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Resistive wall feedback stabilization

T. H. Jensen® and R. Fitzpatrick?
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(Received 23 April 1997; accepted 15 May 1997

A feedback system, which essentially makes a resistive wall appear ideally conducting, is discussed.
Such a system applied to a resistive wall surrounding a plasma will stabilize certain modes which
would be unstable in the absence of the feedback system. The system discussed is similar to
the “intelligent shell” by Bishop[Plasma Phys. Controlled Fusi@1, 1179 (1989]; it utilizes

a number of autonomous subsystems, each covering only a fraction of the resistive wall. A model
example discussed suggests that only relatively few autonomous subsystems are needed and that
the requirements of the electronics appear modest.1997 American Institute of Physics.
[S1070-664X97)03208-4

I. INTRODUCTION per, emphasis is placed on a feedback system which makes
the resistive wall appear conductive.

There exist interesting cases for which a plasma sur- In this paper we only consider systems employing the
rounded by a wal(without touching if is stable when the strategy of utilizing a number of autonomous feedback loops.
wall is conducting but unstable if it is resistive. For the com-A formulation of the problem is given, which allows deter-
mon case, for which the Alfwetime of the plasma is much mination of the stabilizing properties of realistic feedback
shorter than the resistive time of the wall, the growth time ofarrangements. It is implied in this paper that the electronics
the instability is determined by the resistive wall time. Re-Of the feedback system is ideal in that there are no phase
sistive wall times are typically large compared to the re-shifts or delays between the sensed perturbdtiom perpen-
sponse time of relatively inexpensive power electronics comdicular magnetic fieldand the current driven in the loop,
ponents. Therefore, it is of practical interest to consideithough the formalism given allows incorporating such ef-

feedback systems which essentially make a resistive wall ag€Cts- An estimate of the power needed for the feedback am-
pear conducting to the plasma and thereby stabilize it. plifiers is also given; it suggests that only modest powers are

For axisymmetric devices such as tokamaks it is particu—needed'

larly easy to institute feedback stabilization for axisymmetric
modes of instability. Such systems are now well develdped.!- CONCEPTUAL FRAMEWORK

It is more complicated to make such a feedback system e consider perturbations of a plasma in an initial mag-
for nonaxisymmetric modes. For this case one can f0”0V\hetohydrodynamidMHD) equilibrium. The plasma is as-
two different strategies. Following one strategy, the systemsumed to be surrounded by a thin, resistive wall. The pertur-
is designed to stabilize a specific large scale, known, unpation of the field ish. For the problem considered, we only
stable modé-“ The sensing part of the system measures th@,eed consider cases for which the componertb_,qberpen—
amplitude and phase of the unstable mode. The sensing igicular to the wall, at the wall, is nonvanishing. This perpen-
formation is then utilized for driving coil currents, which dicular component is termet, (y,z). Here,y and z are
result in fields tending to suppress the mode. Following theoordinates which describe the location on the wall.
second strategy, many autonomous feedback systems are Outside the wall we assume that vacuum conditions pre-
used instead. Each will cover Only a fraction of the SUrfaCQ/a”, i.,e., Vxb = 0. Then the magnetic field can be repre-
area of the resistive wall. Each of the systems may utilize &ented by
loop surrounding its area; the sensing part senses a magnetic — —
field perpendicular to the wall; this information is used to b=VS, @
drive a current in the loop so that the resulting magnetic fieldor which
tends to oppose the field sensed. Thus such a feedback sys- —
tem will make the wall appear conducting in that it opposes v°s=0. E)
normal magnetic field perturbations. It is therefore not justSince the boundary condition far away from the walM§
operative for a specific mode; it is, however, required that= 0, one can, in principle, determirgif the perpendicular
the mode wavelength is large compared to the loop sizegradient ofS at the wall is given, i.e., ib, (y,z) is given.
Systems of this kind have previously been considered byherefore, ifb, (y,z) is given, the parallel component bf
Bishop5 and Fitzpatrick and Jensérn Ref. 6, emphasis was on the outer side of the wabo(y,2z) can, in principle, be
placed on a feedback system which imitates a resistive walietermined. Symbolically, one may write
moving relative to the real resistive wall. In the present pa- —

bio(y,2)=0pol{b.(y,2)}. ()]
aE|ectronic mail: jensen@gav.gat.com As discussed above, we only need consider perturbations
DIFS/The University of Texas at Austin, Austin, Texas. which develop slowly compared to the Alfwdime. There-
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fore, the perturbed configurations considered must also bil. EXAMPLES
MHD equilibria. Then, also on the inner side of the wall, one
can find the parallel component of the field if the perpendicu
lar component is given. Thus in analogy to E& we may
write

b_Hi(in) :O_pi{bL(y'Z)}-

Sinceb is divergence free and the wall is considered thin,
b, (y,z) is the same on both sides of the wall.

If one then specifieb, (y,z), one can find the total cur-
rent density(A/m) required to flow in the wall,

J_=<1/Mo><b_n—b_o>xﬁ=[o_mbl}—o_m{bl}]><ﬁ,(S)

As an initial, unperturbed equilibrium we choose, for the
'sake of simplicity, one with two ignorable coordinates,
namelyy andz. For the perturbation we assume also thit
ignorable while it is assumed periodic ynwith the period
L. It is believed that even such simple cases, in respect to
feedback stabilization, are representative of realistic cases.

The magnetic field of the initial equilibrium is described
by the functionsB, and ¢ through

(4)

B=B2+Vyx2. (11)

Ignoring plasma pressure, the equilibrium condition

(VxB) X B = 0isfoundtobe
V24+B,B,=0, VB,=B.Vy. (12)

The perturbation of the magnetic field is described by the
functionsb, and ¢ through

wheren is an outward pointing unit vector, perpendicular to
the wall.
The resistive wall current density is

T=l AxExh, ©) b=b,z+VexZ. (13
g The periodicity assumption means that
where n and § are the resistivity of the wall material and its
7 — y bxY)=b(xy+L), e(xy)=e(xy+L). (14

thickness, whileE is the electric field. Taking the curl of Eq.
(6) and utilizing the induction law one gets The condition that the perturbed equilibrium is also an equi-
librium is

T 5__5‘ 5b( :
VxJg-N=—VXE-n=—y— Z).
R n 777 Y

() V x(B+b)X (B+b)=0, (15)
The assumption is made here that the time dependence of t¥g1ich to first order in the perturbation yields
perturbation quantities ig”'. V2p+(B,B,) ¢=0. (16)

It is assumed that none of the feedback loops link the . o .
hole of the toroidally shaped wallbr the torus itself Thisis ~ 1he ideal MHD constraint yields that must vanish where
of practical importance since it means that a strong coupling/ ¥ vanishes.
between the feedback loops and the solenoid which drives A particularly simple case to consider is one where
the plasma current is avoided. It also means that the sur#(X)=#(—x) and B,B,)' = is a constant in the plasma
[1(y,z)]of feedback loop currents which link a given point region. For this case the equilibrium is somewhat pathologi-

(y,2) on the wall is well-defined. The wall current density @l in that it has a singular current at the singular surface; this
due to the feedback loop current is then does not affect the solutions considered sirce&anishes

there. The solution to Eq16) can then be expressed as

|

One notices thav/L is the “poloidal” wave number. We
assume the resistive wall is locatedxat =a and need only
considerx>0.

Using the concepts of Sec. Il, one sees from #d) that

JL=VI(y,2) XA 8)

The feedback loop currents are determined by a “feedback fP(X,y)=z ¢,€
prescription” from measurement df, (y,z); symbolically ’
one may write

I(y,2)=FOp{b,(y,2)}. ©)
From Egs.(3) to (5) and Eqgs.(7) to (9), one now gets

27y

2mivylL of
Sin|
L

X ,32—< (17

V-[Opofb, (y.2)} - Opi{b, (v.2)}] blzg_ﬁyD
— s
+V2F0p{bl(y,z)}+y ; b, (y,2)=0. (10 :2 o, 27I1_'| v 27 sinl B2_(27:V)2 .

The operatorso_pi,OpO,FOp are assumed linear; then Eq.
(10) is a two-dimensional, scalar eigenvalue problem for (18)

which y is the eigenvalue. If the real parts of all the eigen-Forx>a, we haveV X b= 0, thate must vanish ak—« as
values are negative, the system is stable. Thus the task is {ge|| as that it must match the solutié8) atx = a. Using
find a feedback prescription, i.&=Op, which will make the  these conditions one finds
real parts of all eigenvalues negative. Note that the formal-

ism given allows analysis of quite general systems; the feed- 2wy

L

bio V=2 @, e?m "/t sin
14

back loops may, for example, be overlapping, &@lp need
not be local and it may involve a delay betwdeandb, .
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and from Eq.(17) one finds

27y

L

)2

b_Hi~9= _E (pyeznivyn_ ,32—(

xco{a B*— 277,,)2
\/ — |-

(20

ar
1-cos——

7 (25

M 27
Q17 |
For the case of no feedback, i.€=0, Eq. (25) is well
known. One recognizes that the most unstable mode is for
w=1. For the case relevant to tokamaksn{2)2< 32 we
have stability forag<w/2, and one finds instability, even

for the case of a conducting wall f@aB> ; therefore the

We now consider, as an illustration, a feedback systeMegion of interest for the topic of this paperig2<ag<.

with M feedback loops per period. We introduce

( m
0, for O<y<ﬁ L,
m m+1
SH(y)=¢ 1, for M<V<W L, (21
0, for m*1 L<y<L.
\

Sensor loops measure the flux through each feedback loo

L
fo= | Sn(by ). 22
0

We consider a simple feedback prescriptipBq. (9)],
namely
M—-1

I(y)= QmE:O fnSm(Y), (23

p:

For the case of feedbac®# 0, we make the assumption
that the feedback amplifiers are ideal, i.,is real and
constant(independent of frequengyOne sees from Ed25)
that a positive Q is always stabilizing (except for u
=M, 2M,..., which are assumed stable without feedback
This suggests that the feedback scheme considered is practi
cal even with relatively few feedback loops per period. One
way of determining the needed number of feedback loops per
period is to solve the matrix eigenvalue problda¥) for
various values oM. Presently we do not know how many
loops per period may be needed.

An example with a geometrical structure which may be
considered closer to that of tokamaks is discussed in the
Appendix. In that example, helical symmetry is common for
both the initial and the perturbed equilibrium. The results
obtained are similar to those obtained above.

IV. ESTIMATE OF POWER NEEDS OF FEEDBACK
AMPLIFIERS

whereQ is a feedback gain. One can now express the eigen-

value problem(10) using Egs.(18), (19), (20), and (23).
Each term in the equation is multiplied & 2™#Y'* and
integrated over from O to L. The resulting matrix eigen-
value equation then becomes

L L

3

S |2w
7_+‘_M

sin

2 ,u)z
L d

a\//az—(

2T
1—cos—'u

M )‘P,ﬁNM:O, (24

w2

where N==*=1,+2,... . WhenM is sufficiently large one
may ignore the off-diagonal elements of Eg4) so that the
eigenvalues become

+> QM
N

(ﬁ) __|2m
nl, L
27 |
. /Bz—(myw{a el
L 2
sin a\/ﬁz—(sz'u) _
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The amplifiers used in the feedback systems are consid-
ered linear. Real amplifiers are only linear for amplitudes
below a certain maximum. A key factor for the cost of an
amplifier is its output power at this maximum amplitude.
Therefore, the cost of the feedback amplifiers depends on the
fluctuation amplitude of the feedback stabilized equilibrium.
The fluctuation amplitude cannot be determined from consid-
erations of stability alone. A lower limit for the fluctuation
amplitude may be obtained from thermodynamic arguments.
Instead, we here take an empirical approach. Fluctuation am-
plitudes from fusion experiments are typically in the range of
a few gauss. We use this amplituBeas an empirical input
for the power estimate.

We consider a mode with the wave numberand let
each feedback loop have the atdaThe effective feedback
current density needed to counteract a mode of amplitude
B is

Jei~ B/ o (26)
The current in each loopis related toJe through
Jer~ | V1] ~KI. 27
The growth time of the mode is
T~ M—Oa (28
kn

whered and 5 are the thickness of the wall and the resistivity
of its material. The inductive voltage needed in a loop is then

V~I12B/7. (29)

T. H. Jensen and R. Fitzpatrick 2999



One can then estimate the power needed per unit area of the =, 3 Voxy. (A5)

wall, using Eqs(26)—(29), S . .
9 Egs(26-(29 We assume that and ¢ are periodic iné with the period

Vi Ezn 2a/m. The condition that the perturbed configuration is an
TR u2s (30 equilibrium (ignoring pressune

If, for this estimate, one useB=5x10"% V s/n?, 7 Vx(B+b)X(B+b)=0, (A6)
=10"° Vm/A (appropriate for stainless stgebnd =5 yields to first order,
% 102 m, one get®~ 30 W/n?. This suggests that the cost

of am.plifiers will pe small relative to other costs of fusion f=F'o, V_2<P+ FF’—ZL = ,<p=0. (A7)
experimental devices. mR
Note that because of the ordering assumpt#B) the partial
ACKNOWLEDGMENTS derivative with respect ta becomes small so that the La-
This is a report of research sponsored by the U.S. DePlacian becomes
partment of Energy under Grant No. DE-FG03-95ER54309 __ 1 5 5 1 42
and Contract No. DE-FG05-96ER-54346. 2 —f —+ 5 —. (A8)
ror oar rcae
APPENDIX: EXAMPLE OF HELICAL SYMMETRY In ideal MHD, ¢ must vanish at the singular surfacewhere
Vi vanishes.

Similar results can be obtained using configurations

which appear closer to those of tokamaks. Using cylindrical In order to consider a simple case, we assume

coordinates, 6,z we introduce the “helical vector” on " (B% r<r<a,
FF'——F| = (A9)
__ . hr . mR 0, a<r<ono,
=z+—0. Al .
. mR (AD) One sees then from E@gA7) that the solution for ;<r<a

Here n and m are simulating toroidal and poloidal mode can be written as

numbers whileR simulates the major radius of the tokamak. - i

Helical symmetry is defined by -V =0. We consider initial, o(r.0)= . ¢.€ [adum(TB)+ B, Y um(T B,
unperturbed equilibria which possess both helical symmetry (A10)
and axisymmetry, i.e.9/d0=0, and perturbed equilibria
which remains helically symmetric but periodic érwith the Eq. (A10) becomes similar to Eq17). For a<r<ew, the

period 2m/m. X .
For this case it is convenient to represent the unper?'OIUtlon to Bqs(A7) and(A9) is of the form

where the ratiox, /B, is adjusted so thap(rg,0)=0, i.e.,

turbed field by the functions and ¢ through - ry-m

Hrbed Tietd by he Tnet  throug o(r.0=3 pye”“”"(r—) . (A11)
— 1 . — v s
B:? [FrtVyxu]. A2) Here thep,’s are

Using tokamak ordering, p,=a,Jd,m(@B)+B,Y,.m(aps), (A12)
— nr\?2 to match the solutions at=a. It is now clear that one can
(VylF)°<1, (ﬁ <1, (A3)  proceed in the same fashion as for thez=0 case dis-

- cussed above and obtain similar results.
one finds readily that\{ xB) xB=0 vyields L )
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