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The influence of finite wall thickness on the stability of the resistive wall mode (RWM) in a

tokamak is determined using a simple cylindrical plasma model in which the dissipation required

to stabilize the mode is provided by neoclassical parallel ion viscosity. For present-day tokamaks,

which possess relatively thin walls, finite wall thickness effects are found to have relatively little

influence on the RWM stability boundaries, which are almost the same as those calculated in the

thin-wall limit. On the other hand, for next-step devices, which are likely to possess much thicker

walls than present-day tokamaks, finite wall thickness effects are found to significantly impede the

ability of plasma rotation to stabilize the RWM all the way to the perfect-wall stability limit.
VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773907]

I. INTRODUCTION

The promising “advanced tokamak” (AT) concept is

only economically attractive provided that the ideal external-

kink b-limit is raised substantially due to the presence of a

rigid, close-fitting, electrically conducting, wall.1–3 This, in

turn, is only possible provided that the so-called resistive
wall mode (RWM) is somehow stabilized.4 Various tokamak

experiments have established that the RWM can, in fact, be

stabilized by modest levels (i.e., 1% of the Alfv�en velocity)

of plasma toroidal rotation.5–9 According to conventional

theory, this stabilization is a combined effect of plasma rota-
tional inertia and plasma dissipation.10,11

For the sake of simplicity, the majority of previously

published theoretical studies of RWM stability in tokamaks

have assumed that the wall is “electromagnetically thin”

(i.e., that the radial thickness of the wall is much less than

the electromagnetic skin-depth in the wall material). This

assumption is reasonable for present-day devices, which

tend to have relatively thin walls, but is not appropriate to

next-step devices, such as ITER,12 which will necessarily

have thick walls (for engineering reasons). The few pub-

lished RWM studies that have not made the assumption

that the wall is electromagnetically thin have concentrated

on the effect of wall thickness on the typical growth-rate
of the instability.13–15 However, as soon as we accept that

any conceivable RWM growth-rate would allow such a

mode to grow to a dangerous amplitude in a time that is

much less than the lifetime of the plasma discharge, it

becomes clear that the central question is the effect of

wall thickness on the RWM stability boundaries. In other

words, the central question is the extent to which a thick

wall facilitates, or impedes, the ability of modest levels of

plasma toroidal rotation to stabilize the RWM, and,

thereby, raise the effective b-limit. The aim of this paper

is to address this question directly using a relatively simple

cylindrical plasma model in which the dissipation required

to stabilize the mode is provided by neoclassical parallel
ion viscosity.16–18

II. DERIVATION OF RWM DISPERSION RELATION

A. Plasma model

Consider a large aspect-ratio, low-b, circular cross-

section, tokamak plasma of major radius R0, minor radius a,

on-axis toroidal magnetic field-strength B0, and on-axis

plasma mass density q0. The inverse aspect-ratio of the

plasma is �0 ¼ a=R0.

In the following, all lengths are normalized to a, all

magnetic field-strengths to B0, and all times to the hydro-

magnetic time-scale sH ¼ ðR0=B0Þ
ffiffiffiffiffiffiffiffiffiffi
l0 q0

p
.

The plasma equilibrium is described by the model

safety-factor profile

qðrÞ � r �0

BhðrÞ
¼ qa r 2

1� ð1� r 2 Þ qa=q0
; (1)

and the model density profile

qðrÞ ¼ ð1� r 2 Þ a: (2)

Here, r is the radial distance from the magnetic axis, qa the

safety factor at the edge of the plasma, and q0 the safety fac-

tor on the magnetic axis.

The plasma response to the near-resonant helical mag-

netic perturbation generated by a RWM (with, say, m periods

in the poloidal direction, and n periods in the toroidal direc-

tion) is governed by the eigenmode equation16–18

r
d

dr
q c02 1þ q2

� 2
0

lk
c0 þ lk r2

" #
þ Q 2

 !
r

d/
dr

" #

� m2 q c0 c0 þ q2

� 2
0

lk

� �
þ Q 2

� �
þ r

dQ 2

dr

� �
/

¼ 0; (3)

where c0 ¼ c� i n X/ is the mode growth-rate in the plasma

frame, c the growth-rate in the laboratory frame, and X/ the
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plasma toroidal angular rotation velocity. (Any plasma poloi-

dal rotation is neglected in this paper, for the sake of simplic-

ity. Likewise, X/ is assumed to be uniform.) Furthermore,

Q(r)¼m/q(r) � n, and �c0 / is the perturbed scalar electric

potential associated with the RWM. It is assumed that m
� n �0 (which is a standard large aspect-ratio tokamak

ordering). Finally, lk is the neoclassical parallel ion vis-
cosity.16–18 Note that the dissipation due to neoclassical

parallel ion viscosity is strongly peaked at the edge of the

plasma (where Q is small). Hence, it is a reasonable

approximation to set the neoclassical viscosity profile in

Eq. (3) to a uniform value characteristic of the viscosity

at the edge of the plasma.17

Launching a well-behaved solution to Eq. (3) from the

magnetic axis (r¼ 0), and integrating to the edge of the

plasma (r¼ 1), we obtain the complex plasma response
parameter

sðcÞ ¼ � 1

2
1þ m�1 d lnðQ /Þ

d ln r

� �
r¼1

: (4)

This parameter fully specifies the response of the plasma to

the RWM.

B. Plasma stability parameter

The marginally stable ideal eigenmode equation

r
d

dr
Q 2 r

d/
dr

� �
� m2 Q 2 þ r

dQ 2

dr

� �
/ ¼ 0; (5)

is obtained from Eq. (3) by neglecting plasma inertia, and

governs the stability of the ideal external-kink mode.19 Cal-

culating the plasma response parameter (4) from the above

equation, we obtain a real number, sb, which is equivalent to

the well-known Boozer stability parameter for the ideal

external-kink mode.20 It can be demonstrated that the m, n
ideal external-kink mode is unstable when the wall is absent

if sb > 0, and is unstable even if the wall is perfectly con-

ducting when sb > sc � c=ð1� cÞ.19,20 Hence, we can define

a real plasma stability parameter

�s ¼ sb

sc
: (6)

The so-called no-wall stability limit corresponds to �s ¼ 0,

whereas the perfect-wall stability limit corresponds to �s ¼ 1.

C. Vacuum solution

In the vacuum region external to the plasma (i.e.,

r > 1), the safety-factor profile takes the form q ¼ qa r2,

which implies that

d

dr

1

r

d

dr
ðr2 QÞ

� �
¼ 0: (7)

Equation (5), which also holds in the vacuum region, can be

combined with Eq. (7) to give

r
d

dr
r

dw
dr

� �
� m2 w ¼ 0; (8)

where w ¼ Q / is the perturbed poloidal magnetic flux asso-

ciated with the RWM.

Suppose that the external region is bisected by a uni-

form, rigid wall (concentric with the edge of the plasma), of

electrical conductivity rw, whose inner and outer surfaces

correspond to r ¼ rw and r ¼ rw þ dw, respectively (where

rw > 1). In the vacuum region between the plasma and the

wall (i.e., 1 < r < rw), Eq. (8) leads to

wðrÞ ¼ A rm þ B r�m; (9)

where A and B are arbitrary constants. Continuity of

d lnw=d lnr (i.e., continuity of both w and dw=dr, which

implies the absence of current sheets) at the edge of the

plasma yields

�m�1 d ln w
d ln r

����
r¼1

¼ 1þ 2 s; (10)

where s is the complex plasma stability parameter defined in

Eq. (4). It follows that

wðrÞ ¼ B � s

1þ s
rm þ r�m

� �
; (11)

and, hence, that

�m�1 d ln w
d ln r

����
r¼rw

¼ 2 s

c� ð1� cÞ sþ 1; (12)

where

c ¼ r�2 m
w : (13)

In the vacuum region outside the wall (i.e.,

r > rw þ dw), the solution to Eq. (8) that is well-behaved as

r !1 is

wðrÞ ¼ C r�m; (14)

where C is an arbitrary constant. Hence,

�m�1 d ln w
d ln r

����
r¼rwþdw

¼ 1: (15)

D. Wall solution

Inside the wall, Eq. (8) takes the modified form

r
d

dr
r

dw
dr

� �
� ðm2 þ p2 r2Þw ¼ 0; (16)

where

p ¼ ðc l0 rwÞ1=2: (17)

The general solution to Eq. (16) is
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wðrÞ ¼ D Imðp rÞ þ E Kmðp rÞ; (18)

where ImðzÞ and KmðzÞ are modified Bessel functions, and D
and E are arbitrary constants. Making use of the well-known

identities

Im
0 ðzÞ ¼ Im�1ðzÞ �

m

z
ImðzÞ; (19)

Km
0 ðzÞ ¼ �Km�1ðzÞ �

m

z
KmðzÞ; (20)

where 0 denotes a derivative with respect to argument, we

deduce that

�m�1 d ln w
d ln r

¼ p r

m

E Km�1ðp rÞ � D Im�1ðp rÞ
E Kmðp rÞ þ D Imðp rÞ þ 1 (21)

within the wall.

E. RWM dispersion relation

Asymptotically matching (i.e., demanding continuity of

d ln w=dlnr) the wall solution, (18), to the vacuum solution

at the inner and outer boundaries of the wall, making use of

Eqs. (12), (15), and (21), we obtain the RWM dispersion

relation21

sðcÞ
c�ð1� cÞ sðcÞ ¼

z1

2 m

Im�1ðz2ÞKm�1ðz1Þ�Km�1ðz2Þ Im�1ðz1Þ
Im�1ðz2ÞKmðz1ÞþKm�1ðz2Þ Imðz1Þ

;

(22)

where

z1 ¼ 2 m
c
cw

1

�w

� �1=2

; (23)

z2 ¼ z1 ð1þ �wÞ; (24)

and

cw ¼
2 m

rw rw dw
; (25)

�w ¼
dw

rw
: (26)

Here, cw is a typical (normalized) RWM growth-rate in the

thin-wall limit, and �w is a measure of the relative wall

thickness.

In the so-called thin-wall limit, jz1j �w � 1, in which the

wall thickness is much less than the electromagnetic skin-

depth in the wall material, the above dispersion relation

reduces to18

s

c� ð1� cÞ s ¼
c
cw

: (27)

On the other hand, in the so-called thick-wall limit,
jz1j �w � 1, in which the wall thickness greatly exceeds the

skin-depth, we get22

s

c� ð1� cÞ s ¼
1

2 m

c
cw

rw

dw

� �1=2

: (28)

III. NUMERICAL RESULTS

A. Calculation parameters

The calculations described in this paper were all per-

formed using parameters appropriate to a predominately

m¼ 3, n¼ 1 RWM in a typical DIII-D plasma. The DIII-D

tokamak has major radius R0 ¼ 1:69 m, minor radius

a¼ 0.61 m, typical on-axis toroidal field-strength B0 ¼ 2:1 T,

and typical on-axis electron number density n0 ¼ 6

�1019 m�3.23 It follows that sH ¼ 3� 10�7 s. The typical

electron number density, electron temperature, and ion tem-

perature at the edge of a DIII-D discharge are ne ¼ 2

�1019 m�3; Te ¼ 100 eV, and Ti ¼ 100 eV, respectively.24

This implies that lk ¼ 1� 10�4 (in normalized units).18

The DIII-D wall parameters, c and cw, were determined

by fitting to data obtained from the Valen code,25 which cal-

culates the RWM growth-rate as a function of the Boozer

stability parameter, sb, for a dissipationless plasma, and

accurately models the DIII-D wall in three-dimensions via a

finite-element representation that employs a standard thin-

shell integral formulation. The fitting procedure (which was

performed for a predominately 3, 1 mode) yields c¼ 0.14

and cw ¼ 8� 10�5 (in normalized units).18

According to Eq. (13), the effective radius of the DIII-D

wall (for a 3, 1 RWM) is rw ¼ c�1=6 ¼ 1:39 (in normalized

units). Given that the wall is fabricated from Inconel 625,26

which has an electrical resistivity of gw ¼ r�1
w ¼ 1:26

� 10�6 X m, it follows from Eq. (25) that cw ¼ 3:5�
10�6 d�1

w (in normalized units), which implies that the effec-

tive thickness of the wall is dw ¼ 4:4� 10�2 (in normalized

units). Hence, from Eq. (26), the appropriate wall thickness

parameter for a 3, 1 RWM in a DIII-D plasma is

�w ¼ 3:2� 10�2.

The stability boundaries for a 3, 1 RWM in a DIII-D dis-

charge were determined numerically by adjusting the central

safety-factor, q0, and the (normalized) plasma toroidal angu-

lar velocity X/, until the RWM dispersion relation (22)

yielded a purely imaginary growth-rate.

B. Results

Figure 1 shows the calculated stability boundary of the

3, 1 RWM in a typical DIII-D plasma, plotted in ideal

plasma stability, �s, versus normalized plasma toroidal angu-

lar velocity, X/, space, for various different values of the

wall thickness parameter �w. Note that varying �w, while

keeping cw fixed, is equivalent to replacing the DIII-D wall

with one of a different thickness that possesses the same

overall electrical resistance.

The solid curve corresponds to the thin-wall limit. It can

be seen that, in this limit, the RWM is stabilized once the

plasma toroidal rotation velocity exceeds a critical value that

is about 0.6% of the Alfv�en velocity. Moreover, this stabili-

zation extends almost all of the way to the perfect-wall sta-

bility boundary, �s ¼ 1, which implies that the effective
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b-limit of the rotationally stabilized plasma is the perfect-

wall b-limit.

The dotted curve corresponds to the actual DIII-D wall,

which possesses a finite thickness. It can be seen that the fi-

nite thickness of the DIII-D wall makes very little difference

to the RWM stability boundary, which is almost the same as

that calculated in the thin-wall limit. This suggests that the

conventional thin-wall approximation is perfectly adequate

for calculating RWM stability boundaries in present-day

tokamaks.

The long-dashed, dashed-dotted, and long-dashed-dotted

curves correspond to walls that are much thicker than the

DIII-D wall (but have the same electrical resistance). It can

be seen that, close to the no-wall stability boundary, �s ¼ 0,

the critical plasma toroidal rotation velocity needed to stabi-

lize the RWM is reduced in the presence of a thick wall (rel-

ative to that needed to stabilize the mode in the presence of

thin wall of the same electrical resistance). On the other

hand, close to the perfect-wall stability boundary, �s ¼ 1, the

critical rotation velocity is increased in the presence of a

thick wall. In fact, it is clear from the figure that a thick wall

significantly impedes the ability of plasma rotation to stabi-

lize the RWM all the way to the perfect-wall stability bound-

ary. This suggests that the effective b-limit for a plasma in

which the RWM is rotationally stabilized is significantly

lower in the presence of a thick wall, relative to that in the

presence of a thin wall of the same electrical resistance.

Figures 2 and 3 display the results of calculations that

are similar to those shown in Fig. 1, except that the plasma

edge safety-factor is slightly smaller. Lowering the edge-q
tends to increase the critical plasma toroidal angular velocity

needed to stabilize the RWM (which is of order kk vA at the

edge of the plasma22). Furthermore, increasing the plasma

rotation has the effect of accentuating the inertial destabiliza-

tion of the RWM, which occurs at intermediate rotation lev-

els, and leads to the RWM stability boundary dipping below

the no-wall stability boundary (�s ¼ 0).22 It can be seen that,

in the presence of a thick wall, the inertial destabilization of

the RWM at intermediate rotation levels is almost entirely

FIG. 2. RWM stability boundary plotted in normalized plasma toroidal angu-

lar velocity versus ideal plasma stability space. The calculation parameters are

m¼ 3, n¼ 1, a ¼ 0:5; qa ¼ 2:94; �0 ¼ 0:32; lk ¼ 1� 10�4, c¼ 0.14, and

cw ¼ 8� 10�5. The solid, dashed, dotted, long-dashed, dashed-dotted, and

long-dashed-dotted curves correspond to �w ¼ 10�3; 10�2; 10�3=2; 10�1;
10�1=2, and 10þ0, respectively. The no-wall and perfect-wall stability bounda-

ries lie at �s ¼ 0 and �s ¼ 1, respectively.

FIG. 3. RWM stability boundary plotted in normalized plasma toroidal

angular velocity versus ideal plasma stability space. The calculation parame-

ters are m¼ 3, n¼ 1, a ¼ 0:5; qa ¼ 2:93; �0 ¼ 0:32; lk ¼ 1� 10�4,

c¼ 0.14, and cw ¼ 8� 10�5. The solid, dashed, dotted, long-dashed,

dashed-dotted, and long-dashed-dotted curves correspond to �w ¼ 10�3;
10�2; 10�3=2; 10�1; 10�1=2, and 10þ0, respectively. The no-wall and

perfect-wall stability boundaries lie at �s ¼ 0 and �s ¼ 1, respectively.

FIG. 1. RWM stability boundary plotted in normalized plasma toroidal

angular velocity versus ideal plasma stability space. The calculation parame-

ters are m¼ 3, n¼ 1, a ¼ 0:5; qa ¼ 2:95; �0 ¼ 0:32; lk ¼ 1� 10�4,

c¼ 0.14, and cw ¼ 8� 10�5. The solid, dashed, dotted, long-dashed,

dashed-dotted, and long-dashed-dotted curves correspond to �w ¼ 10�3;
10�2; 10�3=2; 10�1; 10�1=2, and 10þ0, respectively. The no-wall and

perfect-wall stability boundaries lie at �s ¼ 0 and �s ¼ 1, respectively.
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eliminated. In other respects, the effect of a thick wall is the

same as that shown in Fig. 1.

IV. SUMMARY

We have determined the influence of finite wall thick-

ness on the stability of the RWM in a tokamak using a previ-

ously published16–18 cylindrical plasma model in which the

dissipation required to stabilize the mode is provided by neo-

classical parallel ion viscosity. We find that for present-day

tokamaks, such as DIII-D, which possess relatively thin

walls, finite wall thickness effects have relatively little influ-

ence on the RWM stability boundary, which is almost the

same as that calculated in the thin-wall limit. We also find

that for next-step devices, such as ITER, which are likely to

possess much thicker walls than present-day tokamaks, finite

wall thickness effects can significantly impede the ability of

plasma rotation to stabilize the RWM all the way to the

perfect-wall stability boundary. Finally, we find that thick

walls decrease the critical plasma rotation needed to stabilize

the RWM close to the no-wall stability boundary, and also

suppress any inertial destabilization of the mode at interme-

diate rotation levels.

One obvious question is the extent to which the conclu-

sions of this paper are dependent on the damping model. The

neoclassical model used in this paper was selected because it

is extremely simple (which is an important consideration,

since the stability diagrams shown in the figures required

hundreds of solutions of the RWM dispersion relation), and

yet leads to RWM stability boundaries that are broadly con-

sistent with those observed in conventional tokamaks such as

DIII-D and HBT-EP.17 In recent years, various researchers

have developed a drift-kinetic damping model for the

RWM.27–29 This model, which is significantly more compli-

cated than the neoclassical model, has been highly successful

at explaining the RWM stability boundaries observed in low

aspect-ratio tokamaks such as NSTX.30 It is interesting to

note that the drift-kinetic damping model leads to a cubic

dispersion relation (with two roots rotating with the plasma,

one leading and one lagging, and one slowly rotating root

that can be identified as the RWM),31,32 in accordance with

results obtained using simple damping models22 (including

the model adopted in this paper—we have simply not talked

about the rotating roots, because they are always stable).

This encourages us to hope that the conclusions of this paper

are generic, and are not specific to the adopted damping

model.
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