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Two-fluid magnetic island dynamics in slab geometry. Il. Islands interacting
with resistive walls or resonant magnetic perturbations

Richard Fitzpatrick and Francois L. Waelbroeck
Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712

(Received 19 July 2004; accepted 22 October 2004; published online 12 Januayy 2005

The dynamics of a propagating magnetic island interacting with a resistive wall or an externally
generated, resonant magnetic perturbation is investigated using two-fluid,(ntdfneto-
hydrodynamical (MHD) theory inslab geometryln both cases, the island equation of motion is
found to take exactly the same form as that predicted by single-fluid MHD th&bnge ion
polarization terms are found in the Rutherford island width evolution equation. The first is the
drift-MHD polarization term for an isolated island, and is unaffected by the interaction with a wall
or magnetic perturbation. Next, there is the polarization term due to interaction with a wall or
magnetic perturbation which is predicted Ilsyngle-fluid MHD theory. This term is always
destabilizing Finally, there is a hybrid of the other two polarization terms. The sign of this term
depends on many factors. However, under normal circumstances, it is stabilizing if the
noninteracting island propagates in tlmn diamagnetic direction(with respect to the wall or
magnetic perturbatiorand destabilizingif it propagates in theslectron diamagnetic direction.

© 2005 American Institute of PhysidDOI: 10.1063/1.1833391

I. INTRODUCTION Il. REDUCED EQUATIONS
i . . A. Basic equations
Tearing modes are magnetohydrodynami®dHD) in-

stabilities which often limit fusion plasma performance in ~ Standard right-handed Cartesian coordinéxey, 2) are
magnetic confinement devices relying on nested toroidadopted. Consider a quasineutral plasma with singly charged
magnetic flux surfacesAs the name suggests, “tearing” ions of massy. The ion/electron number density, is as-
modes tear and reconnect magnetic field lines, in the proceSsmMed to beuniform and constant Suppose thaf; =T,
converting nested toroidal flux surfaces into helical magnetid/N€"€ Tie IS the ion/electron temperature, amds uniform
islands. Such islands degrade plasma confinement becau Bd c_onst_ant. Let there_be no variation of quantities |r_12the
heat and particles are able to travel radially from one side o Irection, i.e.,0/7z=0. Finally, let all lengths be normalized

) : . . 0 some convenient scale length, all magnetic field
an island to another by flowing along magnetic field lines, . .

o . . ) . strengths to some convenient scale field strefthand all
which is a relatively fast process, instead of having to diffus

. S _ Simes toa/V,, whereV, =B,/ v ugng m.

acrossgmagnetlc flux surfaces, which is a relatively slow We can wri'_[eBszx 2+_(Bo_+bz)2 and P=Py-B, b,

proces " ) . o . _ +0(1), whereB is the magnetic field an& the total plasma
The interaction of rotating magnetic islands with resis-pressure. Here, we are assuming thgandB, are uniform,

tive walls™ or externally generated, resonant magneticyng Py>B,>1, with ¢ and b, both O(1)° Let g

perturbation$”**"**has been the subject of a great deal of=T p/B2 be (I times the plasnz1aﬁ calculated with the

research in the magnetic fusion community. This paper fo“guide-field” B,, wherel'=5/3 is theplasma ratio of specific

cuses on theon polarizationcorrections to the Rutherford heats. Note that the above ordering scheme does not con-

island width evolution equatid which arise from the strain 8 to be either much less than or much greater than

highly sheared ion flow profiles generated around magnetianity.

islands whose propagation velocities are modified by inter- We adopt the reduced, two-dimensional, two-fluid, drift-

action with either resistive walls or externally generated MHD equations derived in the companion paffer,

magnetic perturbations. According teingle-fluid MHD

theory?* such polarization corrections are alwaysstabi- Iy

lizing. The aim of this paper is to evaluate the ion polariza- 5t =[¢-dgZyl+ (=)

tion corrections usingwo-fluid, drift-MHD theory, which is

far more relevant to present-day magnetic confinement de- _Meds(1+7) VAV, + (dgc,) J] (1)
. . . . . . z BB P

vices than single-fluid theory. This goal is achieved by ex- Cs

tending the analysis of the companion pajﬁeﬂhich inves-

tigates the dynamics of aisolated magnetic island in slab 7

geometry using two-fluid, drift-MHD theory. For the sake of Fr [¢,Z] +cs [V, + (dglcg) I, +D Y

simplicity, we shall restrict our investigation &lab geom- J

etry. + e dg VAU - dg Y), (2)

1070-664X/2005/12(2)/022308/8/$22.50 12, 022308-1 © 2005 American Institute of Physics
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2 2 10.01- L0214+ 0.2+ V. g1} + 100
+ 1 VAU +dg 7Y) + pe VAU = dgY), (3)
T2 [+ 0 [Z.014 1 TV, VIV,
+(dycy) 1, 4)

where D=c? p+(1-cZ) k, U=V?¢, J=V?y, and Y=V?Z.
Here, cﬁ:\;ﬂ/(1+ﬂ), dg=cgdi/N1+7, Z=b,/cgN1+7, d,
=(m/ny € uo)'’?/a, and[A,B]=VAX VB-2. The guiding-
centervelocity is written a3/ =V ¢ X 2+v1+7V, Z. Further-
more,  is the (uniform) plasma resistivityy; , the (uniform)
ion/electron viscosityx the (uniform) plasma thermal con-
ductivity, andJy(x) (minug the inductively maintained, equi-
librium plasma current in the direction. The above equa-

Phys. Plasmas 12, 022308 (2005)

(el

G dy/Q/dx ©

The solution to the above equation must be asymptotically
matched to the full, nonlinear, dissipative, drift-MHD solu-
tion in the inner region.

I1l. INTERACTION WITH A RESISTIVE WALL
A. Introduction

Suppose that the walls bounding the plasma=aittx,,
are thin and resistive, with time-constar)t We can define
the perfect-wall tearing eigenfunctiaf,,(x) as the continu-
ous even(in x) solution to Eq.(6) which satisfiesi,,(0)
=1 and ¢p,(+x,)=0. Likewise, the no-wall tearing eigen-
function ¢,,(x) is the continuous even solution to E®)

tions contain both electron and ion diamagnetic effectsWhich satisfies,,(0)=1 and yp,(£=)=0. In general, both

including the contribution of the anisotropic ion gyroviscous Yol
tensor, but neglect electron inertia. Our equations are “re9uan
duced” in the sense that they do not contain the compressibié’ inde

x), and ¢,,(x) have gradient discontinuities a£0. The
tity Ay =[ e,/ dx]8f is the conventional tearing stabil-
in the presence of a perfectly conducting wall

— 0 . .
Alfvén wave. However, they do contain the shear-Alfvén (-6 7w— %), whereashn,=[dyp,/dx]o"> Ay, is the tearing
wave, the magnetoacoustic wave, the whistler wave, and thif@bility index in the presence of no walle., 7,—0). Fi-

kinetic-Alfvén wave.

B. Plasma equilibrium

The plasma equilibrium satisfieg dy=0. Suppose that
the plasma is bounded by rigid walls>at £x,, and that the

nally, the wall eigenfunction),(x) is defined as the continu-
ous even solution to Eq(5) which satisfies ,(0)=0,
(X)) =1, and ¢, (x)=0. This eigenfunction has addi-
tional gradient discontinuities at=+x,. The wall stability
index, A, <0, is definedAW:[dz,//W/dx];xf.

According to standard analys7i$he effective tearing sta-
bility index, A’=[dIn z,b/dx]gf, in the presence of a resistive

region beyond the walls is a vacuum. The equilibrium mag-wall is written as

netic flux is written ¢9(x), where #9(-x)=y%(x) and
d?9(x)/dx?=Jy(x). The scale magnetic field strengly is
chosen such that'?(x) — -x2/2 as|x| — 0. The equilibrium
value of the fieldZ takes the formz®(x)=-[V.")/d, (1
+7)] X, wherevig) is the (uniform) total diamagnetic velocity
in the y direction. The equilibrium value of the guiding-
center stream-function is writterqs(o)(x):—V(EO) X, where
V<E°) is the (uniform) equilibrium E X B velocity in they
direction. Finally, the equilibrium value of the field, is
simply Vi¥=0.

C. Asymptotic matching

Consider a tearing perturbation which is periodic inyhe
direction with periodicity length. According to conventional

analysis, the plasma is conveniently split into two regib7ns.

_ V2 A+ V7 Apy

A/
VZ+V,7

: (6)
whereV is the phase velocity of the tearing mode in the lab
frame anav,,=(-A,)/(kr,). Also, the nety-directed electro-
magnetic force acting on the inner region takes the form
V'V,

k
fy=—-(Amw— pr)—lliz,

(7
R V2+ V2

where W (t)=|41(0,1)| is the reconnected magnetic flux,
which is assumed to have a very weak time dependence.

B. Island geometry

In the inner region, we can write

The “outer region” comprises most of the plasma, and is 2

governed by the equations of linearized, ideal MHD. On the
other hand, the “inner region” is localized in the vicinity of

the magnetic resonanee=0 (WhereB(O):O). Nonlinear, dis-

(X, 0,t)=— XE + W (t)cosd, (8)

where =Kky. As is well-known, the above expression fgr

sipative, and drift-MHD effects all become important in the describes a constagitmagnetic island of full-widthin the x

inner region.

In the outer region, we can writes(x,y,t)=¥?(x)
+yD(x,1) exp(iky), wherek=27/1 and [V | <|y9)|. Lin-
earized ideal MHD yieldg ¢V, JO1+[¢©,JV]=0, where
J=V?2y. It follows that

direction W=4w, wherew= V. The region inside the mag-
netic separatrix corresponds %= ¢y=-V¥, whereas the re-
gion outside the separatrix corresponds/ta —. It is con-
venient to work in thdsland rest framejn which d/dt=0.

It is helpful to define a flux-surface average operator,
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f(s,4,6) dé In the following, we shall neglect all superscripts for ease of
(f(s,4,0)) = 39 o 5o (9 notation.
x| 2
for y<-¥, and
% §(s,0,0) + F(= 5,1 6) do D. Determination of flow profiles
(f(s,40,0)) = 2| o (10) Flux-surface averaging Eqél2) and(13), we obtain
for V= y=-V. Here,s:sgr(x) and x(s, ¢, 6)=0 (with (V2U) + dg (w7 pe) (V2Y)=0 (15)
> 6f,>0). The most important property of this operator is (i + pre)
that([A, ¢])=0, for any fieldA(s, i, 6). and
FW(V2Y)-(Y)=0, (16)
C. Ordering scheme where
For the purpose of our ordering scheme, we require both d
. : A _@ Mite(1+7)
V andy to beO(1) in the vicinity of the island. This implies o= D(u + 1) 17
Mi T

that our scale length is O(W) and our scale field strengB),

is O(W/W), whereW and ¥ are the unnormalized island Our ordering scheme implies that-dg<1.

width and reconnected flux, respectively. Now, we can writeV2= 32/ 4x?, prowded that the island
In the inner region, we adopt the following ordenng of is “thin” (i.e., w<I). It follows that

terms appearing in Egs.(1)—4): dg =dY =%

e ¢[”(S W)+ (s, 4, 0), 2=20%s, y) £ 2(s, 1, 0) M(sy) = - SBATTE| (o s ), (18)
V=VE(s, 1, 60), 83=1+V2y=512(s,,6). Moreover, V (i + pe)
ST 0 6,2 8 el e DD, ere
and d¥/dt=dW®//dt. Here, the superscrigi] indicates a
quantity which is order(dﬁ)' where it is assumed that d [ d (52 2<x4>—> —<x2>L] -0 (19)
dg<<1. This ordering, whiclitogether with Eqs(11)—(14)] is dys| dy dys
completely self-consistent, implies weéle., strongly sub- and
Alfvénic and sub-magnetoacoustidiamagnetic flows, and
very long(i.e., very much longer than the Alfvén timgans- d? ( v ﬁ) —0 (20
port evolution time scales. dy? -
Eili;tlons(l)_(‘l) yield Note thatL(s, ) andF(s, ¢) areodd functions ofx. We
— 1 4[5] _ 1] 5[4] 3] «1(2] immediately conclude thdi(s, ) andF(s, ¢) are bothzero
dt cosf=[¢ ds 2 VRS et inside the island separatrigince it is impossible to have a
3] 21 (1 + ) nonzero, odd flux-surface function in this regiofhe func-
_Me Y 2T Vz[‘z][v[zﬂ tion L(s,y) satisfies the additional boundary conditizh
Cp —>V,(f;)/d3(1+r) as x| /w—oe. Here, we are assuming that
+ (d[ﬁl]/cﬁ) 832 +0(d?), (11)  W<X, Moreover, the functiof (s, ) satisfies the additional
boundary conditionx F— (|x| /x,)(V(®-V) as |x|/w—0,
0=cg [V[Zs] + (d[ﬁl]/cﬁ) 832,y + DRI yiO] whereV(© is the unperturbed island phase veloditg., the
. phase velocity in the absence of a resistive wall or an exter-
+ ) ol v2 2 - d3! v + o(dy), (12 nal magnetic perturbationn the lab frame.

It is helpful to define the following quantities:

djl 7 D= =gl W, (W= dX=x/w. The solutions to E
0=~ MU UM, g1 = 2B Tg 01 [yl ] + M Y10 ==V, {(---))=(: ) w, andX=x/w. The solutions to Egs.
[ v 2 Ll 4 [ vl (19) and(20), subject to the above mentioned boundary con-

+ 602,y + Mi[a] V(U + d%] 7Y10)) ditions, are
0)

(3] w2y (1] _ (2] y10] 5 s 1

+ u VAU - di Y0 + O(d ), (13 L(s, )= ——L— (21
i ’ ¢ S0 a1 O)

0=~ M [V, ]+ s[4,y + P w2 N and
IV iy 9 e0@h,  aa 0 fw di [ .
where YI9=v27(% Ull=v241 MI(s, ) =d@l/dy, and ' () 1 (X))

LI%s, y)=dZ%/dy. Here, we have neglected the super-

scripts on most zeroth-order quantities, for the sake of claff€SPectively. Of course, both(s, ¥) and F(s,y) are zero
ity. As indicated, some of th&? terms areD(d%), since they ~ inside the island separatrixe., $<1). In writing Eq. (2),
operate on quantities which are only |mportant in thin boundWwe have neglected the thin boundary lageidth, ow) which
ary layers of widthO(dp) located on the magnetic separatrix. resolves the apparent discontinuity liss, :,//) across the is-
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land separatrix. This boundary layer, which need not be re- o, (X3

solved in any of our calculations, is deAscribed in the com- cT 7 E( (1)) ) —[M(M+dg7L)]

panion pape]rf3 Note that the function.(s, ) corresponds to

a velocity profile which isIocaILzedin the vicinity of the + 7]_1d_‘1’ {((cos6)) (29)
island, whereas the functidf(s, ) corresponds to aonlo- dt (1))

calizedprofile which extends over the whole plasma.

where 8J. is the component oBJ with the symmetry of
cosé. In writing the above expression, we have neglected
any boundary layers on the island separatrix, since these are
either unimportant or need not be resolved in our calcula-
The net electromagnetic force acting on the island regionions (see Ref. 16 Now, making use of Eq€18), (21), and

E. Force balance

can be written ¢ (22), we can write
- . 0_ VO —
M RCE @) =SV ) SOV
v ' w Xy
where 8J; is the component o] with the symmetry of (30)
sin #. Now, it is easily demonstrated that
and
. 1
<5Jssm 0> = @(X[a‘]s: $]>1 (24) R ~ s (V(O) _ VI((;)) R
M(s,) +dg TL(X, ) == —w L(#)
so it follows from Eq.(13) that
s(VO-v) .
bred d, 2% o) T Tw. @
8JSi =- 2(xX°)— —(XF |. w
(83sin ) = - = d¢<>¢2 0) gy~ 0
(25 Here, VL =(VO+7VO)/(1+7) is the unperturbecE X B
velocity (i.e., theE X B velocity in the absence of an island
Hence, \/y) is the unperturbed ion fluid veIOC|tye the ion fluid
. velocity in the absence of an |sla)1dandv is the unper-
fo= 2w + im | 6@ — 263 _ i F) turbed electron fluid velocityi.e., the electron fluid velocity
y= 2wt 1) << ) a2 W x >dw Rl in the absence of an islahdNote thatV<°)—V3) V((;)] Fur-
d { 1dxF) thermore V(@ = (,LLVO)+,LL9V(O))/(,LL|+,£L9) (see Ref. 1pis the
=25(ui + pe) lim { (——” (26) unperturbed island phase veIoc{i)e the phase velocity in
x| dx\x dx the absence of a resistive walndV the actual phase ve-
. . locity. All of these velocities are measured in the lab frame.
Finally, Eq.(22) yields i A A N
Finally, both £(¢) and F(¢) are zero fory<1, whereas
20+ p)(VO - V)
fy: _ T He ' (27) A 1
XW A= 0 %
Equating Eqs(7) and (27), we obtain the island force
balance equation:
and
2(ui + (VO -V) Kk V'V,
Bt =B~ Ap) oo (WA 0 g ®
X 2 VZ+\2 F(J) = f v f 33)
(28) /[y

This equation describes the competition between the viscoyg the reglon¢> 1.

restoring force(left-hand sid¢ and the electromagnetic wall Now

drag (right-hand sidg acting on the island, and determines

the island phase velocity as a function of the island width 4 (" .

W. Note that the above force balance equation is identical to  A’(V)=— f (83, cosb)y) dys (39
that obtained from single-fluid MHD theofy. W1

(see Ref. 14 whereA’(V), which is specified in Eq(6), is

the effective tearing stability index in the presence of the
resistive wall. Hence, it follows from Eq&29)—(31) and(34)

It follows from Egs.(11), (13), and(14) that that

F. Determination of ion polarization correction
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ldw_ (V(O) _V(Eoéy)(v(o) ‘Vi(f/))) length as the magnetic island in the plagrisagenerated by
7 at =A'"(V) + (W/4)3 currents flowing in field coils located in the vacuum region
beyond the walls.
L 2(VO- VS, VR (VO - V) The no-wall tearing stability index ., is defined in Sec.
3 Xy (WI4)? Il A. The coil eigenfunctiony(x) is the continuous even
(VO )2 solution to Eq.(5) which satisfies/.(0)=0 and ¢(+x,)=1.
—— (35) In general, this eigenfunction has a gradient discontinuity at
X (W/4) x=0. It is helpful to defineA.=[dy/dx]3".

According to standard analys7|$he effective tearing sta-
bility index, A’=[dIn zpldx]o_, in the presence of an exter-

f ((cosﬁ))2 di=0.823 (36) nally generated, magnetic perturbation is
() S

where

v
A'(1) = Agy + A¢ ;‘: cose(t), (40)

4 ((X2)?\d(£?)
|2:f (XD = —— diy=1.38, (37) _ _
€/ dy where W (t)=|4Y(0,t)| is the reconnected magnetic flux,

which is assumed to vary slowly in time, afd, the flux at
- {(X?)?\d f) the walls solely due to currents flowing in the external coils.
— 4
|3‘f («X »- ) ——dy= =0.195, (38) Furthermore ¢(t) is the phase of the island measured with
respect to that of the externally generated perturbation. Let

(X2 the phase velocity of the externally generated perturbation be
I, = f (<<><4>> RGN ) diy=0.469. (39) V.. It follows that
d
Equation(35) is the Rutherford island width evolution L okv), (41)

equatior® for a propagating magnetic island interacting with dt

a resistive wall. There aréhree separate ion polarization
terms on the right-hand sid&HS) of this equation. The first
(second term on RHSs the drift-MHD polarization term for
an isolated islandsee Ref. 16 and is unaffected by wall
braking. This term, which varies a&3, is stabilizing pro- K
vided that the unperturbed island phase velocity lies between  fy(t) == SAcFYesin o(t). (42)
the unperturbed local ion fluid velocity and the unperturbed

local E X B velocity, and is destabilizing otherwise. The third Note that, unlike the braking force due to a resistive wall,

(fourth term on RH$is the single-fluid MHD polarization  thjs forceoscillatesin sign as the island propagates.
term due to the island velocity shift induced by wall braking

(see Ref. 9 This term isalways destabilizingand varies as
W and the square of the wall-induced velocity shift. The
second(third term on RH$ is a hybrid of the other two
polarization terms. The sign of this term depends on many We can reuse the analysis of Sec. Ill D, except that we
factors. However, in the limit of small electron viscosity must allow fortime dependencef the functionF to take into
(compared to the ion viscosjiywhen the unperturbed island account theoscillating nature of the locking force exerted on
phase velocny lies close to the unperturbed velocity of thehe island by the external perturbation. Hence, we write

ion fluid,* the hybrid term is stabilizing prowdekt'(?,)v(o)

whereV’'=V-V,, andV(t) is the instantaneous island phase
velocity. Also, the nely-directed electromagnetic force act-
ing on the island takes the form

B. Determination of flow profiles

>0, and destabilizing otherwise. In other words, the hybrid _ dg(,ui T— o)
term is stabilizing if the noninteracting island propagates in M(s,gt) == (i + o) L(s.¢) +F(s.40), (43)

theion diamagnetic directiorfwith respect to the wall and

destabilizing if it propagates in thelectron diamagnetic di- where

rection The hybrid polarization term varies &2 and is

directly proportional to the wall-induced island velocity N S\lﬁo)y 1

shift. sH=g dg (1+7) (X?))

(44)

and
IV. INTERACTION WITH A RESONANT MAGNETIC

PERTURBATION [ _( . E)_ , E]—o 45
A. Introduction X (i + o) z,/;< ) g < >(9t o (45)

Let the walls bounding the plasma &t £x, now be In order to proceed further, we adopt the separable form
nonconducting(i.e., 7,—0). Suppose that an evefin x)  approach to solve Eq45) which was introduced and justi-
propagating magnetic perturbatigwith the same wave- fied in Ref. 14. In other words, we try the following solution:
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Nk ~ S 0
F(s,,t) =s Fi(4) sin kV'(t") dt’ F(s,y,t) = v_v(v -V) | 1l-exp
0
. .
+sF() cosU V(1) dt’). (46) ><<- W|X|) cos( WD(')] A)
0 A A IX]
Of course,F,(#) and F,(y) are both zero within the island s 1 dv wiX|\ . (w]X] Ay
separatrix. Furthermore, _v_vk|V’|a ) N X
IX| F1— Fo, (47) (56)
x| F,—0, (48)  C. Island equation of motion

as |x|/w—o. Here,Fq is a constant. The above boundary Reusing the analysis of Sec. Ill E, taking into account
conditions imply that the functioR(s, ¢,t) corresponds to a the time dependence &, we obtain

velocity profile which is localized in the vicinity of the is- 9 (19 (xF)
- =i i |25 (1700)
Matching to the outer region yields X AL
N JdF
! -2— X3 — (X F) dy. 5
FosinU kV'(t") dt’) =VvO - (). (49) at)_, << >é’1,b F | dy 57
0
_ o _ _ According to the boundary conditiortd7) and(48), the first
Hence, differentiating with respect towe obtain term on the right-hand side is identically zero. Transforming
1 dv ‘ the second term on the right-hand side, using the fact that the
o a Fo cog(J KV/(t) dt’) (500  integral is dominated by the regidk|> 1, we get
! t 0
a (* . d(XF
fy=—25\1'—f ngx. (58)
and atty ax
di 1 dv i i
_(_ _) KV (VO ). 5y  Finally, Eds.(50), (51), and(56) yield
dt\k V' dt {dv " ]
fo=N — +k|V|(V-VY) . 59
Substituting Eq(46) into Eq. (45), and integrating once Y dt VI ) 59

in ¢ using the boundary conditior(@7) and (48), we get Making use of Eq(42), the island equation of motion takes

A2 d dF, the form
sgr(v»m£(<<x4>>d—&)+<<x2>>a:o, (52 T av
SMTHRIEIY L s (V= VO
v dt+\2(Mu+Me)k|V [(V=V©®)
NG R (W) )
sgrtv) d;ﬁ(«x“» OI&,)—«xz»a-—w. 53 AW (%) sine =0 (60

Here, N=12 (u+ue) /K |V'| is the localization scale length Here, (W;/4)2=A, ¥,. The first term on the left-hand side
of the velocity profile corresponding to the functién represents the inertia of the region of the plagmiawidth
Suppose thatv<\ <x,. In other words, suppose that 2 (u;+ue)/k |V'|) which is viscously coupled to the island,
the localization scale length of the velocity profile associatedhe second term represents the viscous restoring force, and
with F is much larger than the island width, but much the third term represents the locking force due to the external
smaller than the extent of the plasma. In this lifvithich  perturbation. Note that the above equation is identical to that
corresponds to the “weakly localized” regime of Ref),14 obtained from single-fluid MHD theort. The above analy-

Egs.(52) and(53) can be solved to give sis is valid providedv<< 2 (u;+ue) [k |V'| <Xy

IX|Fy = %[1 - ex;{— @) co{@) }f_(;/j) (54) D. Determination of ion polarization correction
Reusing the analysis of Sec. Il F, we obtain

F X X - 1 NY
X Fa= SQY(V’)WO exp(— ¥> sin(vy) A9). o=~ §<X2 - W>£[M(M +dgrl)]
(55 L ¥ {{cos6))

T (61

Here,}‘(z:/x) is specified in Eqs(33). It follows from Egs.
(46), (49), and(50) that where
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A s(VO-vE) sf,() - —  as
M(s,¢t) = - W LW- 2 +Iue)f(¢) (62) cosg =", (67)
and _ o
. R S(V(o) _ V(Q)) . sing = Sgr(V'(O))ESy (69)
M(s, i) + dgrl (X, ) = - —W'LE(@
Sinf ¢ = 2. (69)
- S g 63 sland vi -
2Api+pe) Hence, the average of the Rutherford island width evolution

equation(64) over island phase takes the form
Here, use has been made of E@®) and(59), as well as the

(0) /@ (0) /(0 2
fact that the polarization term integral is dominated by the I—lle:AnW+ |2(V V(EBY)(Vg Viy) _ %(%)
region|X| ~O(1). Finally, Egs.(34), (40), and(42) yield 7 dt (Wi4) 2\ W
2 VO — 1O £ \O72) /w2
I—ld—WzA + We COS¢ X 1+|3( [ E,?o) v J/2) N
7 dt "o\ w V A
0 (0) 3
o1, V0= VeB) (VO - Vi) - '4(V_v) } : (70)
(W/4)3 A
k (VO -V +VO2) (W, \2 The first two terms on the right-hand side of the above equa-
REDY (5 + 20) . (—> tion are the intrinsic tearing mode drive and the drift-MHD
1

polarization term, respectively, and are unaffected by the ex-
.l K2 (V_V>3(WC>4 sir? 64) ternal perturbation. The next three terrtvsithin the curly
“16(ui + pe)® \ 4 @ brace$ are thephase-averageeéxternal perturbation drive,
hybrid polarization term, and single-fluid MHD polarization
wherely, 15, 13, andl, are specified in Sec. Il F. term, respectively. It can be seen that the external perturba-
Equation(64) is the Rutherford island width evolution tjon drive is on average stabilizing, whereas the single-fluid
equation for a propagating island interacting with an extery\jHp polarization term is destabilizingThe sign of the hy-
nally generated, resonant magnetic perturbation. There algiqg term depends on many factors. However, in the limit of
three separate ion polarization terms on the right-hand sidgmall electron viscositycompared to the ion viscosity
of this equation. The firsthird term on RH$ is the drift-  \yhen the unperturbed island phase velocity lies close to the
MHD polarization term for an isolated islaridee Ref. 18  ynperturbed velocity of the ion fluitf, the hybrid term is on
and is unaffected by the external perturbation. The tfifth average stabilizing provideﬂio) V90, and destabilizing
term on RHS s the single-fluid MHD polarization term due gtherwise. In other words, the hybrid term is stabilizing if the
to the oscillation in island phase velocity induced by thengninteracting island propagates in the ion diamagnetic di-
externally generated perturbatidsee Ref. 1 This term  rection with respect to the external perturbation, and desta-

modulates as the island propagates, but is always destabiligjizing if it propagates in the electron diamagnetic direction.
ing. The secondfourth term on RH$is a hybrid of the other

two polarization terms.

4

V. SUMMARY

We have investigated the dynamics of a propagating
E. Solution of island equations of motion magnetic island interacting with a resistive wall or an exter-
nally generated, resonant magnetic perturbation using two-
fluid, drift-MHD theory in slab geometry. In both cases, we
find that the island equation of motion takes exactly the same
form as that predicted by single-fluid MHD thedisee Secs.
Il E and IV C). However, two-fluid effects do give rise to
additional ion polarization terms in the Rutherford island
width evolution equation.
o(t) =kV' Ot + agsin(k V' Ot) + a. cogk V'Ot),  (65) In general, we find that there are three separate ion po-
larization terms in the Rutherford equatiésee Secs. Il F
T . and IV D). The first is the drift-MHD polarization term for
above expression into Eqet1) and(60) yields an isolated island and is completely unaffected by interaction
W\2( W, \? O2 with a resistive wall or an externally generated magnetic per-
as= 2]\ a ANV (66) turbation. Next, there is the polarization term due to interac-
tion with a resistive wall or magnetic perturbation which is
and o= sgnV'@)a,, where \=2(u;+ue)/k|V'©| is the  predicted by single-fluid MHD theory. This term is always
velocity localization scale length. Averaging over island destabilizing. Finally, there is a hybrid of the other two po-
phase, using Eq65), we obtain larization terms. The sign of this term depends on many fac-

Let us solve the island equations of motidd,1l) and
(60), in the limit in which the externally generated magnetic
perturbation is sufficiently weak that it does not significantly
perturb the island phase velocity. Let us also assumentieat
so small that the island widtiV does not vary appreciably
with island phase. In this limit, we can write

where |ag, |a;| <1 andV'@=V® -V, Substitution of the
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