Erratum: Collisionless magnetic reconnection with arbitrary guide-field [Phys. Plasmas 11, 4713 (2004)]
Richard Fitzpatrick and Franco Porcelli

Citation: Physics of Plasmas (1994-present) 14, 049902 (2007); doi: 10.1063/1.2715576
View online: http://dx.doi.org/10.1063/1.2715576
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/14/4?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
The effect of guide-field and boundary conditions on collisionless magnetic reconnection in a stressed X-point collapse
Phys. Plasmas 21, 012901 (2014); 10.1063/1.4861258

Phys. Plasmas 20, 129901 (2013); 10.1063/1.4840015

Three dimensional density cavities in guide field collisionless magnetic reconnection
Phys. Plasmas 19, 032119 (2012); 10.1063/1.3697976

Erratum: “Gyrokinetic simulations of collisionless magnetic reconnection” [Phys. Plasmas 14, 092110 (2007)]
Phys. Plasmas 18, 049902 (2011); 10.1063/1.3570822

Erratum: “Torsional magnetic reconnection at three dimensional null points: A phenomenological study” [Phys. Plasmas 17, 092902 (2010)]
Phys. Plasmas 17, 119903 (2010); 10.1063/1.3515948
Erratum: Collisionless magnetic reconnection with arbitrary guide-field [Phys. Plasmas 11, 4713 (2004)]

Richard Fitzpatrick
Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712
Franco Porcelli
Burnin Plasma Research Group, Dipartimento di Energetica, Politecnico di Torino, 10129 Torino, Italy
(Received 16 February 2007; accepted 16 February 2007; published online 9 April 2007)

[DOI: 10.1063/1.2715576]

This paper is in error due to the neglect of the gyroviscous contribution to the electron equation of motion. Adopting the normalization described in the paper, the electron fluid velocity takes the form

\[\mathbf{V}_e = \mathbf{V}_E + \mathbf{V}_* + \mathbf{V}_c \hat{z}, \]

where \(\mathbf{V}_E \) is the \(\mathbf{E} \times \mathbf{B} \) velocity, and

\[\mathbf{V}_* = d_t \left(\hat{z} \times \nabla P \right). \]

The electron equation of motion can be written\(^1\)

\[\varepsilon d \left(\frac{\partial}{\partial t} + \mathbf{V}_e \cdot \nabla \right) \mathbf{V}_E + \left(\frac{\partial}{\partial t} + \mathbf{V}_e \cdot \nabla \right) (\mathbf{V}_c \hat{z}) = -d_t \nabla P - (\mathbf{E} + \mathbf{V}_e \times \mathbf{B}). \]

This equation differs from Eq. (1) in our paper due to the inclusion of addition terms arising from the electron gyroviscous tensor. These terms are of order \(d_t \nabla P \), and must, therefore, be included in any treatment of electron motion that takes pressure into account. As is well known, the net effect of the inclusion of the gyroviscous terms in the electron equation of motion is to cancel out part of the inertial term.

Redoing the analysis of Secs. II.B and II.C in our paper, our modified set of reduced equations take the form

\[\frac{\partial \psi_e}{\partial t} = [\phi, \psi_e] + d_{\mu \nu}^\mu \psi_e, \]

\[\frac{\partial Z}{\partial t} = [\phi, Z] + c_{\mu \nu} [\mathbf{V}_c, \psi] + d_{\mu \nu} \nabla^2 \psi, \]

\[\frac{\partial U}{\partial t} = [\phi, U] + [\nabla^2 \psi, \psi], \]

\[\frac{\partial V_z}{\partial t} = [\phi, V_z] + c_{\mu \nu} Z, \]

where \(\nabla^2 \psi = U \) and \(\psi_e = \psi - c_{\mu \nu} \nabla^2 \psi \). These equations only differ from Eqs. (25)–(28) in our paper in the respect that \(Z_e = Z - c_{\mu \nu} \nabla^2 Z \) has simply become \(Z \). In the paper, the \(-c_{\mu \nu} \nabla^2 Z \) component of \(Z_e \) ultimately derives from the \([\partial/\partial t + (\mathbf{V}_e \cdot \nabla)] \mathbf{V}_e \) component of the inertial term in the electron equation of motion. However, it turns out that this component is canceled out by the gyroviscous contribution to the equation of motion. Hence, \(-c_{\mu \nu} \nabla^2 Z \) correction to \(Z \), appearing in Eqs. (25)–(28) of our paper, is spurious.

Redoing the remainder of the analysis in our paper, our modified general dispersion relation takes the form

\[\lambda_H = \frac{\pi}{2} \frac{g^2}{G(c \mu d \beta)} d^3 d \beta. \]

This differs from Eq. (95) in our paper due to the absence of a \(G(c \mu d \beta) \) factor in the second term on the right-hand side. In the large-\(\Delta' \) limit, the above dispersion relation yields\(^3\)

\[g = \left(\frac{2}{\pi} \right)^{1/3} d_e^{1/3} d_\beta^{2/3}, \]

for \(\beta = (m_e / m_i) \)\(^{1/4} \), and\(^4\)

\[g = \left(\frac{\Gamma(1/4)}{\pi \Gamma(3/4)} \right)^{2/5} d_e^{2/5} d_i^{-3/5} c^2_\beta, \]

for \(\beta > (m_e / m_i) \)\(^{1/4} \). In the small-\(\Delta' \) limit, we obtain\(^3\)

\[g = \frac{d_\beta}{\pi} \Delta' d_e, \]

for all \(\beta \) values. Note that our modified results are now not in agreement with Mirnov et al.,\(^2\) since this paper also neglects to take the electron gyroviscous contribution to the electron equation of motion into account.

The importance of gyroviscous terms in the electron equation of motion was pointed out to the authors by Prof. F. Pegoraro.

\(^1\)R. D. Hazeltine and J. D. Meiss, Plasma Confinement (Dover, Mineola, 2003).

1070-664X/2007/14(4)/049902/1/$23.00 14, 049902-1 © 2007 American Institute of Physics