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Resistive wall feedback stabilization
T. H. Jensena) and R. Fitzpatrickb)

General Atomics, San Diego, California 92186-5608

~Received 23 April 1997; accepted 15 May 1997!

A feedback system, which essentially makes a resistive wall appear ideally conducting, is discussed.
Such a system applied to a resistive wall surrounding a plasma will stabilize certain modes which
would be unstable in the absence of the feedback system. The system discussed is similar to
the ‘‘intelligent shell’’ by Bishop@Plasma Phys. Controlled Fusion31, 1179 ~1989!#; it utilizes
a number of autonomous subsystems, each covering only a fraction of the resistive wall. A model
example discussed suggests that only relatively few autonomous subsystems are needed and that
the requirements of the electronics appear modest. ©1997 American Institute of Physics.
@S1070-664X~97!03208-4#

I. INTRODUCTION

There exist interesting cases for which a plasma sur-
rounded by a wall~without touching it! is stable when the
wall is conducting but unstable if it is resistive. For the com-
mon case, for which the Alfve´n time of the plasma is much
shorter than the resistive time of the wall, the growth time of
the instability is determined by the resistive wall time. Re-
sistive wall times are typically large compared to the re-
sponse time of relatively inexpensive power electronics com-
ponents. Therefore, it is of practical interest to consider
feedback systems which essentially make a resistive wall ap-
pear conducting to the plasma and thereby stabilize it.

For axisymmetric devices such as tokamaks it is particu-
larly easy to institute feedback stabilization for axisymmetric
modes of instability. Such systems are now well developed.1

It is more complicated to make such a feedback system
for nonaxisymmetric modes. For this case one can follow
two different strategies. Following one strategy, the system
is designed to stabilize a specific large scale, known, un-
stable mode.2–4 The sensing part of the system measures the
amplitude and phase of the unstable mode. The sensing in-
formation is then utilized for driving coil currents, which
result in fields tending to suppress the mode. Following the
second strategy, many autonomous feedback systems are
used instead. Each will cover only a fraction of the surface
area of the resistive wall. Each of the systems may utilize a
loop surrounding its area; the sensing part senses a magnetic
field perpendicular to the wall; this information is used to
drive a current in the loop so that the resulting magnetic field
tends to oppose the field sensed. Thus such a feedback sys-
tem will make the wall appear conducting in that it opposes
normal magnetic field perturbations. It is therefore not just
operative for a specific mode; it is, however, required that
the mode wavelength is large compared to the loop size.
Systems of this kind have previously been considered by
Bishop5 and Fitzpatrick and Jensen.6 In Ref. 6, emphasis was
placed on a feedback system which imitates a resistive wall
moving relative to the real resistive wall. In the present pa-

per, emphasis is placed on a feedback system which makes
the resistive wall appear conductive.

In this paper we only consider systems employing the
strategy of utilizing a number of autonomous feedback loops.
A formulation of the problem is given, which allows deter-
mination of the stabilizing properties of realistic feedback
arrangements. It is implied in this paper that the electronics
of the feedback system is ideal in that there are no phase
shifts or delays between the sensed perturbation~the perpen-
dicular magnetic field! and the current driven in the loop,
although the formalism given allows incorporating such ef-
fects. An estimate of the power needed for the feedback am-
plifiers is also given; it suggests that only modest powers are
needed.

II. CONCEPTUAL FRAMEWORK

We consider perturbations of a plasma in an initial mag-
netohydrodynamic~MHD! equilibrium. The plasma is as-
sumed to be surrounded by a thin, resistive wall. The pertur-
bation of the field isb̄. For the problem considered, we only
need consider cases for which the component ofb̄, perpen-
dicular to the wall, at the wall, is nonvanishing. This perpen-
dicular component is termedb'(y,z). Here, y and z are
coordinates which describe the location on the wall.

Outside the wall we assume that vacuum conditions pre-
vail, i.e., “̄3b̄ 5 0. Then the magnetic field can be repre-
sented by

b̄5“̄S, ~1!

for which

“̄

2S50. ~2!

Since the boundary condition far away from the wall is“̄S
5 0, one can, in principle, determineS if the perpendicular
gradient ofS at the wall is given, i.e., ifb'(y,z) is given.
Therefore, ifb'(y,z) is given, the parallel component ofb̄
on the outer side of the wallb̄i0(y,z) can, in principle, be
determined. Symbolically, one may write

b̄i0~y,z!5Op0$b'~y,z!%. ~3!

As discussed above, we only need consider perturbations
which develop slowly compared to the Alfve´n time. There-
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fore, the perturbed configurations considered must also be
MHD equilibria. Then, also on the inner side of the wall, one
can find the parallel component of the field if the perpendicu-
lar component is given. Thus in analogy to Eq.~3! we may
write

b̄i i~y,z!5Opi$b'~y,z!%. ~4!

Since b̄ is divergence free and the wall is considered thin,
b'(y,z) is the same on both sides of the wall.

If one then specifiesb'(y,z), one can find the total cur-
rent density~A/m! required to flow in the wall,

J̄5~1/m0!~ b̄i i2b̄i0!3n̂5@Opi$b'%2Op0$b'%#3n̂,
~5!

wheren̂ is an outward pointing unit vector, perpendicular to
the wall.

The resistive wall current density is

J̄R5
d

h
n̂3Ē3n̂, ~6!

whereh andd are the resistivity of the wall material and its
thickness, whileĒ is the electric field. Taking the curl of Eq.
~6! and utilizing the induction law one gets

“̄3J̄R•n̂5
d

h
“̄3Ē•n̂52g

d

h
b'~y,z!. ~7!

The assumption is made here that the time dependence of the
perturbation quantities isegt.

It is assumed that none of the feedback loops link the
hole of the toroidally shaped wall~or the torus itself!. This is
of practical importance since it means that a strong coupling
between the feedback loops and the solenoid which drives
the plasma current is avoided. It also means that the sum
@ I (y,z)#of feedback loop currents which link a given point
(y,z) on the wall is well-defined. The wall current density
due to the feedback loop current is then

J̄L5“̄I ~y,z!3n̂. ~8!

The feedback loop currents are determined by a ‘‘feedback
prescription’’ from measurement ofb'(y,z); symbolically
one may write

I ~y,z!5FOp$b'~y,z!%. ~9!

From Eqs.~3! to ~5! and Eqs.~7! to ~9!, one now gets

“̄–@Op0$b'~y,z!%2Opi$b'~y,z!%#

1“̄

2FOp$b'~y,z!%1g
d

h
b'~y,z!50. ~10!

The operatorsOpi ,Op0,FOp are assumed linear; then Eq.
~10! is a two-dimensional, scalar eigenvalue problem for
which g is the eigenvalue. If the real parts of all the eigen-
values are negative, the system is stable. Thus the task is to
find a feedback prescription, i.e.,FOp, which will make the
real parts of all eigenvalues negative. Note that the formal-
ism given allows analysis of quite general systems; the feed-
back loops may, for example, be overlapping, andFOp need
not be local and it may involve a delay betweenI andb' .

III. EXAMPLES

As an initial, unperturbed equilibrium we choose, for the
sake of simplicity, one with two ignorable coordinates,
namelyy andz. For the perturbation we assume also thatz is
ignorable while it is assumed periodic iny with the period
L. It is believed that even such simple cases, in respect to
feedback stabilization, are representative of realistic cases.

The magnetic field of the initial equilibrium is described
by the functionsBz andc through

B̄5Bzẑ1“̄c3ẑ. ~11!

Ignoring plasma pressure, the equilibrium condition
(“̄3B̄) 3 B̄ 5 0 is found to be

“

2c1BzBz850, “̄Bz5Bz8“̄c. ~12!

The perturbation of the magnetic field is described by the
functionsbz andw through

b̄5bzẑ1“̄w3ẑ. ~13!

The periodicity assumption means that

bz~x,y!5bz~x,y1L !, w~x,y!5w~x,y1L !. ~14!

The condition that the perturbed equilibrium is also an equi-
librium is

“̄3~B̄1b̄!3~B̄1b̄!50, ~15!

which to first order in the perturbation yields

“

2w1~BzBz8!8w50. ~16!

The ideal MHD constraint yields thatw must vanish where
“̄c vanishes.

A particularly simple case to consider is one where
c(x)5c(2x) and (BzBz8)85b2 is a constant in the plasma
region. For this case the equilibrium is somewhat pathologi-
cal in that it has a singular current at the singular surface; this
does not affect the solutions considered sincew vanishes
there. The solution to Eq.~16! can then be expressed as

w~x,y!5(
n

wne2p iny/L sinFxAb22S 2pn

L D 2G . ~17!

One notices thatn/L is the ‘‘poloidal’’ wave number. We
assume the resistive wall is located atx56a and need only
considerx.0.

Using the concepts of Sec. II, one sees from Eq.~17! that

b'5
]w

]y

5(
n

wn

2p in

L
e2p iny/L sinFaAb22S 2pn

L D 2G .
~18!

For x.a, we have“̄3b̄50, thatw must vanish atx→` as
well as that it must match the solution~18! at x 5 a. Using
these conditions one finds

b̄i0• ŷ5(
n

wnU2pn

L Ue2p iny/L sinFaAb22S 2pn

L D 2G ,
~19!
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and from Eq.~17! one finds

b̄i i• ŷ52(
n

wne2p iny/LAb22S 2pn

L D 2

3cosFaAb22S 2pn

L D 2G . ~20!

We now consider, as an illustration, a feedback system
with M feedback loops per period. We introduce

Sm~y![5
0, for 0,y,

m

M
L,

1, for
m

M
,y,

m11

M
L,

0, for
m11

M
L,y,L.

~21!

Sensor loops measure the flux through each feedback loop,

f m5E
0

L

Sm~y!b'~y!dy. ~22!

We consider a simple feedback prescription@Eq. ~9!#,
namely

I ~y!5Q (
m50

M21

f mSm~y!, ~23!

whereQ is a feedback gain. One can now express the eigen-
value problem~10! using Eqs.~18!, ~19!, ~20!, and ~23!.
Each term in the equation is multiplied bye22p imy/L and
integrated overy from 0 to L. The resulting matrix eigen-
value equation then becomes

H gd

h
1U2pm

L U1Ab22S 2pm

L D 2 cosFaAb22S 2pm

L D 2G
sinFaAb22S 2pm

L D 2G

1Q
M

L
2S 12cos

2pm

M D J wm

1(
N

QMS 11
NM

m D S 12cos
2pm

M Dwm1NM50, ~24!

where N561,62,... . WhenM is sufficiently large one
may ignore the off-diagonal elements of Eq.~24! so that the
eigenvalues become

S gd

h D
m

52U2pm

L U

2Ab22S 2pm

L D 2 cosFaAb22S 2pm

L D 2G
sinFaAb22S 2pm

L D 2G

2Q
M

L
2S 12cos

2pm

M D . ~25!

For the case of no feedback, i.e.,Q50, Eq. ~25! is well
known. One recognizes that the most unstable mode is for
m51. For the case relevant to tokamaks (2p/L)2!b2 we
have stability forab,p/2, and one finds instability, even
for the case of a conducting wall forab.p; therefore the
region of interest for the topic of this paper isp/2,ab,p.

For the case of feedback,QÞ0, we make the assumption
that the feedback amplifiers are ideal, i.e.,Q is real and
constant~independent of frequency!. One sees from Eq.~25!
that a positive Q is always stabilizing ~except for m
5M , 2M ,..., which are assumed stable without feedback!.
This suggests that the feedback scheme considered is practi-
cal even with relatively few feedback loops per period. One
way of determining the needed number of feedback loops per
period is to solve the matrix eigenvalue problem~24! for
various values ofM . Presently we do not know how many
loops per period may be needed.

An example with a geometrical structure which may be
considered closer to that of tokamaks is discussed in the
Appendix. In that example, helical symmetry is common for
both the initial and the perturbed equilibrium. The results
obtained are similar to those obtained above.

IV. ESTIMATE OF POWER NEEDS OF FEEDBACK
AMPLIFIERS

The amplifiers used in the feedback systems are consid-
ered linear. Real amplifiers are only linear for amplitudes
below a certain maximum. A key factor for the cost of an
amplifier is its output power at this maximum amplitude.
Therefore, the cost of the feedback amplifiers depends on the
fluctuation amplitude of the feedback stabilized equilibrium.
The fluctuation amplitude cannot be determined from consid-
erations of stability alone. A lower limit for the fluctuation
amplitude may be obtained from thermodynamic arguments.
Instead, we here take an empirical approach. Fluctuation am-
plitudes from fusion experiments are typically in the range of
a few gauss. We use this amplitudeB̃ as an empirical input
for the power estimate.

We consider a mode with the wave numberk, and let
each feedback loop have the areal 2. The effective feedback
current density needed to counteract a mode of amplitude
B̃ is

Jeff;B̃/m0 . ~26!

The current in each loopI is related toJeff through

Jeff;u“̄I u;kI. ~27!

The growth time of the mode is

t;
m0d

kh
, ~28!

whered andh are the thickness of the wall and the resistivity
of its material. The inductive voltage needed in a loop is then

V; l 2B̃/t. ~29!
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One can then estimate the power needed per unit area of the
wall, using Eqs.~26!–~29!,

P;
VI

l 2 ;
B̃2h

m0
2d

. ~30!

If, for this estimate, one usesB̃5531024 V s/m2, h
51026 V m/A ~appropriate for stainless steel!, and d55
31023 m, one getsP;30 W/m2. This suggests that the cost
of amplifiers will be small relative to other costs of fusion
experimental devices.
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APPENDIX: EXAMPLE OF HELICAL SYMMETRY

Similar results can be obtained using configurations
which appear closer to those of tokamaks. Using cylindrical
coordinatesr ,u,z we introduce the ‘‘helical vector’’

m̄5 ẑ1
nr

mR
û. ~A1!

Here n and m are simulating toroidal and poloidal mode
numbers whileR simulates the major radius of the tokamak.
Helical symmetry is defined bym̄–“̄50. We consider initial,
unperturbed equilibria which possess both helical symmetry
and axisymmetry, i.e.,]/]u50, and perturbed equilibria
which remains helically symmetric but periodic inu with the
period 2p/m.

For this case it is convenient to represent the unper-
turbed field by the functionsF andc through

B̄5
1

m2 @Fm̄1“̄c3m̄#. ~A2!

Using tokamak ordering,

~“̄c/F !2!1, S nr

mRD 2

!1, ~A3!

one finds readily that (“̄3B̄)3B̄50 yields

“̄F5F8“̄c, “̄

2c1FF822
n

mR
F50. ~A4!

The perturbation of the field is also assumed helically sym-
metric so that it may be represented byf and w through
@assume Eq.~A3! valid#

b̄5 f m̄1“̄w3m̄. ~A5!

We assume thatf and w are periodic inu with the period
2p/m. The condition that the perturbed configuration is an
equilibrium ~ignoring pressure!,

“̄3~B̄1b̄!3~B̄1b̄!50, ~A6!

yields to first order,

f 5F8w, “̄

2w1FFF822
n

mR
F G8w50. ~A7!

Note that because of the ordering assumption~A3! the partial
derivative with respect toz becomes small so that the La-
placian becomes

“̄

25
1

r

]

]r
r

]

]r
1

1

r 2

]2

]u2 . ~A8!

In ideal MHD,w must vanish at the singular surfacer s where
“̄c vanishes.

In order to consider a simple case, we assume

FFF82
2n

mR
F G85H b2, r s,r ,a,

0, a,r ,`.
~A9!

One sees then from Eq.~A7! that the solution forr s,r ,a
can be written as

w~r ,u!5(
n

wneimnu@anJnm~rb!1bnYnm~rb!#,

~A10!

where the ratioan /bn is adjusted so thatw(r s ,u)50, i.e.,
Eq. ~A10! becomes similar to Eq.~17!. For a,r ,`, the
solution to Eqs.~A7! and ~A9! is of the form

w~r ,u!5(
n

rneimnuS r

r s
D 2mn

. ~A11!

Here thern’s are

rn5anJnm~ab!1bnYnm~ab!, ~A12!

to match the solutions atr 5a. It is now clear that one can
proceed in the same fashion as for the]/]z50 case dis-
cussed above and obtain similar results.

1E. A. Lazarus, J. B. Lister, and G. H. Nelson, Nucl. Fusion30, 111~1990!.
2A. W. Morris, T. C. Hender, J. Hugill, P. S. Haynes, P. C. Johnson, B.
Lloyd, D. C. Robinson, and C. Sylvester, Phys. Rev. Lett.64, 1254~1990!.

3B. Alper, Phys. Fluids B2, 1338~1990!.
4A. B. Mikhailovskii and B. N. Kuvshinov, Plasma Phys. Rep.2, 172
~1996! ~translated from Fiz. Plazmy!.

5C. M. Bishop, Plasma Phys. Controlled Fusion31, 1179~1989!.
6R. Fitzpatrick and T. H. Jensen, Phys. Plasmas3, 2641~1996!.

3000 Phys. Plasmas, Vol. 4, No. 8, August 1997 T. H. Jensen and R. Fitzpatrick
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.83.61.231 On: Wed, 11 Mar 2015 20:21:31


