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An improved Laplace transform theory is developed in order to investigate the initial response of a
stable slab plasma equilibrium enclosed by conducting walls to a suddenly applied wall perturbation
in the so-called Taylor problem. The novel feature of this theory is that it does not employ
asymptotic matching. If the wall perturbation is switched on slowly compared to the Alfve´n time
then the plasma response eventually asymptotes to that predicted by conventional asymptotic
matching theory. However, at early times there is a compressible Alfve´n wave driven contribution
to the magnetic reconnection rate which is not captured by asymptotic matching theory, and leads
to a significant increase in the reconnection rate. If the wall perturbation is switched on rapidly
compared to the Alfve´n time then strongly localized compressible Alfve´n wave-pulses are generated
which bounce backward and forward between the walls many times. Each instance these
wave-pulses cross the resonant surface they generate a transient surge in the reconnection rate. The
maximum pulse driven reconnection rate can be much larger than that predicted by conventional
asymptotic matching theory. ©2003 American Institute of Physics.@DOI: 10.1063/1.1617983#

I. INTRODUCTION

This paper investigates a model resistive magnetohydro-
dynamical~MHD! problem which was first proposed by J. B.
Taylor. In this problem, a stable slab plasma equilibrium is
subject to a suddenly imposed, small amplitude boundary
perturbation which is such as to drive magnetic reconnection
at the center of the slab. This type of reconnection, which is
not due to an intrinsic plasma instability, is generally termed
‘‘forced reconnection.’’ The so-called ‘‘Taylor problem’’ is of
fundamental importance to the field of magnetic reconnec-
tion, and has therefore been the subject of extensive study.1–6

The standard analytical technique used to investigate the
Taylor problem involves first taking theLaplace transformof
the linearized MHD equations, and then solving the resulting
equations viaasymptotic matching.1 The various stages in
the matching process are as follows. First, the plasma is di-
vided into two regions. The so-called ‘‘outer region’’ com-
prises most of the plasma, whereas the ‘‘inner region’’ is a
narrow layer centered on the resonant surface~where the
equilibrium magnetic field reverses sign!. The outer region,
throughout which plasma inertia, resistivity, and viscosity are
neglected, is governed by the easily soluble equations of
marginally stable, ideal-MHD. In the inner region, plasma
inertia, resistivity, and viscosity are retained in the analysis,
but the governing equations are considerably simplified by
exploiting the narrowness of this region compared to the rest

of the plasma. Asymptotic matching between the solutions
obtained in the inner and outer regions yields an expression
for the Laplace transformed reconnected magnetic flux. Fi-
nally, this expression is inverted to give the reconnected
magnetic flux as a function of time.

The analytic solution obtained via asymptotic matching
reveals that theinitial response of the plasma to the wall
perturbation is largely governed by plasmainertia. In the
limit in which the perturbation is switched on very suddenly
~at t50), the reconnected flux varies asc0;ht2, whereh is
the plasma resistivity at the resonant surface.1 This particular
result has been the subject of much dispute in the
literature.3–6

One of the main difficulties encountered when discuss-
ing the initial response of the plasma to the wall perturbation
lies in the fact that at very early times the asymptotic match-
ing approach clearly breaks down. It should take at least a
few Alfvén times for information regarding the suddenly ap-
plied wall perturbation to travel from the edge to the center
of the plasma. During this time interval, inertia plays a sig-
nificant role in the response throughout thewhole plasma,
i.e., there is no outer region in which the response is solely
governed by marginally stable, ideal-MHD. Another way of
putting this is that at very early times the inner region ex-
tends over all the plasma. In the conventional analysis of the
Taylor problem, it is tacitly assumed that a few Alfve´n times
after the imposition of the wall perturbation the response
relaxes to the marginally stable, ideal-MHD response
throughout the bulk of the plasma, with deviations from thisa!Electronic mail: rfitzp@farside.ph.utexas.edu
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response being localized to a relatively thin layer centered on
the resonant surface. Of course, once relaxation has occurred
the usual asymptotic matching approach becomes valid.
However, up to now, this important relaxation process has
never been studied in any detail.

The aim of this paper is to investigate theearly time
responseof the plasma to the wall perturbationwithoutusing
asymptotic matching. We hope to characterize the early time
response, and also to determine whether this response even-
tually asymptotes to that obtained via conventional
asymptotic matching~as is generally assumed to be the
case!. We shall neglect plasma viscosity in our analysis,
since this effect plays an negligible role in the initial plasma
response.

II. PRELIMINARY ANALYSIS

A. Basic equations

Standard right-handed Cartesian coordinates (x,y,z) are
adopted. It is assumed that there is no variation along the
z-axis, i.e.,]/]z[0. Consider a compressible plasma gov-
erned by equations of resistive MHD. Let the plasma density,
r, and resistivity,h, both be uniform. It follows that

B5¹∧A, ~1!

m0j5¹∧B, ~2!

2
]A

]t
2¹w1V∧B5h j , ~3!

rF]V

]t
1~V•¹!VG52¹p1 j∧B, ~4!

]p

]t
1V•¹p52Gp¹•V, ~5!

whereA is the vector potential,w is the scalar potential,B is
the magnetic field,V is the plasma velocity,p is the plasma
pressure,j is the current density, andG55/3 the ratio of
specific heats.

Let (x/a,y/a,z/a)→(x,y,z), t/(a/VA)→t, B/B0→B,
A/(B0a)→A, V/VA→V, w/(B0VAa)→w, p/(rVA

2)→p,
and j /(B0 /m0a)→ j , whereVA5B0 /Am0r is the Alfvén ve-
locity, a is a convenient scale-length, andB0 is a convenient
scale magnetic field-strength.

Let A(x,y,t)5@0,0,c(x,y,t)#, and V(x,y,t)
5@u(x,y,t),v(x,y,t),0#. It follows that

]u

]t
52u

]u

]x
2v

]u

]y
2

]p

]x
2¹2c

]c

]x
, ~6!

]v
]t

52u
]v
]x

2v
]v
]y

2
]p

]y
2¹2c

]c

]y
, ~7!

]c

]t
52u

]c

]x
2v

]c

]y
1h¹2c, ~8!

]p

]t
52u

]p

]x
2v

]p

]y
2GpS ]u

]x
1

]v
]y D , ~9!

where¹2[]2/]x21]2/]y2.

B. Plasma equilibrium

Suppose that the plasma is bounded by perfectly con-
ducting walls located atx561, and is periodic in the
y-direction with periodicity lengthL. The initial plasma equi-
librium satisfies

u~0!~x!50, ~10!

v ~0!~x!50, ~11!

c~0!~x!52
x2

2
, ~12!

p~0!~x!5p02
x2

2
, ~13!

wherep0 is the central pressure. In unnormalized units,B0 is
the equilibrium magnetic field-strength atx5a, anda is half
the distance between the conducting walls. Note that the
above plasma equilibrium is completely stable to tearing
modes.

C. Boundary conditions

Suppose that the conducting wall atx51 is subject to a
small~compared with unity! displacementJ(t)cos(ky) in the
x-direction, wherek52p/L. An equal and opposite dis-
placement is applied to the wall atx521. The appropriate
no-slip boundary conditions at the walls are

u~1,y,t !52u~21,y,t !5
]J~ t !

]t
cos~ky!, ~14!

v~1,y,t !5v~21,y,t !50, ~15!

c~1,y,t !5c~21,y,t !52 1
21J~ t !cos~ky!, ~16!

p~1,y,t !5p~21,y,t !5p02 1
21J~ t !cos~ky!. ~17!

Let

J~ t !5J0@12e2t/t2~ t/t!e2t/t# ~18!

for t>0, with J(t)50 for t,0. Note that bothJ(t) and
dJ(t)/dt are continuous att50.

III. LAPLACE TRANSFORM THEORY

A. Analysis

Let us write u(x,y,t)5@]j(x,t)/]t#cos(ky). Here,
j(x,t) is the plasma displacement in thex-direction. The
boundary conditions onj(x,t) are simply

j~61,t !56J~ t !. ~19!

Moreover, it follows from symmetry thatj(2x,t)
52j(x,t), and hence that

j~0,t !50. ~20!

The linearized and Laplace transformed versions of Eqs.
~6!–~9! can be reduced to

]

]x F S x21
g2GP

g21GPk2D ]j̄

]x G2~k2x21g2!j̄50, ~21!
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provided thath is negligible. Here,P5p02x2/2 is the equi-
librium pressure, and

j̄~x,g!5E
0

`

j~x,t !e2gtdt, ~22!

the Laplace transformed plasma displacement. The boundary
conditions onj̄(x,g) are

j̄~61,g!56E
0

`

J~ t !e2gtdt56
J0

g~11gt!2
, ~23!

and

j̄~0,g!50. ~24!

Note that the neglect of resistivity during the derivation of
Eq. ~21! is justified provided thatt!t1 , where1

t15
1

h1/3k2/3
. ~25!

In the following, we shall parameterize the plasma re-
sponse to the wall perturbation in terms of the quantity,

J~ t !52
]j~0,t !

]x
, ~26!

which represents~minus! the perturbed current density at the
resonant surface (x50). Now, it easily follows from Ohm’s
law ~including resistivity! that

dc0~ t !

dt
5hJ~ t !, ~27!

wherec0(t) is the reconnected magnetic flux. Thus,J(t) is a
measure of both the rate of magnetic reconnection and the
amplitude of the current sheet driven at the resonant surface.

Let Y(x,g) be a solution of Eq.~21! which satisfies

Y~0,g!50, ~28!

Y~1,g!51. ~29!

It follows that

J~ t !5
J0

2p i EC

2Y8~0,g!egt

g~11gt!2
dg, ~30!

whereY85]Y/]x, andC represents the Bromwich contour.

B. Asymptotic matching response

The integrand on the right-hand side of Eq.~30! pos-
sesses obvious poles atg50 andg521/t. Let us calculate
the plasma response due to these poles. Provided thatt@1,
both poles are characterized byg!1. In this limit, Eq.~21!
can be solved via asymptotic matching. The outer region
corresponds touxu@ugu. In this region, Eq.~21! reduces to

]

]x S x2
]j̄

]x D 2k2x2j̄.0. ~31!

The solution to the above equation which satisfies the bound-
ary condition~29! takes the form

Y.
sinhkx

x sinhk
. ~32!

The inner region corresponds touxu&ugu. In this region, Eq.
~21! reduces to

]

]x F S x21
g2

k2D ]j̄

]x G.0. ~33!

The solution to the above equation which satisfies the bound-
ary condition~28!, and matches to the outer solution, is writ-
ten

Y.
2k

p sinhk
tan21S kx

g D . ~34!

Thus, it follows that

2Y8~0,g!5
2kEsw

pg
, ~35!

whereEsw52k/sinhk. Finally, direct inversion of Eq.~30!
yields

J~ t !5
2kEswJ0

p
@ t1~ t12t!e2t/t22t#. ~36!

Note that the above expression is identical to that obtained
from conventional asymptotic matching theory.1,6

C. Wave response

The integrand on the right-hand side of Eq.~30! also
possesses poles which correspond to those of the function
Y8(0,g). These additional poles can be writteng56 ivn ,
for n51,2,3,... . Here, thevn ~which are real! are the eigen-
values of the eigenequation,

d

dx F S x22
vn

2GP

GPk22vn
2D dYn

dx G2~k2x22vn
2!Yn50, ~37!

where the eigenfunctionsYn(x) satisfy the boundary condi-
tions Yn(0)5Yn(1)50. Of course, theYn represent the
natural Alfvénic modes of oscillation of the plasma, whereas
thevn are the associated oscillation frequencies. The plasma
response emanating from these new poles can be thought of
as due to compressible Alfve´n waves excited by the suddenly
imposed wall perturbation.

Figure 1 shows the first tenvn values calculated as func-
tions of k for p051. For comparison, the curvesvn

5AGp0(n2p21k2) for n51,10 are also plotted. It can be
seen that there is a fairly close correspondence between the
calculatedvn values and the curves, which indicates that the
natural Alfvénic modes of oscillation of the plasma have
frequencies which satisfy the approximate dispersion relation
vn.AGp0(n2p21k2) for n51,2,3,... . The dependence on
Gp0 demonstrates that these modes are related tocompress-
ible ~rather than shear! Alfvén waves. Note that for smallk
values thevn areequally spaced, whereas this is not the case
for largek values.
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IV. NUMERICAL RESULTS

A. Introduction

Equations~6!–~9!, plus the initial equilibrium~10!–~13!,
and the boundary conditions~14!–~18!, have been imple-
mented numerically within the massively parallel, adaptive
mesh refinement~AMR! architecture of the FLASH code.7

The particular integration scheme employed is a fully ex-
plicit, second-order~in both time and space!, finite-volume,
cell-centered method with limited gradient reconstruction.8,9

B. Code diagnostics

The z-component of Ohm’s law is written

]c

]t
1V•¹c52h j , ~38!

where j [2¹2c is the current density in thez-direction.
Now, by definition,¹c50 at the magneticO- andX-points.
Since there is zero equilibrium plasma flow, and the wall
perturbation is nonpropagating, the positions of theO- and
X-points are fixed and easily identifiable in our simulations.
The reconnected flux is defined

c0~ t !5 1
2@c~X-point!2c~O-point!#. ~39!

Our reconnection rate diagnostic takes the form

J~ t !5 1
2@ j ~O-point!2 j ~X-point!#. ~40!

This definition is equivalent to Eq.~26!. It follows from Eq.
~38!, and the fact that¹c50 at theO- andX-points, thatJ
5h21dc0 /dt. Thus, J(t) measures both the reconnection
rate and the current density in the reconnecting region.

C. Results

In the following, we shall compare and contrastJ(t)
curves produced by the FLASH code and by two different
types of Laplace transform calculation. The conventional
asymptotic matching calculation gives theJ(t) curve speci-
fied in Eq. ~36!. The improved calculation presented in this
paper generates theJ(t) curve obtained by numerically in-
verting Eq. ~30!. The plasma response obtained from this

improved calculation can be thought of as a combination of
the standard asymptotic matching response discussed in Sec.
III B and the wave response discussed in Sec. III C.

Figure 2 showsJ(t) curves generated by the FLASH
code and conventional asymptotic matching theory for a case
where the wall perturbation is switched oncomparatively
slowly ~i.e., t@tA). As expected, there is good agreement
between the numerical and analytic curves whent!t1 .
However, ast→t1 the two curves diverge because resistivity
starts to play a role in the layer dynamics.~Recall, from Sec.
III, that the asymptotic matching theory employed in this
paper neglects the effect of resistivity on the layer dynam-
ics.!

Figure 3 showsJ(t) curves at very early times for the
same calculation as that presented in Fig. 2. It can be seen
that the numerical curve lies somewhat above the asymptotic
matching curve. Now, it is clear from Fig. 2 that the relative
difference between the two curves decreases as time
progresses, and eventually becomes negligible. Nevertheless,
at early times~i.e., t&10tA) there is a significant discrep-

FIG. 1. The crosses show the first ten plasma eigenfrequencies,vn , calcu-
lated at various differentk values forp051. The curves show the functional
relationshipsvn5AGp0(n2p21k2) for n51,10.

FIG. 2. The magnetic reconnection rate,J, as a function of time,t, for a
calculation performed usingJ051024, L58, h51025, p051, andt510.
The solid curve shows the numerical solution generated by the FLASH
code. The long-dashed curve shows the solution produced by conventional
asymptotic matching theory. The vertical dotted line indicates whent5t1 .

FIG. 3. The magnetic reconnection rate,J, as a function of time,t, for a
calculation performed usingJ051024, L58, h51025, p051, andt510.
The solid curve shows the numerical solution generated by the FLASH
code. The long-dashed curve shows the solution produced by conventional
asymptotic matching theory. The short-dashed curve~which has been shifted
downward slightly to make it more visible! shows the solution generated by
the improved Laplace transform calculation.
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ancy between the numerical and asymptotic matching
curves. Figure 3 also shows theJ(t) curve produced by the
improved Laplace transform theory presented in Sec. III A.
Note that this curve agrees exactly with the numerical curve
generated by the FLASH code. We conclude that the discrep-
ancy between the numerical and asymptotic matchingJ(t)
curves, which is evident in Fig. 3, is due to thewave re-
sponsediscussed in Sec. III C. This response is not captured
by conventional asymptotic matching theory, and clearly
leads to a significant increase in the reconnection rate at early
times.

Figure 4 showsJ(t) curves evaluated at very early times
for a case where the wall perturbation is switched onmod-
erately rapidly~i.e., t;tA). The numerical curve generated
by the FLASH code again lies above the asymptotic match-
ing curve. Moreover, the former curve exhibits pulse-like
features which are entirely absent from the latter. However,
the J(t) curve produced by the improved Laplace transform
theory again agrees exactly with the numerical curve.

Figure 5 showsJ(t) curves evaluated at very early times
for a case where the wall perturbation is switched onvery
rapidly ~i.e., t!tA). The dominant feature of the numerical
curve generated by the FLASH code is a set of evenly spaced
spikes. It can be seen that this feature is reproduced exactly
by the improved Laplace transform theory, but not at all by
conventional asymptotic matching theory. Figure 6 shows
J(t) evaluated at later times for the same case. The numeri-
cal data are generated by the University of Iowa MHD
code.10 ~Incidentally, the U. Iowa code is in good agreement
with the FLASH code.! It can be seen that the spikes in the
reconnection rate persist, although the average reconnection
rate remains roughly in agreement with that predicted by
conventional asymptotic matching theory~as long ast,t1).

Figure 7 shows density plots ofu(x,y,t) for the same
calculation as that presented in Fig. 5. It can be seen that the
sudden switch-on of the wall perturbation generates two
strongly localizedpulseswhich propagate toward the reso-
nant surface at the center of the plasma, pass through one
another, and reflect off the walls. The two pulses subse-

quently bounce backward and forward between the walls
many times. The arrival times of the pulses at the resonant
surface correlate very well with the strong spikes in the re-
connection rate shown in Fig. 5. Note that the pulses are
essentiallycompressionalAlfvén waves.@This is easily dem-
onstrated by increasing the central plasma pressure,p0 ,
which has the effect of increasing the propagation speed of
compressional Alfve´n waves, and hence of decreasing the
spacing between the spikes in the numericalJ(t) curve.# We
conclude that the strong spikes in the numericalJ(t) curve
shown in Fig. 5 represent magnetic reconnection driven by
compressional Alfve´n pulses which are excited by the sud-
den onset of the wall perturbation. These pulses arenot cap-
tured by conventional asymptotic matching theory. Note that
the maximum pulse driven reconnection rate can bemuch
larger than that predicted by conventional asymptotic match-
ing theory.

It is clear from the numericalJ(t) curve shown in Fig. 5
that there is a delay of about 1.5 Alfve´n times between the
switch-on of the wall perturbation and the onset of driven

FIG. 4. The magnetic reconnection rate,J, as a function of time,t, for a
calculation performed usingJ051024, L58, h51025, p051, andt51.
The solid curve shows the numerical solution generated by the FLASH
code. The long-dashed curve shows the solution produced by conventional
asymptotic matching theory. The short-dashed curve~which has been shifted
downward slightly to make it more visible! shows the solution generated by
the improved Laplace transform calculation.

FIG. 5. The magnetic reconnection rate,J, as a function of time,t, for a
calculation performed usingJ051024, L58, h51025, p051, andt50.1.
The solid curve shows the numerical solution generated by the FLASH
code. The long-dashed curve shows the solution produced by conventional
asymptotic matching theory. The short-dashed curve~which has been shifted
downward slightly to make it more visible! shows the solution generated by
the improved Laplace transform calculation.

FIG. 6. The magnetic reconnection rate,J, as a function of time,t, for a
calculation performed usingJ051024, L58, h51025, p051, andt50.1.
The spiky curve shows data generated by the University of Iowa MHD code.
The smooth curve shows the solution produced by conventional asymptotic
matching theory. The vertical dotted line indicates whent5t1 .
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reconnection at the resonant surface. This delay simply cor-
responds to the travel time of a compressional Alfve´n wave
between the wall and the resonant surface. As the central
pressurep0 increases, we expect the time delay between the
pulse switch-on and the onset of driven reconnection to de-
crease, since the propagation speed of compressional Alfve´n
waves varies asAp0. Let us investigate the incompressible
limit p0→`. Figure 8 showsJ(t) curves evaluated at very
early times for a case where the wall perturbation is switched
on very rapidly andp0→`. There is no numericalJ(t)

curve, since the FLASH code cannot operate in the incom-
pressible limit. Fortunately, however, there is no such restric-
tion on the improved Laplace transform theory presented in
this paper. TheJ(t) curve generated by the improved theory
exhibits no time delay between the perturbation switch-on
and the onset of magnetic reconnection. This is as expected,
since information regarding the wall perturbation is carried
by compressionalAlfvén waves, which travel infinitely fast
in the incompressible limit. Note, however, that theJ(t)
curve generated by the improved theory still lies significantly

FIG. 7. Density plots of thex-velocity, u(x,y,t), evaluated at various times for a calculation performed usingJ051024, L58, h51025, p051, andt50.1.
Data generated by the FLASH code.
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above that produced by conventional asymptotic matching
theory. This demonstrates that, even in the incompressible
limit, wave driven magnetic reconnection~presumably medi-
ated by infinitely fast compressional Alfve´n waves! is impor-
tant at early times. Note that the wave driven reconnection
exhibits none of the pulse-like behavior shown in previous
figures. This is true no matter how rapidly the wall perturba-
tion is switched on.

Up to now, we have only considered cases whereL@a
~i.e., k!1). In the opposite limit,L&a ~i.e., k*1), com-
pressional Alfve´n pulses generated by the fast switch-on of
the wall perturbation tend to disperse fairly rapidly, and con-
sequently lose coherence after a few passes through the
plasma. In marked contrast, the pulses shown in Figs. 5 and
7 remain coherent for very many transit times. The explana-
tion is as follows. As is shown in Fig. 1, the compressional
Alfvén eigenmodes of the plasma haveequally spacedeigen-
frequencies whenk!1, but not whenk*1. Now, it is pos-
sible to construct a narrow nondispersive pulse from a super-
position of eigenmodes with equally spaced eigen-
frequencies. On the other hand, narrow pulses disperse rap-
idly when the eigenfrequencies are not equally spaced.

V. SUMMARY

We have developed an improved Laplace transform
theory for investigating the initial response of a stable slab
plasma equilibrium to a suddenly applied wall perturbation
in the so-called Taylor problem. The novel feature of this
new theory is that it does not employ asymptotic matching.

When the wall perturbation is switched on slowly com-
pared to the Alfve´n time, we find that the plasma response
eventually asymptotes to that predicted by conventional
asymptotic matching theory. However, at early times~i.e., t
&10tA), there is a compressible Alfve´n wave driven contri-
bution to the magnetic reconnection rate which is not cap-
tured by asymptotic matching theory, and leads to a signifi-
cant increase in the reconnection rate.

When the wall perturbation is switched on rapidly com-
pared to the Alfve´n time, strongly localized compressible

Alfvén wave-pulses are generated which bounce backward
and forward between the walls many times. Each time these
wave-pulses cross the resonant surface they generate a tran-
sient surge in the reconnection rate. Indeed, the maximum
pulse driven reconnection rate can be much larger than that
predicted by conventional asymptotic matching theory. Note
that the pulses only remain coherent over many transits
across the plasma when the wavelength of the wall perturba-
tion greatly exceeds the wall separation.

In the incompressible limit, the pulses are absent, but
there is still a significant wave driven contribution to the
initial reconnection rate which is not accounted for by
asymptotic matching theory.

The improved Laplace transform theory has been suc-
cessfully benchmarked against numerical results from the
FLASH code.

Note that the deviations from standard asymptotic
matching theory reported here only affect the initial stages of
the driven reconnection and have no influence on the final
value of the reconnected flux nor the time taken to achieve
full reconnection~which is much longer than any time scale
considered in this paper!.

Pulse-like driven magnetic reconnection has been re-
ported previously in stressedX-point configurations.11–13

Note, however, that in such configurations the pulses always
stall at theX-point ~which is equivalent to our resonant sur-
face!, and are only able to propagate past theX-point through
the agency of resistivity. The problem considered in this pa-
per is somewhat different, since our pulses pass through the
resonant surface with a finite speed even in the limith→0.
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FIG. 8. The magnetic reconnection rate,J, as a function of time,t, for an
incompressible calculation performed usingJ051024, L58, h51025, and
t50.1. The long-dashed curve shows the solution produced by conventional
asymptotic matching theory. The solid curve shows the solution generated
by the improved Laplace transform calculation.
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