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The equations of incompressible inviscid two-dimensional MHD~magnetohydrodynamics! are
numerically evolved in order to study a well-known model of forced magnetic reconnection. This
problem, known as the Taylor problem, considers the response of a tearing-stable slab plasma
equilibrium to a sudden, small amplitude boundary perturbation. The applied perturbation is such as
to force magnetic reconnection and subsequent magnetic island formation within the plasma. The
early dynamical phases of the reconnection process are investigated and found to be in good
agreement with the analytic predictions of Hahm and Kulsrud@Phys. Fluids28, 2412 ~1985!#.
Recent criticisms of this analysis by Ishizawa and Tokuda@Phys. Plasmas8, 376~2001!# are shown
to be unwarranted. ©2004 American Institute of Physics.@DOI: 10.1063/1.1756587#

I. INTRODUCTION

This paper investigates a well-known model resistive
MHD ~magnetohydrodynamical! problem involving forced
magnetic reconnection in 2D slab geometry. This problem,
generally known as the ‘‘Taylor problem’’~since it was first
proposed by J.B. Taylor!, deals with a tearing-stable slab
plasma with an equilibrium magnetic field of the form

B(0)5@0,By
(0)~x!,0#, ~1!

whereBy
(0)(2x)52By

(0)(x). The plasma is bounded by per-
fectly conducting walls located atx56a, and is periodic in
the y direction with wavelengthL. At t50, the walls are
subject to a sudden deformation~in thex direction! such that

xwall→6@a1J0 cos~ky!#, ~2!

wherek52p/L, andJ0!a. The wall perturbation pushes
oppositely directed magnetic field-lines together at the field
null (x50), forcing them to reconnect and eventually form
magnetic islands of wavelengthL.

The inviscid Taylor problem was first investigated ana-
lytically by Hahm and Kulsrud,1 who found five distinct dy-
namical phases in the reconnection process. The first four
phases~labeled A, B, C, and D,! are governed by linear layer
physics. The last~unlabeled! phase is described by the well-
known nonlinear island dynamics of Rutherford.2

Recently, Ishizawa and Tokuda3,4 have disputed the re-
sults of Hahm and Kulsrud, arguing that the initial phases A
and B do not exist, and should be replaced by a quite differ-
ent and controversial5,6 reconnection phase. The essence of
the Ishizawa and Tokuda criticism lies in the claim that
Hahm and Kulsrud improperly used the well-known
constant-c ordering7 during their derivation of phases A and
B.

The aim of this paper is to resolve the above-mentioned
controversy by showing that the Hahm and Kulsrud analysis
does indeed correctly describe the initial phases of forced
magnetic reconnection in the inviscid Taylor problem. Since
the many steps employed in the standard analytic treatment

of this problem are difficult for the nonexpert to follow, we
have chosen to employ a more transparent and direct route to
calculating the magnetic reconnection rate, i.e., numerical
simulation. Now, the Ishizawa and Tokuda analysis is only
concerned with forced reconnection in the linear regime, so
in the following we shall numerically evolve the linearized
equations of two-dimensional~2D! incompressible inviscid
MHD, calculating the reconnection rate as a function of time,
and making careful comparisons with the Hahm and Kulsrud
predictions.

II. BASIC EQUATIONS AND GEOMETRY

Let us adopt standard Cartesian coordinates (x,y,z). It is
assumed that]/]z[0. The equilibrium magnetic field is
specified in Eq.~1!. For clarity, dimensionless variables are
adopted in order to remove any unimportant plasma charac-
teristics such as overall size, absolute magnetic field
strength, etc. After this re-scaling, the perfectly conducting
walls are located atx561, and the magnetic field is normal-
ized such thatBy

(0)(1)51. Time is normalized to the charac-
teristic Alfvén time evaluated at the walls.

Defining a magnetic flux function,B5¹c∧ ẑ, and a
stream function,V5¹f∧ ẑ, the equations of incompressible
inviscid 2D MHD reduce to the following complete set:

]c

]t
5@f,c#2h j 1h, ~3!

]v

]t
5@f,v#1@ j ,c#, ~4!

j 52¹2c, ~5!

v52¹2f, ~6!

where the standard Poisson bracket is given by@A,B#
5]xA]yB2]yA]xB. The ~constant! resistivity h is assumed
to be much less than unity~i.e., the Lundquist numberS
51/h is assumed to be much greater than unity!. The
z-directed current density,j , is driven by a constant electric
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field E05h ~pursuant to the boundary condition on the mag-
netic field!. Finally, v is thez-directed vorticity.

In dimensionless coordinates, the plasma lies in the rect-
angular region21<x<11 and2L/2<y<1L/2, whereL
is the normalized periodicity length. The tearing-stable
plasma equilibrium is specified byc (0)(x)52x2/2, v (0)

50, j (0)(x)51, andf (0)50.
Consider the wall displacement

xwall~ t !56@11J~ t !cos~ky!#, ~7!

wherek52p/L is the normalized wave number. Here,

J~ t !5J0@12e2t/t2~ t/t!e2t/t#, ~8!

for t>0, andJ(t)50 for t,0. This choice ensuresJ(t)
anddJ(t)/dt are both continuous att50. The parametert
represents the time scale on which the wall displacement is
switched on. Assuming thatJ0!1, appropriate boundary
conditions at the walls are

c~61,y,t !521/21J~ t !cos~ky!, ~9!

v~61,y,t !50, ~10!

j ~61,y,t !51, ~11!

f~61,y,t !56
1

k

dJ~ t !

dt
sin~ky!. ~12!

III. ANALYTIC THEORY

A. Introduction

The standard analytical treatment of the Taylor problem
exploits the fact that in the high Lundquist number limit
marginally stable ideal MHD only breaks down in a very
narrow region centered on the field null~at x50). Thus, the
plasma can be separated into two regions. In the ‘‘outer re-
gion,’’ which comprises most of the plasma, both plasma
resistivity and inertia can be neglected. However, resistivity
and inertia play important roles in the ‘‘inner region,’’ which
is centered on the null surface, and is extremely narrow in
the x direction. Of course, it is necessary to asymptotically
match analytic solutions obtained in both regions in order to
obtain a complete solution.

B. Outer region

Linearizing the MHD equations, we can write the per-
turbed flux and stream functions in the formdc(x,y,t)
5c(x,t)cos(ky) and df(x,y,t)5f(x,t)sin(ky). Neglecting
resistivity, the linearized Ohm’s law~3! yields

f~x,t !5
1

kx

]c~x,t !

]t
. ~13!

Neglecting inertia, the vorticity equation~4! reduces to

]2c~x,t !

]x2 2k2c~x,t !50. ~14!

The solution of Eq.~14! which satisfies the boundary condi-
tion ~9! and can be matched to the inner solution near the
null surface is written

cout~x,t !5C~ t !Fcoshkx2
sinhkuxu
tanhk G1J~ t !

sinhkuxu
sinhk

.

~15!

At the boundary of the inner region the above expression
reduces to

cout~x→0,t !→C~ t !1 1
2 DCuxu1O~x2!, ~16!

where

DC52
2kC~ t !

tanhk
1

2kJ~ t !

sinhk
. ~17!

Naturally, the gradient discontinuity incout(x,t) at x50 is
resolved in the inner region.

C. Inner region

Let us linearize equations~3!–~6!, and then exploit the
narrowness of the inner region by expanding all equilibirium
quantities aboutx50. All perturbed quantities are then
Laplace transformed,

c̄~x,g!5E
0

`

c~x,t !e2gt dt, ~18!

and then Fourier transformed in thex direction,

c̄~x,g!5E
2`

`

c̃~u,g!eikxu du. ~19!

After some algebra, we obtain the following layer equation:

]

]u
F u2

g1hk2u2

]f̃

]u
G2gu2f̃50. ~20!

A physically acceptable solution to the above equation must
be well behaved asu→`. Fourier–Laplace transforming the
outer region matching condition@Eqs.~13! and~16!# reveals
the small-u boundary condition satisfied byf̃,

f̃~u,g!→2
gC̄~g!

2 FD~g!

kp

1

u
111O~u!G , ~21!

as u→0. Here, D(g)5DC̄(g)/C̄(g). ~Note: in general,
only the stream function is sufficiently well behaved to be
Fourier transformable, making it the preferred choice for
asymptotic matching.! Solving the layer equation subject to
the boundary condition at infinity, and then matching to the
above expression asu→0, allows the layer quantityD(g) to
be evaluated. The Laplace transformed perturbed magnetic
flux at the edge of the inner region is then given by

C̄~g!5
EswJ̄~g!

D~g!2Ess
, ~22!

where, for the sake of brevity, we have defined

Ess52
2k

tanhk
, Esw5

2k

sinhk
. ~23!

Note thatEss,0 is the conventional tearing stability index.
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Now, the true reconnected magnetic flux,c0(t), corre-
sponds to the value of the perturbed flux function at the
center, rather than the edge, of the inner region. In fact, it can
be demonstrated that

c̄0~g!5
2hk2

g E
0

` u2

g1hk2u2

]f̃

]u
du. ~24!

D. Inertial regime

When t!t1 , where

t15
1

h1/3k2/3, ~25!

resistivity may be neglected in the layer equation, which can
be solved subject to the boundary conditions to give

f̃~u,g!5
C̄~g!

2

e2gu

u
, ~26!

with D(g)52pk/g. It follows from Eqs.~22! and~24! that

c̄0~g!5
2hkEswJ0

p~11gt!2g3 , ~27!

where we have neglectedEss with respect toD(g) in accor-
dance with the constraint that the width of the inner region
remain small compared to unity in order for the asymptotic
matching approach to be valid. Inverting~27! yields the re-
connected magnetic flux as a function of time,

c0~ t !5
2hkEswJ0

p F t2

2
13t222tt2~tt13t2!e2t/tG .

~28!

The associated reconnection rate is

JI~ t ![h21
dc0

dt
5

2kEswJ0

p
@ t1~ t12t!e2t/t22t#.

~29!

Note thatJI(t) also measures the perturbed current density at
the magneticX point. If the wall perturbation is switched on
fairly suddenly~i.e., t!1), which is consistent with the as-
sumptions of Hahm and Kulsrud, our results for the ‘‘inertial
regime’’ correspond exactly to regimes A and B of Hahm and
Kulsrud, although our analysis is somewhat different. Our
analytic results do not agree with those of Ishizawa and
Tokuda. Finally, our analysis reveals that the inertial regime
is a non constant-c regime, i.e.,uc0u!uCu. At no stage have
we employed the constant-c ordering during the derivation
of the above results.

E. Resistive inertial regime

In the limit t@t1 , the layer equation~20! can be solved
in a two-step process,8 yielding the constant-c result

C̄~g!5c̄0~g!5
EswJ0

g~11gt!2@t ri
5/4g5/41~2Ess!#

, ~30!

where

t ri 5F2pG~3/4!

G~1/4! G4/5 1

k2/5h3/5.
1.8270

k2/5h3/5. ~31!

Inverse Laplace transforming the above expression, while
neglectingt with respect tot ri , yields

c0~ t !5
EswJ0

~2Ess!
F12

8

5
e2cos(p/5) t̃ cos~sin~p/5! t̃ !

1I ~ t̃ !G , ~32!

where

t̃ 5~2Ess!
4/5t/t ri ~33!

and

I ~ t̃ !5
4

5&p
E

0

` e2y4/5t̃ dy

12&y1y2
. ~34!

The reconnection rate takes the form

Jri 5J0@ 8
5 cos~p/5!e2cos(p/5) t̃ cos~sin~p/5! t̃ !

1 8
5 sin~p/5!e2cos(p/5) t̃ sin~sin~p/5! t̃ !2K~ t̃ !#,

~35!

where

J05
EswJ0

~2Ess!

~2Ess!
4/5

ht ri
~36!

and

K~ t̃ !5
4

5&p
E

0

` y4/5e2y4/5t̃ dy

12&y1y2
. ~37!

Our ‘‘resistive-inertial’’ regime corresponds to regime D of
Hahm and Kulsrud.~Regime C is valid fort;t1 , in which
case we can find no closed-form analytic expression for the
reconnection rate.!

IV. NUMERICAL RESULTS

A. Introduction

We have numerically advanced the linearized forms of
Eqs. ~3!–~6!, with the boundary conditions~9!–~12!, in a
one-dimensional~1D! explicit finite-difference code that is
second order in time and space. An insignificant amount of
viscosity,m;1027, was added to the equations in order to
control numerical instability. The computational grid is non-
uniform in thex direction, with more points being packed
around the vicinity of the magnetic null~at x50), in order to
improve resolution within the ‘‘inner region.’’ The Courant–
Freidrichs–Lewy condition on the Alfve´n wave requires that
the uniform time step remain less than the minimum step
size in thex direction. All numerical results discussed in this
paper use a common plasma equilibrium characterized by
L58, J05131024, k5p/4, andm5131027.
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B. Inertial regime

Figure 1 shows the typical reconnection rateJ(t) ob-
tained from our code at early times. The numerical reconnec-
tion rate follows the inertial rate,JI , for times less thant1 ,
in agreement with the Hahm and Kulsrud analysis. Whent
;t1 , the numerical reconnection rate undergoes a transition
from the ‘‘inertial’’ to the ‘‘resistive inertial’’ rate, agreeing
well with the latter for all later times. The large over-shoot
seen during the transition phase is only observed when vis-
cosity is negligible. Ishizawa and Tokuda claim the early
phases of the reconnection process are strongly dependent on
the wall-perturbation time scale,t. We varied t, from 1
31022 to 13102, and found excellent agreement between
the numerical reconnection rate and the ‘‘inertial’’ rate.

C. Resistive inertial regime

Figure 2 reveals the complete inviscid reconnection be-
havior in the limit of small wall perturbation. For times
larger thant1 , the numerical reconnection rate and the ‘‘re-
sistive inertial’’ rate,Jri , are in excellent agreement. Two
common features of the linear, inviscid reconnection rates
seen in our simulations are~1! a global maximum reached on
a time scalet;t1 , and~2! a change in sign~corresponding
to a maximum in the reconnected flux! on a time scalet
;t ri ~see Fig. 2!.

D. Scaling study

To validate the Hahm and Kulsrud theory over a wide
range of resistivity values, we have derived approximate re-

sistive scalings for the maximum reconnection rate,JM , and
the time at which the reconnection rate changes sign,t0 .
Looking back to Fig. 1, we expectJM;JI(t1). Assuming
the switch-on time,t, is sufficiently short, we obtain

JM;JI~t1!;h21/3. ~38!

As previously mentioned, we predictt0;t ri , or t0;h23/5

@see Eq.~31!#.
Figure 3 shows the numerical scaling of botht0 andJM

with resistivity, and compares these with the theoretical pre-
dictions given above. Fewert0 values are calculated thanJM

values ~as resistivity decreases!, becauset ri quickly ap-
proaches several tens-of-thousands of Alfve´n times and
therefore becomes numerically impractical to calculate. The
results for JM deviate from the predicted curve forh
.1022, as the layer becomes of a width comparable to the
whole plasma, and hence our asymptotic methods break
down. Note the excellent agreement between the numerical
results and the analytically predicted scalings.

V. SUMMARY AND CONCLUSIONS

We have implemented a 1D explicit numerical scheme to
study forced magnetic reconnection in the inviscid Taylor
problem, where a tearing-stable slab plasma equilibrium is
subjected to a sudden boundary perturbation in such a way as
to drive magnetic reconnection within the plasma. In all
cases studied, the initial reconnection rate agrees closely
with that predicted analytically in the ‘‘inertial’’ regime dis-

FIG. 1. Plot comparing the numerical reconnection rate~solid curve! with
the theoretical reconnection rates in the ‘‘inertial’’~dashed–dotted curve!
and ‘‘resistive inertial’’ ~dashed curve! regimes. The dotted vertical line
indicates the value oft1 . The run was performed with a uniform time step
dt5131024, 600 x-grid points, a minimum step size ofdxmin54.2
31024, resistivityh52.831024, and switch-on parametert51.

FIG. 2. Plot of the numerical reconnection rateJ(t) ~solid curve! versus
time. The dashed curve shows the theoretical ‘‘resistive inertial’’ reconnec-
tion rate. The left-most dotted vertical line indicates the value oft1 , while
the right-most indicates the value oft ri . The run was performed with a
uniform time stepdt5131024, 600x-grid points, a minimum step size of
dxmin54.231024, resistivity h52.831024, and switch-on parametert
51.
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cussed in Sec. III D. In the limit that the wall switch on time,
t, is small (t<1), the inertial reconnected magnetic flux
scales asc0;ht2 ~in agreement with the Hahm and Kulsrud
regimes A and B!, similar to the so-called ‘‘Sweet–Parker’’

time scale. However, any resemblence to Sweet–Parker re-
connection is purely coincidental, as the reconnection phys-
ics in the two cases are completely unrelated. Nowhere in
our derivation of the ‘‘inertial’’ regime have we used the
well-known constant-c ordering to obtain our results, which
are identical to those of Hahm and Kulsrud. Now, Ishizawa
and Tokuda claim Hahm and Kulsrud ‘‘improperly’’ used
constant-c ordering to obtain their results for the initial re-
connection phases. We have shown, both analytically and
numerically, that this criticism is completely unfounded. We
have numerically investigated the theoretical reconnection
regimes over a wide range of resistivity values, and found
good agreement between the numerical results and the Hahm
and Kulsrud theory. We can find no reconnection regimes
corresponding to those described by Ishizawa and Tokuda.
We conclude that the Hahm and Kulsrud analysis for the
initial phases of the reconnection process is correct.
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