’’ is much greater than that
predicted by Eq.~27!. Of course, the growth rate of a general
resistive shell mode quickly asymptotes to that of the even
mode. Thus, it is clear that am51 resonant shell isless
effectiveat moderating the growth of an external kink mode
than a similar nonresonant shell possessing the same area
fraction of gaps. Note that there is zero net toroidal current
flowing in each shell segment for both even and odd modes.

Consider the casem52, for which M ,N52(m0 ,n0).
This is also a special case in which the2m0 ,2n0 harmonic
couples into the problem. Thus, there are again two indepen-
dent resistive shell modes~the even mode and the odd mode!
with different growth rates.

Figure 8 shows the growth rate of the resistive shell
mode plotted as a function of the shell radius for a plasma
equilibrium characterized byq051.3 andqa52.9. The cen-
tral harmonic for this equilibrium ism053, n051. The
growth rate is calculated for four different shells, each of
which has the same equivalent time constanttw . The first
shell is uniform~i.e., f 51!. The remainder are partial shells
containingsix evenly spaced helical gaps whose total angular
extent~in z! is 180°~i.e., f 50.5!. In other words, the partial
shells possess 6,N symmetry. Also shown is the growth rate

FIG. 6. The eddy current stream functionJw evaluated as a function of the
poloidal angleu for an axisymmetric partial shell of radiusr w /a51.22. The
plasma equilibrium is characterized byq051.3 andqa52.9. The solid and
dashed curves show the stream function evaluated at two toroidal locations
90° apart~in f!. The heavy curve indicates the position of the conducting
segment of the shell.

FIG. 7. The growth rateg of the resistive shell mode plotted as a function of
the shell radiusr w for a plasma equilibrium characterized byq051.3 and
qa52.9. Data are shown for four shells with the same equivalent time con-
stanttw . The solid curve shows the growth rate for a uniform shell. The
other curves show the growth rate for partial shells containing three equally
spaced helical gaps whose total angular extent~in z! is 180°. The various
curves correspond to a 3,0 shell~dotted curve!, a 3,2 shell~short-dashed
curve!, and a 3,1 shell. For the latter shell, there are two independent modes;
the even mode~long-dashed curve! and the odd mode~dot short-dashed
curve!. The open circles show the growth rate predicted by the analytic
formula ~27! for f 50.5.
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predicted by the analytic formula~27! for f 50.5.
For the case of the two nonresonant shells~i.e., the 6,1

and 6,3 shells! the growth rate of the resistive shell mode
again agrees with that described in Sec. III F 2. That is, since
the poloidal lengths of the metal and gap sections of both
shells are less than the poloidal half-wavelength of the cen-
tral harmonic, the growth rate is significantly greater than
that predicted by the analytic approximation~27!. For the
case of the resonant partial shell~i.e., the 6,2 shell!, the
growth rate of the odd mode is slightly larger than that pre-
dicted by Eq.~27!, whereas the growth rate of the even mode
is virtually the same as that obtained for a uniform shell. Of
course, the growth rate of a general resistive shell mode
quickly asymptotes to that of the odd mode. Thus, it is clear
that am52 resonant shell ismore effectiveat moderating the
growth of an external kink mode than a similar nonresonant
shell possessing the same area fraction of gaps. Note that
there is zero net toroidal current flowing in each shell seg-
ment for the odd mode, whereas nonzero currents of alter-
nating direction flow in the segments for the even mode.

Consider, finally, the casem53. The 2m0 , 2n0 har-
monic does not couple into the problem in this case, so the
growth rate of the resistive shell mode does not depend on
the phase of the mode with respect to the shell.

Figure 9 shows the growth rate of the resistive shell
mode plotted as a function of the shell radius for a plasma
equilibrium characterized byq051.3 andqa52.9. The cen-
tral harmonic for this equilibrium ism053, n051. The
growth rate is calculated for four different shells, each of
which has the same equivalent time constanttw . The first
shell is uniform~i.e., f 51!. The remainder are partial shells
containingnine evenly spaced helical gaps whose total an-
gular extent~in z! is 180° ~i.e., f 50.5!. In other words, the

partial shells possess 9,N symmetry. Also shown is the
growth rate predicted by the analytic formula~27! for f
50.5.

For the case of the two nonresonant shells~i.e., the 9,2
and 9,4 shells! the growth rate of the resistive shell mode
again agrees with that described in Sec. III F 2. That is, since
the poloidal lengths of the metal and gap sections of both
shells are much less than the poloidal half-wavelength of the
central harmonic, the growth rate is very much greater than
that predicted by the analytic approximation~27!. For the
case of the resonant partial shell~i.e., the 9,3 shell!, the
growth rate of the resistive shell mode is slightly larger than
that obtained for a uniform shell. Thus, it is clear that am
53 resonant shell isfar more effectiveat moderating the
growth of an external kink mode than a similar nonresonant
shell possessing the same area fraction of gaps. Note that a
nonzero toroidal current flows in each helical segment for the
case of am53 resonant shell, whereas zero net current flows
in each segment for the case of a nonresonant shell.

For m.3, the growth rate of the resistive shell mode
behaves in an analogous manner to that shown in Fig. 9. As
m increases, the growth rate asymptotes to that of a uniform
shell possessing the same equivalent time constant,tw : the
growth rate for a similar nonresonant shell asymptotes to
infinity.

The above results were obtained by considering a par-
ticular plasma equilibrium whose central harmonic ism0

53, n051. These results are, nevertheless, quite general, as
can easily be verified by considering other plasma equilibria
with different central harmonics.

Consider the limitf→1, in which the angular extents of
the helical shell segments tend to zero. In this limit, the
growth rate of the resistive shell mode tends to infinity for all
nonresonant shells. The situation is somewhat more compli-
cated for resonant shells. Form51, the growth rate of both

FIG. 8. The growth rateg of the resistive shell mode plotted as a function of
the shell radiusr w for a plasma equilibrium characterized byq051.3 and
qa52.9. Data are shown for four shells with the same equivalent time con-
stanttw . The solid curve shows the growth rate for a uniform shell. The
other curves show the growth rate for partial shells containing six equally
spaced helical gaps whose total angular extent~in z! is 180°. The various
curves correspond to a 6,1 shell~dotted curve!, a 6,3 shell~short-dashed
curve!, and a 6,2 shell. For the latter shell, there are two independent modes;
the even mode~long-dashed curve! and the odd mode~dot short-dashed
curve!. The open circles show the growth rate predicted by the analytic
formula ~27! for f 50.5.

FIG. 9. The growth rateg of the resistive shell mode plotted as a function of
the shell radiusr w for a plasma equilibrium characterized byq051.3 and
qa52.9. Data are shown for four shells with the same equivalent time con-
stanttw . The solid curve shows the growth rate for a uniform shell. The
other curves show the growth rate for partial shells containing nine equally
spaced helical gaps whose total angular extent~in z! is 180°. The various
curves correspond to a 9,2 shell~dotted curve!, a 9,3 shell~long-dashed
curve!, and a 9,4 shell~short-dashed curve!. The open circles show the
growth-rate predicted by the analytic formula~27! for f 50.5.
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the even and odd modes tend to infinity. Form52, the
growth rate of the odd mode tends to infinity, whereas the
growth rate of the even mode asymptotes to that obtained for
a complete shell with the same equivalent time constant. Fi-
nally, for m.2 the growth rate of the resistive shell mode
asymptotes to that obtained for a complete shell with the
same equivalent time constant. Thus, in the limitf→1 there
is a very marked difference in the ability of a nonresonant
and a m.2 resonant shell to moderate the growth of an
external kink mode. In the former case, the shell is quite
incapable of moderating the growth of the mode, whereas in
the latter case the shell performs almost as well as a com-
plete ~i.e., f 51! shell possessing the same equivalent time-
constant.

G. Summary

In parametrizing the ability of a partial shell made up of
M ,N helical conducting segments to moderate the growth of
an m0 ,n0 external kink mode, it is necessary to make a dis-
tinction betweenresonantand nonresonantshells. In the
former case it is possible form0 ,n0 eddy currents to flow in
unidirectional continuous loops around each helical segment
of the shell, whereas in the latter case this is impossible
because the helicity of the segments does not match that of
the kink mode. Thus, in the former case a nonzero toroidal
current can, in principle, flow in each helical segment of the
shell, whereas in the latter case zero net toroidal current
flows in each segment. Of course, in both cases zero net
toroidal current flows in the shell, as a whole, at any given
toroidal location.

For the case of a nonresonant shell the analytic model
presented in Sec. II E very successfully accounts for both the
growth rate and the structure of the resistive shell mode,
provided that the poloidal extents of all metal and gap sec-
tions of the shell exceed the poloidal half-wavelength of the
mode,pr w /um0u. In Ref. 40 it is demonstrated that the ana-
lytic model also works for shells containing toroidal gaps,
provided that the toroidal extents of all metal and gap sec-
tions of the shell exceed the poloidal half-wavelength of the
mode. Thus, it is reasonable to assume that the model de-
scribed in Sec. II E also holds for shells containing gaps of
arbitrary shape~see Ref. 42!, provided that the dimensions of
all metal and gap sections exceed the poloidal half-
wavelength of the central harmonic, and also that the gaps
are such as to preventm0 , n0 eddy currents from flowing in
unidirectional continuous loops around the shell.

Resonant shells satisfym0 ,n05m(M ,N), where m
51,2,3,... forn051 modes~which are, typically, the most
unstable modes in tokamaks!. For m51, the eddy currents
excited in the shell couple the2m0 ,2n0 , andm0 ,n0 har-
monics. Consequently, the growth rate of the resistive shell
mode depends on the phase of the mode with respect to the
shell. The most unstable mode, the so-called even mode, is
such that the perturbed radial magnetic field peaks at the
center of the gaps at all toroidal angles. The growth rate of
this mode is far larger than that obtained for a similar non-
resonant shell containing the same area fraction of gaps.
Thus, m51 resonant shells are less able to moderate the
growth of an external kink mode than similar nonresonant

shells. Form52, the shell again couples the2m0 ,2n0 , and
m0 ,n0 harmonics. The most unstable resistive shell mode,
the so-called odd mode, is again such that the perturbed ra-
dial magnetic field peaks at the center of the gaps at all
toroidal angles. The growth rate of this mode is somewhat
less than that obtained for a similar nonresonant shell con-
taining the same area fraction of gaps. Thus,m52 resonant
shells are better able to moderate the growth of an external
kink mode than similar nonresonant shells. Form.2 reso-
nant shells, the growth rate of the resistive shell mode is
independent of the phase of the mode with respect to the
shell. In fact, the growth rate is almost identical to that ob-
tained for a complete shell possessing the same equivalent
time constant. On the other hand, for similar nonresonant
shells the growth rate of the mode greatly exceeds that ob-
tained for an equivalent complete shell. Thus,m.2 resonant
shells are far better able to moderate the growth of an exter-
nal kink mode than similar nonresonant shells.

IV. SKELETAL SHELLS

A. Introduction

The most striking conclusion of the previous section is
that which pertains to skeletal~i.e., f→1! shells. It is found
that nonresonant skeletal shells are virtually incapable of
moderating the growth of the ideal external kink mode,
whereas (m.2) resonant skeletal shells perform almost as
well as complete shells possessing the same equivalent time
constant. In order to more clearly understand this rather sur-
prising phenomenon, this section is devoted to an investiga-
tion of the ability of skeletal shells constructed from thin
helical wires ~whose mutual spacing is much greater than
their diameter! to moderate the growth of the ideal external
kink mode.

B. Preliminary analysis

Consider a set ofM uniform z-directed wires of diam-
eterd. Suppose that thekth wire carries a currentI k and is
located at position vectorr k in (x,y) space. It is assumed that
the typical spacing between the wires,b, is much greater
thand. The magnetic field generated by the currents flowing
in the wires is given byBwires5“cwires∧ ẑ, where

cwires~r !52
m0

2p (
k51,M

I k lnur2r ku. ~74!

The energy per unit length contained in the magnetic field
distribution is

W5
1

2 (
k51,M

LkI k
21

1

2 (
k,l 51,M

kÞ l

Mkl I kI l , ~75!

where Lk is the self-inductance per unit length of thekth
wire, andMkl is the mutual inductance per unit length be-
tween thekth and l th wires. Assuming that the wires carry
zero net current, i.e.,

(
k51,M

I k50, ~76!
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the self- and mutual inductances can be easily shown to take
the form

Lk5
m0

2p Fg2 ln
d

2
1OS d

bD G , ~77a!

Mkl5
m0

2p F2 lnur k2r l uOS d

bD G , ~77b!

where

g~j!5E
0

1UI 1~jy!

I 1~j!
U2

ydy. ~78!

Here,I 1 is a standard Bessel function,j5Agm0 /pR, andR
is the resistance per unit length of the wires. It is assumed
that all fields and currents vary in time like exp(gt). Note that

g~j!→ H1/4 as j→0
1/~2uju! as j→`. ~79!

The circuit equation for thekth wire is

2gcext~r k!2gLkI k2g (
l 51,M

lÞk

MklI l5RIk , ~80!

whereBext5“cext∧ ẑ is the magnetic field generated by cur-
rents external to the region containing the wires. The exter-
nal field is also assumed to vary in time like ext(gt). The
total magnetic field is given byB5“c∧ ẑ, where

c~r !5cext~r !2
m0

2p (
k51,M

I k lnur2r ku. ~81!

C. Resonant skeletal shells

1. Analysis

Consider the kink stability of a tokamak plasma sur-
rounded by a skeletal shell of minor radiusr w which is con-
structed out of helical wires. Suppose that at any given tor-
oidal anglef there areM wires located at poloidal angles

uk5
2p~k21!

M
1

N

M
f, ~82!

for k51 to M . Clearly, the shell possessesM ,N helical sym-
metry. It is convenient to adopt the single harmonic approxi-
mation,

Dw
m/n522umu ~83!

for m, nÞm0 , n0 , with Dw
m0 ,n0.0. Thus, the shell stability

indices for all harmonics, apart from the intrinsically un-
stable central harmonic, take their vacuum values~i.e., the
values obtained in the absence of the plasma!. It is assumed
that the shell is resonant, so thatM ,N5m(m0 ,n0). It fol-
lows that, in principle, a nonzero currentI k is able to flow in
the kth wire. Recall, from Sec. III, that if the shell is non-
resonant then zero net current must flow in each wire. In the
large aspect-ratio limit, the wires at any given toroidal loca-
tion are directed essentially in thef ~or z! direction. Thus,
the results of Sec. IV B can be applied to this problem.

The external perturbed poloidal magnetic flux~i.e., the
flux generated by perturbed currents flowing in the plasma!
at the shell is given by

cext~r w ,u,f!5 (
m,n

mÞ0 S 11
Dw

m/n

2umu DCw
m/n

3exp@ i ~mu2nf!#. ~84!

Moreover, application of Ampe`re’s law yields

DCw
m0 ,n05Dw

m0 ,n0Cw
m0 ,n052

m0

2p (
k51,M

I ke
2 im0zk, ~85!

wherezk52p(k21)/M .
Suppose that

I k5 Î eim0zk ~86!

for k51 to M , whereÎ is a constant. According to Eq.~76!,
the total current carried by the wires at any given toroidal
angle must be zero. This is the case provided that
m0Þ jM , where j is an integer. It follows from Eqs.~82! to
~86! that

cext~r k!52
m0

2p
S 11

Dw
m0 ,n0

2um0u D MÎeim0zk

Dw
m0 ,n0

~87!

for k51 to M . Thus, the circuit equation for thekth wire
reduces to

gS 11
Dw

m0 ,n0

2um0u D M

Dw
m0 ,n0

2gL̂k2g (
l 51,M

lÞk

M̂ kle
im0~z l2zk!

5
2pR

m0
, ~88!

where Lk5(m0/2p)L̂k and Mkl5(m0/2p)M̂ kl . The above
equation can be rearranged to give

gtw5
Dw

m0 ,n0

12Dw
m0 ,n0/Dc

m0 ,n0
, ~89!

where

tw5
m0M

2pR
~90!

is the equivalent time constant, i.e., the time constant of a
uniform shell of minor radiusr w which contains the same
amount of metal as the skeletal shell. The quantityDc

m0 ,n0 is
given by

Dc
m0 ,n05

M

L̂k1( l 51,M
lÞk M̂ kle

im0~z l2zk!2M /~2um0u!
. ~91!

It follows from Eqs.~76! and ~77! that

M

Dc
m0 ,n0

5g~A2gtw /M !1 ln~4r w /d!

2 (
l 51,M

lÞk

ln@sin~pu l 2ku/M !#ei2p~ l 2k!m0 /M

2M /~2um0u!, ~92!

sinceur k2r l u52r w sin(uzk2zlu/2), which yields

Dc
m0 ,n05

M

g~A2gtw /M !1 ln~2r w /Md!1K~M ,um0u!
~93!
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for all values ofk, where

K~M ,um0u!5 ln~2M !2
M

2um0u

2 (
j 51,M21

ln@sin~p j /M !#cos~2p j /um0u/M !.

~94!

The fact that the value ofDc
m0 ,n0 given by Eq.~91! is inde-

pendent of the value ofk suggests that the initial guess~86!
for the distribution of currents flowing in the wires is correct.
In the limit thatM→` the functionK(M ,um0u) reduces to

K0~a!5 ln~2p!2
1

2a
1(

j 51

`
sin@p~2 j 11!a#

sin~pa!

3 lnS 11
1

j D , ~95!

wherea5um0u/M .
Figure 10 showsK(M ,um0u) andK0(um0u/M ) plotted as

functions of um0u/M . It can be seen thatK(M ,um0u)
5K0(um0u/M ). In other words, the two functions are iden-

tical. This only ceases to be the case whenm05 jM , wherej
is an integer. However, in this situation the expression~93! is
invalid. It follows that Eq.~93! can be written in the simpli-
fied form

Dc
m0 ,n05

M

g~A2gtw /M !1 ln~2r w /Md!1K0~ um0u/M !
.

~96!

Equations~76!, ~81!, ~83!, ~84!, ~85!, and~86! give

Cw~z!5S 11
Dw

m0 ,n0

2um0u DCw
m0 ,n0eim0z1

Dw
m0 ,n0Cw

m0 ,n0

M

3 (
k51,M

ln@sin~ uzk2zu/2!#eim0zk, ~97!

wherez5u2(N/M )f. Let

f ~z!5
Cw~z!

Cw
m0 ,n0eim0z

. ~98!

It is clear that the functionf (z) is periodic; i.e.,

f ~z12p j /M !5 f ~z!, ~99!

where j is an integer. Let

z5
2ps

M
, ~100!

for 0<s<1. It is easily demonstrated that

f ~s!512
Dw

m0 ,n0

Dc`
m0 ,n0

h~s!, ~101!

where

Dc`
m0 ,n05 lim

g→`

Dc
m0 ,n05

M

ln~2r w /Md!1K0~ um0u/M !
,

~102!

and

h~s!5
( j 50,M21 ln@sin~pu j 2su/M !#ei2p~ j 2s!um0u/M1M /~2um0u!

ln~psw /M !1( j 51,M21 ln@sin~p j /M !#cos~2p j um0u/M !1M /~2um0u!
. ~103!

Here,

sw5
Md

4pr w
!1 ~104!

is the normalized helical coordinate of the edge of a wire, as
is 12sw . Equation~101! is only valid in the vacuum region
sw<s<12sw . Note that Re@h(12s)#5Re@h(s)#, whereas
Im@h(12s)#52Im@h(s)#. It can be seen thath(sw)5h(1
2sw).1. It follows from Eqs.~98! and ~101! that

UCw wires

Cw
m0 ,n0 U512

Dw
m0 ,n0

Dc`
m0 ,n0

, ~105!

whereCw wires is the perturbed poloidal flux at the edges of
the wires. Note that Re@h(s)#;Im@h(s)# whenM;O(1), but
that Im@h(s)#/Re@h(s)#→0 asM→`.

Figure 11 shows the normalized amplitude of the shell
flux f plotted as a function of the normalized helical angles
for a case wheresw50.01. It can be seen that when the shell
stability index for the central harmonicDw

m0 ,n0 is much less

than the critical valueDc`
m0 ,n0, f (s) is uniform. However, as

the ratioDw
m0 ,n0/Dc`

m0 ,n0 increases, magnetic flux is gradually
expelled from the wires, in accordance with Eq.~105!, and
accumulates in the vacuum gaps between the wires. Eventu-
ally, whenDw

m0 ,n05Dc`
m0 ,n0, there is no magnetic flux left in

FIG. 10. The functionK(M ,um0u) plotted againsta5um0u/M . Data are not
shown for the cases wherea is an integer, since the expression~93! is not
valid in this situation. The triangular, square, and circular points correspond
to M53, 5, and 7, respectively. The dotted curve shows the functionK0(a).
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the wires. At this point, the growth rate of the resistive shell
mode becomes infinite@see Eq.~89!#.

2. Discussion

The growth rate of the resistive shell mode for the case
of a resonant skeletal shell constructed from helical wires is
determined by Eq.~89!. Note that this expression is similar
to the dispersion relation~27! obtained in Sec. II E, except
that the form of the parameterDc

m0 ,n0 is different. As was
demonstrated in Sec. III, the simple analytic model outlined
in Sec. II E successfully accounts for the properties of the
resistive shell mode for nonresonant shells, provided that the
dimensions of all metal and gap sections exceed the poloidal
half-wavelength of the central harmonic. It can now be seen
that the analytic model of Sec. II E can also be applied to
resonant skeletal shells@where, by definition, the length of
the metal sections of the shell~i.e., the wires! in one direc-
tion is much less than the poloidal half-wavelength of the
central harmonic#, provided that the critical shell stability
index Dc

m0 ,n0 is determined by Eq.~96!, instead of Eq.~29!.

Note thatDc
m0 ,n0 is a weak function of the growth rateg via

the functiong(g), which determines the amount of magnetic
flux penetrating into the interior of the wires. When the
growth rate is relatively large~i.e., gtw@M ! Dc

m0 ,n0(g) as-

ymptotes to the constant valueDc`
m0 ,n0 @see Eq.~102!#. The

dispersion relation~89! can be interpreted in exactly the
same manner as the earlier dispersion relation~27!. When the
shell stability index for the central harmonicDw

m0 ,n0 is much

less than its critical valueDc`
m0 ,n0, the amplitude of the mag-

netic flux in the wires is equal to that in the vacuum gaps,
and the growth rate of the resistive shell mode is the same as
that obtained for a uniform shell containing the same amount
of metal as the wires. However, asDw

m0 ,n0 approaches

Dc`
m0 ,n0, magnetic flux is gradually expelled from the wires

@see Eq.~105! and Fig. 11#, and the growth rate of the resis-
tive shell mode accelerates. Finally, when the shell stability
index reaches the critical valueDc`

m0 ,n0 @defined by Eq.~102!#
there is no flux remaining in the wires, and the growth rate of
the resistive shell mode becomes infinite: this corresponds to
the marginal stability point for them0 ,n0 ideal external kink
mode. ForDw

m0 ,n0.Dc`
m0 ,n0 the mode explodes between the

wires with an ideal growth-rate.
According to Eq.~102! and Fig. 10, the critical shell

stability indexDc`
m0 ,n0 is zero wheneverum0u5 jM , where j

is a nonzero integer. In other words, anM ,N resonant skel-
etal shell is quite incapable of moderating the growth of the
m0 ,n0 external kink mode ifum0u is a nonzero integer mul-
tiple of M . This is not a surprising result. Equation~86!
implies thatI k5 Î for all k ~i.e., the same current flows in
each wire at any given toroidal angle! wheneverum0u5 jM .
This immediately yieldsÎ 50 ~i.e., zero current flows in each
wire! since, by symmetry, a helical mode cannot induce a net
toroidal current in a passive conducting shell. Thus, the
m0 ,n0 mode excites no eddy currents in the shell ifum0u is a
nonzero integer multiple ofM , which implies that the shell
is unable to affect the growth rate of the mode.

At first sight, Eq.~102! and Fig. 10 seem to suggest that
the critical shell stability indexDc`

m0 ,n0 takes a particularly
large value wheneverum0u5( j 11/2)M , where j is an inte-
ger. However, this is not necessarily the case. Equation~86!
yields I k5u Î u(21)k21 whenÎ is purely real, andI k50 when
Î is purely imaginary~since the physical current flowing in
thekth wire is obtained by taking the real part ofI k!. Figure
10 determines the critical shell stability index of the former
mode, but not the latter. In fact, the critical shell stability
index of the latter mode is zero, since the mode excites no
eddy currents in the shell. In other words, whenum0u5( j
11/2)M the growth rate of the resistive shell mode depends
on its phase. It is possible to find a particular phase for which
no eddy currents are excited in the shell, and the shell is,
therefore, unable to affect the growth rate of the mode. There
is a second, linearly independent, phase for which eddy cur-
rents of alternating direction are excited in the wires making
up the shell: the shell is clearly capable of moderating the
growth rate of the mode in this case~in fact, the critical
stability index is that determined by Fig. 10!.

When um0uÞ jM and um0uÞ( j 11/2)M , where j is an
integer, the nonzero critical shell stability indexDc`

m0 ,n0 for
them0 ,n0 mode is determined by Eq.~102! and Fig. 10, with
no qualifications. In this case, the growth rate of the resistive
shell mode is independent of its phase.

It now remains to make a connection between the results
of this section and those of Sec. III F 3. The caseum0u
5 jM , where j is an integer, corresponds to the casem51
investigated in Sec. III F 3. Recall, from Sec. III F 3, that in
the skeletal limit,f→1, the growth rate of the resistive shell
mode tends to infinity for am51 resonant shell. Further-
more, zero net toroidal current is excited in each helical seg-
ment of the shell. These results are in complete accordance
with the results of this section, where it is found that when
um0u5 jM no currents are excited in the helical wires making

FIG. 11. The normalized amplitude of the shell fluxf plotted as a function
of the normalized helical angles for three different values of
Dw

m0 ,n0/Dc`
m0 ,n0. Two of the wires which make up the shell are shown~at s

50 ands51!. The angular diameter of the wires is 0.02 normalized units.
The function f (s) is plotted in the region between the two wires forM
512 and m053. The solid curve corresponds toDw

m0 ,n0/Dc`
m0 ,n050, the

dotted curve corresponds toDw
m0 ,n0/Dc`

m0 ,n050.5, and the dashed curve cor-
responds toDw

m0 ,n0/Dc`
m0 ,n051.
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up the shell, and the growth rate of the resistive shell mode
becomes infinite. The caseum0u5( j 11/2)M , where j is an
integer, corresponds to the casem52 investigated in Sec.
III F 3. Recall, from Sec. III F 3, that in the skeletal limit,
f→1, the growth rate of the resistive shell mode for am
52 resonant shell tends to infinity for one particular phase of
the mode, and tends to a finite value in the other linearly
independent phase. In the former case, zero net toroidal cur-
rent is excited in each helical segment of the shell, whereas
in the latter case nonzero currents of alternating direction are
excited in the segments. These results are, again, in complete
accordance with the results of this section, where it is found
that whenum0u5( j 11/2)M there are two linearly indepen-
dent resistive shell modes. The first mode excites no eddy
currents in the helical wires making up the shell and, there-
fore, has a growth rate which tends to infinity. The second
mode excites eddy currents of alternating direction in the
wires and possesses a finite growth rate. Finally, the case
um0uÞ jM and um0uÞ( j 11/2)M , wherej is an integer, cor-
responds to the casem.2 investigated in Sec. III F 3. Re-
call, from Sec. III F 3, that in the skeletal limit,f→1, the
growth rate of the resistive shell mode remains finite for a
m.2 resonant shell. This accords well with the results of
this section, where the growth rate of the resistive shell mode
is finite wheneverum0uÞ jM and um0uÞ( j 11/2)M . Note,
from Eq. ~102!, that as the number of helical wiresM in-
creases, but the area fraction of metal~proportional toMd!
remains constant, the critical shell stability indexDc`

m0 ,n0

tends to infinity. Thus, in this limit, the skeletal shell acts
like a complete shell with the same equivalent time constant.
Recall, from Sec. III F 3, that in the analogous limitm→`
the shell also acts like a complete shell with the same equiva-
lent time constant.

D. Nonresonant skeletal shells

1. Analysis

A nonresonant partial shell built up from helical con-
ducting segments is subject to the constraint that zero net
toroidal current must flow in each segment~see Sec. III!.
Thus, it is not possible to construct an effective nonresonant
shell from independent helical wires, since zero current must
flow in each wire, and the shell is, therefore, incapable of
moderating the growth of the ideal external kink mode. Con-
sider, instead, a shell of minor radiusr w constructed fromM
identical wire loops, each consisting of two interconnected
helical wires. Thekth loop is such that the~approximately
toroidal! currentI k(f) flows atu5uk1Du/2 and the return
current2I k(f) flows atu5uk2Du/2, whereuk is given by
Eq. ~82!, for k51 to M . It is assumed that the two wires
which make up thekth loop ~located at poloidal anglesuk

6Du/2! are connected together at a sufficiently large num-
ber of toroidal locations thatI k(f) is able to vary freely with
toroidal angle. In practice, this means that the toroidal spac-
ing of the connections must be less that the toroidal half-
wavelength,pR0 /n0 , of the central harmonic.

By analogy with the analysis of Secs. IV B and IV C, the
circuit equation for thekth loop is given by

Vk2gLkI k2g (
l 51,M

lÞk

MklI l52RIk , ~106!

for k51 to M . Here, Vk is the voltage~per unit length!
around thekth loop, atf50 ~say!, due to induction by cur-
rents flowing external to the shell. Likewise,I k is the current
circulating in thekth loop at f50. Furthermore,R is the
resistance per unit length of the wires making up the loops,
Lk is the self-inductance per unit length of thekth loop, and
Mkl is the mutual inductance per unit length between thekth
and l th loops. Adopting the single harmonic approximation
exemplified by Eq.~83!, it is easily demonstrated that

Vk52gS 11
Dw

m0 ,n0

2um0u DCw
m0 ,n0eim0uk~2i !sin~m0Du/2!.

~107!

Application of Ampères’s law atf50 yields

DCw
m0 ,n05Dw

m0 ,n0Cw
m0 ,n0

52
m0

2p (
k51,M

I ke
2 im0uk~22i !sin~m0Du/2!.

~108!

Finally, the self- and mutual inductances of the loops are

Lk5
m0

2p S 2g12 lnF4r w sin~Du/2!

d G D , ~109!

and

Mkl5
m0

2p
lnF12

sin2~Du/2!

sin2~@uk2u l #/2!G , ~110!

respectively, whereg(j) is given by Eq. ~78!, and j
5A2gm0 /pR.

Suppose that atf50

I k5 Î eim0uk, ~111!

for k51 to M , whereÎ is a constant. Note that the currents,
I k(f), circulating in the loops, and the voltages~per unit
length!, Vk(f), generated by external induction, vary with
toroidal angle likeei (m0N/M2n0)f. Equations ~106!–~108!
yield the dispersion relation

gtw5
Dw

m0 /n0

12Dw
m0 ,n0/Dc

m0 ,n0
, ~112!

where

tw5sin2~m0Du/2!t̄w , ~113!

and
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Dc
m0 ,n05

4 sin2~m0Du/2! M

L̂k1( l 51,M
lÞk M̂ kle

i2p~ l 2k!m0 /M24 sin2~m0Du/2! M /~2um0u!
. ~114!

Here,

t̄w5
m0M

pR
. ~115!

is the equivalent time constant of the shell~i.e., the time
constant of a uniform shell of radiusr w containing the same
amount of metal as the loops!, Lk5(m0/2p)L̂k , and Mkl

5(m0/2p)M̂ kl .
Let a5um0u/M , k5MDu/2p, ande5Md/2pr w . The

parameterk measures the fractional area coverage of the
loops, whereas the parametere measures the fractional area
coverage of the wires making up the loops. Geometric argu-
ments easily yield the constrainte,k,12e. Equation
~114! reduces to

Dc
m0 ,n05MF~g,M ,e,k,a!, ~116!

where

F5
2 sin2~pka!

g~A2gt̄w /M !1 ln@2M sin~pk/M !/pe#1J~M ,k,a!2sin2~pka!/a
, ~117!

and

J~M ,k,a!5
1

2 (
j 51,M21

lnF12
sin2~pk/M !

sin2~p j /M ! G
3cos~2p j a!. ~118!

The fact that the value ofDc
m0 ,n0 given by Eq.~114! is inde-

pendent of the value ofk suggests that the initial guess~111!
for the distribution of currents circulating in the loops atf
50 is correct. According to the dispersion relation~112!, the
growth rate of the resistive shell mode tends to infinity as
Dw

m0 ,n0→Dc`
m0 ,n0, where

Dc`
m0 ,n05 lim

g→`

Dc
m0 ,n0. ~119!

It follows from Eqs.~79! and ~116! that

Dc`
m0 ,n05MF`~M ,e,k,a!, ~120!

where

F`5
2 sin2~pka!

ln@2M sin~pk/M !/pe#1J~M ,k,a!2sin2~pka!/a
.

~121!

In the limit M→`,

F`→G`~e,k,a!

5
2 sin2~pka!

ln~2k/e!1J0~k,a!2sin2~pka!/a
, ~122!

where

J0~k,a!5 (
j 51,̀

lnF12
k2

j 2 Gcos~2p j a!. ~123!

Figures 12, 13, and 14 showF` andG` plotted as func-
tions of a for e50.01,k50.02, 0.5, and 0.98, respectively,
and various values ofM . In all cases, it can be seen that

F`~M ,e,k,a!5G`~e,k,a!. ~124!

This strongly suggests that, in general,

FIG. 12. The functionF`(M ,e,k,a) plotted againsta5um0u/M for e
50.01,k50.02, and various integer values ofm0 . The triangular, square,
and circular points correspond toM53, 5, and 7, respectively. The dotted
curve shows the functionG`(e,k,a).

FIG. 13. The functionF`(M ,e,k,a) plotted againsta5um0u/M for e
50.01, k50.5, and various integer values ofm0 . The triangular, square,
and circular points correspond toM53, 5, and 7, respectively. The dotted
curve shows the functionG`(e,k,a).
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Dc
m0 ,n0

5
2M sin2~pka!

g~A2gt̄w /M !1 ln~2k/e!1J0~k,a!2sin2~pka!/a
,

~125a!

Dc`
m0 ,n05

2M sin2~pka!

ln~2k/e!1J0~k,a!2sin2~pka!/a
. ~125b!

It is clear from Figs. 12–14 that the critical shell stability
index Dc`

m0 ,n0 achieves its maximum value whenka5 j
11/2, wherej is an integer. This corresponds toum0uDu/2
5( j 11/2)p. In other words, a nonresonant skeletal shell is
best able to moderate the growth of the ideal external kink
mode when the poloidal extents of the loops which make up
the shell are odd-integer multiples of the poloidal half-
wavelength of the central harmonic. In this situation, the
time constant of the shell isequal to the equivalent time
constant, according to Eq.~113!. It is also clear from Figs.
12–14 that the critical shell stability index tends to zero
when ka5 j , where j is an integer. This corresponds to
um0uDu/25 j p. In other words, a nonresonant skeletal shell
is incapable of moderating the growth of the ideal external
kink mode when the poloidal extents of the loops which
make up the shell are integer multiples of the poloidal wave-
length of the central harmonic. In this situation, the time
constant of the shell also tends to zero, according to Eq.
~113!. If um0uDu/2 is neither a half-integer nor an integer
multiple of p then the properties of the shell lie somewhere
between the two extremes described above. Finally, in the
limit in which the poloidal extents of the loops making up
the shell are much less than the poloidal half-wavelength of
the central harmonic~i.e., um0uDu/2!1!, Eq. ~125b! reduces
to

Dc`
m0 ,n0.

M ~ um0uDu!2

2 ln~2r wDu/d!
, ~126!

and Eq.~113! yields

tw>
~ um0uDu!2

4
t̄w . ~127!

Thus, in the limit of narrow loops the critical shell stability
index becomes relatively small, and the time constant of the
shell becomes much less than the equivalent time constant.
Clearly, in this limit the shell is fairly ineffective at moder-
ating the growth of the ideal external kink mode.

2. Discussion

The growth rate of the resistive shell mode for the case
of a nonresonant skeletal shell constructed from helical wire
loops is determined by Eq.~112!. Note that this expression is
similar to the dispersion relation~27! obtained in Sec. II E,
except that the forms of the parameterstw and Dc

m0 ,n0 are
different. Judging from the results of Secs. III and IV, it
appears highly likely that the dispersion relation for the re-
sistive shell mode always takes the form~27! in situations
where the single harmonic approximation is valid. However,
the expressions for the time constanttw and critical stability

indexDc
m0 ,n0 clearly depend on the type of shell in question.

For the case of a nonresonant shell constructed from helical
wire loops the two parameters are determined by Eqs.~113!
and ~125a!, respectively. The critical shell stability index

Dc
m0 ,n0 is again a weak function of the growth rateg, but

asymptotes to the constant valueDc`
m0 ,n0 @see Eq.~125b!# as

g→`. The dispersion relation~112! can be interpreted in the
standard manner. When the shell stability index for the cen-

tral harmonicDw
m0 ,n0 is much less than its critical value

Dc`
m0 ,n0, the mode grows on the time scaletw , which, in this

case, is less than or equal to the equivalent time constant
~i.e., the time constant of a uniform shell of radiusr w con-
taining the same amount of metal as the loops!. However, as

Dw
m0 ,n0 approachesDc`

m0 ,n0 the time scale on which the mode
grows gradually shortens. Eventually, when the shell stabil-

ity index reaches the critical valueDc`
m0 ,n0 the time scale

becomes zero: this corresponds to the marginal stability

point for them0 , n0 ideal external kink mode. ForDw
m0 ,n0

.Dc`
m0 ,n0 the mode explodes through the loops with an ideal

growth-rate.
It now remains to make a connection between the results

of this section and those of Secs. III F 2 and III F 3. In Sec.
IV C it was found that the behavior of aresonantshell built
up from narrow ~i.e., such that the poloidal extents of the
strips aremuch smallerthan the poloidal half-wavelength of
the central harmonic! helical conducting strips can be ac-
counted for, at a qualitative level, by modeling each strip as
a helical wire possessing the same helicity and the same
resistance per unit length. This model cannot be applied to a
similar nonresonantshell because of the constraint, which
applies to all nonresonant shells, that zero net toroidal cur-
rent must flow in each strip: this constraint implies that each
wire carries zero current, so the model shell has no effect on
the growth rate of the ideal resistive shell mode. A more
sensible approach is to model each strip as a helical wire
loop possessing the same helicity and resistance per unit

FIG. 14. The functionF`(M ,e,k,a) plotted againsta5um0u/M for e
50.01,k50.98, and various integer values ofm0 . The triangular, square,
and circular points correspond toM53, 5, and 7, respectively. The dotted
curve shows the functionG`(e,k,a).
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length. By definition, zero net toroidal current flows in a
helical loop, so the above-mentioned constraint does not pre-
clude a nonzero current from circulating in each loop. The
dimensions of the loops are determined as follows: the an-
gular widthDu of the loops is the same as the angular width
of the strips, and the diameters of the helical wires making
up the loops are the same as the radial thickness of the strips.
According to Eqs.~127!, the model predicts that the time
constant of the shell is (um0uDu)2/4 times the equivalent
time constant. In other words, the time constant is much less
than the equivalent time constant~by a factor which is of
order the ratio of the poloidal width of the helical strips to
the poloidal half-wavelength of the central harmonic,
squared!. According to Eq.~126!, the model predicts that the
critical shell stability index is relatively small~the index is
proportional to the ratio of the poloidal width of the helical
strips to the poloidal half-wavelength of the central har-
monic, squared!. Clearly, the model suggests that a nonreso-
nant shell built up fromnarrow helical strips is very ineffec-
tive at moderating the growth of the ideal external kink
mode. This conclusion is entirely consistent with the results
of Secs. III F 2 and III F 3.

E. Summary and discussion

The main results of this section are the resistive shell
mode dispersion relation~89! for a resonantskeletal shell
made up of helical wires, and the resistive shell mode dis-
persion relation~112! for a nonresonantskeletal shell made
up of helical wire loops. In fact, both these dispersion rela-
tions have exactly the same form as the resistive shell mode
dispersion relation~27! derived in Sec. II E. Note that all
three dispersion relations depend on the single harmonic ap-
proximation. The latter dispersion relation is valid for any
nonresonant shell for which the dimensions of all metal and
gap sections exceed the poloidal half-wavelength of the cen-
tral harmonic~see Sec. III G!. This criterion clearly excludes
skeletal shells. The fact that the same dispersion relation is
also obtained for both resonant and nonresonant skeletal
shells strongly suggests that Eq.~27!,

gtw5
Dw

m0 ,n0

12Dw
m0 ,n0/Dc

m0 ,n0
, ~128!

represents auniversalform for the resistive shell mode dis-
persion relation~provided that the single harmonic approxi-
mation is valid!. In the above dispersion relation,tw is the
time constant of the shell, whereasDc

m0 ,n0 is the ‘‘critical
shell stability index.’’ The shell is capable of stabilizing the
ideal external kink mode provided thatDw

m0 ,n0,Dc
m0 ,n0. The

resistive shell mode is unstable, and grows on the typical
time scaletw , whenever 0,Dw

m0 ,n0<Dc
m0 ,n0. As Dw

m0 ,n0 ap-

proachesDc
m0 ,n0, the growth rate of the resistive shell mode

rises precipitously until it attains that characteristic of the
ideal external kink mode. The expressions for the parameters
tw andDc

m0 ,n0 depend on the nature of the shell. For the case
of a nonresonant shell for which the dimensions of all metal
and gap sections are larger than the poloidal half-wavelength
of the central harmonic,tw and Dc

m0 ,n0 are given by Eqs.

~28! and ~29!, respectively. For the case of a resonant skel-
etal shell constructed from helical wires,tw andDc

m0 ,n0 are
given by Eqs.~90! and ~96!, respectively. Finally, for the
case of a nonresonant skeletal shell constructed from helical
wire loops, tw and Dc

m0 ,n0 are given by Eqs.~113! and
~125a!, respectively.

The analysis ofskeletal shells is worthwhile for two
main reasons. First, it permits a qualitative understanding of
the results of Secs. III F 2 and III F 3, which pertain to shells
constructed fromnarrow helical conducting strips. It is clear
that the marked difference in the ability of (m.2) resonant
and nonresonant shells to moderate the growth of the ideal
external kink mode comes about because in the former case a
net toroidal current is able flow in each strip, whereas in the
latter case zero net current must flow in each strip~see Sec.
III !. Thus, resonant shells are similar to skeletal shells con-
structed from helical wires: the eddy currents excited in the
shell flow through the strips inunidirectional continuous
loops, so the strips act rather like wires. On the other hand,
nonresonant shells are similar to skeletal shells constructed
from narrow helical wire loops: the eddy currents excited in
the shell are forced tocirculate in the strips, which are nar-
row, so the strips act rather like narrow wire loops. Accord-
ing to the analysis presented in this section, both the time
constant,tw , and the critical shell stability index,Dc

m0 ,n0,
are much lower for a nonresonant skeletal shell constructed
from narrow helical wire loops than for a (m.2) resonant
skeletal shell constructed from helical wires. This conclusion
is is good agreement with the results of Secs. III F 2 and
III F 3. The second main reason for analyzing shells con-
structed from helical wires and helical wire loops is that such
analysis is a necessary prerequisite for evaluating realistic
feedback control schemes for the resistive shell mode.

V. APPLICATIONS

A. Introduction

The theory presented in Secs. II–IV has many interest-
ing and important applications in tokamak fusion physics. In
this section, a few of these applications are examined in
depth.

B. The design of passive stabilizing shells

Consider the stability of the ideal external kink mode for
the case of a tokamak plasma surrounded by apartial shell
of minor radiusr w . It is convenient to adopt the single har-
monic approximation, in which the shell stability indices for
all harmonics, apart from the central harmonicm0 ,n0 , take
their vacuum values22umu. It is easily demonstrated that
this is an excellent approximation, unless the shell is located
very close to the edge of the plasma.40 The shell stability
index for the central harmonic can always be written in the
form

Dw
m0 ,n05

2um0u
~r c /r w!2um0u21

. ~129!

Here, r c is termed the critical radius for them0 ,n0 ideal
external kink mode. Acomplete, perfectly conducting shell
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whose radius is less than the critical radius is able to stabilize
the ideal external kink mode, whereas a similar shell whose
radius is greater than the critical radius is incapable of stabi-
lizing the mode. The resistive shell mode dispersion relation
for a completeresistiveshell takes the form

gtw5Dw
m0 ,n0, ~130!

wheretw is the time constant of the shell. Thus, the resistive
shell mode is unstable whereverDw

m0 ,n0.0. The growth rate
of the resistive shell mode merges with that of the ideal
external kink mode asDw

m0 ,n0→`. So, the marginal stability

point for the latter mode is 1/Dw
m0 ,n050. It follows from Eq.

~129! that the ideal external kink mode is stable and the
resistive shell mode is unstable forr w,r c , whereas the ideal
external kink mode is unstable forr w.r c .

The resistive shell mode dispersion relation for apartial
shell takes the general form~see Sec. IV E!

gtw5
Dw

m0 ,n0

12Dw
m0 ,n0/Dc

m0 ,n0
. ~131!

Here,tw is the time constant of the shell, whereasDc
m0 ,n0 is

termed the critical shell stability index. The resistive shell
mode is unstable whenever 0,Dw

m0 ,n0,Dc
m0 ,n0. The growth

rate of the resistive shell mode merges with that of the ideal
external kink mode asDw

m0 ,n0→Dc
m0 ,n0. Thus, the marginal

stability point for the latter mode isDw
m0 ,n05Dc

m0 ,n0.
Equations~129! and ~131! can be combined to give

gt̃w5D̃w
m0 ,n0, ~132!

where

D̃w
m0 ,n05

2um0u
~r c / r̃ w!2um0u21

, ~133!

with

t̃w5twS 11
2um0u

Dc
m0 ,n0D , ~134!

and

r̃ w5r wS 11
2um0u

Dc
m0 ,n0D 1/2um0u

. ~135!

It is clear from a comparison of Eqs.~130! and ~132! that a
partial shell of time constanttw and radiusr w acts in exactly
the same manner as acompleteshell of effective time con-
stant t̃w and effective radiusr̃ w . In other words, it is pos-
sible to replace a partial shell by a complete effective shell
whose time constant and radius are bothlarger than those of
the actual shell. As the radiusr̃ w of the effective shell ap-
proaches the critical radiusr c , the growth rate of the resis-
tive shell mode merges with that of the ideal external kink
mode. Thus, the marginal stability criterion for the latter
mode corresponds tor̃ w5r c . It follows that the ideal exter-
nal kink mode is stable and the resistive shell mode is un-
stable for r̃ w,r c , whereas the ideal external kink mode is
unstable forr̃ w.r c .

For the special case of a partial shell in which the extents
of all metal and gap sections exceed the poloidal half-
wavelength of the central harmonic,pr w /um0u, and the gaps
are such such as to preventm0 ,n0 eddy currents from flow-
ing in unidirectional continuous loops around the plasma
~i.e., the shell is nonresonant!, it can be shown that~see Sec.
III !

tw5~12 f !t̄w , ~136a!

Dc
m0 ,n052um0uS 1

f
21D , ~136b!

where f is the area fraction of gaps, andt̄w5m0r wswdw .
Here, sw and dw are the conductivity and~uniform! thick-
ness of the metal sections of the shell, respectively. Inciden-
tally, the value oftw given in Eq. ~136a! is equal to the
equivalent time constant, which is defined as the time con-
stant of a uniform shell of radiusr w which contains the same
amount of metal as the partial shell. Equations~134!–~136!
yield

t̃w5 t̄w , ~137!

and

r̃ w5r wS 1

12 f D
1/2um0u

. ~138!

Thus, in this special case, the effective shell possesses the
same time constant as the metal sections of the actual shell.
As the fraction of gaps is increased, the radius of the effec-
tive shell also increases. This implies, not surprisingly, that
the shell becomes progressively less capable of stabilizing
the ideal external kink mode as the fraction of gaps is made
larger.

The results of Secs. III and IV indicate that if a nonreso-
nant partial shell is such that the extents of all metal or gap
sectionsdo not exceed the poloidal half-wavelength of the
central harmonic,pr w /um0u, then the performance of the
shell is worse than that indicated above. In fact, Figs. 1 and
2 clearly suggest that, in this situation, the time constant,tw ,
and the critical shell stability index,Dc

m0 ,n0, of the shell are
both less than the values given in Eqs.~136!. In particular,
the time constant of the shell falls below the equivalent time
constant. It follows from Eq.~135! that, in this case, the
radius of the effective shell islarger than that given in Eq.
~138!. Thus, a nonresonant partial shell in which the extents
of all metal and gap sections exceed the poloidal half-
wavelength of the central harmonic is better able to stabilize
the ideal external kink mode that a similar shell~i.e., a non-
resonant partial shell containing the same amount of metal
and the same area fraction of gaps! in which this is not the
case. Clearly, it is of great importance, when designing a
nonresonant passive stabilizing shell, to ensure that the ex-
tents of all metal and gap sectionsexceedthe poloidal half-
wavelength of the central harmonic.

A partial shell which permitsm0 ,n0 eddy currents to
flow in unidirectional continuous loops around the plasma is
termed a resonant shell. The results of Secs. III and IV indi-
cate that a resonant partial shell which possesses onlyone
helical path per helical period of the central harmonic~this
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corresponds to them51 case discussed in Sec. III F 3! per-
forms worse than a similar nonresonant shell~i.e., a nonreso-
nant shell containing the same amount of metal and the same
area fraction of gaps!. The basic reason for this behavior is
the existence of a particular phase for the resistive shell
mode at which them0 ,n0 eddy currents excited in the shell
divert magnetic flux strongly through the gaps in the shell.
The results of Secs. III and IV also indicate that a resonant
partial shell which possessestwo independent helical paths
per helical period of the central harmonic~this corresponds
to the m52 case discussed in Sec. III F 3! performs better
than a similar nonresonant shell. Furthermore, a resonant
partial shell which possessesthreeor more independent he-
lical paths per helical period of the central harmonic~this
corresponds to them.2 case discussed in Sec. III F 3! per-
forms much better than a similar nonresonant shell: the per-
formance improves as the number of independent paths in-
creases. In fact, the results of Sec. IV C suggest that for a
resonant partial shell which possesses three or more indepen-
dent helical paths per helical period of the central harmonic,
the time constant of the shell is equal to the equivalent time
constant, and the critical shell stability index tends to infinity
as the number of paths tends to infinity. These results are
true irrespective of whether the extents of the metal and gap
sections of the shell exceed the poloidal half-wavelength of
the central harmonic.

The following general conclusions may be drawn re-
garding the ability of a partial shell to moderate the growth
of the ideal external kink mode. For anonresonantshell the
optimum performance is achieved when the extents of all
metal and gap sections exceed the poloidal half-wavelength
of the central harmonic. In this case, the shell acts like an
effective complete shell whose time constant is the same as
the conducting portions of the actual shell and whose radius
is somewhat larger than the radius of the actual shell. Note
that the radius of the effective shell, which is given in Eq.
~138!, only depends on the area fraction of gaps in the actual
shell. For a resonant shell the optimum performance is
achieved when there are very many~i.e., at least two! inde-
pendent helical paths through the shell per helical period of
the central harmonic. In this case, the shell acts like an ef-
fective complete shell whose radius is that of the actual shell,
and whose time constant is the same as the equivalent time
constant~i.e., the average time constant of the metal and gap
sections of the actual shell!. Consequently, it is possible to
improve the performance of a nonresonant partial shell by
installing ‘‘jump leads’’ between separate metal sections of
the shell, so as to form at least two helical paths in the shell
per helical period of the central harmonic. The jump leads
have the effect of decreasing the radius of the effective shell,
although, somewhat paradoxically, they also decrease its
time constant.

C. Feedback stabilization of the resistive shell mode

1. The fake rotating shell concept

The results of Sec. IV, which deals with partial shells
constructed from thin helical wires or thin wire loops, can be
used to investigate whether feedback stabilization schemes

for the resistive shell mode remain feasible when realistic
sets of feedback coils are employed. Consider, for example,
the recently proposed fake rotating shell stabilization
scheme.43 In the original proposal, the feedback controlled
conductors consist of a finenetworkof interconnected toroi-
dal and poloidal wires which completely surrounds the
plasma. A separate power amplifier is needed for each cell in
the network. The scheme works by mimicking the eddy cur-
rent pattern of a poloidally rotating resistive shell using the
feedback controlled network of conductors. Thus, to all in-
tents and purposes, the network acts like a poloidallyrotat-
ing resistive shell. The combination of a stationary conven-
tional shell ~e.g., the vacuum vessel! surrounded by a fake
rotating shell~i.e., the feedback controlled network of con-
ductors! is capable of stabilizing the resistive shell mode
provided that the effective angular rotation frequency of the
fake shell~which is proportional to the gain in the feedback
circuits! is greater than the inverseL/R time of the network.
In the following, two variants of the original fake rotating
shell stabilization scheme which may be easier to implement
experimentally are investigated.

2. Feedback using helical windings

Suppose that the feedback controlled conductors consist
of a set of independenthelical windings, such that at any
given toroidal anglef there areM windings located at po-
loidal angles

uk5
2p~k21!

M
1

N

M
f, ~139!

for k51 to M . The set of windings clearly possessesM ,N
helical symmetry. As usual, it is convenient to adopt the
single harmonic approximation, in which the shell stability
indices for all harmonics, apart from the central harmonic
m0 ,n0 , take their vacuum values22umu. It is assumed that
the windings areresonantwith the central harmonic, so that
n0M2m0N50.

Suppose that each feedback winding is accompanied by
a high resistance helical sensor loop, such that thekth loop is
located atuk1du. Here,d/r w!du!2p/M , whered is the
diameter of the feedback windings. It is assumed that the
feedback windings and the sensor loops possess the common
minor radiusr w . The voltage~per unit length! generated by
magnetic induction in thekth feedback winding is

Vk5g
m0

2p
Î eim0zkF M

Dw
m0 ,n0

2g~A2gtw /M !

2 ln~2r w /Md!2K0~ um0u/M !G , ~140!

where use has been made of the results of Sec. IV C, includ-
ing the assumed current distribution~86!. Note that zk

52p(k21)/M . Likewise, the voltage~per unit length! gen-
erated by magnetic induction in thekth sensor loop is

Ṽk5g
m0

2p
Î eim0zkF M

Dw
m0 ,n0

2 ln~1/Mdu!2K0~ um0u/M !G .

~141!
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Suppose that the signals generated in the sensor loops are
integrated~from a time when the mode amplitude is negligi-
bly small!, amplified by a factor 1/t, and then fed into the
feedback windings. The signal fed into thekth winding is the
differencebetween the signals derived from the (k11)th and
(k21)th sensor loops. Thus, the modified circuit equation
for the kth feedback winding is

Vk1
Ṽk112Ṽk21

gt
5RIk , ~142!

whereR is the resistance per unit length of the windings, and
I k5 Î eim0zk is the current flowing in thekth winding. Equa-
tions ~140!–~142! yield the dispersion relation

FgS 12Dw
m0 ,n0/Dc

m0 ,n0

12Dw
m0 ,n0/D

c8

m0 ,n0D 1 iVwGtw5
Dw

m0 ,n0

12Dw
m0 ,n0/D

c8

m0 ,n0
,

~143!

where

tw5
m0M

2pR
, ~144!

and

Vw5
2 sin~2pm0 /M !

t
. ~145!

Here,

Dc
m0 ,n05

M

g~A2gtw /M !1 ln~2r w /Md!1K0~ um0u/M !
,

~146!

and

D
c8

m0 ,n05
M

ln~1/Mdu!1K0~ um0u/M !
. ~147!

Note that the time constanttw , given by Eq.~144!, is the
same as the equivalent time constant~i.e., the time constant
of a uniform shell of minor radiusr w which contains the
same amount of metal as the feedback windings!.

The dispersion relation~143! is ~almost! the same~see
Sec. V B! as that of a uniform resistive shell of effective time
constant

t̃w5twS 11
2um0u

D
c8

m0 ,n0D , ~148!

and effective radius

r̃ w5r wS 11
2um0u

D
c8

m0 ,n0D 1/2um0u

, ~149!

which rotatespoloidally with the effective angular rotation
frequencyVw . In other words, the feedback scheme causes
the set of helical windings to act like a fake rotating shell.
Note that the effective rotation frequency,Vw , is directly
proportional to the gain in the feedback circuits.

Suppose that the plasma is surrounded by a complete
passive shell~e.g., the vacuum vessel! of radiusr v and time
constanttv . This, in turn, is surrounded by the feedback

controlled set of helical windings. Thus,r w.r v.a, wherea
is the minor radius of the edge of the plasma. The dispersion
relation for them0 ,n0 external kink mode is written44 as

~Dv2Ev!~Dw2Ew!2~Evw!250, ~150!

where

Dv5gtv ~151!

is the dispersion relation of the passive shell, and@after re-
arranging Eq.~143!#

Dw5
~g1 iVw!tw

11~gD
c8

m0 ,n0/Dc
m0 ,n01 iVw!tw /D

c8

m0 ,n0
~152!

is the dispersion relation of the feedback system. The re-
maining terms in Eq.~150! are given by

Ev5
2um0u

~r c /r v!2um0u21
2

2um0u
~r w /r v!2um0u21

, ~153a!

Ew52
2um0u~r w /r v!2um0u

~r w /r v!2um0u21
, ~153b!

Evw5
2um0u~r w /r v! um0u

~r w /r v!2um0u21
. ~153c!

Here, r c is the critical radius defined in Sec. V B. The dis-
persion relation~150! is only valid in the limit where the
coupling between the passive shell and the feedback wind-
ings is mediated predominantly by the central harmonic. In
other words, when

S r v

r w
D 2um01 jM u

!1 ~154!

for all j Þ0, where j is an integer. This constraint is not
particularly difficult to satisfy, unless the feedback windings
are located very close to the passive shell.

It is both convenient and plausible to assume that the
time constant of the passive shell is much longer than that of
the fake shell. Thus,tv@tw . With this ordering, plus the
orderingVwtw;O(1), theresistive shell mode root@i.e., the
root with gtv;O(1)# of Eq. ~150! can easily be shown to
take the form

gtv.
2um0u

~r c /r v!2um0u21

3 S 12V̂w
2 @~r c / r̃ w!2um0u21#/@12~r v / r̃ w!2um0u#

11V̂w
2 D

2 i
2um0u

~ r̃ w /r v!2um0u21

V̂w

11V̂w
2

, ~155!

where

V̂w5
Vwt̃w

2um0u @12~r v / r̃ w!2um0u#. ~156!
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It is clear from Eq.~155! that in the absence of feedback~i.e.,
Vw50! the resistive shell mode takes the form of a nonro-
tating mode growing on the time constant of the passive
shell. Feedback causes the resistive shell mode topropagate
in the direction of apparent rotation of the fake shell, but it
also modifies the growth rate of the mode. If the effective
radius of the fake shellw lies beyondthe critical radiusr c,
then feedback always causes anincreasein the growth rate.
However, if the effective radius liesinsidethe critical radius,
then feedback causes the growth rate todecrease. In the
latter case, there is a critical value of the effective angular
rotation frequency of the fake shell,Vw, above which the
resistive shell mode is stabilized. This critical rotation fre-
quency is of order 1/tw. The corresponding critical ‘‘voltage
gain,’’ G5uṼk112Ṽk21u/(ugutuṼku), in the feedback cir-
cuits ~i.e., the ratio of the voltage fed into a particular feed-
back winding to that generated by magnetic induction in a
neighboring sensor loop! is

Gc5
tv

tw
S r w

r v
D 2um0u ~r c!

2um0u2~r v!2um0u

~r c!
2um0u2~ r̃ w!2um0u . ~157!

Thus, forG.Gc the resistive shell mode is stabilized. The
critical current which must be supplied by an individual
feedback amplifier is

I c;gc

2pr wbr

m0M
, ~158!

where br is the perturbed radial magnetic field strength at
radiusr w , and

gc52
~r w!2um0u

A~r c!
2um0u2~ r̃ w!2um0uA~ r̃ w!2um0u2~r v!2um0u

. ~159!

Likewise, the critical power which must be supplied by an
individual feedback amplifier is

Pc;gc
2

2p2r w
2 R0br

2

m0twN
. ~160!

Note that these critical values are similar in magnitude to
those obtained in the original feedback stabilization scheme
where the feedback controlled conductors consist of a fine
network of interconnected poloidal and toroidal wires. The
number of amplifiers needed to implement the feedback
scheme is equal to the number ofindependenthelical wind-
ings, i.e., the required number of amplifiers isN.

Consider using the scheme outlined above to feedback
stabilize ann051 resistive shell mode. The feedback wind-
ings resonate with the mode provided thatM5Nm0 , where
N is the number of separate windings. When there is only
onefeedback winding~i.e., N51!, m0 /M51, and it follows
from Eqs.~147! and ~149! plus Fig. 10 thatD

c8

m0 ,n050 and
r̃ w→`. Thus, in this case, the effective radius of the fake
shell tends to infinity, and the feedback scheme is, therefore,
incapable of stabilizing the resistive shell mode. When there
aretwo feedback windings~i.e.,N52!, m0 /M51/2, sor̃ w is
finite, but it follows from Eq.~145! thatVw50. Thus, in this
case, the fake shell does not rotate, and the feedback scheme

remains incapable of stabilizing the resistive shell mode.
When there arethree or morefeedback windings~i.e., N
.2! it is easily demonstrated thatr̃ w is finite andVw is
nonzero. Thus, in this case, the feedback scheme is capable
of stabilizing the resistive shell mode. It is concluded that the
minimum number of separate helical windings needed to
implement the fake rotating shell feedback scheme isthree.
Note that in the case where there are two helical windings
the feedback scheme only fails because the windings are
equally spaced in helical angle@see Eq.~36!#. In fact, it is
possible to implement the fake rotating shell feedback
scheme usingtwo unequally spacedhelical windings. Re-
grettably, this configuration of windings lies beyond the
scope of this paper, since it does not posses pure helical
symmetry. On the other hand, it is impossible to implement
the feedback scheme using a single helical winding.

Note, finally, that the feedback scheme outlined above
fails completely for resistive shell modes which arenot reso-
nant with the helical coils. Such modes generate no signals
in the helical sensor loops, so the fake shell does not rotate.
More important, according to Sec. IV D, the effective radius
of the fake shell is necessarily very large, in this case, be-
cause the currents induced in the helical windings are unable
to flow in continuous unidirectional loops around the plasma.
Thus, although it is possible to implement the fake rotating
shell feedback scheme with as few as three equally spaced
helical windings, driven by three power amplifiers, such a
system is only capable of stabilizing those resistive shell
modes which resonate with the windings.

3. Feedback using modular coils

Suppose that the feedback controlled conductors consist
of a uniform array ofmodular coils, such that at any given
toroidal angle there areM wire loops centered on poloidal
angles

zk5
2p~k21!

M
, ~161!

for k51 to M . Thekth loop contains two toroidally directed
wires located at poloidal angleszk6Du/2. The loops are
assumed to be closely spaced in the toroidal direction, and
such that their toroidal lengths are much less than the toroi-
dal half-wavelength,pR0 /n0 , of the central harmonic. In
this limit, there is no significant coupling of different toroidal
harmonics by the loops. Thus, the set of feedback coils ef-
fectively possessesM , 0 helical symmetry. As usual, the
single harmonic approximation is adopted in the following
analysis.

Suppose that each feedback coil is accompanied by a
high resistance sensor loop of equal area, such that thekth
sensor loop is centered onzk1du. Here, d/r w!du
!2p/M , whered is the diameter of the wires from which
the feedback loops are constructed. It is assumed that the
feedback and sensor loops are all located at minor radiusr w .
The voltage~per unit toroidal length! generated by magnetic
induction in thekth feedback loop~at f50! is
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Vk52g
m0

2p
Î eim0zkF2M sin2~ um0uDu/2!

3S 1

Dw
m0 ,n0

1
1

2um0u D 2g~A4gtw /M !

2 ln~2r wDu/d!2J0~Du,M ,um0u!G , ~162!

where

J0~Du,M ,um0u!5 (
j 51,̀

lnF12S MDu

2p j D 2G
3cos~2p j um0 /M !. ~163!

Here, use has been made of the results of Sec. IV D. Like-
wise, the voltage~per unit toroidal length! generated by mag-
netic induction in thekth sensor loop~at f50! is

Ṽk52g
m0

2p
Î eim0zkF2M sin2~ um0uDu/2!S 1

Dw
m0 ,n0

1
1

2um0u D
2 ln~Du/du!2J0~Du,M ,um0u!G . ~164!

Suppose that the signals generated by the sensor loops are
integrated~from a time when the mode amplitude is negligi-

bly small!, amplified by a factor 1/t, and then fed into the
feedback coils. The signal fed into thekth coil is thediffer-
encebetween the signals derived from the (k11)th and (k
21)th sensor loops. Thus, the modified circuit equation for
the kth feedback coil~at f50! is

Vk1
Ṽk112Ṽk21

gt
52RIk , ~165!

whereR is the resistance per unit length of the wires making
up the feedback coils, andI k5 Î eim0zk is the current flowing
in the kth feedback coil~at f50!. Equations~162!–~165!
yield the dispersion relation

FgS 12Dw
m0 ,n0/Dc

m0 ,n0

12Dw
m0 ,n0/D

c8

m0 ,n0D 1 iVwGtw5
Dw

m0 ,n0

12Dw
m0 ,n0/D

c8

m0 ,n0
,

~166!

where

tw5sin2~ um0uDu/2!t̄w , ~167!

and t̄w5m0M /pR, with

Vw5
2 sin~2pm0 /M !

t
. ~168!

Here,

Dc
m0 ,n05

2M sin2~ um0uDu/2!

g~A2gt̄w /M !1 ln~2r wDu/d!1J0~Du,M ,um0u!2sin2~ um0uDu/2!M /um0u
, ~169!

and

D
c8

m0 ,n05
2M sin2~ um0uDu/2!

ln~Du/du!1J0~Du,M ,um0u!2sin2~ um0uDu/2!M /um0u
. ~170!

Note that the time constantt̄w is the same as the equivalent
time constant~i.e., the time-constant of a uniform shell of
minor radiusr w which contains the same amount of metal as
the feedback coils!.

The dispersion relation~166! is ~almost! the same as that
of a uniform resistive shell of effective time constantt̃w

@given by Eq.~148!#, and effective radiusr̃ w @given by Eq.
~149!#, which rotates poloidally with the effective angular
rotation frequencyVw . Thus, the feedback scheme causes
the set of feedback coils to act like a ‘‘fake rotating shell.’’
Note that the effective rotation frequency,Vw , is again di-
rectly proportional to the gain in the feedback circuits.

Suppose that the plasma is surrounded by a complete
passive shell of radiusr v and time constanttv . This, in turn,
is surrounded by the array of feedback coils. In the limit in
which the coupling between the passive shell and the feed-
back coils is mediated predominantly by the central har-
monic @see Eq.~154!#, the dispersion relation for them0 ,n0

external kink mode takes the form given by Eq.~150!. In the
physically relevant limittv@tw , the growth rate of the re-
sistive shell mode is determined by Eq.~155!. It is easily

seen that, as long as the effective radius of the fake rotating
shell, r̃ w , lies inside the critical radius,r c , the feedback
scheme is capable of stabilizing the resistive shell mode. In
fact, stabilization is achieved once the effective rotation fre-
quency of the fake shell,Vw , exceeds a critical value which
is of order 1/tw . The corresponding critical voltage gain,
G5uṼk112Ṽk21u(ugutṼk), in the feedback circuits~i.e., the
ratio of the voltage fed into a particular feedback coil to that
generated by magnetic induction in a neighbouring sensor
loop! is given by Eq.~157!. The critical current which must
be supplied by an individual feedback amplifier is

I c;gc

pr wbr

m0M sin~ um0uDu/2!
, ~171!

where br is the perturbed radial magnetic field strength at
radiusr w , and the factorgc is specified by Eq.~159!. Like-
wise, the critical value of thetotal power supplied by the
feedback amplifiers is

Pc;gc
2

2p2r w
2 R0br

2

m0t̄w sin2~ um0uDu/2!
. ~172!
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The minimum allowable number of feedback coils in the
toroidal direction is 2n011.43 Thus, the number of amplifi-
ers needed to implement the feedback scheme, which is
equal to the number of feedback coils, is at least (2n0

11)M .
Consider using the scheme outlined above to feedback

stabilize anm0 ,n0 resistive shell mode. It is clear from Eq.
~168! that if 2m05 jM , where j is an integer, thenVw50.
Thus, in this case, the fake shell does not rotate, and the
feedback scheme is incapable of stabilizing the resistive shell
mode. It follows that theminimumnumber of feedback coils
in the poloidal direction needed to construct a fake rotating
shell is three ~i.e., M>3!. It is clear from Eqs.~149! and
~170! that the effective radius,r̃ w , of the fake shell tends to
infinity when um0uDu/25kp, wherek is an integer. Thus, in
this case, the feedback scheme is also incapable of stabilizing
the resistive shell mode. On the other hand,r̃ w is minimized
~as a function of Du! whenever um0uDu/25(k11/2)p,
wherek is an integer. In this situation, the critical current and
critical total power which the feedback amplifiers must put
out in order to stabilize the resistive shell mode are similar in
magnitude to the values obtained when the feedback con-
trolled conductors consist of a fine network of wires, or a set
of resonant helical windings. The critical current and critical
total power increase significantly above these values when
um0uDu/2Þ(k11/2)p @see Eqs.~171! and~172!#. It follows
that a modular coil feedback scheme works optimally when
the poloidal extent of each feedback coil is an odd integer
multiple of the poloidal half-wavelength of the central har-
monic. The feedback scheme fails completely when the po-
loidal extent of each feedback coil is an even integer mul-
tiple of the poloidal half-wavelength of the central harmonic.
Note, in particular, that the feedback scheme only works
poorly when the poloidal extent of each coil is much smaller
than the poloidal half-wavelength of the central harmonic.

For the case of a 3, 1 resistive shell mode, the minimum
number of feedback coils in the poloidal direction needed to
construct a fake rotating shell isfour. The optimum poloidal
angular extent of each coil is 60°. Note that this configura-
tion of coils is incapable of stabilizing the 2, 1 or the 4, 1
resistive shell modes, since the fake shell appears stationary
to these modes. However, withfive feedback coils in the
poloidal direction, each of poloidal angular extent 60°, it is
possible to construct a fake rotating shell which is capable of
simultaneouslystabilizing the 2, 1, 3, 1, and 4, 1 resistive
shell modes. This scheme works optimally for the 3, 1 mode,
since the poloidal angular extent of each feedback coil
matches the poloidal half-wavelength of this mode. The
scheme works less efficiently for the 2, 1 and 4, 1 modes,
i.e., the critical currents and critical total power which the
feedback amplifiers must put out in order to stabilize these
modes are larger than they would have been were the feed-
back scheme optimized for these modes. The minimum num-
ber of feedback coils in the toroidal direction needed to
implement this scheme isthree. Thus, the total number of
feedback coils and power amplifiers required by this particu-
lar feedback stabilization scheme is at leastfifteen.

4. Summary and discussion

The original fake rotating shell feedback stabilization
scheme, in which the feedback controlled conductors consist
of a fine network of interconnected toroidal and poloidal
wires surrounding the plasma, is capable of stabilizing a re-
sistive shell mode ofarbitrary helicity at relatively low val-
ues of the current and total power supplied by the feedback
amplifiers. The main disadvantage of this scheme is the very
large number of feedback amplifiers~i.e., one per network
cell! which are needed to implement it. Another problem
arises from the fact that the feedback controlled conductors
link the primary induction winding of the tokamak: the pri-
mary winding is likely to drive large eddy currents in the
network as the plasma current is ramped up or down.

Section V C 2 discusses a modified fake rotating shell
feedback stabilization scheme in which the feedback con-
trolled conductors consist of a set of independent helical
windings. The main advantage of this modified scheme is the
very small number~i.e., as few as three! of feedback ampli-
fiers needed to implement it. The current and total power
requirements are similar to those of the original scheme. The
main disadvantage of the modified scheme is that it is only
effective for the relatively small class of resistive shell
modes whichresonatewith the helical windings. In fact, the
scheme fails completely for nonresonant modes. Further-
more, the feedback controlled conductors still link the pri-
mary winding.

Section V C 3 discusses a modified fake rotating shell
stabilization scheme in which the feedback controlled con-
ductors consist of an array of modular coils. The number of
feedback amplifiers needed to implement this scheme is rela-
tively small, but not as small as the number of amplifiers
needed to implement the helical winding based scheme. On
the other hand, a modular coil based feedback stabilization
scheme is effective for resistive shell modes possessing a
wide range of different helicities. The current and total
power requirements are similar to those of the original
scheme for the relatively small class of resistive shell modes
where the poloidal extent of each feedback coil is an odd
integer multiple of the poloidal half-wavelength of the mode.
The feedback scheme fails completely for a second relatively
small class of modes where the poloidal extent of each feed-
back coil is an even integer multiple of the poloidal half-
wavelength of the mode. For the remaining modes, the feed-
back scheme is effective, but the current and total power
requirements on the feedback amplifierssignificantly exceed
those of the original feedback scheme. Modular coils do not
link the primary induction winding of the tokamak, so there
is no danger of eddy currents being driven in the feedback
coils as the plasma current is ramped up or down.

All three of the fake rotating shell feedback stabilization
schemes described above have their own peculiar set of ad-
vantages and disadvantages. On balance, the scheme which
usesmodular feedback coils is the one most likely to suc-
ceed experimentally.

D. Discussion

It is clear from Secs. V B and V C that the theory pre-
sented in Secs. II–IV ishighly relevantto both the design of
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incomplete passive stabilizing shells and the design of active
feedback systems~for external modes! which employ rela-
tively small numbers of feedback coils.

VI. SUMMARY AND DISCUSSION

Section II introduces the basic concepts needed to deter-
mine the influence of a partial resistive shell on the growth
rate of the external kink mode in a low-b, large aspect-ratio,
circular flux-surface tokamak. A rather heuristic derivation is
given ~in Sec. II E! of the fundamental dispersion relation
~27! for the resistive shell mode. It turns out that this disper-
sion relation holds for all partial resistive shells, provided
that only a single resistive shell mode~them0 ,n0 mode, say!
is intrinsically unstable. This condition is easily satisfied in
tokamaks. The dispersion relation~27! allows a partial resis-
tive shell to be replaced by a completeeffective shellof
radiusr̃ w and time constantt̃w . The relationship between the
radius and time constant of the effective shell and those of
the actual shell depends on the distribution of gaps in the
actual shell. In some cases, this relationship is found to take
a particularly simple form@see Eqs.~28! and~33!# in which
r̃ w and t̃w only depend on the area fraction of gaps in the
shell, and are independent of the actual arrangement of gaps.
Note that the radius of the effective shell always exceeds the
radius of the actual shell. The effective radiusr̃ w can be used
to parametrize the ability of a partial shell to moderate the
growth of the external kink mode. Ifr̃ w.r c , then the exter-
nal kink mode is unstable with an ideal growth rate, whereas
if r̃ w,r c the ideal mode is stable but the resistive shell mode
is unstable, growing on the relatively long time constant of
the shell. Here,r c is the critical radius of them0 ,n0 mode;
i.e., r c is the largest radius at which a complete perfectly
conducting shell is able to stabilize them0 ,n0 ideal external
kink mode. It is clear that the smaller the effective radius of
a partial shell, the better able the shell is to moderate the
growth of the external kink mode.

Section III describes in detail, how the analysis of Sec. II
can be employed to calculate the growth rate of the resistive
shell mode for the case of a partial shell containinghelical
gaps. In fact, the problem reduces to a straightforward two-
dimensional matrix eigenvalue problem. It is necessary to
make a distinction between resonant and nonresonant shells.
In the former case, it is possible form0 ,n0 eddy currents to
flow in unidirectional continuous loops around each helical
segment of the shell, whereas in the latter case this is impos-
sible because the helicity of the shell does not match that of
them0 ,n0 mode. For nonresonant partial shells, the radius of
the effective shell is found to depend only on the area frac-
tion of gaps, provided that the dimensions all metal and gaps
sections of the shell are larger than the poloidal half-
wavelength of them0 ,n0 mode. Nonresonant shells for
which this condition is not satisfied are found to possess
larger effective radii than similar nonresonant shells~i.e.,
nonresonant shells containing the same area fraction of gaps!
for which this condition is satisfied. In other words, the
former type of shell is less able to moderate the growth of the
external kink mode than the latter type. Resonant shells are
found to perform better than similar nonresonant shells~i.e.,
the effective radii of the former type of shells are smaller

than those of the latter type!, provided that they containtwo
or more independent helical paths per helical period of the
m0 ,n0 mode. Resonant shells which contain onlyonehelical
path per helical period actually perform worse than similar
nonresonant shells. As the number of helical paths per heli-
cal period increases, the radius of the effective shell asymp-
totes to that of the actual shell. This effect takes place irre-
spective of the dimensions of the metal and gaps sections
compared to the poloidal half-wavelength of them0 ,n0

mode. Thus, a resonant partial shell possessing very many
helical paths per helical period of them0 ,n0 mode is just as
effective at moderating the growth of the external kink mode
as a complete shell with the same minor radius: this remains
the case even in the limit in which the area fraction of gaps
in the partial shell tends to unity.

Section IV is devoted to the study of skeletal shells con-
structed from thin helical wires or helical wire loops. Ana-
lytic expressions are obtained for the effective radius and
effective time constant of the shell in both cases. This analy-
sis is worthwhile for two main reasons. First, it allows a
qualitative understanding of the behavior of partial shells
containing helical gaps, in the limit in which the fraction of
gaps tends to unity. Second, and more important, such analy-
sis is a necessary prerequisite for evaluating the effectiveness
of realistic feedback control schemes for external modes.

Section V describes various applications of the theory
presented in Secs. II–IV. In Sec. V B the theory is used to
derive some general rules regarding the design of passive
stabilizing shells. For nonresonant shells the optimum per-
formance is achieved when the dimensions of all metal and
gap sections exceed the poloidal half-wavelength of the
m0 ,n0 mode. In this case, the radius of the effective shell
depends only on the area fraction of gaps contained in the
shell, and is always greater than the radius of the actual shell.
For resonant shells the optimum performance is achieved
when there are very many~i.e., at least two! independent
helical paths through the shell per helical period of the
m0 ,n0 mode. In this case, the radius of the effective shell
approaches that of the actual shell. Thus, it is always pos-
sible to improve the performance of a nonresonant shell by
installing ‘‘jump leads’’ between the separate metal sections,
so as to form at least two helical paths per helical period of
the m0 ,n0 mode.

In Sec. V C the theory is used to evaluate two feedback
stabilization schemes for the resistive shell mode, both of
which employ a relatively small set of independent feedback
coils. These schemes are both variants on the fake rotating
shell stabilization scheme described in Ref. 43. The original
scheme is capable of stabilizing any resistive shell mode, but
requires a very large number of feedback amplifiers. Section
V C 2 describes a scheme in which the feedback controlled
conductors consist of a set of independent helical windings.
This scheme can be effective with a few asthree feedback
windings ~and power amplifiers!, but is only capable of sta-
bilizing the relatively small set of resistive shell modes
which resonate with the windings. Section V C 3 describes a
scheme in which the feedback controlled conductors consist
of an array of modular coils. In order to be effective, this
scheme requires slightly more feedback coils~and power am-

4067Phys. Plasmas, Vol. 4, No. 11, November 1997 Richard Fitzpatrick
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.83.61.231 On: Wed, 11 Mar 2015 20:19:02



plifiers! than the helical winding based scheme. On the other
hand, the modular coil based scheme is capable of stabilizing
a far wider range of resistive shell modes.

In conclusion, the theory presented in this paper is of
great importance to both the design of passive stabilizing
shells and the design of active feedback systems~for external
modes! in tokamaks.

All of the analysis presented in this paper depends cru-
cially on the validity of the ‘‘thin shell’’ approximation~see
Sec. II E!. This approximation holds provided that

dw

r w
!Dw

m,n!
r w

dw
, ~173!

wherer w and dw are the minor radius and thickness of the
conducting sections of the shell, respectively. Here,Dw

m,n is
the shell stability index for them,n harmonic~see Sec. II!.
The above inequality must be satisfied for all harmonics
coupled by the eddy currents excited in the shell. For the
case of the resistive shell mode, the inequality only breaks
down in a relatively narrow range of parameter space just
before the marginal stability point for the ideal external kink
mode is reached. Here, it is assumed, as seems reasonable,
that the thickness of the shell is much less than its minor
radius~i.e., dw /r w!1!. Thus, the situation which is of pri-
mary practical importance~i.e., that where the system lies
well away from the marginal stability point for the ideal
mode in parameter space, so that the resistive shell mode
grows on some characteristicL/R time of the shell! is gov-
erned by the thin shell approximation. Note that the thin shell
approximation can easily be invalidated for the case of a
rapidly rotating tearing mode interacting with a resistive
shell. Thus, the analysis presented in this paper probably
needs to be extended in order to deal effectively with this
case: this subject will be discussed in a future publication.

The analysis presented in this paper is only valid for
low-b, large aspect-ratio, circular flux-surface tokamaks. In
high-b, finite aspect-ratio tokamaks it is generally found that
resistive shell modes are far more sensitive to gaps in the
shell situated on the outboard midplane compared to gaps
situated on the inboard mid-plane.45 This effect, which is
essentially due to the large outward Shafranov shift of the
innermost flux surfaces in high-b tokamak plasmas, does not
occur in this paper, where the flux surfaces are modeled as
concentric circles. However, the effect can be very conve-
niently simulated by simply shifting the plasma equilibrium
with respect to the shell, so that the spacing between the
plasma and the shell is smaller on the outboard midplane
than on the inboard midplane: this subject will also be dis-
cussed in a future publication.
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