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The effect of a partial resistive shell on the magnetohydrodynamical
stability of tokamak plasmas

Richard Fitzpatrick
Institute for Fusion Studies, Department of Physics, The University of Texas at Austin, Austin, Texas 78712

(Received 23 May 1997; accepted 7 July 1997

A comprehensive theory is developed to determine the effect of a partial resistive shell on the
growth rate of the external kink mode in a Ig8y4arge aspect-ratio, circular flux-surface tokamak.

In most cases, it is possible to replace a partial shell by a complete “effective shell” of somewhat
larger radius. In fact, the radius of the effective shell can be used to parametrize the ability of a
partial shell to moderate the growth of the external kink mode. It is necessary to draw a distinction
between “resonant shells,” for which the eddy currents excited in the shell are able to flow in
unidirectional continuous loops around the plasma, and “nonresonant shells,” for which this is not
possible. As a general rule, resonant shells perform better than similar nonresonant shells. The
theory is used to derive some general rules regarding the design of incomplete passive stabilizing
shells. The theory is also employed to determine the effectiveness of two realistic feedback
stabilization schemes for the resistive shell mode, both of which only require a relatively small
number of independent feedback controlled conductors external to the plasnie97American
Institute of Physicg.S1070-664X97)03211-4

I. INTRODUCTION bilizing shells with incomplete poloidal and toroidal
coverage’ Finally, in most tokamak reactor designs the

The influence of acompleteexternal resistive shell on “first wall” is constructed out of some highly conducting

the magnetohydrodynamic&aMHD) stability of a toroidal material, and is both modular in nature and partial in

pinch plasma has been extensively studied in the magneticoverage’® This investigation is also relevant to the feed-

fusion literature: =’ It is well established that eddy currents back stabilization of MHD instabilities using a set of external

induced in the shell can moderate the growth of an otherwisavindings with incomplete poloidal and toroidal coverage.

ideally unstable external kink mode, so that it evolves on the

characteristid./R time of the shell, instead of a much shorter |, prELIMINARY ANALYSIS

time scale determined by plasma inertia. Such slowed down )

modes are usually referred to as “resistive shell modes.”A- Introduction

Stabilization of the resistive shell mode is vital to the success  Cconsider a large aspect-ratio, lg8y-tokamak plasma

of the “advanced tokamak” conceptwhich aims to simul-  whose magnetic flux surfaces map gatmos) concentric
taneously maximize the plasma bétahe energy confine- circles in the poloidal plane. Such a plasma is well approxi-
ment time, and the fraction of the current due to the noninmated as a periodic Cy|inde|’_ Suppose that the minor radius
ductive bootstrap effecf. The eventual aim is, of course, to of the plasma isa. Standard cylindrical polar coordinates
design an attractive fusion power plant which can operate ifr, 9, ) are adopted. The system is assumed to be periodic
steady state, at high fusion power density, with low recircu4n the z direction, with periodicity length 2R,, whereR, is
lating power>* The interaction of a rotating magnetic island the simulated major radius of the plasma. It is convenient to

(i.e., the nonlinear phase of a conventional tearing ot define a simulated toroidal angie=2z/R,.
with eddy currents induced in the shell generates a nonlinear

slowing down torque which effectively brakes the rotation
once a critical island width is exceed&* This effect is of
importance because a nonrotatiligr “locked”) tearing The perturbed magnetic field is written as
mode is generally more unstable than an analogous rapidly _ S 5
rotating tearing modéand, hence, the saturated island width oB=VU(y2)=Vylz, &
is larger in the former cagesince the latter mode is unable Wherey(r, 6, ¢) is the perturbed poloidal magnetic flux. The
to penetrate through the shét. magnetic field can only be written in this form provided that
The aim 01_‘ this paper is to de_velop_g_comprehensive 1 9y 1 oy
theory of the interaction of MHD instabilities of a large ——{>|=— .
aspect-ratio, lows, tokamak plasmi (in particular, external r o6 |Ro ¢
kink mode$ with a partial resistive shell. This investigation Suppose that the plasma is surrounded by a concentric
is relevant to magnetic fusion plasma physics because sonwglindrical shell made of a rigid conducting material such as
existing tokamaks possess partial shéftsr instance, the a metal. For the sake of simplicity, the analysis is performed
Princeton Beam Experiment, PBX-fi,and the Columbia in the “thin shell” limit, in which the skin depth of the
High Beta Tokamak, HBT-E¥). Moreover, advanced toka- perturbed magnetic field in the shell material is much greater
mak designs invariably incorporate close fitting passive stathan the thickness of the shell but much less than its radius.

B. Basic definitions

2
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In this limit, there is negligible radial variation of the per- tion for an inviscid, massless, perfectly conducting fluid. The
turbed flux ¢ across the shell. It is, therefore, possible tolarge aspect-ratio, loys;, tokamak ordering requires that
unambiguously define a “shell flux,” By/B,<1 and also thag~O(1). The safety factor is a
convenient measure of the helical pitch of the equilibrium

Yl 0. 4)=9(ry.0,9), © magnetic field lines.
wherer,, is the shell minor radius. Note that even though Equation(11) is manifestly singular at any “rational flux
is continuous across the shell, in general, its radial derivativgurface,” for whichq=m/n, except when such surfaces are
is discontinuous. situated in the vacuum region outside the plasfwaere

In the thin shell limit the eddy currents induced in the J,=0). An acceptable solution of Eq(11) must satisfy
shell have no significant radial variation. Consequently, thephysical boundary conditions at=0 andr =00, with ™"
radially integrated eddy current density can be written as continuous across the shell. In additi®h™" must be zero at

Sl =V 0O(J,F)=VJ,0OF, 4 any.rational surface lying inside the plasma. _The latter con-

FoOlw (_ w) W _ @ ~ straint comes about because modes which interact strongly

where J,(6,¢) is the eddy current stream function. It is with the shell tend to be very slowly rotating in the labora-

helpful to define the quantity tory frame and, therefore, do not reconnect magnetic flux
I(r, 8, )] w inside the plasma, which .is'usually rotating substantially
AV, (6,9)=|T o , (5) faster than the rate of resistive reconnecfibin general,
M there is a discontinuity in the radial derivative ¥f™" at r

which parametrizes the jump in the radial derivativegof ~'w- The parameter

across the shell. The nonuniform “time constant” of the . dymn M+
shell is defined as Aw =T gy pmn (12)
rW_
Tw( 0, P) = ol worwOw » (6)

can be uniquely defined for evemy,n pair, except for those
involving m=0. Them=0 harmonic is a special case be-
cause the inequality10) is not satisfied for this poloidal
harmonic, so the usual large aspect-ratio tokamak approxi-
C. Basic physics mations break down.

It is helpful to Fourier transform the shell fluk,,( 6, ¢)
and the functiom WV ,( 0, ¢):

wherea (6, ¢$) ands,( 6, p) are the shell electrical conduc-
tivity and radial thickness, respectively.

Ampere’s law radially integrated across the shell yields

AN
AV, =— 7
=38 7 =3 D exti(mo-no)) (13
in the large aspect-ratio tokamak limit. Ohm’s law combined ’
with Faraday’s law gives
ysawg AV (6,4)= D AT™ expi(mo—ng)]. (13b)
29— v )— il ® N
Wiy Y a0 Thus, from Eq.(12),
where all perturbed quantities are assumed to vary with time AM M= AP g mn (14)
like exp(yt).
Fourier transformation of the perturbed poloidal flux It follows from Eq.(7) that
yields AP = AT jm 0 (15
¢’(r'0’¢):m2’n w(rexdi(mo—ng)]. © D. The resistive shell mode
In the large aspect-ratio tokamak limit, characterizeddse Consider the simple case in which the time constgnt
Eq. (2)] of the shell, as defined by E¢), is uniform. In this situa-
tion, Eq.(8) can be Fourier transformed to give
Im[>nle,, (10 L amin m,n
imJ, =vyr, ¥V, (16)

wheree,=r,,/Ry<1, the function?™"(r) obeys the “cy-
lindrical tearing mode equation?’g where O(ne,,) terms have been neglected with respect to

mn 5 , O(m) terms, in accordance with the inequalit}0). Equa-
1d ( dw™ )_ m ymn N ymn_g tion (16) can be combined with Eq15) to give a dispersion
rdr dr re By(ng/m—1) (11.) relation for them,n mode:

m,n

Here, B=[0,B4(r),B,] is the equilibrium magnetic field, YTw=Aw (7
q(r)=rB,/RoBy is the “safety factor,” and];,Ede,/dr is  According to this dispersion relation, rronrotating mode,
the radial gradient of the equilibrium “toroidal” plasma cur- growing on the characteristic time constant of the shell, be-
rent, uody(r)=(1/r)d(rB,)/dr. The cylindrical tearing comes unstable whenever the parametdt" is positive.
mode equation is basically the perturbed force balance equd+his instability is usually termed the resistive shell mode,
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and A['" is called the “shell stability index” for them,n part which is generated by eddy currents flowing in the shell
mode. Recall thaA " is determined by solving the ordinary is missing(since there are no eddy currents flowing in the
differential equatior(11) subject to suitable boundary condi- vacuum gaps Hence[see Eq(19)],

tions. In general, for physically plausible plasma current pro-

: i " ) . T | ~
files, at mosbnﬁofnthe A" is positive at any given tim#&. y(gap=||1+ ﬁ Yotasmd ") |€XH I (MeO—No)].
Suppose that\ °"°>0, with AiF"<0 for m#m, and n 0 23)
#ng. Here,mg,ng is termed the “central harmonic.” In the ) ) o
presence of @ompleteshell of time constant,, the my,n, Them,n harmonic of the perturbed poloidal flux is given
resistive shell mode is unstable with growth rate by
_ AMg,n de d
YTw=4,"7 (18) \Ifm'”(r)zﬂg fﬁ y(r,0,¢)exd —i(mé—ne) E%
and all other resistive shell modes are stable. (24)
In the vacuum region outside the plasma the perturbed oll ; h
poloidal flux eigenfunction for the central harmonic can pe't follows from Egs.(22) to (24) that
written as VYT | ~
wMofo(r)=| 1+ 57— ‘pplasme(r)
Y7 | - 2|my|
W(r,0,0)=|| 1+ 57— lpplasme(r) _
7ima (11) 5 G 1) @9
_(1—F) W r),
YTy ~ 2|m0| 'ﬂshel

exdi(mof—noe)], (19

- r
2|my| Yanel ) in the immediate vicinity of the shell, wherkis the area

fraction of vacuum gaps in the shell. According to E(®,

. . mg.Ng ; . .
where the Fourier amplitude is normalized to unity. (5), (13), (20), and (21),

Here,
= |mg| mg,N YTw
- r oo q 4 f T 26
'r/’plasngr): o (20 w 2|mo| (263
w
represents that part of the radial eigenfunction which is AW.°=(1—f )y7,. (26b)

maintained by plasma currents, and The dispersion relation is obtained via Eg5):

. (riry)*Imol for r<r mo.n
‘pshel(r):{(r/rw)_mol for r;rw (21) _ AW0 °
w w '}’Tw_l_AmO,nO/Amo,no1 (27)
represents that part which is maintained by eddy currents w ¢
flowing in the shell. where
Tw=1—1)7,, (28
E. A simple model for a partial shell and
Considgr, now, the more complicated situation in which A'C“O’”OZZImOI(E— 1)' (29)
the plasma is surrounded bypartial shell Suppose, for the f

sake of simplicity, that the thickness and conductivity of thegre. 7., is the time constant of a uniform shell which con-
metal parts of the shell are uniform. This implies thattains the same amount of metal as the partial shell. It is easily
Tw(0,¢) is a constan{r,,, say over the metal parts of the gemonstrated from Eqg22) and (23) that the ratio of the

shell, but is zero in the vacuum gaps. ~amplitudes of the perturbed poloidal flux in the metal and
It is possible to formulate a very simplistic model which gap sections of the shell is given by

describes the stability of theg,n, resistive shell mode in ~

the presence of a partial shell. Suppose that, in the immediate W gap —14 YTw

vicinity of the shell, the perturbed poloidal flux at angular W etal 2|mg|”

coordinates corresponding ¢onductingsections of the shell

Suppose that the shell stability index for the central har-
has an analogous form to that for a complete shell. Hence = ™" "m n, . . Iy
[see Eq(19)] monic, A °°, is gradually increased from a small positive

value. Initially, the poloidal flux is evenly distributed over

(30

_ YTw |~ the metal and gap sections of the slisie Eq(30)] and the
ymeta) =) | 1+ 2|m0|)¢p'asm5r) partial shell acts like a uniform shell containing an equal
~ amount of metali.e., yr,~A°""). However, as theny,ng
— % Zr}fshel(r) exdi(myf—ngp)]. (220  mode begomes more uqstable the poloidal flux starts to con-
0 centrate in the gap sections of the shell and the growth rate

Suppose, further, that the perturbed poloidal flux at angulaﬁ%celefates- Eventually, at a critical shell stability index,
coordinates corresponding tacuum gap the shell has an A%, the poloidal flux is entirely concentrated in the gap
analogous form to that for a complete shell, except that thsections of the shell and the resistive growth rate becomes
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infinite. It is easily demonstrated from Newcomb’s TW(0+27IM,p+27IN)=7,(6, ) (35
criterior?’#! that themg,n, ideal external kink mode is un-

stable forA$°'n0>A?°‘n°. Thus, when the shell stability in- for all values of@ and ¢. It is convenient to define a helical

angle
dex exceeds the critical valug]®'" the mode “explodes” g
through the gaps in the shell with an ideal growth rate. —g— ﬁ (36)
The dispersion relatiof27) can be rewritten as &= M ¢,
Yru=A00", (31) and to express shell quantities as functions gt (¢) in-

stead of (, 6, ). In addition, shell quantities are assumed to

where vary with ¢ like exp(—in, ¢). Note thatn, is not necessarily
_ (FW/rW)Z\molAv”V‘O»“o an integer, although it must be a rational number. Thus,
o-Mo— 320  W,=V, ()expin,d), AV, =AV ({)exp(in,$), and
S Ty G2 e bu(Deptingg), AV, =Avy(pexp(in, ¢)
w Ju=Jdw({)exp(=in, ¢). Equation (35 implies that 7,
is the shell stability index for theny,n, mode calculated for = Tw({)- .
a shell located at radius In terms of the new variables, Amges law[Eq. (7)] is
written as
_ 2| m| )”ﬂmo ( L
Tw=rw| 1+ mgmg =yl 7—¢ : N
agere 1t A,=72, (37)

According to Eq.(31), a partial shell acts like a complete
shell whose radius,, is somewhat larger than, (the actual
radius of the shel] and whose time constant is that of the
conducting sections of the partial shell. The ideal stability,
limit corresponds m"‘o "M0_,o. Note that the ideal mode

while Eq. (8) becomes

14 N)Z& 1aJW+_ , N[ [y
) |z \ym ar | T (07 o

escapes through the gaps in the partial shell, so it is not +i<93_w _(ny ew)’ ; _d¥y 38
shielded from the region>r,,, as is the case for a complete yrw 0L yro W9 (38)
shell.

B. Conducting segments and vacuum gaps

F. Discussion Suppose that at any given toroidal angl¢he shell con-
The main results of this sectiofi.e., Eqs.(27)~(33)] sists ofM conducting segments of uniform time constayt

were obtained using a rather heuristic argument. Howevetseparated by vacuum gaps. Let #ib segment extend from

for the special case of a shell containittggoidal gaps(i.e., O 10 Oyc;., where

gaps which extend over specific ranges of toroidal gngle 2m(k—1) A6 N
possible to derive the same results via an exact analytic aki:T i7+m ¢ (39
argument® This derivation is only valid in the limit in

which the toroidal lengths of all metal and gap sections offor k=1 to M. Of course,A9<27/M. In ({,¢) space the
the shell are much greater than the poloidal half-wavelengtkth segment lies at constafitand extends frongy— to ¢y ,

of the mode. Thus, it , is the minimum toroidal length of where

the metal or gap sections then it is necessary that 2mk—1) A6
ar le=——y 5 (40
Lg> Imv|”. (34) M 2
0 for k=1 to M.

The derivation also makes use of the “single harmonic ap- Now, from Eq.(4),
proximation,” in which it is assumed that the shell stability N 103
indices for all harmonics, apart from the central harmonic, 51, = —i = ‘]Wb_ W (41)
take their vacuum valued, "= —2|m|. (In fact, the model Ro roodg
presented in Sec. Il E tacitly assumes tht"=—2|m| for  \yhere the vector
all harmonics apart from the central harmopiereliminary
analysis has suggested that under some circumstances Egs. é ¢+E N P (42)
(27—(33) also hold for shells containing gaps afbitrary * v

shape® In Sec. Il a more wide-ranging inquiry is made in

order to determine to what extent this is the case. runs parallel to the edges of the helical segmentséin)

space.
It follows from Egq. (41) that 4J,,/d¢ is zero in the
IIl. SHELLS CONTAINING HELICAL GAPS vacuum gaps, since no eddy currents can flow in these re-

gions. Furthermore, if, #0, thenJ,, must also be zero in

the gaps. However, ih, =0, then this constraint does not
Consider a shell which possesddsN helical symme- apply, andJ,, is merely required to be constant in the

try, so that vacuum gaps. The essential distinction betweennthe 0

A. Introduction
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case and then, #0 case is obvious from Ed41). In the AT — AT g™ (49)
former case, the eddy currents flow parallel to the edges of " v W

the helical segments which make up the shell. In the latter It follows from Eq. (37) that

case, the currents flow at an angle to the edges of the helical UL, T (50)
segments. Thus, in the former case it is possible for the eddy % w w

currents to flow in a unidirectional continuous loop aroundEquation(46) yields

each helical segment of the shell, whereas in the latter case 9] dz

this is impossible because the helicity of the currents does iva";?”*: % W aimg =2

not match that of the shell segments. A shell for whigh ¢ 2m
=0 is termed a “resonant shell.” Likewise, a shell for which MA 6 .
n, #0 is termed a “nonresonant shell.” =y, P > F(mm+jM)wr Vs,
i
(51)
C. Nonresonant shells where
In the large aspect tokamak limit, characterized by the F(m,m’)=sind(m—m’)A 6/2]
inequality (10), with the additional constraint — sindmA 8/2)sindm’ A 6/2), (52)
IM[>[New, (43 and sincx=sinx/x. Here, use has been made of E4().
Eq. (39) yields Note thatF(m,m’)=0 whenm=0 or m’=0. This im-
lies that the On, harmonic completely decouples from the
Pz |Vt be={=le (44) problem In fact*the value oI'O;n*pis ar)éitrar IF-)lowever it
14 ~7Y™w|0, otherwise ' p : ' w Y. ,

is convenient to adopt the convention

for k=1 to M. Here, thec, are constants. Consider a non-

resonant shell, for which, #0, andJ,, is consequently zero 35 h($)W,,(£)d¢=0, (53
in the vacuum gaps. In this case,

I R where
Molqsk((i’): fg Mol b 1y dg 1, LGo<{<{s
k* — L —
G- MG o in, =0, @ [O’ otheruise !
= )= exp(—in =0,
] ] v _k K ] * ) for k=1 to M. It follows from Eq. (40) that
sinceJ,,({) is a continuous function. Heré(¢) is the net
toroidal current flowing in théth conducting segment of the PO — Nl iM A 9/2) W M 55
shell at toroidal anglap. It is clear that zero net toroidal w j;o sind] 6120, ®9
current flows in each helical segment of the shell. This is truqnte ration of Eq(38) over all values of yields
at all toroidal angles. Equatiorid4) and (45) can be com- 9 q y
bined to give
, 0 [1-h(0)13()d¢=0, (56)
k+
%: Vi, Y- fe P A6’ fe-<Esbe assuming than, #0. It follows that
0, otherwise on,  MA6O2T o iMin,
(46) N VI ,—;o sinajMA¢/2)3," ™. (57)
for k=1 to M.
Let D. Resonant shells
I Consider a resonant shell, for whiet) =0, andJ,, is
m,n* — N, X 1 ! . W.
\I'w(g’d’):% v, e/mened), (473 consequently constant in the vacuum gaps. In principle,
can take a different value in each gap. It follows from Eqg.
o 45) th
AV (Ld)= S AT e, @y 9
m ol gk( @)= [Iw(Lk-) = In(Lk+)1#0. (58)
N i(mE— Thus, a nonzero, constafinh ¢), toroidal current flows in
_ MMy ai(ME—n, ¢)
Inl(d.4) % Ju e ' (479 each helical segment of the shell. However, as is easily dem-

onstrated by summing the above expression fkoail to N
and making use of the fact tha,(¢) is a single-valued
function, the total toroidal current flowing in the shell is zero

wherem is the conventional poloidal mode number, and
is related to the conventional toroidal mode numberia

N at all toroidal angles, i.e.,
n,=n—-m—. (48)
M I i -
By analogy with Eq(14), k=21,N () =0. (

Phys. Plasmas, Vol. 4, No. 11, November 1997 Richard Fitzpatrick 4047



Clearly, in a resonant shell the constraint that zero net toroiFor shells which do not resonate with the central harmonic
dal current must flow in each segment of the shell is relaxedor resonant shells for whicltn=jM) F(m,m’) is given by

to the far less stringent constraint that zero net toroidal curkq. (52).

rent must flow in the shell as a whole. By analogy with Eq.  The dispersion relatiof63) can be written as a matrix

(46), this implies eigenvalue problem:

Ady

o (F—\A)W,,=0, (67)

~ | Yy jgh(i’)‘l'w((’)i, =<k
=" YTw MA® where
0, otherwise
(60) 1
for k=1 to M. It follows that A= ot (68)

. ~ MAg -
imIyO= 7, = 2 F(m,m+jM)wi Mo, (61)

mp+jM,ng+jN

w values/F is the matrix

W, is the vector of thal

where of the F(my+jM,my+kM) values, andA is the diagonal
F(m,m’)=sind (m—m’)A /2] (62  Matrix of the Ao Mo N yajyes. Herej andk are inte-

) . . ) ) gers. The fact thaF(m’,m)=F(m,m’) implies thatF is
provided thaim#jM. Here,j is an integer. lfim=jM, then  Hermitian, and hence that and y are real quantities. The

F(m,m’) is again given by Eq(52). Note that the 0;0 har-  onzero Fourier harmonics of the eddy current stream func-
monic decouples from the problem. In fact, the values ofjon are given by

W00 and 390 are arbitrary, but are conveniently fixed by
adopting the convention&3) and (56), in which case¥{,°

ande,)v;O are determined by Eq$55) and (57), respectively AMo*IM g+ N g Mo+ M.ng + N
with n, =0). Mo+jM.ng+jN_ . —Ww w
( «=0) I i Ty , (69
E. Reduction to a matrix eigenvalue problem wherej is an integer.

Equations(50)—(52), (61) and (62) yield the following For the special case,=IM, wherel is an integer, the
dispersion relation for the resistive shell mode: 0, no—IN hoa}]”[‘f,)\‘”'c couples into the eigenvalue problem.

Note that¥ "° ™ is not determined by the solution to Eq.

Awolno q,wolno:),ng F(mo,mo+jM)\I’$°+jM’”°+jN, (67), sinceF(0,mg+kM)=F(my+jM,0)=0. Furthermore,

.J\(:;”Of'N is not determined by Eq69), which is invalid for
(63) m= 0. However, Eqs(55) and (57) yield
wherej is an integer, and the “equivalent time constant”

MAG6 _ - . .
= Tw= (11 )7y (64) PO N= ) singjM A g2y WMot UTON o (70)
j#o
is the time constant of a uniform shell of radiag which
contains the same amount of metal as the segmented shell.

The fraction of gaps in the shell is given by and
MA6
f=1-——. (65
2

JO'“O"N=(1—1)2 singjM A g/2)3M:no* (=N
Note that the above dispersion relation is written in terms of " f j#0 W '
conventional poloidal and toroidal mode numbears:m, (71)
+jM and n=ngy+jN, respectively. Recall that the central
harmonicmg,ng is the only intrinsically unstable harmonic;
i.e., the only harmonic for which °""°>0. Thus, a positive
growth rate is only possible when the dispersion relationIn
couples to the central harmonic. The functibBfm,m’) is
given by Eq.(62) for shells which resonate with the central
harmonic, i.e., shells which satisfy

respectively.

In principle, F is an infinite dimensional square matrix.
practice,F can be approximated as a large, but finite,
dimensional square matrix without unduly affecting the
physically significant eigenvalues of E@7). This is equiva-
lent to the neglect of high mode number harmonics in the
ngM —mgN=0. (66)  eigenvalue problem.
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FIG. 1. The growth rate of the resistive shell mode plotted as a function of FIG. 2. The growth rate of the resistive shell mode plotted as a function of
the shell radius , for a plasma equilibrium characterized y=2.92 and

the shell radiug,, for a plasma equilibrium characterized by=1.3 and
g,=2.9. Data are shown for seven shells with the same equivalent timg;,=5.98. Data are shown for six shells with the same equivalent time con-

constantr,, . The solid curve shows the growth rate for a uniform shell. The stantr,,. The solid curve shows the growth rate for a uniform shell. The
other curves show the growth rate for axisymmetric partial shells made upther curves show the growth rate for axisymmetric partial shells made up

of uniform, identical, and equally spacéd 6) conducting segments whose  of uniform, identical, and equally spacéd 6) conducting segments whose
total angular extentin 6) is 180°. The number of segments are d¢detted

curve, three(short-dashed curygsix (long-dashed curyenine (dot short-

total angular extengin 6) is 180°. The number of segments are d¢detted
dashed curve and twelve(dot long-dashed curyeThe open circles show

curve, two (short-dashed curyethree(long-dashed curyefour (dot short-

dashed curve five (dot long-dashed curygand six (short-dashed, long-
dashed curve The open circles show the growth-rate predicted by the anathe growth rate predicted by the analytic formy2) for f=0.5.

lytic formula (27) for f=0.5.
mode plotted as a function of the shell radius for a plasma
i equilibrium characterized bg,=1.3 andg,=2.9. The cen-
1. Wesson profiles tral harmonic for this equilibrium ismy=3, ny=1, i.e.,
The matrix eigenvalue problem described above haa2'>0, whereas\!"”*"*1<0. The growth rate is calculated

been solved numerically using a “Wesson-like” plasma cur-for seven different shells, each of which has the same
rent profile3® “equivalent time constant”’r,,. The first shell is uniform
(1-r2/a?)%/%01 r<a (i.e., f=1). The' remai.nder.are axisymmetric partigl shells
(720  made up of uniform, identical, and equally spadéd 6)
conducting segments whose total angular exi@mté) is

F. Numerical results

3N=3401 ¢ t>a

wherea is the minor radius of the plasma. The associatedl80° (i.e., f=0.5). In other words, the partial shells possess
M,0 symmetry, whereM is the number of segments. Also

safety factor profile takes the form
2,2 shown is the growth rate predicted by the analytic formula
ria (27) for f=0.5.
q(r)=gaf 1—(1—r?a*)%/ %’ : (73 It can be seen that the analytic approximati@f) is in
r?/a?, r>a excellent agreement with the exact numerical result for the
partial shells consisting of two or less segments. For the shell

:Zrer']gt‘?ca;qsqgnfgztt?ﬁeV?gjserﬁaogothﬁ ds::fet?/e;a(;t;r_ 2? thse g_onsisting of three segments the agreement is less impres-
f A9 i r: i Xll h ne plasn | dud . );h pl Ilvt'y. tu ive. The analytic formula is significantly in error for the
Icient hetical harmonics are INciuded in e caiculation togy, g, consisting of more than three segments. Thus( 4.

determine the growth rate of the resistive shell mode to a ppears to be a good approximation provided that the poloi-

accuracy of less than 1%. Typically, this requires about 16 al lengths of all metal and gap sections of the shell are
greater than the poloidal half-wavelength of the central har-

harmonics.
_ _ monic, =rr,,/|mg|. In other words, provided that the angular
2. Axisymmetric shells extents of the metal and gaps sections are greater than 60°

In axisymmetric shellgi.e., N=0 shellg the conducting (sincemy=3 in this casg

segments and the vacuum gaps lie at constant poloidal angle. Figure 2 shows the growth rate of the resistive shell
mode plotted as a function of the shell radius for a plasma

In this situation, the resonance conditi@®b) is only satis-
equilibrium characterized by,=2.92 andg,=5.98. The

fied by axisymmetric modesi.e., no=0 mode$. In fact,
such modes are intrinsically stable for the large aspect-ratiaGentral harmonic for this equilibrium i81p=6, np=1. The

low-g, circular flux surface tokamak equilibria considered ingrowth rate is calculated for six different shells with the

this paper® The intrinsically unstable modes for such equi- same equivalent time constanj. The first shell is uniform
(i.e., f=1). The others are axisymmetric partial shells made

libria all possess helical symmettye., ng#0), and do not,
therefore, resonate with the shell. up of uniform, identical, and equally spacéd 6) conduct-
Figure 1 shows the growth rate of the resistive shelling segments whose total angular extént6) is 180°(i.e.,
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FIG. 3. The shell flux¥’, evaluated as a function of the poloidal anglfer . )
an axisymmetric partial shell of radius, /a=1. The plasma equilibrium is FIG. 4. The eddy current stream functidyp evaluated as a function of the

characterized by,=1.3 andq,=2.9. The solid and dashed curves show the poloidal angleé for an axisymmetric partial shell of radiug,/a=1. The

flux evaluated at two toroidal locations 90° apért ¢). The heavy curve Plasma equilibrium is characterized y=1.3 andq,=2.9. The solid and
indicates the position of the conducting segment of the shell. dashed curves show the stream function evaluated at two toroidal locations

90° apart(in ¢). The heavy curve indicates the position of the conducting
segment of the shell.

f=0.5). Thus, the partial shells again possdé49 symme-

try, whereM is the number of segments. Also shown is themode “explodes” through the vacuum gaps with an ideal
growth rate predicted by the analytic formu(@7) for f  growth rate. Note that the behavior shown in Figs. 3—6 is

=0.5. exactly that predicted by the simple analytic model intro-
The analytic formula is in excellent agreement with theqyced in Sec. II E.

exact numerical result for the partial shells consisting of

three or less segments. For the shell consisting of six seg Resonant shells
ments the agreement is not as good. The analytic formula is . -
a poor approximation for the shells consisting of more than /(Ar;:]cor:d)lngwtﬁelrieq.(6i6$), ; rr:tsig:;mnzrr]netl)lersatésgfﬁ—"i
six segments. Again, Eq27) seems to be valid whenever _ #\"0:"0/, K ' o~

the poloidal lengths of all metal and gap sections of the sheﬁneorg% Sl{a\iv'?c;ﬁgri;ig?;]:rﬂg tt?‘i g"rﬁSt;i'g?’Eizk\%/ arl?lf:e;flg con-
are greater than the poloidal half-wavelength of the centra¥ o P ' y B
he positive integers 1,2,3,....

harmonic. In other words, provided that the angular extents Consider the casg = 1, for whichM,N=my.n,. This a

of the metal and gaps sections are greater than(80te ; . .
mo=6 in this cask special case, because one of the harmonics which couples
0 into the problen{see Eq.[63)] is the —mg, —n, harmonic,

Figures 3-6 shoyv the shell fiut,,() and_ the eddy i.e., the harmonic with the opposite helicity to the central
current stream functiod,,(#) evaluated for axisymmetric

partial shells located at two different radii. In both cases, the
plasma equilibrium is that characterized gy=1.3 andq,

=2.9. The central harmonic for this equilibrium iisy= 3,

ng=1. The Fourier amplitudeif\?v’1 is conveniently normal-

ized to unity. Both partial shells consist of a 180° uniform
conducting section and a 180° vacuum dae., both shells
possesses 1,0 helical symmetrit can be seen that when

such a shell is situated close to the plagim, r,,/a=1), in x

which case the 3,1 shell stability index is relatively sniall > 0 \ |
fact, A3'=1.010, the eddy currents induced in the shell are i
fairly weak and the structure of the mode is not strongly L ‘\ /_
distorted from that of a 3,1 mode. On the other hand, when W

the same shell is situated further away from the plagma i ]
ro/a=1.22, so that the 3,1 shell stability index becomes .
relatively large(in fact, A3'=5.426, strong eddy currents -180
are induced in the shell and the mode structure deviates
markedly from that of a 3,1 mode. It is clear that the eddy
currents tend to expel magnetic flux from the conductingF'G-5- The shell flux¥, evaluated as a function of the poloidal angl&r

: ; : an axisymmetric partial shell of radiug /a=1.22. The plasma equilibrium
sections of the shell, forcing the flux to concentrate in thels characterized by,=1.3 andq,=2.9. The solid and dashed curves show

vacuum gaps. In fact, fcrrwlgz 1-235 the flux is completely e fiux evaluated at two toroidal locations 90° apartg). The heavy curve
excluded from the conducting sections of the shell, and théndicates the position of the conducting segment of the shell.

180

D O
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FIG. 6. The eddy current stream functidy evaluated as a function of the FIG. 7. The growth ratey of the re5|st_|ye ;hell mode plqtted as a function of
. . . - ) _ the shell radiug,, for a plasma equilibrium characterized gy=1.3 and
poloidal angled for an axisymmetric partial shell of rading /a=1.22. The . . .
A h - _ ) a=2.9. Data are shown for four shells with the same equivalent time con-
plasma equilibrium is characterized y=1.3 andg,=2.9. The solid and fant Th lid h th th rate f if hell. Th
dashed curves show the stream function evaluated at two toroidal locationzstfxgr?u.rvesesﬁg\:v tﬁgwfojvtr? vrv;te f(e;rgrg\r,;al ;itjlsoéoit:?r:iﬂm;hsrez é uaell
90° apart(in ¢). The heavy curve indicates the position of the conducting ; g p ; . o g > equally
segment of the shell spaced helical gaps whose total angular extent) is 180°. The various
9 ' curves correspond to a 3,0 shédlotted curvg a 3,2 shell(short-dashed
curve), and a 3,1 shell. For the latter shell, there are two independent modes;
. . . . . the even modglong-dashed curyeand the odd modédot short-dashed
harmonic. Note that the cylindrical tearing mode equationcurve. The open circles show the growth rate predicted by the analytic

(12) is invariant under the transformation,n— —m,—n. formula (27) for f=0.5.
This implies thatd ™~ "= A", In other words, instead
of their being a single intrinsically unstable harmofie.,
the my,ng harmonig in the problem, there are nowo in-  metal and gap sections of both shells are the same as the
trinsically unstable harmonics, albeit with identical positive poloidal half-wavelength of the central harmonic, the growth
stability indices,AvrCO'“O_ This allows the growth rate of the rate is in good, but not excellent, agreement with the analytic
resistive shell mode to depend on thleaseof the mode with  approximation(27). On the other hand, for the case of the
respect to the shell. In fact, for a shell which couples theresonant partial sheli.e., the 3,1 shellthe growth rate of
mg,ng harmonic to the-my, —ny harmonic(i.e., any reso- the resistive shell mode deviates markedly from that de-
nant shell for which Zny=jM, wherej is an integer, a  scribed in Sec. lll F2. As mentioned above, there are, in
general resistive shell mode is a linear superpositiotwof  fact, two growth rates associated with the 3,1 shell. The
independent modes witlifferent growth rates; an “even growth rate of the “odd mode” is markedly less than that
mode” [i.e., a mode for whichl,(¢) is even(in {) across predicted by the analytic approximatiq27), whereas the
each helical segment of the shell, wherég§?) is odd], and  growth rate of the “even mode” is much greater than that
an “odd mode”[i.e., a mode for whichl’,(¢) is odd(in ¢) predicted by Eq(27). Of course, the growth rate of a general
across each helical segment of the shell, whetkdg) is  resistive shell mode quickly asymptotes to that of the even
even. For a shell which does not couple thi,ny harmonic  mode. Thus, it is clear that a=1 resonant shell idess

to the —mgy, —ny harmonic, a general resistive shell mode iseffectiveat moderating the growth of an external kink mode
a linear combination of two independent modes with exacthythan a similar nonresonant shell possessing the same area
the same growth ratésee Figs. 3-6 fraction of gaps. Note that there is zero net toroidal current

Figure 7 shows the growth rate of the resistive shellflowing in each shell segment for both even and odd modes.

mode plotted as a function of the shell radius for a plasma Consider the cas@=2, for which M,N=2(mg,n).
equilibrium characterized bg,=1.3 andg,=2.9. The cen- This is also a special case in which thang, —ny harmonic

tral harmonic for this equilibrium iamy=3, ng=1. The couples into the problem. Thus, there are again two indepen-
growth rate is calculated for four different shells, each ofdent resistive shell moddéthe even mode and the odd mgde
which has the same equivalent time constapt The first  with different growth rates.

shell is uniform(i.e., f=1). The remainder are partial shells Figure 8 shows the growth rate of the resistive shell
containingthree evenly spaced helical gaps whose total an-mode plotted as a function of the shell radius for a plasma
gular extent(in ) is 180°(i.e., f=0.5. In other words, the equilibrium characterized bg,=1.3 andq,=2.9. The cen-
partial shells possess NB, symmetry. Also shown is the tral harmonic for this equilibrium ismg=3, ng=1. The
growth rate predicted by the analytic formu(@7) for f growth rate is calculated for four different shells, each of
=0.5. which has the same equivalent time constapt The first

It can be seen that for the case of the two nonresonarghell is uniform(i.e., f=1). The remainder are partial shells

partial shells(i.e., the 3,0 and the 3,2 shellhe growth rate  containingsix evenly spaced helical gaps whose total angular
of the resistive shell mode agrees with that described in Se@xtent(in ¢) is 180°(i.e., f=0.5). In other words, the partial

Il F 2. In other words, since the poloidal lengths of the shells possess & symmetry. Also shown is the growth rate
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FIG. 8. The growth rate of the resistive shell mode plotted as a function of FIG. 9. The growth rate of the resistive shell mode plotted as a function of
the shell radius, for a plasma equilibrium characterized by=1.3 and the shell radiug,, for a plasma equilibrium characterized gy=1.3 and
g,=2.9. Data are shown for four shells with the same equivalent time confla=2.9. Data are shown for four shells with the same equivalent time con-
stantr,. The solid curve shows the growth rate for a uniform shell. The Stant7, . The solid curve shows the growth rate for a uniform shell. The

other curves show the growth rate for partial shells containing six equallyPther curves show the growth rate for partial shells containing nine equally
spaced helical gaps whose total angular extent) is 180°. The various spaced helical gaps whose total angular extent) is 180°. The various

curves correspond to a 6,1 shétlotted curvg a 6,3 shell(short-dashed ~— CUrves correspond to a 9,2 shetlotted curvg, a 9,3 she_II(Iong-dashed
curve, and a 6,2 shell. For the latter shell, there are two independent mode§Urve, and a 9,4 shellshort-dashed curye The open circles show the
the even modglong-dashed curyeand the odd modédot short-dashed —growth-rate predicted by the analytic formui?) for f=0.5.
curve. The open circles show the growth rate predicted by the analytic
formula (27) for f=0.5.
partial shells possess & symmetry. Also shown is the
growth rate predicted by the analytic formu{@7) for f

predicted by the analytic formul@7) for f=0.5. =0.5.

For the case of the two nonresonant shélks., the 6,1 For the case of the two nonresonant shélks., the 9,2
and 6,3 shellsthe growth rate of the resistive shell mode and 9,4 shellsthe growth rate of the resistive shell mode
again agrees with that described in Sec. Ill F 2. That is, sincagain agrees with that described in Sec. Il F 2. That is, since
the poloidal lengths of the metal and gap sections of boththe poloidal lengths of the metal and gap sections of both
shells are less than the poloidal half-wavelength of the censhells are much less than the poloidal half-wavelength of the
tral harmonic, the growth rate is significantly greater thancentral harmonic, the growth rate is very much greater than
that predicted by the analytic approximati¢2?7). For the that predicted by the analytic approximati¢2?7). For the
case of the resonant partial shéile., the 6,2 shel] the case of the resonant partial shéile., the 9,3 shel] the
growth rate of the odd mode is slightly larger than that pre-growth rate of the resistive shell mode is slightly larger than
dicted by Eq(27), whereas the growth rate of the even modethat obtained for a uniform shell. Thus, it is clear that.a
is virtually the same as that obtained for a uniform shell. Of=3 resonant shell idar more effectiveat moderating the
course, the growth rate of a general resistive shell modgrowth of an external kink mode than a similar nonresonant
quickly asymptotes to that of the odd mode. Thus, it is cleashell possessing the same area fraction of gaps. Note that a
that au =2 resonant shell imore effectiveat moderating the nonzero toroidal current flows in each helical segment for the
growth of an external kink mode than a similar nonresonantase of gu=3 resonant shell, whereas zero net current flows
shell possessing the same area fraction of gaps. Note that each segment for the case of a nonresonant shell.
there is zero net toroidal current flowing in each shell seg- For u>3, the growth rate of the resistive shell mode
ment for the odd mode, whereas nonzero currents of altebehaves in an analogous manner to that shown in Fig. 9. As
nating direction flow in the segments for the even mode. w increases, the growth rate asymptotes to that of a uniform

Consider, finally, the casg=3. The —my, —ng har-  shell possessing the same equivalent time constgntthe
monic does not couple into the problem in this case, so thgrowth rate for a similar nonresonant shell asymptotes to
growth rate of the resistive shell mode does not depend oimfinity.
the phase of the mode with respect to the shell. The above results were obtained by considering a par-

Figure 9 shows the growth rate of the resistive shellticular plasma equilibrium whose central harmonicnig
mode plotted as a function of the shell radius for a plasma= 3, no=1. These results are, nevertheless, quite general, as
equilibrium characterized bg,=1.3 andq,=2.9. The cen- can easily be verified by considering other plasma equilibria
tral harmonic for this equilibrium ismy=3, no=1. The with different central harmonics.
growth rate is calculated for four different shells, each of  Consider the limitf — 1, in which the angular extents of
which has the same equivalent time constapt The first  the helical shell segments tend to zero. In this limit, the
shell is uniform(i.e., f=1). The remainder are partial shells growth rate of the resistive shell mode tends to infinity for all
containingnine evenly spaced helical gaps whose total an-nonresonant shells. The situation is somewhat more compli-
gular extent(in ) is 180°(i.e., f=0.5. In other words, the cated for resonant shells. Far=1, the growth rate of both
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the even and odd modes tend to infinity. Fer=2, the  shells. Foru=2, the shell again couples themy,—ng, and
growth rate of the odd mode tends to infinity, whereas theny,ny harmonics. The most unstable resistive shell mode,
growth rate of the even mode asymptotes to that obtained fdhe so-called odd mode, is again such that the perturbed ra-
a complete shell with the same equivalent time constant. Fidial magnetic field peaks at the center of the gaps at all
nally, for u>2 the growth rate of the resistive shell mode toroidal angles. The growth rate of this mode is somewhat
asymptotes to that obtained for a complete shell with thdess than that obtained for a similar nonresonant shell con-
same equivalent time constant. Thus, in the lifrit1 there taining the same area fraction of gaps. Thus; 2 resonant

is a very marked difference in the ability of a nonresonantshells are better able to moderate the growth of an external
and au>2 resonant shell to moderate the growth of ankink mode than similar nonresonant shells. zor2 reso-
external kink mode. In the former case, the shell is quitenant shells, the growth rate of the resistive shell mode is
incapable of moderating the growth of the mode, whereas imdependent of the phase of the mode with respect to the
the latter case the shell performs almost as well as a conshell. In fact, the growth rate is almost identical to that ob-
plete (i.e., f=1) shell possessing the same equivalent timetained for a complete shell possessing the same equivalent

constant. time constant. On the other hand, for similar nonresonant
shells the growth rate of the mode greatly exceeds that ob-
G. Summary tained for an equivalent complete shell. Thus; 2 resonant

shells are far better able to moderate the growth of an exter-

In parametrizing the ability of a partial shell made up of ) .
P 9 y P P pal kink mode than similar nonresonant shells.

M,N helical conducting segments to moderate the growth o
anmg,ng external kink mode, it is necessary to make a dis-
tinction betweenresonantand nonresonantshells. In the
former case it is possible fang,ny eddy currents to flow in
unidirectional continuous loops around each helical segmerf. Introduction

of the shell, whereas in the latter case this is impossible  The most striking conclusion of the previous section is
because the helicity of the segments does not match that @4t which pertains to skeletéile., f—1) shells. It is found

the kink mode. Thus, in the former case a nonzero toroidajhat nonresonant skeletal shells are virtually incapable of
current can, in p_nnmple, flow in each helical segment of themoderating the growth of the ideal external kink mode,
shell, _whereas in the latter case zero net toroidal currenfhereas (>2) resonant skeletal shells perform almost as
flows in each segment. Of course, in both cases zero ngfe|| as complete shells possessing the same equivalent time
toroidal current flows in the shell, as a whole, at any givencynstant. In order to more clearly understand this rather sur-
toroidal location. . prising phenomenon, this section is devoted to an investiga-

For the case of a nonresonant shell the analytic modefon of the ability of skeletal shells constructed from thin

presented in Sec. Il E very successfully accounts for both thggjical wires (whose mutual spacing is much greater than

growth rate and the structure of the resistive shell modeyejr diameter to moderate the growth of the ideal external
provided that the poloidal extents of all metal and gap secgi,k mode.

tions of the shell exceed the poloidal half-wavelength of the

mode, 71, /|mg|. In Ref. 40 it is demonstrated that the ana-

lytic model also works for shells containing toroidal gaps,B. Preliminary analysis
provided that the toroidal extents of all metal and gap sec- . ) . . .
tions of the shell exceed the poloidal half-wavelength of the Consider a set oM unlfo_rm z-d|r_ected wires of d'am'
mode. Thus, it is reasonable to assume that the model d terd. Suppose that thith wire carries a currerti and is
scribed in Sec. Il E also holds for shells containing gaps o ocated at position vectak in (x,y) space. Itis assumed that

arbitrary shapésee Ref. 42 provided that the dimensions of [N€ typical spacing between the wirds, is much greater

all metal and gap sections exceed the poloidal half-f[hand' The rjnag.net|c field generated bAy the currents flowing

wavelength of the central harmonic, and also that the gap'§1 the wires is given bYBuires= V Yhwired 12, Where

are such as to preventy, ny eddy currents from flowing in o

unidirectional continuous loops around the shell. Paired 1) =~ 5 P L Infr—ry]. (74)
Resonant shells satisfyng,ng=u«(M,N), where u o

=1,2,3,... forny=1 modes(which are, typically, the most The energy per unit length contained in the magnetic field

unstable modes in tokamaks or =1, the eddy currents distribution is

excited in the shell couple the my,—ng, andmg,ng har- 1 k1

monics. Consequently, the growth rate of the resistive shell W= — E |_k|E+ — E My Iy, (75)

mode depends on the phase of the mode with respect to the 2 k=Tm 2 k=M

shell. The most unstable mode, the so-called even mode, {§here L, is the self-inductance per unit length of theéh

such that the perturbed radial magnetic field peaks at thgjre, andM,, is the mutual inductance per unit length be-

center of the gaps at all toroidal angles. The growth rate ofyeen thekth andlth wires. Assuming that the wires carry
this mode is far larger than that obtained for a similar non-zerg net current, i.e.,

resonant shell containing the same area fraction of gaps.
Thus, u=1 resonant shells are less able to moderate the l,=0 (76)
growth of an external kink mode than similar nonresonant  «k=1m '

IV. SKELETAL SHELLS
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the self- and mutual inductances can be easily shown to take m#0 AMVN
the form YexdTw 0,)= > | 1+ ﬁ) wn
m,n
Lk_z g— In §+O 5 y (773 Xexd'(me—n@]- (84)
] q Moreover, application of Ampe’s law yields
Mo
=——|—In|r,—r |O(—” (770 " ,
ki k | ) Mg,Ng__ A Mg,Ngay,Mg.Ng__ 0 -
20 b A\Ifwo O—AWO O\I/WO o__zkzuvI e imodk. (85
where
(ev)2 where{, ,=2m(k—1)/M.
1 1,(¢y h
g(§)=f 2 ydy. (78 Suquset at
ol I =Mk (86)

Here,l, is a standard Bessel functiofi= yuq/ 7R, andR
is the resistance per unit length of the wires. It is assume

{ﬁr k=1 toM, wherel is a constant. According to E¢r6),
that all fields and currents vary in time like exp). Note that

e total current carried by the wires at any given toroidal
angle must be zero. This is the case provided that

1/4 as -0 my# jM, wherej is an integer. It follows from Eq482) to
The circuit equation for théth wire is Ko AR\ Mieimoti
Vodr)=—5- |1+ (87)
1#k 2 2|my| A\To'”o
~ed ) = b ylzzl,M Miali =Rl (80) for k=1 to M. Thus, the circuit equation for thieth wire
whereB= V ¢,z is the magnetic field generated by cur- reduces to
rents external to the region containing the wires. The exter- AV'UO’nO M A 12k mo(d1— 0
nal field is also assumed to vary in time like extf{. The 7|1+ m Ao L= 7| :21M M eMotel ek
total magnetic field is given b=V 40z, where w ’
o _ 27R 88)
UD=dodD =50 2 Nihnlr—ry. (81) Ko ' A A
where L= (uo/2m)L, and My = (uo/2m)My,. The above
C. Resonant skeletal shells equation can be rearranged to give
1. Analysis Awo'”o
Consider the kink stability of a tokamak plasma sur- ~ Y™W™ 1 AMo.o/AMo.Mo (89)
rounded by a skeletal shell of minor radiys which is con- W ¢
structed out of helical wires. Suppose that at any given torWhere
oidal angle¢ there areM wires located at poloidal angles oM
TWorm—s (90)
) _Zw(k_1)+ N - 27R
k™ M M ¢, (82) is the equivalent time constant, i.e., the time constant of a

uniform shell of minor radius,, which contains the same

for k=1 toM. Clearly, the shell possessiElsN helical sym- . .
y P Skt y amount of metal as the skeletal shell. The quanif "™ is

metry. It is convenient to adopt the single harmonic approxi

mation, given by
A\r)vq/n: —2|m| (83 AMosNo_ _ —— imlv:g — (91
for m, n#mg, ng, with A™™>0. Thus, the shell stability Lick ZiZ1mMige ™00 = M/(2]my))
indices for all harmonics, apart from the intrinsically un- It follows from Eqgs.(76) and(77) that
stable central harmonic, take their vacuum val(es, the M
values obtained in the absence of the plasritas assumed —mgg — 9(N2y 7, /M) +In(4r,,/d)
that the shell is resonant, so thislt, N= w(mg,ng). It fol- A
lows that, in principle, a nonzero currentis able to flow in 1k _
the kth wire. Recall, from Sec. lIl, that if the shell is non- _|—21M In[sin(7r|l —k|/M)]e!27( = mo/M
resonant then zero net current must flow in each wire. In the ’
large aspect-ratio limit, the wires at any given toroidal loca- —M/(2|mg|), (92
tion are directed essentially in thg (or z) direction. Thus, since|r,—r |=2r,, sin(&—&l/2), which yields
the results of Sec. IV B can be applied to this problem.
The external perturbed poloidal magnetic fl(ixe., the AMo:No_ M
flux generated by perturbed currents flowing in the plgsma ¢ g(V2y71, /M) +In(2r,,/Md)+K(M,|mg|)
at the shell is given by (93
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5 tical. This only ceases to be the case whey=jM, wherej
c is an integer. However, in this situation the expres$@8) is
4F invalid. It follows that Eq.(93) can be written in the simpli-
3 fied form
s
2 ;— AMoNo_ M
L E s ¢ g(V2y7 M) +In(2r, /Md) +Ko(|mo|/M)
E s (96)
Bt i
0 0 i é é i 5 Equations(76), (81), (83), (84), (85), and(86) give
a
Amo,no AmOr”Oq;mOan
FIG. 10. The functiorkK (M,|m,|) plotted againstr=|my|/M. Data are not v ()=|1+ W—) pMoMogimgg W W
shown for the cases whereis an integer, since the expressi@8) is not 2| m0| W M

valid in this situation. The triangular, square, and circular points correspond

toM=3, 5, and 7, respectively. The dotted curve shows the funétifa). . imol
X In[ si —[|/2)]e'Mosk, 9
k:ELM [sin(| &= ¢112)] 97)
for all values ofk, where where{= 60— (N/M) ¢. Let
_ V()
K(M,|mo|)—|n(2'\/|)—m f(é“)—w- (98)
- 2 In[ Sin( /M )]cos 27} /| mg| /M) It is clear that the functiori({) is periodic; i.e.,
=M=t f(+2mjIM)=1(¢), (99)

(94 . .
wherej is an integer. Let
The fact that the value ok °"™ given by Eq.(91) is inde- ors
pendent of the value df suggests that the initial gue&’6) (= l, (100
for the distribution of currents flowing in the wires is correct. M

In the limit thatM — o= the functionK(M,|mg|) reduces to  for 0<s<1. It is easily demonstrated that

1 & sifm(2j+1)a] AMo:"o
KO(a’)_ln(Zﬂ')_z—’—jZl Sil’(ﬂa) f(S)Zl_%h(S), (101)
coo
1 where
x1In 1+j— , (95)
M
wherea=|mg|/M. A:‘Og'”t): lim A?Ov”oz I ,
n(2r,,/Md)+Kg(|mg|/M
Figure 10 show& (M,|mg|) andKq(|me|/M) plotted as Yo (2ry/Md)+Ko(Imol/M) 102
functions of |[mg|//M. It can be seen thaK(M,|my|) (102
=Kq(|mg|/M). In other words, the two functions are iden- and
|
s — S -om—1 I[sin(ar|j —s|/M)]e'270 =91/ 1 M /(2] myg) 103
()= (/M) + 2, -1 IN[SI(7} /M) ]c0s 277} |mo| IM) + M/(2]mg]) (103
|
Here, whereWV, wires IS the perturbed poloidal flux at the edges of
q the wires. Note that Ra(s)]~Im[h(s)] whenM~O(1), but
Sy= <1 (104) that InTh(s))J/R€ h(s)] -0 asM — .
4y, Figure 11 shows the normalized amplitude of the shell

is the normalized helical coordinate of the edge of a wire, adlux  plotted as a function of the normalized helical angle
is 1—s,,. Equation(101) is only valid in the vacuum region for & case whers,,=0.01. It can be seeg}tr;at when the shell
sy,<s<1-s,. Note that REn(1-s)]=Rdh(s)], whereas stability index for the central harmonit °" is much less

Im[h(1—s)]=—Im[h(s)]. It can be seen thah(s,)=h(1 than the critical valuesglg'”o, f(s) is uniform. However, as

—Sy)=1. It follows from Eqs.(98) and (101 that the ratioA[°"/AT" increases, magnetic flux is gradually
AMoMo expelled from the wires, in accordance with Ef05), and
Y W"es‘ = w accumulates in the vacuum gaps between the wires. Eventu-
Mo, No ‘ T AMo:Mo’ (109 mg.n mg.n . . e
Yy coo ally, whenA °70=A _2"°, there is no magnetic flux left in
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L5 e A70™ magnetic flux is gradually expelled from the wires
. [see Eq(105 and Fig. 11, and the growth rate of the resis-

7 tive shell mode accelerates. Finally, when the shell stability
index reaches the critical valug°" [defined by Eq(102)]

— there is no flux remaining in the wires, and the growth rate of
the resistive shell mode becomes infinite: this corresponds to
the marginal stability point for theng,n, ideal external kink

1 mode. ForA[°">AT0" the mode explodes between the
wires with an ideal growth-rate.

According to Eq.(102 and Fig. 10, the critical shell
5 1 stability indexA 7" is zero whenevejmg|=jM, where]

0.0 Locedleoorevoon o M is a nonzero integer. In other words, BhN resonant skel-
20200 02 04 06 08 1.0 1.2 etal shell is quite incapable of moderating the growth of the
S mg,Ngy external kink mode ifm,| is a nonzero integer mul-
tiple of M. This is not a surprising result. Equatid86)
FIG. 11. The normalized amplitude of the shell flfiplotted as a function implies thatl, =1 for all k (i.e., the same current flows in
ofm tlt]e Sogmalized helica! angla_s for three different values of each wire at any given toroidal anglwheneved mo|=jM.
A" 1o Two of the wires which make up the shell are sholahs ;o immediately yield$ =0 (i.e., zero current flows in each
=0 ands=1). The angular diameter of the wires is 0.02 normalized units. ", . N X
The functionf(s) is plotted in the region between the two wires far  Wire) since, by symmetry, a helical mode cannot induce a net
=12 andmy=3. The solid curve corresponds w[°"/AT"=0, the  toroidal current in a passive conducting shell. Thus, the
dotted curve corresponds [ "%/ AT "=0.5, and the dashed curve cor- Mg,Ny, mode excites no eddy currents in the shelhif| is a
responds ta\;°"/ATO0=1, nonzero integer multiple oM, which implies that the shell
is unable to affect the growth rate of the mode.

At first sight, Eq.(102 and Fig. 10 seem to suggest that
the critical shell stability indexA "™ takes a particularly
large value whenevdmg|=(j+1/2)M, wherej is an inte-
ger. However, this is not necessarily the case. Equd8éh
yieldsl =[1|(— 1)~ whenl is purely real, and,=0 when

The growth rate of the resistive shell mode for the casa is purely imaginary(since the physical current flowing in
of a resonant skeletal shell constructed from helical wires ishe kth wire is obtained by taking the real partig). Figure
determined by Eq(89). Note that this expression is similar 10 determines the critical shell stability index of the former
to the dispersion relatiof27) obtained in Sec. Il E, except mode, but not the latter. In fact, the critical shell stability
that the form of the paramete‘x?o’no is different. As was index of the latter mode is zero, since the mode excites no
demonstrated in Sec. lIl, the simple analytic model outlinededdy currents in the shell. In other words, whieny|= (j
in Sec. Il E successfully accounts for the properties of thet 1/2)M the growth rate of the resistive shell mode depends
resistive shell mode for nonresonant shells, provided that then its phase. It is possible to find a particular phase for which
dimensions of all metal and gap sections exceed the poloidaio eddy currents are excited in the shell, and the shell is,
half-wavelength of the central harmonic. It can now be seeitherefore, unable to affect the growth rate of the mode. There
that the analytic model of Sec. Il E can also be applied tds a second, linearly independent, phase for which eddy cur-
resonant skeletal shel[svhere, by definition, the length of rents of alternating direction are excited in the wires making
the metal sections of the shéile., the wireg in one direc- up the shell: the shell is clearly capable of moderating the
tion is much less than the poloidal half-wavelength of thegrowth rate of the mode in this casi fact, the critical
central harmonil; provided that the critical shell stability stability index is that determined by Fig. 10
index AT is determined by Eq96), instead of Eq(29). When [mg| #jM and [mo| # (j +1/2)M, wherej is an
Note thatA™ " is a weak function of the growth ratgvia  integer, the nonzero critical shell stability index""° for
the functiong( ), which determines the amount of magnetic th€Mo,no mode is determined by E¢102) and Fig. 10, with
flux penetrating into the interior of the wires. When the NO qualificat.iorjs. In this case, Fhe growth rate of the resistive
growth rate is relatively largéi.e., y7,>M) A7°™(y) as- shell mode is m_dependeEt of its phase. o . I
ymptotes to the constant vallm?og’“o [see Eq(102]. The It now remains to make a connection between the results

dispersion relation(89) can be interpreted in exactly the of this section and those of Sec. IllF 3. The case
. . . =jM, wherej is an integer, corresponds to the case 1
same manner as the earlier dispersion relah When the J J 9 P s

o Moo investigated in Sec. Il F 3. Recall, from Sec. Il F 3, that in
shell stability index for the central harmoniq °™® is much  he skeletal limit,f— 1, the growth rate of the resistive shell

less than its critical valua 0", the amplitude of the mag- mode tends to infinity for az=1 resonant shell. Further-
netic flux in the wires is equal to that in the vacuum gapsmore, zero net toroidal current is excited in each helical seg-
and the growth rate of the resistive shell mode is the same aaent of the shell. These results are in complete accordance
that obtained for a uniform shell containing the same amounivith the results of this section, where it is found that when
of metal as the wires. However, asc;o’no approaches |mg|=jM no currents are excited in the helical wires making

1.0 -

05 -

the wires. At this point, the growth rate of the resistive shell
mode becomes infinittssee Eq(89)].

2. Discussion

4056 Phys. Plasmas, Vol. 4, No. 11, November 1997 Richard Fitzpatrick



up the shell, and the growth rate of the resistive shell mode 1#k

becomes infinite. The caseg| = (j +1/2)M, wherej is an Vi— L=y 2 Myl =2Rl,, (106
integer, corresponds to the cage=2 investigated in Sec. 1=1M
[l F 3. Recall, from Sec. Il F 3, that in the skeletal limit

f—1, the growth rate of the resistive shell mode foa for k=1 to M. Here, Vi is the voltage(per unit length

R : round thekth loop, at¢p=0 (say), due to induction by cur-
=2 resonant shell tends to infinity for one particular phase 0fents flowing external to the shell. Likewidg,is the current
the mode, and tends to a finite value in the other linearly '

ind dent ph In the f t toroidal circulating in thekth loop at ¢=0. FurthermoreR is the
Independent phase. n e former case, zero net toroldal CU e e per unit length of the wires making up the loops,
rent is excited in each helical segment of the shell, where

: : L « is the self-inductance per unit length of tkia loop, and
in the latter case nonzero currents of alternating direction argy is the mutual inductance per unit length between
kI Kthe

excited in the _segments. These r(_asults are, again, i_n _comple fd [ th loops. Adopting the single harmonic approximation
accordance with the results of this section, where it is foun xemplified by Eq(83), it is easily demonstrated that

that when|mg|=(j + 1/2)M there are two linearly indepen-
dent resistive shell modes. The first mode excites no eddy
currents in the helical wires making up the shell and, there- AC;O'”O N o

fore, has a growth rate which tends to infinity. The second Vk=—7v| 1+ 2[mal W0 0eMofk( 2i)sin(moA 6/2).
mode excites eddy currents of alternating direction in the ° (107)
wires and possesses a finite growth rate. Finally, the case

[mo| #jM and|mg| # (j + 1/2)M, wherej is an integer, cor- Application of Ampees’s law at$=0 yields

responds to the case>2 investigated in Sec. Ill F 3. Re-
call, from Sec. Il F 3, that in the skeletal limif—1, the
growth rate of the resistive shell mode remains finite for a
u>2 resonant shell. This accords well with the results of

Mg.Ng_ A Mo:Noyg,Mo-No
AW o:T0= A Mo Mo

this section, where the growth rate of the resistive shell mode =— 5—0 I e~ Mo%(— 2i)sin(myA 6/2).
is finite wheneverimy|#jM and |mg|# (j +1/2)M. Note, T k=1M
from Eq. (102, that as the number of helical wirdd in- (108)

creases, but the area fraction of megloportional toMd)
remains constant, the critical shell stability index™"

2 Finally, the self- and mutual inductances of the loops are
tends to infinity. Thus, in this limit, the skeletal shell acts

like a complete shell with the same equivalent time constant. o 4r,, sin(A0/2)
Recall, from Sec. Il F 3, that in the analogous linit— oo Lk:ﬂ 2g+2 In[TD, (109
the shell also acts like a complete shell with the same equiva-
lent time constant. and
D. Nonresonant skeletal shells Mo Sir(A 6/2)

Mk|—ﬁln 1—W ) (110
1. Analysis

. . . _respectively, whereg(§) is given by Eg.(78), and §
A nonresonant partial shell built up from helical con _\/W-

ducting segments is subject to the constraint that zero net Suppose that ab=0

toroidal current must flow in each segmesee Sec. Il P

Thus, it is not possible to construct an effective nonresonant R

shell from independent helical wires, since zero current must |, =[e'™Mo%, (111

flow in each wire, and the shell is, therefore, incapable of .

moderating the growth of the ideal external kink mode. Confor k=1 to M, wherel is a constant. Note that the currents,

sider, instead, a shell of minor radiug constructed froniv (), circulating in the loops, and the voltaggser unit

identical wireloops each consisting of two interconnected length, V,(¢#), generated by external induction, vary with

helical wires. Thekth loop is such that théapproximately toroidal angle likee'(MNM~=no¢  Equations (106)—(108

toroidal) currentl(¢) flows at6= 6, + A 6/2 and the return yield the dispersion relation

current—1,(¢) flows atd= 6,— A 6/2, whered, is given by

Eqg. (82), for k=1 to M. It is assumed that the two wires A™Mo/Mo

which make up thekth loop (located at poloidal angleg, YTy= w (112

+A6/2) are connected together at a sufficiently large num- Y1 Aoy ATo !

ber of toroidal locations thd{(¢) is able to vary freely with

toroidal angle. In practice, this means that the toroidal spacwhere

ing of the connections must be less that the toroidal half-

wavelength,mRy/ng, of the central harmonic. Tw=SIP(MyA 6/2) 7,,,, (113
By analogy with the analysis of Secs. IV B and IV C, the

circuit equation for thekth loop is given by and
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4 sirf(meA6/2) M

?o,no: " £k 1 aiza(l—Kmg/M : : (114
L+ S 25 uMe'2m! =0mo/™M — 4 sirf(moA /2) M/(2|mg))
|
Here, parameterx measures the fractional area coverage of the
loops, whereas the parametemeasures the fractional area
W= - (115 coverage of the wires making up the loops. Geometric argu-
a

is the equivalent time constant of the shéle., the time
constant of a uniform shell of radiug, containing the same
amount of metal as the loopsL = (uo/27)L, and My
= (Hol2m)My .

Let a=|mp|/M, k=MA /27, ande=Md/27r,,. The

2 sif(mka)

ments easily yield the constrait<x<1-—e. Equation
(114 reduces to

F= — ,
g(\2y7, /M) +IN[2M sin(mx/M)/me]+I(M, k,a) — sir(mra)l a

and
. B 1 nl 1 Sinz(WK/M)
( ’K’a)_§j=1,lv|—1 S S (mj/M)
X cog27ja). (118
Mg .Ng

The fact that the value af | given by Eq.(114) is inde-
pendent of the value & suggests that the initial gue€kl 1)

for the distribution of currents circulating in the loops &t
=0 is correct. According to the dispersion relatidi2), the

growth rate of the resistive shell mode tends to infinity asvhere

Ao AT where

A70 M= fim A70", (119
y—®
It follows from Eqgs.(79) and(116) that
AP0 MO=MF (M, €k, ), (120
where
014 lllllll Jrrrrrios TTry13
I ¢
- ’éf -
L EA
=t 007 |- ‘f" -
L f 4
. Wy i
OOO :Mﬁunluulnu_
0 1 2 _3 4 5

FIG. 12. The functionF.(M,e,«,a) plotted againsta=|my|/M for €
=0.01,x=0.02, and various integer values mf,. The triangular, square,
and circular points correspond M =3, 5, and 7, respectively. The dotted
curve shows the functio®..(e, «, @).
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AT O=MF(y,M, €k, @), (116
where
(117
[
B 2 sif(mka)
Fm_ln[ZM sin(wx/M)/ el +I(M, k,a) —sit(mka)l a
(121
In the limit M — oo,
Fro—Gu.(€,k,a)
B 2 sirf(mka)
In(2kl€)+Ig( K, @) —sin(mra) a’ (122
2
Jo(k,)= 2 In 1—j7 cog2mja). (123

Figures 12, 13, and 14 shadw, andG,, plotted as func-
tions of @ for e=0.01,x=0.02, 0.5, and 0.98, respectively,
and various values d¥l. In all cases, it can be seen that

Fo.(M,e,k,a)=G.(€,k,a). (124

This strongly suggests that, in general,

1.0

0.8

0.6

0.4

0.2

0.0

FIG. 13. The functionF..(M,e,x,a) plotted againste=|mg|/M for e
=0.01, k=0.5, and various integer values of,. The triangular, square,
and circular points correspond M =3, 5, and 7, respectively. The dotted
curve shows the functiol..(e,«,@).
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AMo:No index A7 °™ clearly depend on the type of shell in question.
For the case of a nonresonant shell constructed from helical
B 2M sir(mka) wire loops the two parameters are determined by FOk3d)
B g(\/W)+In(2K/e)+Jo(K,a)—sinz(q-rKa)/a’ and (1253, respectively. The critical shell stability index
(1253 A" is again a weak function of the growth rafe but
asymptotes to the constant vals&®' ™ [see Eq(125D] as
(125h v—o0. The dispersion relatiofL12) can be interpreted in the
standard manner. When the shell stability index for the cen-
It is clear from Figs. 12—14 that the critical shell stability tral harmonicAerO'nO is much less than its critical value

. mg,n . . . . ) . . .
index A 2" achieves its maximum value whera=j 5™ the mode grows on the time scalg, which, in this

.. . . Cx
+1/2, wherej is an integer. This corresponds fimg| A 6/2 case, is less than or equal to the equivalent time constant

=(j+21/2)x. In other words, a nonresonant skeletal shell is%.

Mo 2M sirt(mka)
¢ In(2kl€)+Jo(k,a) —Sirt(mra) a

. . ~(i.e., the time constant of a uniform shell of radiys con-
best able to moderate the growth of the ideal external kink . .
. . aining the same amount of metal as the Igopwwever, as
mode when the poloidal extents of the loops which make up-. ", mon } ]
070 approachea °'° the time scale on which the mode

the shell are odd-integer multiples of the poloidal half-Aw co

wavelength of the central harmonic. In this situation, thegrows gradually shortens. Eventually, when the shell stabil-
time constant of the shell isqual to the equivalent time ity index reaches the critical value\'cnofj'nO the time scale
constant, according to Eq113. It is also clear from Figs. pecomes zero: this corresponds to the marginal stability
12-14 that_ the cntu_:a_l shell_ stability m_dex tends to Zeropoint for themy, n, ideal external kink mode. Fat™ "
when xa=j, wherej is an integer. This corresponds to mo.Ng W
|mo|A /2= . In other words, a nonresonant skeletal shell”4c ~ the moade explodes through the loops with an ideal
is incapable of moderating the growth of the ideal externa@rowth-rate.

kink mode when the poloidal extents of the loops which It now remains to make a connection between the results
make up the shell are integer multiples of the poloidal waveof this section and those of Secs. Il F2 and Il F 3. In Sec.
length of the central harmonic. In this situation, the timelV C it was found that the behavior of @sonantshell built
constant of the shell also tends to zero, according to Equp from narrow (i.e., such that the poloidal extents of the
(113. If [mo|A6/2 is neither a half-integer nor an integer strips aremuch smallethan the poloidal half-wavelength of
multiple of 7 then the properties of the shell lie somewherethe central harmonjchelical conducting strips can be ac-
between the two extremes described above. Finally, in thgonted for, at a qualitative level, by modeling each strip as
limit in which the poloidal extents of the loops making up ? helical wire possessing the same helicity and the same

the shell are much less than the poloidal half-wavelength of . . . .
L resistance per unit length. This model cannot be applied to a
the central harmoni@.e., |mg|A 6/2<1), Eq.(1250 reduces .. ) .
similar nonresonantshell because of the constraint, which

to
) applies to all nonresonant shells, that zero net toroidal cur-
AMoMo_ M (|mo|A 6) (126  rentmust flow in each strip: this constraint implies that each
e 21In(2ry,A6/d)’ wire carries zero current, so the model shell has no effect on
and Eq.(113 yields the growth rate of the ideal resistive shell mode. A more
5 sensible approach is to model each strip as a helical wire
(|molA6)* __
- o

W= T (127)  loop possessing the same helicity and resistance per unit
Thus, in the limit of narrow loops the critical shell stability
index becomes relatively small, and the time constant of the
shell becomes much less than the equivalent time constant.
Clearly, in this limit the shell is fairly ineffective at moder-
ating the growth of the ideal external kink mode.

‘qnlllll

o Do | IFIP R

2. Discussion

The growth rate of the resistive shell mode for the case B
of a nonresonant skeletal shell constructed from helical wire
loops is determined by E§112). Note that this expression is
similar to the dispersion relatio(27) obtained in Sec. Il E,
except that the forms of the parametetsand A7 are
different. Judging from the results of Secs. Ill and IV, it
appears highly likely that the dispersion relgtior_l for.the " e16. 14. The functionF (M, €,k,a) plotted againsta=|mg|/M for e
sistive She”, mode aIway; takes t,he fF’(W_) n §|tuat|ons =0.01,«x=0.98, and varizus 'in}eéer values mf,. The triang[:JIar, square,
where the single harmonic approximation is valid. Howeverang circular points correspond M =3, 5, and 7, respectively. The dotted
the expressions for the time constaitand critical stability  curve shows the functio..(e, x, ).
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length. By definition, zero net toroidal current flows in a (28) and(29), respectively. For the case of a resonant skel-
helical loop, so the above-mentioned constraint does not preetal shell constructed from helical wires, and A:‘Ovno are
clude a nonzero current from circulating in each loop. Thegiven by Eqgs.(90) and (96), respectively. Finally, for the
dimensions of the loops are determined as follows: the ancase of a nonresonant skeletal shell constructed from helical
gular widthA# of the loops is the same as the angular width,re loops, 7, and A™"™ are given by Egs(113 and
of the strips, and the diameters of the helical wires makinqlzsa' respectively. ¢
up the loops are the same as the radial thickness of the strips. 1o analysis ofskeletal shells is worthwhile for two
According to Eqgs.(127), the moglel predicts that the time 4in reasons. First, it permits a qualitative understanding of
constant of the shell is[if|A6)*/4 times the equivalent e rasyits of Secs. IIl F 2 and Il F 3, which pertain to shells
time constant. In other words, the time constant is much 1esg,ngirycted frommarrow helical conducting strips. It is clear
than the equivalent time constafily a factor which is of = 5¢ the marked difference in the ability of.&2) resonant
order the. ratio of the poloidal width of the helical strips Fo and nonresonant shells to moderate the growth of the ideal
the poloidal half-wavelength of the central harmonic, gyiernal kink mode comes about because in the former case a
squaregi According to Eq(126), the model predicts that the e toroidal current is able flow in each strip, whereas in the
critical shell stability index is relatively smaithe index is  |atter case zero net current must flow in each ofsige Sec.
proportional to the ratio of the poloidal width of the helical ) thys, resonant shells are similar to skeletal shells con-
strips to the poloidal half-wavelength of the central har-gu,cted from helical wires: the eddy currents excited in the
monic, squared Clearly, the model suggests that & nonresope| flow through the strips inuinidirectional continuous
qant shell built up frormarrow helical stnps is very meffec_— loops so the strips act rather like wires. On the other hand,
tive at moderating the growth of the ideal external kink honresonant shells are similar to skeletal shells constructed
mode. This conclusion is entirely consistent with the result$;om narrow helical wire loops: the eddy currents excited in
of Secs. llIlF 2 and IIl F 3. the shell are forced toirculate in the strips, which are nar-
row, so the strips act rather like narrow wire loops. Accord-
E. Summary and discussion ing to the analysis presented in this section, both the time
ponstant,r,, and the critical shell stability index [ 0",
mode dispersion relatiof89) for a resonantskeletal shell are much Iower_for a _nonresonant skeletal shell constructed
from narrow helical wire loops than for guf>2) resonant

made up of helical wires, and the resistive shell mode dis keletal shell 97 helical wi i usi
persion relation112) for a nonresonanskeletal shell made Sk€letal shell constructed from helical wires. This conclusion
is is good agreement with the results of Secs. IllF2 and

up of helical wire loops. In fact, both these dispersion rela- h d mai ; V7i hell
tions have exactly the same form as the resistive shell modyl F 3. The second main reason for analyzing shells con-

dispersion relation(27) derived in Sec. Il E. Note that all structed from helical wires and helical wire loops is that such

three dispersion relations depend on the single harmonic alg_nalysis is a necessary prerequisite.fo'r evaluating realistic
proximation. The latter dispersion relation is valid for any feedback control schemes for the resistive shell mode.

nonresonant shell for which the dimensions of all metal and

gap sections exceed the poloidal half-wavelength of the cen. APPLICATIONS

tral harmonic(see Sec. IIl G This criterion clearly excludes  a |ntroduction

skeletal shells. The fact that the same dispersion relation is ] )

also obtained for both resonant and nonresonant skeletal 1he theory presented in Secs. II-IV has many interest-

The main results of this section are the resistive shel

shells strongly suggests that E&7), ing and important applications in tokamak fusion physics. In
this section, a few of these applications are examined in
AmOlr'O
w depth.
YTw= (128

mg,N Mp,Ng ?
1-A,°7A 0 ) , I

. o . B. The design of passive stabilizing shells
represents aniversalform for the resistive shell mode dis-

persion re'atior(provided that the Sing'e harmonic approxi_ Consider the Stab|l|ty Of the ideal eXtel’nal k|nk mOde fOI’
mation is valid. In the above dispersion relation,, is the the case of a tokamak plasma surrounded Ipaaial shell
time constant of the shell, Wherea{'o’”o is the “critical  ©f minor radiusr,, . It is convenient to adopt the single har-
shell stability index.” The shell is capable of stabilizing the MONIC approximation, in which the shell stability indices for
ideal external kink mode provided thAt’v‘O‘”°<A?°‘”°. The all harmonlcs, apart from the (_:entrall harmonig,n,, take
resistive shell mode is unstable, and grows on the typic heir vacuum values-2|m|. It is easily demonstrated that

) MMy x Moo Moo his is an excellent approximation, unless the shell is located
time scaler,,, whenever 8<A,2"°<A 2% ASA2"0@p- yery close to the edge of the plasifaThe shell stability
prO&CheSﬁrcno'noy the growth rate of the resistive shell mode jndex for the central harmonic can always be written in the
rises precipitously until it attains that characteristic of theform
ideal external kink mode. The expressions for the parameters

Tw andA‘TO’no depend on the nature of the shell. For the case  AMo:No— —2“2%'_ (129
of a nonresonant shell for which the dimensions of all metal (re/ry)=Moi=1

and gap sections are larger than the poloidal half-wavelengtAere, r. is termed the critical radius for theg,n, ideal
of the central harmonicr,, and A?O‘no are given by Eqgs. external kink mode. Acomplete perfectly conducting shell
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whose radius is less than the critical radius is able to stabilize

For the special case of a partial shell in which the extents

the ideal external kink mode, whereas a similar shell whosef all metal and gap sections exceed the poloidal half-
radius is greater than the critical radius is incapable of stabiwavelength of the central harmonigr,,/|m,|, and the gaps
lizing the mode. The resistive shell mode dispersion relatiorare such such as to prevang,ng eddy currents from flow-

for a completeresistiveshell takes the form

— A Mo.No
yTW_ AW L]

(130

wherer,, is the time constant of the shell. Thus, the resistive

shell mode is unstable whereva{°"">0. The growth rate

of the resistive shell mode merges with that of the ideal

external kink mode ad °""°—c0. So, the marginal stability

point for the latter mode is A/°""°=0. It follows from Eqg.

ing in unidirectional continuous loops around the plasma
(i.e., the shell is nonresonanit can be shown thasee Sec.

1)

Tw=(1-1 )7y, (1363
Agomo= 2|mo|<1 ) (136b

where f is the area fraction of gaps, ang,= ugf ooy -

(129 that the ideal external kink mode is stable and theHere, o, and é,, are the conductivity anduniform) thick-

resistive shell mode is unstable fiQy<<r., whereas the ideal
external kink mode is unstable fog,>r.

The resistive shell mode dispersion relation fquaatial
shell takes the general for(see Sec. IV E

mo,no
AW

mg,N mp.Ng
1—AMMo-Mop oMo

YTw= (131

Here, 7, is the time constant of the shell, where®$°" is

termed the critical shell stability index. The resistive shell

mode is unstable wheneverQ 100 <A™, The growth

rate of the resistive shell mode merges with that of the ideal

external kink mode ad[°"*— A", Thus, the marginal

stability point for the Iatter mode i 0"0= AT,

Equations(129 and(131) can be combined to give

Yru=Are", (132
where
~ 2|m|
Mg.Ng _
AW (rC/F’W)Z mg _11 (133)
with
~ 2|m|
Tw= Tw 1+W , (134)
C
and
- 2|mg| | ¥2mol
rw=rwl 1+ W) (139
C

It is clear from a comparison of Eq&L30) and (132 that a
partial shell of time constant,, and radiug,, acts in exactly
the same manner asc@mpleteshell of effective time con-
stant7,, and effective radius,,. In other words, it is pos-

ness of the metal sections of the shell, respectively. Inciden-
tally, the value ofr, given in Eq. (1369 is equal to the
equivalent time constant, which is defined as the time con-
stant of a uniform shell of radiusg, which contains the same
amount of metal as the partial shell. Equati¢h34)—(136)
yield

Tw= Tw»

(137

and

1\ Y2Amgl
) (138

"r“wzrw(—l_]c

Thus, in this special case, the effective shell possesses the
same time constant as the metal sections of the actual shell.
As the fraction of gaps is increased, the radius of the effec-
tive shell also increases. This implies, not surprisingly, that
the shell becomes progressively less capable of stabilizing
the ideal external kink mode as the fraction of gaps is made
larger.

The results of Secs. Il and IV indicate that if a nonreso-
nant partial shell is such that the extents of all metal or gap
sectionsdo notexceed the poloidal half-wavelength of the
central harmonic,mr,,/|mg|, then the performance of the
shell is worse than that indicated above. In fact, Figs. 1 and
2 clearly suggest that, in this situation, the time constapt,
and the critical shell stability index[°", of the shell are
both lessthan the values given in Eq§136). In particular,
the time constant of the shell falls below the equivalent time
constant. It follows from Eq(135 that, in this case, the
radius of the effective shell imrger than that given in Eq.
(138. Thus, a nonresonant partial shell in which the extents
of all metal and gap sections exceed the poloidal half-
wavelength of the central harmonic is better able to stabilize
the ideal external kink mode that a similar sh&k., a non-
resonant partial shell containing the same amount of metal

sible to replace a partial shell by a complete effective sheland the same area fraction of gags which this is not the

whose time constant and radius are blattger than those of
the actual shell. As the radilrs, of the effective shell ap-

case. Clearly, it is of great importance, when designing a
nonresonant passive stabilizing shell, to ensure that the ex-

proaches the critical radiug,, the growth rate of the resis- tents of all metal and gap sectioagceedhe poloidal half-
tive shell mode merges with that of the ideal external kinkwavelength of the central harmonic.

mode. Thus, the marginal stability criterion for the latter

mode corresponds g, =r. It follows that the ideal exter-

A partial shell which permitang,ny eddy currents to
flow in unidirectional continuous loops around the plasma is

nal kink mode is stable and the resistive shell mode is untermed a resonant shell. The results of Secs. Il and IV indi-
stable forr,,<r., whereas the ideal external kink mode is cate that a resonant partial shell which possesses amdy

unstable forr,,>r.
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corresponds to the=1 case discussed in Sec. lll FBer-  for the resistive shell mode remain feasible when realistic
forms worse than a similar nonresonant skiedl., a nonreso- sets of feedback coils are employed. Consider, for example,
nant shell containing the same amount of metal and the sanibe recently proposed fake rotating shell stabilization
area fraction of gaps The basic reason for this behavior is schemé? In the original proposal, the feedback controlled
the existence of a particular phase for the resistive sheltonductors consist of a fimeetworkof interconnected toroi-
mode at which theng,ny eddy currents excited in the shell dal and poloidal wires which completely surrounds the
divert magnetic flux strongly through the gaps in the shell.plasma. A separate power amplifier is needed for each cell in
The results of Secs. Il and IV also indicate that a resonanthe network. The scheme works by mimicking the eddy cur-
partial shell which possesséso independent helical paths rent pattern of a poloidally rotating resistive shell using the
per helical period of the central harmorithis corresponds feedback controlled network of conductors. Thus, to all in-
to the u=2 case discussed in Sec. lll |F Berforms better tents and purposes, the network acts like a poloidaltpt-
than a similar nonresonant shell. Furthermore, a resonaig resistive shell. The combination of a stationary conven-
partial shell which possesséwree or moreindependent he- tional shell(e.g., the vacuum vesgedurrounded by a fake
lical paths per helical period of the central harmofticis  rotating shell(i.e., the feedback controlled network of con-
corresponds to the>2 case discussed in Sec. Il FBer-  ductors is capable of stabilizing the resistive shell mode
forms much better than a similar nonresonant shell: the pemprovided that the effective angular rotation frequency of the
formance improves as the number of independent paths irfake shell(which is proportional to the gain in the feedback
creases. In fact, the results of Sec. IV C suggest that for aircuits) is greater than the inverddR time of the network.
resonant partial shell which possesses three or more indepelm the following, two variants of the original fake rotating
dent helical paths per helical period of the central harmonicshell stabilization scheme which may be easier to implement
the time constant of the shell is equal to the equivalent timeexperimentally are investigated.
constant, and the critical shell stability index tends to infinity
as the number of paths tends to infinity. These results are ) . o
true irrespective of whether the extents of the metal and gap: F-e€dback using helical windings
sections of the shell exceed the poloidal half-wavelength of  Suppose that the feedback controlled conductors consist
the central harmonic. of a set of independertielical windings such that at any
The following general conclusions may be drawn re-given toroidal anglep there areM windings located at po-
garding the ability of a partial shell to moderate the growthloidal angles
of the ideal external kink mode. Forreonresonanshell the
. X ) 2w(k—1) N
optimum performance is achieved when the extents of all g =—— """+ __ ¢,
metal and gap sections exceed the poloidal half-wavelength M M
of the central harmonic. In this case, the shell acts like affor k=1 to M. The set of windings clearly possesddsN
effective complete shell whose time constant is the same aselical symmetry. As usual, it is convenient to adopt the
the conducting portions of the actual shell and whose radiusingle harmonic approximation, in which the shell stability
is somewhat larger than the radius of the actual shell. Notghdices for all harmonics, apart from the central harmonic
that the radius of the effective shell, which is given in Eq.moyno, take their vacuum values 2|m|. It is assumed that
(138), only depends on the area fraction of gaps in the actuahe windings areesonantwith the central harmonic, so that
shell. For a resonant shell the optimum performance is;;M —myN=0.
achieved when there are very mafige., at least twpinde- Suppose that each feedback winding is accompanied by
pendent helical paths through the shell per helical period o high resistance helical sensor loop, such thakthdoop is
the central harmonic. In this case, the shell acts like an eftocated atf, + 56. Here,d/r,,<50<2mw/M, whered is the
fective complete shell whose radius is that of the actual sheldiameter of the feedback windings. It is assumed that the
and whose time constant is the same as the equivalent tinfeedback windings and the sensor loops possess the common
constanti.e., the average time constant of the metal and gagninor radiusr,,. The voltage(per unit length generated by
sections of the actual shgliConsequently, it is possible to magnetic induction in th&th feedback winding is
improve the performance of a nonresonant partial shell by M
installing “jump leads” between separate metal sections of —a(J
the shell, so as to form at least two helical paths in the shell AV”V‘O'"O 9(v2ymwiM)
per helical period of the central harmonic. The jump leads
have the effect of decreasing t_he radius of the effective she.ll, —In(2r,,/Md) - Kq(|mol/M)
although, somewhat paradoxically, they also decrease its
time constant.

(139

Mo ~
V=7 ﬁ | eimok

: (140

where use has been made of the results of Sec. IV C, includ-
ing the assumed current distributioi®6). Note that
C. Feedback stabilization of the resistive shell mode =2m(k—1)/M. Likewise, the voltagéper unit length gen-

1. The fake rotating shell concept erated by magnetic induction in theh sensor loop is

The results of Sec. IV, which deals with partial shells Ko 7 gimogi

constructed from thin helical wires or thin wire loops, can be KT 2m
used to investigate whether feedback stabilization schemes (141

M
Ko~ IN(1M 56) - KO(|mO|/M)},
w
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Suppose that the signals generated in the sensor loops arentrolled set of helical windings. Thus,>r,>a, wherea
integratedfrom a time when the mode amplitude is negligi- is the minor radius of the edge of the plasma. The dispersion
bly smal), amplified by a factor 4, and then fed into the relation for themy,n, external kink mode is writtéft as
feedback windings. The signal fed into tkin winding is the 5

differencebetween the signals derived from thet(1)th and (A,—E,)(Ay—Ew)—(E,w)=0, (150
(k—1)th sensor loops. Thus, the modified circuit equationwhere
for the kth feedback winding is

A,=yT, (151
Vit Vir1— Vi1 Rl (14 is the Fjispersion relation of the passive shell, fafter re-
yT arranging Eq(143)]
wheAre_R is the resistance per unit length of the windings, and ‘o
I ,=le™ js the current flowing in théth winding. Equa- A= — (7m 'n w) Tw p— (152
tions (140—(142) yield the dispersion relation 1+ (yA S TA OO+ Q) 1 [A P
C c C
1-AgeoaTe B Ao is the dispersion relation of the feedback system. The re-
Y 1_A$0v”0/A30'”0 +ily TW_l—AV”JO’"O/ASO'n"' maining terms in Eq(150 are given by
43
where E = 2|mo — 2|mo (1539
U(relr)AMel=1 (ry /)Ml -1
M
=, (144
m _ 2|m|(ry/r,)?m
and SN W LT (1530
2sin2mmgy/M)
Qw:%' (145 2|mo|(rwlrv)‘m0|
T L (1539
Here, w/Ty
M Here,r is the critical radius defined in Sec. V B. The dis-

AMo:No_— , persion relation(150) is only valid in the limit where the
¢ g(NV2y1,IM)+In(2r,, /Md)+Kq(|mg|/M) coupling between the passive shell and the feedback wind-
(146 ings is mediated predominantly by the central harmonic. In

and other words, when
M _
AT~ . 14 r o\ 2img+iM|
c’ IN(1/M 860) + Ko(|mg|/M) (147 r—”) <1 (159
w

Note that the time constant,, given by Eq.(144), is the _ o _ _ o
same as the equivalent time constére., the time constant for all j#0, wherej is an integer. This constraint is not
of a uniform shell of minor radiusw which contains the particularly difficult to SatiSfy, unless the feedback Windings

same amount of metal as the feedback windings are located very close to the passive shell.

The dispersion relatiofi143 is (almos) the same(see It is both convenlent_and plal_JS|bIe to assume that the
Sec. V B as that of a uniform resistive shell of effective time time constant of the passive shell is much longer than that of
constant the fake shell. Thusy,> 7. With this ordering, plus the

2/m| orderingQ,,7,~ O(1), theresistive shell mode rodt.e., the

~ Mo root with y7,~0O(1)] of Eq. (150 can easily be shown to

=1l 1+ e | 148 v

w TW( A:‘,O'”0> (1489 take the form
and effective radius _ 2|mg|

- 2|my| | ¥4l o (re/ry)Aml—1

fo = ”W) | 149 1= O3[(ro /)2l = 1)/ 1 (r, 7, 2]

c’ X

02
which rotates poloidally with the effective angular rotation }+QW
frequency(},,. In other words, the feedback scheme causes 2|mg| Qy

the set of helical windings to act like a fake rotating shell. -l Fulr)2ml—1 14 02" (159
Note that the effective rotation frequencf,,, is directly Wi W
proportional to the gain in the feedback circuits. where

Suppose that the plasma is surrounded by a complete _
passive shel(e.g., the vacuum vesgealf radiusr, and time QW:QWTW [1_(rvﬁw)2‘m0|]- (156
constantr, . This, in turn, is surrounded by the feedback 2|mg|
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It is clear from Eq(159) that in the absence of feedbagle., remains incapable of stabilizing the resistive shell mode.
Q,,=0) the resistive shell mode takes the form of a nonro-When there arghree or morefeedback windingdi.e., N
tating mode growing on the time constant of the passive>2) it is easily demonstrated thai, is finite andQ,, is
shell. Feedback causes the resistive shell mogedpagate nonzero. Thus, in this case, the feedback scheme is capable
in the direction of apparent rotation of the fake shell, but itof stabilizing the resistive shell mode. It is concluded that the
also modifies the growth rate of the mode. If the effectiveminimum number of separate helical windings needed to
radius of the fake shell lies beyondthe critical radius, implement the fake rotating shell feedback schemthiise

then feedback always causesiaoreasein the growth rate. Note that in the case where there are two helical windings
However, if the effective radius ligasidethe critical radius, the feedback scheme only fails because the windings are
then feedback causes the growth ratedecrease In the  equally spaced in helical angleee Eq.(36)]. In fact, it is
latter case, there is a critical value of the effective angulapossible to implement the fake rotating shell feedback
rotation frequency of the fake shell),,, above which the scheme usingwo unequally spacedielical windings. Re-
resistive shell mode is stabilized. This critical rotation fre-grettably, this configuration of windings lies beyond the
quency is of order 14,. The corresponding critical “voltage scope of this paper, since it does not posses pure helical
gain,” G=|Vy.1—Vi_1l/(Jy|7|Vi]), in the feedback cir- symmetry. On the other hand, it is impossible to implement
cuits (i.e., the ratio of the voltage fed into a particular feed-the feedback scheme using a single helical winding.

back winding to that generated by magnetic induction in a  Note, finally, that the feedback scheme outlined above

neighboring sensor logps fails completely for resistive shell modes which a reso-
nant with the helical coils. Such modes generate no signals
_ T rw)2|m° (rg)?mol—(r,)2mol 15 in the helical sensor loops, so the fake shell does not rotate.
e lry, (r¢)2mol — (7,,)2Imol - 357 More important, according to Sec. IV D, the effective radius

of the fake shell is necessarily very large, in this case, be-
Thus, forG>G, the resistive shell mode is stabilized. The cayse the currents induced in the helical windings are unable
critical current which must be supplied by an individual o flow in continuous unidirectional loops around the plasma.
feedback amplifier is Thus, although it is possible to implement the fake rotating
shell feedback scheme with as few as three equally spaced
, (158  helical windings, driven by three power amplifiers, such a
moM system is only capable of stabilizing those resistive shell
modes which resonate with the windings.

271 b,

le~0c

whereb, is the perturbed radial magnetic field strength at
radiusr,,, and

(1 ) 2ol (159 3 Feedback using modular coils

Oc= 2 = (7 ) 2l (7 2o (1) 2mal

(re) (Fw) (Fu) (ry) Suppose that the feedback controlled conductors consist
of a uniform array ofmodular coils such that at any given
toroidal angle there ar®l wire loops centered on poloidal
angles

Likewise, the critical power which must be supplied by an
individual feedback amplifier is

22r2Rob?

Pe~g2 —— (160 2m(k—1)
MOoTw k:T' (161
Note that these critical values are similar in magnitude to
those obtained in the original feedback stabilization schemgy; k=1 to M. Thekth loop contains two toroidally directed
where the feedback controlled conductors consist of a fingires |ocated at poloidal angle.+A#/2. The loops are
network of interc.o.nnected poloidal_and toroidal wires. Thegssymed to be closely spaced in the toroidal direction, and
number of amplifiers needed to implement the feedbaclgch that their toroidal lengths are much less than the toroi-
scheme is equal to the numberioflependenbelical wind- 44| half-wavelength,mR,/n,, of the central harmonic. In
INgs, |.e.,.the fequ'fed number of amphﬂerst this limit, there is no significant coupling of different toroidal
Consider using the scheme outlined above to feedbackarmonics by the loops. Thus, the set of feedback coils ef-

stabilize anny=1 resistive shell mode. The feedback wind- fectively possesseM, O helical symmetry. As usual, the
ings resonate with the mode provided thét=Nmy, where  gjngle harmonic approximation is adopted in the following
N is the number of separate windings. When there is On%nalysis.
onefeedback windindi.e., N=1), mg/M=1, ?n”dn it follows Suppose that each feedback coil is accompanied by a
from Egs.(147) and (149 plus Fig. 10 that ”"°=0 and  high resistance sensor loop of equal area, such thaktthe
Tw—. Thus, in this case, the effective radius of the fakesensor loop is centered ow,+56. Here, d/r,<56
shell tends to infinity, and the feedback scheme is, thereforeg27#/M, whered is the diameter of the wires from which
incapable of stabilizing the resistive shell mode. When therghe feedback loops are constructed. It is assumed that the
aretwo feedback windingsi.e., N=2), my/M=1/2, sor,, is  feedback and sensor loops are all located at minor ragjus
finite, but it follows from Eq.(145) that(},,=0. Thus, in this  The voltage(per unit toroidal lengthgenerated by magnetic
case, the fake shell does not rotate, and the feedback schemneuction in thekth feedback loogat ¢=0) is
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' bly smal), amplified by a factor %, and then fed into the
2M sin?(|mo|A 6/2) feedback coils. The signal fed into théh coil is thediffer-
encebetween the signals derived from thiet(1)th and k

Vi=2y 5—; T eimot

1 —1)th sensor loops. Thus, the modified circuit equation for
X| Amomo t m) —g(N4y1,IM) the kth feedback coilat ¢=0) is
W —~ —~
Vierr = V-1
—In(2r,A0id)— Jo(A 0,M,|m0|)}, (162 Vieh = =2Rl, (169

whereR is the resistance per unit length of the wires making

up the feedback caoils, ariqi=feim04k is the current flowing
- ( MA&)T in the kth feedback coil(at ¢=0). Equations(162—(165)

where

Jo(AOM,|mg)= >, In
j=1e

“ 2] yield the dispersion relation
X cog27j|mg/M). (163 1A oATe " Ajeto
+1 Tw= ,
Here, use has been made of the results of Sec. IV D. Like- | 1—A$°’”°/A?,°’n° e 1—A$°’”°/A3°’n°
wise, the voltagéper unit toroidal lengthgenerated by mag- (166
netic induction in thekth sensor loogat ¢=0) is
where
Vi=2y £ feimoi oM sir? A6I2 ! + ! i .
k=2y5 1€ sine(|my| ) W 2[ma| Tw=SIrP(|Mg| A 6/2) 7,y , (167
and r,,= uoM/ 7R, with
QW:%' (168
Suppose that the signals generated by the sensor loops are
integrated(from a time when the mode amplitude is negligi- Here,
|
Moo _ _ 2M sir?(|mg|A 6/2) | (169
¢ g(N2y7 M) +In(2r,A6/d)+ Jo(A 6,M,|mg|) — Sir?(|mo| A 6/2) M/|my|
and _
mouny_ 2M sirf(|mg|A 6/2) 170
¢! IN(A 6/ 50)+ Jo(AO,M,|mg|) — siré(|mg| A 6/2)M/|mg|

Note that the time constant, is the same as the equivalent seen that, as long as the effective radius of the fake rotating
time constant(i.e., the time-constant of a uniform shell of shell,T,,, lies inside the critical radius;., the feedback
minor radiusr,, which contains the same amount of metal asscheme is capable of stabilizing the resistive shell mode. In
the feedback coils fact, stabilization is achieved once the effective rotation fre-
The dispersion relatioflL.66) is (almos}) the same as that quency of the fake shell),,, exceeds a critical value which
of a uniform resistive shell of effective time constany  is of order 1f,. The corresponding critical voltage gain,
[given by Eq.(148)], and effective radius,, [given by Eq.  G=|V,,;—Vi_1|(|¥|7V\), in the feedback circuité.e., the
(149], which rotates poloidally with the effective angular ratio of the voltage fed into a particular feedback coil to that
rotation frequencyl,,. Thus, the feedback scheme causesgenerated by magnetic induction in a neighbouring sensor
the set of feedback coils to act like a “fake rotating shell.” loop) is given by Eq.(157). The critical current which must
Note that the effective rotation frequendy,,, is again di- be supplied by an individual feedback amplifier is
rectly proportional to the gain in the feedback circuits. b
Suppose that the plasma is surrounded by a complete |_.~g, W ,
passive shell of radius, and time constant, . This, in turn, 1oM sin(|mo|A 6/2)
is surrounded by the array of feedback coils. In the limit inwhere b, is the perturbed radial magnetic field strength at
which the coupling between the passive shell and the feedradiusr,,, and the factog, is specified by Eq(159). Like-
back coils is mediated predominantly by the central harwise, the critical value of théotal power supplied by the
monic[see Eq(154)], the dispersion relation for thmg,ng  feedback amplifiers is
external kink mode takes the form given by E$50. In the b2 2
physically relevant limitr,>,,, the growth rate of the re- b g2 _2mTyRoby
sistive shell mode is determined by E@.55. It is easily ¢~ toTw SINP(|Mo|A6/2)

(172

(172
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The minimum allowable number of feedback coils in the4. Summary and discussion

toroidal direction is Ao+ 1.* Thus, the number of amplifi- The original fake rotating shell feedback stabilization

ers needed to implement the feedbapk s'cheme, which I§cheme, in which the feedback controlled conductors consist
equal to the number of feedback coils, is at leasty(2 f 5 fine network of interconnected toroidal and poloidal
+1)M. wires surrounding the plasma, is capable of stabilizing a re-
Consider using the scheme outlined above to feedbackistive shell mode oérbitrary helicity at relatively low val-
stabilize anmg,ny resistive shell mode. It is clear from Eq. yes of the current and total power supplied by the feedback
(168 that if 2my=jM, wherej is an integer, the2,,=0.  amplifiers. The main disadvantage of this scheme is the very
Thus, in this case, the fake shell does not rotate, and thierge number of feedback amplifie(se., one per network
feedback scheme is incapable of stabilizing the resistive shedell) which are needed to implement it. Another problem
mode. It follows that theninimumnumber of feedback coils arises from the fact that the feedback controlled conductors
in the poloidal direction needed to construct a fake rotatindink the primary induction winding of the tokamak: the pri-
shell isthree (i.e., M=3). It is clear from Eqs(149 and mary winding is likely to drive large eddy currents in the
(170 that the effective radius;, , of the fake shell tends to network as the plasma current is ramped up or down.
infinity when |mg|A 6/2= k7, wherek is an integer. Thus, in Section V C 2 discusses a modified fake rotating shell
this case, the feedback scheme is also incapable of stabilizif§edback stabilization scheme in which the feedback con-
the resistive shell mode. On the other hangljs minimized ~ trolled conductors consist of a set of independent helical
(as a function ofA#) whenever|mo|A 6/2=(k+ 1/2)m, windings. The main advantage of this modified scheme i_s the
wherek is an integer. In this situation, the critical current and V€Y Small numbefi.e., as few as thrgeof feedback ampli-

critical total power which the feedback amplifiers must putﬁers.needed o |m_plt_alment g Thef c#rreqt .an? tor:al pov_\ﬁ]r
out in order to stabilize the resistive shell mode are similar inrequwements are similar to those of the original scheme. The

magnitude to the values obtained when the feedback cormain disadvantage of the modified scheme is that it is only

: ) ; effective for the relatively small class of resistive shell
trolled conductors consist of a fine network of wires, or a set

of resonant helical windings. The critical current and criticalmOdes whiclresonatewith the helical windings. In fact, the
. e scheme fails completely for nonresonant modes. Further-

total power increase significantly above these values Wheﬂwore, the feedback controlled conductors still link the pri-
|mg| A 6/2% (k+ 1/2)7 [see Eqs(171) and(172)]. It follows mary winding.
that a modular coil feedback scheme works optimally when  geciion v € 3 discusses a modified fake rotating shell
the poloidal extent of each feedback coil is an odd integegiapilization scheme in which the feedback controlled con-
multiple of the poloidal half-wavelength of the central har- qctors consist of an array of modular coils. The number of
monic. The feedback scheme fails completely when the poteedback amplifiers needed to implement this scheme is rela-
loidal extent of each feedback coil is an even integer mUHi\/e]y Sma”, but not as small as the number of amp”fiers
tiple of the poloidal half-wavelength of the central harmonic.needed to implement the helical winding based scheme. On
Note, in particular, that the feedback scheme only workshe other hand, a modular coil based feedback stabilization
poorly when the poloidal extent of each coil is much smallerscheme is effective for resistive shell modes possessing a
than the poloidal half-wavelength of the central harmonic. wide range of different helicities. The current and total

For the case of a 3, 1 resistive shell mode, the minimunpower requirements are similar to those of the original
number of feedback coils in the poloidal direction needed tescheme for the relatively small class of resistive shell modes
construct a fake rotating shell feur. The optimum poloidal where the poloidal extent of each feedback coil is an odd
angular extent of each coil is 60°. Note that this configurainteger multiple of the poloidal half-wavelength of the mode.
tion of coils is incapable of stabilizing the 2, 1 or the 4, 1 The feedback scheme fails completely for a second relatively
resistive shell modes, since the fake shell appears stationafynall class of modes where the poloidal extent of each feed-
to these modes. However, witlive feedback coils in the 0Pack coil is an even integer multiple '01.‘ the poloidal half-
poloidal direction, each of poloidal angular extent 60°, it isWavelength of the mode. For the remaining modes, the feed-

possible to construct a fake rotating shell which is capable oP2ck scheme is effective, but the current and total power
simultaneoushstabilizing the 2, 1, 3, 1, and 4, 1 resistive requirements on the feedback amplifisignificantly exceed

shell modes. This scheme works optimally for the 3, 1 modet.hose of the orlg_mal fe-edbaf:k §cheme. Modular coils do not
. . link the primary induction winding of the tokamak, so there
since the poloidal angular extent of each feedback c0||

. . Is no danger of eddy currents being driven in the feedback
matches the poloidal half-wavelength of this mode. TheCOiIS as the plasma current is ramped up or down.

scheme works less efficiently for the 2, 1 and 4, 1 modes, All three of the fake rotating shell feedback stabilization

i.e., the critical currents and critical total power which the .nomes described above have their own peculiar set of ad-
feedback amplifiers must put out in order to stabilize thes‘?/antages and disadvantages. On balance, the scheme which
modes are larger than they would have been were the feegisesmodular feedback coils is the one most likely to suc-
back scheme optimized for these modes. The minimum nUNkeed experimentally.

ber of feedback coils in the toroidal direction needed to ) )

implement this scheme igiree Thus, the total number of D- Discussion

feedback coils and power amplifiers required by this particu- It is clear from Secs. V B and V C that the theory pre-
lar feedback stabilization scheme is at lefifséen sented in Secs. lI-1V ikighly relevantto both the design of
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incomplete passive stabilizing shells and the design of activéhan those of the latter typeprovided that they contaitwo
feedback system&or external modeswhich employ rela- or moreindependent helical paths per helical period of the

tively small numbers of feedback coils. Mg ,Ng mode. Resonant shells which contain oahehelical
path per helical period actually perform worse than similar
VI. SUMMARY AND DISCUSSION nonresonant shells. As the number of helical paths per heli-

Section Il introduces the basic concepts needed to detef:-a‘I period increases, the radius of the effective shell asymp-

mine the influence of a partial resistive shell on the growthtOteS to that of the actual shell. This effect takes place irre-

rate of the external kink mode in a lo@-large aspect-ratio, spective of the dimensions of the metal and gaps sections

circular flux-surface tokamak. A rather heuristic derivation jscompared to the poloidal half-wavelength of tie,,ng
given (in Sec. Il B of the fundamental dispersion relation M0de. Thus, a resonant partial shell possessing very many

(27) for the resistive shell mode. It turns out that this disper-helical paths per helical period of tmey,n, mode is just as
sion relation holds for all partial resistive shells, provided €fective at moderating the growth of the external kink mode

that only a single resistive shell motthem,,n, mode, say S @ complete _sheII Wi_th _th_e same minor radius: t_his remains
is intrinsically unstable. This condition is easily satisfied in "€ case even in the limit in which the area fraction of gaps
tokamaks. The dispersion relati¢27) allows a partial resis- N the pa}rtlal shell tends to unity.
tive shell to be replaced by a completéfective shellof Section IV is devo_ted to_the study _of ske_letal shells con-
radiusT,, and time constar, . The relationship between the Structed from thin helical wires or helical wire loops. Ana-
radius and time constant of the effective shell and those d¥/tic expressions are obtained for the effective radius and
the actual shell depends on the distribution of gaps in th&ffective time constant of the shell in both cases. This analy-
actual shell. In some cases, this relationship is found to tak&S iS worthwhile for two main reasons. First, it allows a
a particularly simple fornisee Eqgs(28) and(33)] in which qualitative understanding of the behavior of partial shells
T, and7,, only depend on the area fraction of gaps in thecontaining helical gaps, in the limit in which the fraction of
shell, and are independent of the actual arrangement of gagdapPs tends to unity. Second, and more important, such analy-
Note that the radius of the effective shell always exceeds th8iS is @ necessary prerequisite for evaluating the effectiveness
radius of the actual shell. The effective radfyscan be used of realistic feedback control schemes for external modes.
to parametrize the ability of a partial shell to moderate the ~ Section V describes various applications of the theory
growth of the external kink mode_m>rc, then the exter- presented in Secs. II-1V. In Sec. V B the theory is used to
nal kink mode is unstable with an ideal growth rate, whereaslerive some general rules regarding the design of passive
if T,,<r . the ideal mode is stable but the resistive shell modetabilizing shells. For nonresonant shells the optimum per-
is unstable, growing on the re|a’[ive|y |0ng time constant offormance is achieved when the dimensions of all metal and
the shell. Herer, is the critical radius of theny,n, mode; gap sections exceed the poloidal half-wavelength of the
i.e., r. is the largest radius at which a complete perfectlyMo,No Mode. In this case, the radius of the effective shell
conducting shell is able to stabilize th®,n, ideal external depends only on the area fraction of gaps contained in the
kink mode. It is clear that the smaller the effective radius ofshell, and is always greater than the radius of the actual shell.
a partial shell, the better able the shell is to moderate th&or resonant shells the optimum performance is achieved
growth of the external kink mode. when there are very manf.e., at least twp independent
Section 11l describes in detail, how the analysis of Sec. Ilhelical paths through the shell per helical period of the
can be employed to calculate the growth rate of the resistivé1y,Ng mode. In this case, the radius of the effective shell
shell mode for the case of a partial shell containirgical ~ approaches that of the actual shell. Thus, it is always pos-
gaps. In fact, the problem reduces to a straightforward twosible to improve the performance of a nonresonant shell by
dimensional matrix eigenvalue problem. It is necessary tdnstalling “jump leads” between the separate metal sections,
make a distinction between resonant and nonresonant shelRn as to form at least two helical paths per helical period of
In the former case, it is possible famy,ny eddy currents to  the mg,ny mode.
flow in unidirectional continuous loops around each helical In Sec. V C the theory is used to evaluate two feedback
segment of the shell, whereas in the latter case this is impostabilization schemes for the resistive shell mode, both of
sible because the helicity of the shell does not match that oivhich employ a relatively small set of independent feedback
themg,ng mode. For nonresonant partial shells, the radius ofoils. These schemes are both variants on the fake rotating
the effective shell is found to depend only on the area fracshell stabilization scheme described in Ref. 43. The original
tion of gaps, provided that the dimensions all metal and gapscheme is capable of stabilizing any resistive shell mode, but
sections of the shell are larger than the poloidal half-requires a very large number of feedback amplifiers. Section
wavelength of themg,ny mode. Nonresonant shells for V C 2 describes a scheme in which the feedback controlled
which this condition is not satisfied are found to possesgonductors consist of a set of independent helical windings.
larger effective radii than similar nonresonant shélle.,  This scheme can be effective with a few tasee feedback
nonresonant shells containing the same area fraction oj gapwindings (and power amplifieps but is only capable of sta-
for which this condition is satisfied. In other words, the bilizing the relatively small set of resistive shell modes
former type of shell is less able to moderate the growth of thavhich resonate with the windings. Section V C 3 describes a
external kink mode than the latter type. Resonant shells arecheme in which the feedback controlled conductors consist
found to perform better than similar nonresonant shigds,  of an array of modular coils. In order to be effective, this
the effective radii of the former type of shells are smallerscheme requires slightly more feedback c¢disd power am-
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plifiers) than the helical winding based scheme. On the otheduring the preparation of this paper. This research was
hand, the modular coil based scheme is capable of stabiliziniynded by the U.S. Department of Energy under Contract
a far wider range of resistive shell modes. No. DE-FG05-96ER-54346.
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