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Two-fluid magnetic island dynamics in slab geometry. II. Islands interacting
with resistive walls or resonant magnetic perturbations

Richard Fitzpatrick and François L. Waelbroeck
Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712

sReceived 19 July 2004; accepted 22 October 2004; published online 12 January 2005d

The dynamics of a propagating magnetic island interacting with a resistive wall or an externally
generated, resonant magnetic perturbation is investigated using two-fluid, drift-smagneto-
hydrodynamicald sMHDd theory inslab geometry. In both cases, the island equation of motion is
found to take exactly the same form as that predicted by single-fluid MHD theory.Three ion
polarization terms are found in the Rutherford island width evolution equation. The first is the
drift-MHD polarization term for an isolated island, and is unaffected by the interaction with a wall
or magnetic perturbation. Next, there is the polarization term due to interaction with a wall or
magnetic perturbation which is predicted bysingle-fluid MHD theory. This term is always
destabilizing. Finally, there is a hybrid of the other two polarization terms. The sign of this term
depends on many factors. However, under normal circumstances, it is stabilizing if the
noninteracting island propagates in theion diamagnetic directionswith respect to the wall or
magnetic perturbationd anddestabilizingif it propagates in theelectron diamagnetic direction.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1833391g

I. INTRODUCTION

Tearing modes are magnetohydrodynamicalsMHDd in-
stabilities which often limit fusion plasma performance in
magnetic confinement devices relying on nested toroidal
magnetic flux surfaces.1 As the name suggests, “tearing”
modes tear and reconnect magnetic field lines, in the process
converting nested toroidal flux surfaces into helical magnetic
islands. Such islands degrade plasma confinement because
heat and particles are able to travel radially from one side of
an island to another by flowing along magnetic field lines,
which is a relatively fast process, instead of having to diffuse
across magnetic flux surfaces, which is a relatively slow
process.2

The interaction of rotating magnetic islands with resis-
tive walls3–11 or externally generated, resonant magnetic
perturbations5,7,12–14has been the subject of a great deal of
research in the magnetic fusion community. This paper fo-
cuses on theion polarizationcorrections to the Rutherford
island width evolution equation15 which arise from the
highly sheared ion flow profiles generated around magnetic
islands whose propagation velocities are modified by inter-
action with either resistive walls or externally generated,
magnetic perturbations. According tosingle-fluid MHD
theory,9,14 such polarization corrections are alwaysdestabi-
lizing. The aim of this paper is to evaluate the ion polariza-
tion corrections usingtwo-fluid, drift-MHD theory, which is
far more relevant to present-day magnetic confinement de-
vices than single-fluid theory. This goal is achieved by ex-
tending the analysis of the companion paper,16 which inves-
tigates the dynamics of anisolatedmagnetic island in slab
geometry using two-fluid, drift-MHD theory. For the sake of
simplicity, we shall restrict our investigation toslab geom-
etry.

II. REDUCED EQUATIONS

A. Basic equations

Standard right-handed Cartesian coordinatessx, y, zd are
adopted. Consider a quasineutral plasma with singly charged
ions of massmi. The ion/electron number densityn0 is as-
sumed to beuniform and constant. Suppose thatTi =t Te,
whereTi,e is the ion/electron temperature, andt is uniform
and constant. Let there be no variation of quantities in thez
direction, i.e.,] /]z;0. Finally, let all lengths be normalized
to some convenient scale lengtha, all magnetic field
strengths to some convenient scale field strengthBa, and all
times toa/Va, whereVa=Ba/Îm0 n0 mi.

We can writeB= =c3 ẑ+sB0+bzd ẑ and P=P0−B0 bz

+Os1d, whereB is the magnetic field andP the total plasma
pressure. Here, we are assuming thatP0 andB0 are uniform,
and P0@B0@1, with c and bz both Os1d.16 Let b
=G P0/B0

2 be sG timesd the plasmab calculated with the
“guide-field” B0, whereG=5/3 is theplasma ratio of specific
heats. Note that the above ordering scheme does not con-
strain b to be either much less than or much greater than
unity.

We adopt the reduced, two-dimensional, two-fluid, drift-
MHD equations derived in the companion paper,16

] c

] t
= ff − db Z,cg + h sJ − J0d

−
me db s1 + td

cb

=2fVz + sdb/cbd Jg, s1d

] Z

] t
= ff,Zg + cb fVz + sdb/cbd J,cg + D Y

+ me db =2sU − db Yd, s2d
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] U

] t
= ff,Ug −

db t

2
h=2ff,Zg + fU,Zg + fY,fgj + fJ,cg

+ mi =2sU + db t Yd + me =2sU − dbYd, s3d

] Vz

] t
= ff,Vzg + cb fZ,cg + mi =2Vz + me =2fVz

+ sdb/cbd Jg, s4d

where D=cb
2 h+s1−cb

2d k, U==2f, J==2c, and Y==2Z.
Here, cb=Îb / s1+bd, db=cb di /Î1+t, Z=bz/cb

Î1+t, di

=smi /n0 e2 m0d1/2/a, and fA,Bg= =A3 =B·ẑ. The guiding-
centervelocity is written asV = =f3 ẑ+Î1+t Vz ẑ. Further-
more,h is thesuniformd plasma resistivity,mi,e thesuniformd
ion/electron viscosity,k the suniformd plasma thermal con-
ductivity, andJ0sxd sminusd the inductively maintained, equi-
librium plasma current in thez direction. The above equa-
tions contain both electron and ion diamagnetic effects,
including the contribution of the anisotropic ion gyroviscous
tensor, but neglect electron inertia. Our equations are “re-
duced” in the sense that they do not contain the compressible
Alfvén wave. However, they do contain the shear-Alfvén
wave, the magnetoacoustic wave, the whistler wave, and the
kinetic-Alfvén wave.

B. Plasma equilibrium

The plasma equilibrium satisfies] /]y;0. Suppose that
the plasma is bounded by rigid walls atx= ±xw and that the
region beyond the walls is a vacuum. The equilibrium mag-
netic flux is written cs0dsxd, where cs0ds−xd=cs0dsxd and
d2cs0dsxd /dx2=J0sxd. The scale magnetic field strengthBa is
chosen such thatcs0dsxd→−x2/2 asuxu →0. The equilibrium
value of the fieldZ takes the formZs0dsxd=−fV* y

s0d /db s1
+tdg x, whereV* y

s0d is thesuniformd total diamagnetic velocity
in the y direction. The equilibrium value of the guiding-
center stream-function is writtenfs0dsxd=−VEBy

s0d x, where

VEBy

s0d is the suniformd equilibrium E3B velocity in the y

direction. Finally, the equilibrium value of the fieldVz is
simply Vz

s0d=0.

C. Asymptotic matching

Consider a tearing perturbation which is periodic in they
direction with periodicity lengthl. According to conventional
analysis, the plasma is conveniently split into two regions.17

The “outer region” comprises most of the plasma, and is
governed by the equations of linearized, ideal MHD. On the
other hand, the “inner region” is localized in the vicinity of
the magnetic resonancex=0 swhereBy

s0d=0d. Nonlinear, dis-
sipative, and drift-MHD effects all become important in the
inner region.

In the outer region, we can writecsx,y,td=cs0dsxd
+cs1dsx,td expsikyd, where k=2p / l and ucs1d u ! ucs0du. Lin-
earized ideal MHD yieldsfcs1d ,Js0dg+fcs0d ,Js1dg=0, where
J==2c. It follows that

S ]2

] x2 − k2Dcs1d − Sd3cs0d/dx3

dcs0d/dx
Dcs1d = 0. s5d

The solution to the above equation must be asymptotically
matched to the full, nonlinear, dissipative, drift-MHD solu-
tion in the inner region.

III. INTERACTION WITH A RESISTIVE WALL

A. Introduction

Suppose that the walls bounding the plasma atx= ±xw

are thin and resistive, with time-constanttw. We can define
the perfect-wall tearing eigenfunctioncpwsxd as the continu-
ous evensin xd solution to Eq.s6d which satisfiescpws0d
=1 and cpws±xwd=0. Likewise, the no-wall tearing eigen-
function cnwsxd is the continuous even solution to Eq.s6d
which satisfiescpws0d=1 andcpws±`d=0. In general, both
cpwsxd, andcnwsxd have gradient discontinuities atx=0. The
quantityDpw=fdcpw/dxg0−

0+ is the conventional tearing stabil-
ity index17 in the presence of a perfectly conducting wall
si.e., tw→`d, whereasDnw=fdcnw/dxg0−

0+.Dpw is the tearing
stability index in the presence of no wallsi.e., tw→0d. Fi-
nally, the wall eigenfunctioncwsxd is defined as the continu-
ous even solution to Eq.s5d which satisfiescws0d=0,
cws±xwd=1, and cws±`d=0. This eigenfunction has addi-
tional gradient discontinuities atx= ±xw. The wall stability
index, Dw,0, is definedDw=fdcw/dxgxw−

xw+.
According to standard analysis,7 the effective tearing sta-

bility index, D8=fd ln c /dxg0−
0+, in the presence of a resistive

wall is written as

D8 =
V2 Dpw + Vw

2 Dnw

V2 + Vw
2 , s6d

whereV is the phase velocity of the tearing mode in the lab
frame andVw=s−Dwd / sktwd. Also, the nety-directed electro-
magnetic force acting on the inner region takes the form

fy = −
k

2
sDnw − Dpwd

VVw

V2 + Vw
2 C2, s7d

where Cstd= ucs1ds0,tdu is the reconnected magnetic flux,
which is assumed to have a very weak time dependence.

B. Island geometry

In the inner region, we can write

csx,u,td = −
x2

2
+ Cstdcosu, s8d

whereu=ky. As is well-known, the above expression forc
describes a constantc magnetic island of full-widthsin thex
directiond W=4w, wherew=ÎC. The region inside the mag-
netic separatrix corresponds toCùcù−C, whereas the re-
gion outside the separatrix corresponds toc,−C. It is con-
venient to work in theisland rest frame,in which ] /]t.0.

It is helpful to define a flux-surface average operator,

022308-2 R. Fitzpatrick and F. L. Waelbroeck Phys. Plasmas 12, 022308 ~2005!
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kfss,c,udl = R fss,c,ud
uxu

du

2p
s9d

for c,−C, and

kfss,c,udl =E
−u0

u0 fss,c,ud + fs− s,c,ud
2 uxu

du

2p
s10d

for Cùcù−C. Here,s=sgnsxd and xss,c ,u0d=0 swith p
.u0.0d. The most important property of this operator is
that kfA,cgl;0, for any fieldAss,c ,ud.

C. Ordering scheme

For the purpose of our ordering scheme, we require both
= andc to beOs1d in the vicinity of the island. This implies
that our scale lengtha is OsWd and our scale field strengthBa

is OsC /Wd, where W and C are the unnormalized island
width and reconnected flux, respectively.

In the inner region, we adopt the following ordering of
terms appearing in Eqs.s1d–s4d: db=db

f1g, c=cf0g,
f=ff1gss,cd+ff5gss,c ,ud, Z=Zf0gss,cd+Zf4gss,c ,ud,
Vz=Vz

f3gss,c ,ud, dJ;1+=2c=dJf2gss,c ,ud. Moreover, =
=¹f0g, t=tf0g, cb=cb

f0g, mi,e=mi,e
f3g, k=kf3g, h=hf3g, D=Df3g,

and dC /dt=dCf5g /dt. Here, the superscriptfig indicates a
quantity which is ordersdbdi, where it is assumed that
db!1. This ordering, whichftogether with Eqs.s11d–s14dg is
completely self-consistent, implies weaksi.e., strongly sub-
Alfvénic and sub-magnetoacousticd diamagnetic flows, and
very longsi.e., very much longer than the Alfvén timed trans-
port evolution time scales.

Equationss1d–s4d yield

dCf5g

dt
cosu = fff5g − db

f1g Zf4g,cg + hf3g dJf2g

−
me

f3g db
f1g s1 + td
cb

=2f−2g
fVz

f3g

+ sdb
f1g/cbd dJf2gg + Osdb

6d, s11d

0 = cb fVz
f3g + sdb

f1g/cbd dJf2g,cg + Df3g Yf0g

+ me
f3g db

f1g =2f−2g
sUf1g − db

f1g Yf0gd + Osdb
4d, s12d

0 = −Mf1g fUf1g,cg −
db

f1g t

2
hLf0g fUf1g,cg + Mf1g fYf0g,cgj

+ fdJf2g,cg + mi
f3g =2sUf1g + db

f1g t Yf0gd

+ me
f3g =2sUf1g − db

f1g Yf0gd + Osdb
5d, s13d

0 = −Mf1g fVz
f3g,cg + cb fZf4g,cg + mi

f3g =2f−2g
Vz

f3g

+ me
f3g =2f−2g

fVz
f3g + sdb

f1g/cbd dJf2gg + Osdb
5d, s14d

where Yf0g=¹2Zf0g, Uf1g=¹2ff1g, Mf1gss,cd=dff1g /dc, and
Lf0gss,cd=dZf0g /dc. Here, we have neglected the super-
scripts on most zeroth-order quantities, for the sake of clar-
ity. As indicated, some of the¹2 terms areOsdb

−2d, since they
operate on quantities which are only important in thin bound-
ary layers of widthOsdbd located on the magnetic separatrix.

In the following, we shall neglect all superscripts for ease of
notation.

D. Determination of flow profiles

Flux-surface averaging Eqs.s12d and s13d, we obtain

k¹2Ul +
db smi t − med

smi + med
k¹2Yl = 0 s15d

and

d2 w2 k¹2Yl − kYl = 0, s16d

where

d =
db

w
Îmimes1 + td

Dsmi + med
. s17d

Our ordering scheme implies thatd,db!1.
Now, we can write¹2.]2/]x2, provided that the island

is “thin” si.e., w! ld. It follows that

Mss,cd = −
dbsmit − med

smi + med
Lss,cd + Fss,cd, s18d

where

d

dc
F d

dc
Sd2w2kx4l

dL

dc
D − kx2lLG = 0 s19d

and

d2

dc2Skx4l
dF

dc
D = 0. s20d

Note thatLss,cd andFss,cd areodd functions ofx. We
immediately conclude thatLss,cd andFss,cd are bothzero
inside the island separatrixssince it is impossible to have a
nonzero, odd flux-surface function in this regiond. The func-
tion Lss,cd satisfies the additional boundary conditionxL
→V* y

s0d /dbs1+td as uxu /w→`. Here, we are assuming that
w!xw. Moreover, the functionFss,cd satisfies the additional
boundary conditionx F→ suxu /xwdsVs0d−Vd as uxu /w→0,
whereVs0d is the unperturbed island phase velocitysi.e., the
phase velocity in the absence of a resistive wall or an exter-
nal magnetic perturbationd in the lab frame.

It is helpful to define the following quantities:

ĉ=−c /C, kk¯ll=k¯l w, andX=x/w. The solutions to Eqs.
s19d ands20d, subject to the above mentioned boundary con-
ditions, are

Lss,ĉd =
sV* y

s0d

wdbs1 + td
1

kkX2ll
s21d

and

Fss,ĉd =
ssVs0d − Vd

xw
E

1

ĉ dĉ

kkX4llYE
1

` dĉ

kkX4ll
, s22d

respectively. Of course, bothLss,ĉd and Fss,ĉd are zero

inside the island separatrixsi.e., ĉ,1d. In writing Eq. s21d,
we have neglected the thin boundary layerswidth, dwd which

resolves the apparent discontinuity inLss,ĉd across the is-
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land separatrix. This boundary layer, which need not be re-
solved in any of our calculations, is described in the com-

panion paper.16 Note that the functionLss,ĉd corresponds to
a velocity profile which islocalized in the vicinity of the

island, whereas the functionFss,ĉd corresponds to anonlo-
calizedprofile which extends over the whole plasma.

E. Force balance

The net electromagnetic force acting on the island region
can be written as14

fy = − 2kCE
C

−`

kdJssinuldc, s23d

where dJs is the component ofdJ with the symmetry of
sinu. Now, it is easily demonstrated that

kdJssinul =
1

kC
kxfdJs,cgl, s24d

so it follows from Eq.s13d that

kdJssinul = −
smi + med

kC

d

dc
Skx5l

d2F

dc2 − 2kx3l
dF

dc
− kxlFD .

s25d

Hence,

fy = 2smi + med lim
x/w→`

Skx5l
d2F

dc2 − 2kx3l
dF

dc
− kxlFD

= 2ssmi + med lim
x/w→`

Fx2 d

dx
S1

x

dsxFd
dx

DG . s26d

Finally, Eq. s22d yields

fy = −
2smi + medsVs0d − Vd

xw
. s27d

Equating Eqs.s7d and s27d, we obtain the island force
balance equation:

2smi + medsVs0d − Vd
xw

=
k

2
sDnw − Dpwd

V Vw

V2 + Vw
2 sW/4d4.

s28d

This equation describes the competition between the viscous
restoring forcesleft-hand sided and the electromagnetic wall
drag sright-hand sided acting on the island, and determines
the island phase velocityV as a function of the island width
W. Note that the above force balance equation is identical to
that obtained from single-fluid MHD theory.7

F. Determination of ion polarization correction

It follows from Eqs.s11d, s13d, ands14d that

dJc = −
1

2
SX2 −

kkX2ll
kk1ll D d

dĉ
fM sM + db t Ldg

+ h−1 dC

dt

kkcosull
kk1ll

, s29d

where dJc is the component ofdJ with the symmetry of
cosu. In writing the above expression, we have neglected
any boundary layers on the island separatrix, since these are
either unimportant or need not be resolved in our calcula-
tions ssee Ref. 16d. Now, making use of Eqs.s18d, s21d, and
s22d, we can write

Mss,ĉd = −
s sVs0d − VEBy

s0d d
w

Lsĉd +
s sVs0d − Vd

xw
Fsĉd

s30d

and

Mss,ĉd + db t Lsx,ĉd = −
s sVs0d − Vi y

s0dd

w
Lsĉd

+
s sVs0d − Vd

xw
Fsĉd. s31d

Here, VEBy
s0d =sVi y

s0d+t Ve y
s0dd / s1+td is the unperturbedE3B

velocity si.e., theE3B velocity in the absence of an islandd,
Viy

s0d is the unperturbed ion fluid velocitysi.e., the ion fluid
velocity in the absence of an islandd, andVey

s0d is the unper-
turbed electron fluid velocitysi.e., the electron fluid velocity
in the absence of an islandd. fNote thatV* y

s0d=Viy
s0d−Vey

s0d.g Fur-
thermore,Vs0d=smiViy

s0d+meVey
s0dd / smi +med ssee Ref. 16d is the

unperturbed island phase velocitysi.e., the phase velocity in
the absence of a resistive walld, andV the actual phase ve-
locity. All of these velocities are measured in the lab frame.

Finally, bothLsĉd andFsĉd are zero forĉ,1, whereas

Lsĉd =
1

kkX2ll
s32d

and

Fsĉd =E
1

ĉ dĉ

kkX4llYE
1

` dĉ

kkX4ll
s33d

in the regionĉù1.
Now

D8sVd =
4

w
E

−1

`

kkdJc cosull dĉ s34d

ssee Ref. 14d, whereD8sVd, which is specified in Eq.s6d, is
the effective tearing stability index in the presence of the
resistive wall. Hence, it follows from Eqs.s29d–s31d ands34d
that
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I1

h

dW

dt
= D8sVd + I2

sVs0d − VEBy
s0d dsVs0d − Viy

s0dd
sW/4d3

− I3
2sVs0d − fVEBy

s0d + Viy
s0dg/2dsVs0d − Vd

xwsW/4d2

+ I4
sVs0d − Vd2

xw
2sW/4d

, s35d

where

I1 = 2E
−1

` kkcosull2

kk1ll
dĉ = 0.823, s36d

I2 =E
−1

` SkkX4ll −
kkX2ll2

kk1ll DdsL2d

dĉ
dĉ = 1.38, s37d

I3 =E
−1

` SkkX4ll −
kkX2ll2

kk1ll DdsLFd

dĉ
dĉ = 0.195, s38d

I4 =E
−1

` SkkX4ll −
kkX2ll2

kk1ll DdsF2d

dĉ
dĉ = 0.469. s39d

Equations35d is the Rutherford island width evolution
equation15 for a propagating magnetic island interacting with
a resistive wall. There arethree separate ion polarization
terms on the right-hand sidesRHSd of this equation. The first
ssecond term on RHSd is the drift-MHD polarization term for
an isolated islandssee Ref. 16d and is unaffected by wall
braking. This term, which varies asW−3, is stabilizing pro-
vided that the unperturbed island phase velocity lies between
the unperturbed local ion fluid velocity and the unperturbed
local E3B velocity, and is destabilizing otherwise. The third
sfourth term on RHSd is the single-fluid MHD polarization
term due to the island velocity shift induced by wall braking
ssee Ref. 9d. This term isalways destabilizing, and varies as
W−1 and the square of the wall-induced velocity shift. The
secondsthird term on RHSd is a hybrid of the other two
polarization terms. The sign of this term depends on many
factors. However, in the limit of small electron viscosity
scompared to the ion viscosityd, when the unperturbed island
phase velocity lies close to the unperturbed velocity of the
ion fluid,16 the hybrid term is stabilizing providedV* y

s0dVs0d

.0, and destabilizing otherwise. In other words, the hybrid
term is stabilizing if the noninteracting island propagates in
the ion diamagnetic directionswith respect to the walld, and
destabilizing if it propagates in theelectron diamagnetic di-
rection. The hybrid polarization term varies asW−2 and is
directly proportional to the wall-induced island velocity
shift.

IV. INTERACTION WITH A RESONANT MAGNETIC
PERTURBATION

A. Introduction

Let the walls bounding the plasma atx= ±xw now be
nonconductingsi.e., tw→0d. Suppose that an evensin xd
propagating magnetic perturbationswith the same wave-

length as the magnetic island in the plasmad is generated by
currents flowing in field coils located in the vacuum region
beyond the walls.

The no-wall tearing stability indexDnw is defined in Sec.
III A. The coil eigenfunctionccsxd is the continuous even
solution to Eq.s5d which satisfiesccs0d=0 andccs±xwd=1.
In general, this eigenfunction has a gradient discontinuity at
x=0. It is helpful to defineDc=fdcc/dxg0−

0+.
According to standard analysis,7 the effective tearing sta-

bility index, D8=fd ln c /dxg0−
0+, in the presence of an exter-

nally generated, magnetic perturbation is

D8std = Dnw + Dc
Cc

C
coswstd, s40d

where Cstd= ucs1ds0,tdu is the reconnected magnetic flux,
which is assumed to vary slowly in time, andCc the flux at
the walls solely due to currents flowing in the external coils.
Furthermore,wstd is the phase of the island measured with
respect to that of the externally generated perturbation. Let
the phase velocity of the externally generated perturbation be
Vc. It follows that

dw

dt
= k V8std, s41d

whereV8=V−Vc, andVstd is the instantaneous island phase
velocity. Also, the nety-directed electromagnetic force act-
ing on the island takes the form

fystd = −
k

2
DcCCc sinwstd. s42d

Note that, unlike the braking force due to a resistive wall,
this forceoscillatesin sign as the island propagates.

B. Determination of flow profiles

We can reuse the analysis of Sec. III D, except that we
must allow fortime dependenceof the functionF to take into
account theoscillatingnature of the locking force exerted on
the island by the external perturbation. Hence, we write

Mss,c,td = −
db smi t − med

smi + med
Lss,cd + Fss,c,td, s43d

where

Lss,ĉd =
s V* y

s0d

w db s1 + td
1

kkX2ll
s44d

and

]

] c
Fsmi + med

]

] c
Skx4l

] F

] c
D − kx2l

] F

] t
G = 0. s45d

In order to proceed further, we adopt the separable form
approach to solve Eq.s45d which was introduced and justi-
fied in Ref. 14. In other words, we try the following solution:
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Fss,c,td = s F1scd sinSE
0

t

k V8st8d dt8D
+ s F2scd cosSE

0

t

k V8st8d dt8D . s46d

Of course,F1scd and F2scd are both zero within the island
separatrix. Furthermore,

uxu F1 → F0, s47d

uxu F2 → 0, s48d

as uxu /w→`. Here,F0 is a constant. The above boundary
conditions imply that the functionFss,c ,td corresponds to a
velocity profile which is localized in the vicinity of the is-
land.

Matching to the outer region yields

F0 sinSE
0

t

k V8st8d dt8D = Vs0d − Vstd. s49d

Hence, differentiating with respect tot, we obtain

1

k V8

dV

dt
= − F0 cosSE

0

t

k V8st8d dt8D s50d

and

d

dt
S 1

k V8

dV

dt
D = k V8 sVs0d − Vd. s51d

Substituting Eq.s46d into Eq. s45d, and integrating once
in c using the boundary conditionss47d and s48d, we get

sgnsV8d
l2

2 w2

d

dĉ
SkkX4ll

dF1

dĉ
D + kkX2ll F2 = 0, s52d

sgnsV8d
l2

2 w2

d

dĉ
SkkX4ll

dF2

dĉ
D − kkX2ll F1 = −

F0

w
. s53d

Here, l=Î2 smi +med /k uV8u is the localization scale length
of the velocity profile corresponding to the functionF.

Suppose thatw!l!xw. In other words, suppose that
the localization scale length of the velocity profile associated
with F is much larger than the island width, but much
smaller than the extent of the plasma. In this limitswhich
corresponds to the “weakly localized” regime of Ref. 14d,
Eqs.s52d and s53d can be solved to give

uXu F1 =
F0

w
F1 − expS−

wuXu
l

D cosSwuXu
l

DGFsĉd , s54d

uXu F2 = sgnsV8dF0

w
expS−

wuXu
l

D sinSwuXu
l

D Fsĉd .

s55d

Here, Fsĉd is specified in Eqs.s33d. It follows from Eqs.
s46d, s49d, ands50d that

Fss,ĉ,td =
s

w
sVs0d − Vd F1 − exp

3S−
wuXu

l
D cosSwuXu

l
DG Fsĉd

uXu

−
s

w

1

kuV8u
dV

dt
expS−

wuXu
l

D sinSwuXu
l

D Fuĉu
uXu

.

s56d

C. Island equation of motion

Reusing the analysis of Sec. III E, taking into account
the time dependence ofF, we obtain

fy = 2ssmi + med lim
x/w→`

Fx2 ]

] x
S1

x

] sxFd
] x

DG
− 2

]

] t
E

−c

−` Skx3l
] F

] c
− kxlFD dc. s57d

According to the boundary conditionss47d ands48d, the first
term on the right-hand side is identically zero. Transforming
the second term on the right-hand side, using the fact that the
integral is dominated by the regionuXu @1, we get

fy = − 2 s C
]

] t
E

0

`

X
] sX Fd

] X
dX. s58d

Finally, Eqs.s50d, s51d, ands56d yield

fy = lFdV

dt
+ k uV8usV − Vs0ddG . s59d

Making use of Eq.s42d, the island equation of motion takes
the form

Î2smi + med
kuV8u

dV

dt
+ Î2smi + medkuV8usV − Vs0dd

+
k

2
SW

4
D2SWc

4
D2

sinw = 0. s60d

Here, sWc/4d2=Dc Cc. The first term on the left-hand side
represents the inertia of the region of the plasmasof width
Î2 smi +med /k uV8ud which is viscously coupled to the island,
the second term represents the viscous restoring force, and
the third term represents the locking force due to the external
perturbation. Note that the above equation is identical to that
obtained from single-fluid MHD theory.14 The above analy-
sis is valid providedw!Î2 smi +med /k uV8u!xw.

D. Determination of ion polarization correction

Reusing the analysis of Sec. III F, we obtain

dJc = −
1

2
SX2 −

kkX2ll
kk1ll D ]

] ĉ
fMsM + dbtLdg

+ h−1dC

dt

kkcosull
kk1ll

, s61d

where
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Mss,ĉ,td = −
ssVs0d − VEBy

s0d d
w

Lsĉd −
sfystd

2smi + med
Fsĉd s62d

and

Mss,ĉ,td + dbtLsx,ĉd = −
ssVs0d − Viy

s0dd
w

Lsĉd

−
sfystd

2smi + med
Fsĉd. s63d

Here, use has been made of Eqs.s56d ands59d, as well as the
fact that the polarization term integral is dominated by the
region uXu ,Os1d. Finally, Eqs.s34d, s40d, ands42d yield

I1

h

dW

dt
= Dnw + SWc

W
D2

cosw

+ I2
sVs0d − VEBy

s0d dsVs0d − Viy
s0dd

sW/4d3

− I3
k

2

sVs0d − fVEB
s0d + Viy

s0dg/2d
smi + med

SWc

4
D2

sinw

+ I4
k2

16smi + med2 SW

4
D3SWc

4
D4

sin2w, s64d

whereI1, I2, I3, andI4 are specified in Sec. III F.
Equations64d is the Rutherford island width evolution

equation for a propagating island interacting with an exter-
nally generated, resonant magnetic perturbation. There are
three separate ion polarization terms on the right-hand side
of this equation. The firststhird term on RHSd is the drift-
MHD polarization term for an isolated islandssee Ref. 16d,
and is unaffected by the external perturbation. The thirdsfifth
term on RHSd is the single-fluid MHD polarization term due
to the oscillation in island phase velocity induced by the
externally generated perturbationssee Ref. 14d. This term
modulates as the island propagates, but is always destabiliz-
ing. The secondsfourth term on RHSd is a hybrid of the other
two polarization terms.

E. Solution of island equations of motion

Let us solve the island equations of motion,s41d and
s60d, in the limit in which the externally generated magnetic
perturbation is sufficiently weak that it does not significantly
perturb the island phase velocity. Let us also assume thath is
so small that the island widthW does not vary appreciably
with island phase. In this limit, we can write

wstd = kV8s0dt + as sinsk V8s0dtd + ac cossk V8s0dtd, s65d

where uasu, uacu !1 andV8s0d=Vs0d−Vc. Substitution of the
above expression into Eqs.s41d and s60d yields

as . SW

4
D2SWc

4
D2Y 4lfV8s0dg2 s66d

and ae.sgnsV8s0ddas, where l=Î2smi +med /kuV8s0du is the
velocity localization scale length. Averaging over island
phase, using Eq.s65d, we obtain

cosw .
as

2
, s67d

sinw . sgnsV8s0dd
as

2
, s68d

sin2 w . 1
2 . s69d

Hence, the average of the Rutherford island width evolution
equations64d over island phase takes the form

I1

h

dW

dt
= Dnw + I2

sVs0d − VEBy
s0d dsVs0d − Viy

s0dd
sW/4d3 −

as

2
SWc

W
D2

3H1 + I3
sVs0d − fVEB

s0d + Viy
s0dg/2d

V8s0d Sw

l
D2

− I4Sw

l
D3J . s70d

The first two terms on the right-hand side of the above equa-
tion are the intrinsic tearing mode drive and the drift-MHD
polarization term, respectively, and are unaffected by the ex-
ternal perturbation. The next three termsswithin the curly
bracesd are thephase-averagedexternal perturbation drive,
hybrid polarization term, and single-fluid MHD polarization
term, respectively. It can be seen that the external perturba-
tion drive is on average stabilizing, whereas the single-fluid
MHD polarization term is destabilizing.7 The sign of the hy-
brid term depends on many factors. However, in the limit of
small electron viscosityscompared to the ion viscosityd,
when the unperturbed island phase velocity lies close to the
unperturbed velocity of the ion fluid,16 the hybrid term is on
average stabilizing providedV* y

s0d V8s0d.0, and destabilizing
otherwise. In other words, the hybrid term is stabilizing if the
noninteracting island propagates in the ion diamagnetic di-
rection with respect to the external perturbation, and desta-
bilizing if it propagates in the electron diamagnetic direction.

V. SUMMARY

We have investigated the dynamics of a propagating
magnetic island interacting with a resistive wall or an exter-
nally generated, resonant magnetic perturbation using two-
fluid, drift-MHD theory in slab geometry. In both cases, we
find that the island equation of motion takes exactly the same
form as that predicted by single-fluid MHD theoryssee Secs.
III E and IV Cd. However, two-fluid effects do give rise to
additional ion polarization terms in the Rutherford island
width evolution equation.

In general, we find that there are three separate ion po-
larization terms in the Rutherford equationssee Secs. III F
and IV Dd. The first is the drift-MHD polarization term for
an isolated island and is completely unaffected by interaction
with a resistive wall or an externally generated magnetic per-
turbation. Next, there is the polarization term due to interac-
tion with a resistive wall or magnetic perturbation which is
predicted by single-fluid MHD theory. This term is always
destabilizing. Finally, there is a hybrid of the other two po-
larization terms. The sign of this term depends on many fac-
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tors. However, in the limit of small electron viscosityscom-
pared to the ion viscosityd, when the noninteractingsi.e., in
the absence of a resistive wall or external magnetic pertur-
bationd island phase velocity lies close to the unperturbed
si.e., in the absence of an islandd velocity of the ion fluid,16

the hybrid term is stabilizing if the noninteracting island
propagates in the ion diamagnetic directionswith respect to
the wall or external perturbationd and destabilizing if it
propagates in the electron diamagnetic direction.
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