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Wave driven magnetic reconnection in the Taylor problem
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An improved Laplace transform theory is developed in order to investigate the initial response of a
stable slab plasma equilibrium enclosed by conducting walls to a suddenly applied wall perturbation
in the so-called Taylor problem. The novel feature of this theory is that it does not employ
asymptotic matching. If the wall perturbation is switched on slowly compared to thérAtiree

then the plasma response eventually asymptotes to that predicted by conventional asymptotic
matching theory. However, at early times there is a compressible i\fisave driven contribution

to the magnetic reconnection rate which is not captured by asymptotic matching theory, and leads
to a significant increase in the reconnection rate. If the wall perturbation is switched on rapidly
compared to the Alfue time then strongly localized compressible Afveave-pulses are generated
which bounce backward and forward between the walls many times. Each instance these
wave-pulses cross the resonant surface they generate a transient surge in the reconnection rate. The
maximum pulse driven reconnection rate can be much larger than that predicted by conventional
asymptotic matching theory. @003 American Institute of Physic§DOI: 10.1063/1.1617983

I. INTRODUCTION of the plasma. Asymptotic matching between the solutions

i i , o obtained in the inner and outer regions yields an expression
This paper investigates a model resistive magnetohydrog,, ihe Laplace transformed reconnected magnetic flux. Fi-

dynamical(MHD) problem which was first proposed by J. B. a1y this expression is inverted to give the reconnected
Taylor. In this problem, a stable slab plasma equilibrium ISmagnetic flux as a function of time.

subject to a suddenly imposed, small amplitude boundary “the analytic solution obtained via asymptotic matching
perturbation which is such as to drive magnetic reconnection, eals that thenitial response of the plasma to the wall
at the center of the slab. This type of reconnection, which is)qt,rbation is largely governed by plasrivertia. In the

not due to an intrinsic plasma instability, is generally termed; it in which the perturbation is switched on very suddenly
“forced reconnection.” The so-called “Taylor problem” is of (att=0), the reconnected flux varies @g~ 7t2, wherey is

fundamental importance to the field of magnetic reconnecy,q piasma resistivity at the resonant surfadéis particular
tion, and has therefore been the subject of extensive $tidy. result has been the subject of much dispute in the

The standard analytical technique used to investigate thgararre3-6

Taylor problem involves first taking tHeaplace transfornof One of the main difficulties encountered when discuss-

the linearized MHD equations, and then solving the resulting, the initial response of the plasma to the wall perturbation
equations viaasymptotic matching The various stages I jieg in the fact that at very early times the asymptotic match-
the matching process are as follows. F“'rSt’ the pl_asT]a is ditg approach clearly breaks down. It should take at least a
vided into two regions. The so-called “outer region” cOm- o\ Afyén times for information regarding the suddenly ap-

prises most of the plasma, whereas the “inner region” is ayjieq wall perturbation to travel from the edge to the center
narrow layer centered on the resonant surfastere the o the plasma. During this time interval, inertia plays a sig-

equilibrium magnetic field reverses sigiThe outer region, isant role in the response throughout théole plasma,
throughout which plasma inertia, resistivity, and viscosity arg e there is no outer region in which the response is solely
neglected, is governed by the easily soluble equations Qf,yerned by marginally stable, ideal-MHD. Another way of
marginally stable, ideal-MHD. In the inner region, plasmap ing this is that at very early times the inner region ex-
inertia, resistivity, and viscosity are retained in the analysisianqs over all the plasma. In the conventional analysis of the
but the governing equations are considerably simplified byl’aylor problem, it is tacitly assumed that a few Alfvémes

exploiting the narrowness of this region compared to the réslger the imposition of the wall perturbation the response

relaxes to the marginally stable, ideal-MHD response
dElectronic mail: rfitzp@farside.ph.utexas.edu throughout the bulk of the plasma, with deviations from this
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response being localized to a relatively thin layer centered oB. Plasma equilibrium
the resonant surface. Of course, once relaxation has occurred
the usual asymptotic matching approach becomes valiqqu
However, up to now, this important relaxation process ha§,_di
never been studied in any detail.

The aim of this paper is to investigate tlearly time

Suppose that the plasma is bounded by perfectly con-
ting walls located ax==*1, and is periodic in the
rection with periodicity length.. The initial plasma equi-
librium satisfies

responsef the plasma to the wall perturbatiovithoutusing u'®(x)=0, (10
asymptotic matching. We hope to characterize the early time o,

: ; v (x)=0, (11
response, and also to determine whether this response even-
tually asymptotes to that obtained via conventional 0 X2
asymptotic matchingas is generally assumed to be the Pox)=— 5 (12
casg. We shall neglect plasma viscosity in our analysis, )
since this effect plays an negligible role in the initial plasma () _ X
response. P (X)=Po— PR (13

wherepy is the central pressure. In unnormalized urigjs

Il. PRELIMINARY ANALYSIS
A. Basic equations

Standard right-handed Cartesian coordinateg,g) are

the equilibrium magnetic field-strengthyat a, anda is half

the distance between the conducting walls. Note that the
above plasma equilibrium is completely stable to tearing
modes.

adopted. It is assumed that there is no variation along the
z-axis, i.e.,d/dz=0. Consider a compressible plasma gov- -
erned by equations of resistive MHD. Let the plasma densityC: Boundary conditions

p, and resistivity,s, both be uniform. It follows that

B=V0A, (1)

woj=VOB, (2
aA ,

———Ve+VIOB=17j, ©)
ot
oV

p E+(V~V)V}=—Vp+]DB, (4

ap

E+V~Vp=—FpV-V, (5

whereA is the vector potentialp is the scalar potentiaB is
the magnetic fieldy is the plasma velocityp is the plasma
pressure, is the current density, ani=5/3 the ratio of
specific heats.

Let (x/a,yla,zla)—(X,y,2), t/(a/V,)—t, B/By—B,
Al(Boa)—A, VIVA—V, ¢/(BoVaa)—e, p/(pVa)—p,
andj/(Bo/moa)—j, whereV,y=Bo/\/wop is the Alfven ve-
locity, a is a convenient scale-length, aBg is a convenient
scale magnetic field-strength.

Let  A(x,y,1)=[0,04(x,y,t)], and  V(Xy,t)
=[u(x,y,t),v(x,y,t),0]. It follows that

e o s ©)

B ® %y ‘;_i#;—;) ©)

where V2= %/ 9x?+ 5%/ 9y>.

Suppose that the conducting wallxat 1 is subject to a
small(compared with unitydisplacemeng (t)cosky) in the
x-direction, wherek=2=/L. An equal and opposite dis-
placement is applied to the wall a&= —1. The appropriate
no-slip boundary conditions at the walls are

IE (1)
U(liy,t):_u(_liy,t): ot COS(kY). (14)
v(ly,t)=v(—1y,t)=0, (15
l//(l-y't):¢(_1yy,t):_%+5(t)00$k)’), (16)
p(Ly,t)=p(—1y,t)=po—z+E(t)cogky). (17
Let
E()=El-e " (t/1)e V7] (18

for t=0, with E(t)=0 for t<0. Note that bothZ(t) and
d=(t)/dt are continuous at=0.

Ill. LAPLACE TRANSFORM THEORY
A. Analysis

Let us write u(x,y,t)=[d&(x,t)/dt]cosky). Here,
&(x,t) is the plasma displacement in thedirection. The
boundary conditions og(x,t) are simply

Ex1H==xE(1). (19
Moreover, it follows from symmetry thaté(—x,t)
=—£(x,t), and hence that

§&0p=0. (20)

The linearized and Laplace transformed versions of Egs.

(6)—(9) can be reduced to
d g’I'P | 9& —
x4+ —— | =] = (k®x%+g?)£=0,

( ngsz)ﬁJ (kX2 +g?)é

x (21
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provided thaty is negligible Here,P=po—x?/2 is the equi- sinhkx
librium pressure, and = Xsinhk " (32
E(X,g)= ng(x,t)efgtdt, (22)  The inner region corresponds |td <|g|. In this region, Eq.
0

(21) reduces to
the Laplace transformed plasma displacement. The boundary

o d g%\ 9¢
conditions oné(x,g) are — || X+ =] =2|=
6(x,9) ~ (x + kZ) ﬂ 0. (33
& * e Eo . : . -
§(+1g)==* f E(t)e 9dt= i?, (23)  The solution to the above equation which satisfies the bound-
0 9(1+g7) ary condition(28), and matches to the outer solution, is writ-
and ten
£0,g)=0. 24 2k kx
£(09) (24) S, S _). 34
Note that the neglect of resistivity during the derivation of  sinhk g
Eq. (21) is justified provided that<r;, wheré Thus, it follows that
1
2KE
= . (25 ’ _ Sw
771/3k2/3 2Y'(0,9) e (35

In the following, we shall parameterize the plasma re-yhere E, = 2k/sinhk. Finally, direct inversion of Eq(30)
sponse to the wall perturbation in terms of the quantity,

yields
9E(0) =
I=2—"~—, (26) J(t):%E;w[w(wzr)e—t”—zﬂ. (36)

which represent@minug the perturbed current density at the
resonant surfacex&0). Now, it easily follows from Ohm'’s
law (including resistivity that

dyo(t
W o 27

Note that the above expression is identical to that obtained
from conventional asymptotic matching thedf.

C. Wave response

wherey(t) is the reconnected magnetic flux. Thaét) is a The integrand on the right-hand side of EO) also

measure of both the rate of magnetic reconnection and th§,ssesses poles which correspond to those of the function
amplitude of the current sheet driven at the resonant surfacg,.,(og) These additional poles can be writtgr * i w
b} - _— n H

Let Y(x,g) be a solution of Eq(21) which satisfies for n=1,2,3,.... Here, the, (Which are realare the eigen-

Y(0,9)=0, (28)  values of the eigenequation,
Y(1g9)=1. (29 d TP\ dY
2 n n 2,2 2
Tl X —(k“xc— Y,=0, (3
It follows that dx FPkZ—wﬁ dx ( ) Yn (37)
Eo 2Y'(0,g)e% where the eigenfunctiong,(x) satisfy the boundary condi-
=53 Cmd 30 tions Y,(0)=Y,(1)=0. Of course, theY, represent the

natural Alfvenic modes of oscillation of the plasma, whereas
whereY'=gY/dx, andC represents the Bromwich contour. the w, are the associated oscillation frequencies. The plasma
response emanating from these new poles can be thought of
as due to compressible Alfaavaves excited by the suddenly

B. Asymptotic matching response imposed wall perturbation.
Figure 1 shows the first tem,, values calculated as func-

The integrand on the right-hand side of HG0) pos-  tions of k for p,=1. For comparison, the curves,
sesses obvious poles@&0 andg= —1/7. Let us calculate _ T po(n?m?+K?) for n=1,10 are also plotted. It can be
the plasma response due to these poles. Provided2hBt  seen that there is a fairly close correspondence between the
both poles are characterized gy<1. In this limit, EQ.(21)  cajculatedw,, values and the curves, which indicates that the
can be solved via asymptotic matching. The outer regiomatyral Alfvenic modes of oscillation of the plasma have
corresponds t¢x|>[g|. In this region, Eq(21) reduces to  requencies which satisfy the approximate dispersion relation

P (gg _ w,=\Tpo(n?m?+k?) for n=1,2,3,.... The dependence on

5(%5) —k?x?¢=0. (3)  I'py demonstrates that these modes are relatemopress-

ible (rather than shepAlfven waves. Note that for smak
The solution to the above equation which satisfies the boundralues thew, areequally spacedwhereas this is not the case
ary condition(29) takes the form for largek values.
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FIG. 1. The crosses show the first ten plasma eigenfrequengigessalcu-
lated at various differerk values forpg=1. The curves show the functional

relationshipsw,,= \/I‘po(n2772+ kz) for n=1,10.

IV. NUMERICAL RESULTS
A. Introduction

Equationg6)—(9), plus the initial equilibrium(10)—(13),
and the boundary conditiond4)—(18), have been imple-
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0.005
0.004 |
0.003
0.002 |

0.001

FIG. 2. The magnetic reconnection rafe,as a function of timet, for a
calculation performed using =104, L=8, =10 %, p,=1, andr=10.

The solid curve shows the numerical solution generated by the FLASH
code. The long-dashed curve shows the solution produced by conventional
asymptotic matching theory. The vertical dotted line indicates wiken, .

improved calculation can be thought of as a combination of
the standard asymptotic matching response discussed in Sec.
IIIB and the wave response discussed in Sec. Il C.

Figure 2 showsJ(t) curves generated by the FLASH

mented numerically within the massively parallel, adaptivecode and conventional asymptotic matching theory for a case

mesh refinementAMR) architecture of the FLASH code.

where the wall perturbation is switched @omparatively

The particular integration scheme employed is a fully ex-slowly (i.e., 7> 7,). As expected, there is good agreement

plicit, second-ordefin both time and spagefinite-volume,
cell-centered method with limited gradient reconstrucfidn.

B. Code diagnostics

The zcomponent of Ohm’s law is written

o

p (38

V'V'ﬁ:_ﬂj:

where j=—V?2y is the current density in the-direction.
Now, by definition, V=0 at the magneti©- and X-points.

between the numerical and analytic curves whear,.
However, ag— 1, the two curves diverge because resistivity
starts to play a role in the layer dynami¢Recall, from Sec.

I, that the asymptotic matching theory employed in this
paper neglects the effect of resistivity on the layer dynam-
ics.)

Figure 3 shows](t) curves at very early times for the
same calculation as that presented in Fig. 2. It can be seen
that the numerical curve lies somewhat above the asymptotic
matching curve. Now, it is clear from Fig. 2 that the relative
difference between the two curves decreases as time

Since there is zero equilibrium plasma flow, and the wallyrogresses, and eventually becomes negligible. Nevertheless,

perturbation is nonpropagating, the positions of @eand
X-points are fixed and easily identifiable in our simulations
The reconnected flux is defined

Po(t) =3[ ¢(X-point) — y(O-point)]. (39
Our reconnection rate diagnostic takes the form
J(t)=4[j (O-point)— j (X-point)]. (40)

This definition is equivalent to Eq26). It follows from Eq.
(38), and the fact thaV«=0 at theO- and X-points, thatJ
=75 Ydyy/dt. Thus, J(t) measures both the reconnection
rate and the current density in the reconnecting region.

C. Results

In the following, we shall compare and contrakt)

at early times(i.e., t=10r,) there is a significant discrep-

104

— 5x10-8

curves produced by the FLASH COd_e and by two dif'f(:j‘n:*'mFlG. 3. The magnetic reconnection rafe,as a function of timet, for a
types of Laplace transform calculation. The conventionakalculation performed using,=10"4, L=8, =105, p,=1, andr=10.

asymptotic matching calculation gives th&) curve speci-
fied in EqQ.(36). The improved calculation presented in this
paper generates thKt) curve obtained by numerically in-

The solid curve shows the numerical solution generated by the FLASH
code. The long-dashed curve shows the solution produced by conventional
asymptotic matching theory. The short-dashed ciwgch has been shifted
downward slightly to make it more visiblshows the solution generated by

verting Eq. (30). The plasma response obtained from thisthe improved Laplace transform calculation.
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FIG. 4. The magnetic reconnection rafe,as a function of timet, for a FIG. 5. The magnetic reconnection rafe,as a function of timet, for a
calculation performed usingo=10*, L=8, 7=10"° po=1, and7=1.  calculation performed using,=10"%, L=8, »=10"5, p,=1, and7=0.1.

The solid curve shows the numerical solution generated by the FLASHrhe solid curve shows the numerical solution generated by the FLASH
code. The long-dashed curve shows the solution produced by conventionghge. The long-dashed curve shows the solution produced by conventional
asymptotic matching theory. The short-dashed cintgch has been shifted  3symptotic matching theory. The short-dashed cinréch has been shifted
downward slightly to make it more visiblehows the solution generated by downward slightly to make it more visiblshows the solution generated by
the improved Laplace transform calculation. the improved Laplace transform calculation.

ancy between the numerical and asymptotic matchinguently bounce backward and forward between the walls
curves. Figure 3 also shows th¢t) curve produced by the many times. The arrival times of the pulses at the resonant
improved Laplace transform theory presented in Sec. Ill Asurface correlate very well with the strong spikes in the re-
Note that this curve agrees exactly with the numerical curveonnection rate shown in Fig. 5. Note that the pulses are
generated by the FLASH code. We conclude that the discrepessentiallycompressionablfven waves[This is easily dem-
ancy between the numerical and asymptotic matchitty  onstrated by increasing the central plasma presspge,
curves, which is evident in Fig. 3, is due to theave re-  which has the effect of increasing the propagation speed of
sponsediscussed in Sec. Il C. This response is not capture@ompressional Alfve waves, and hence of decreasing the
by conventional asymptotic matching theory, and clearlyspacing between the spikes in the numerit{a) curve] We
leads to a significant increase in the reconnection rate at earyonclude that the strong spikes in the numerib@) curve
times. shown in Fig. 5 represent magnetic reconnection driven by
Figure 4 shows(t) curves evaluated at very early times compressional Alfve pulses which are excited by the sud-
for a case where the wall perturbation is switchednood-  den onset of the wall perturbation. These pulsesnateap-
erately rapidly(i.e., 7~ 7,). The numerical curve generated tured by conventional asymptotic matching theory. Note that
by the FLASH code again lies above the asymptotic matchthe maximum pulse driven reconnection rate canniech
ing curve. Moreover, the former curve exhibits pulse-likelarger than that predicted by conventional asymptotic match-
features which are entirely absent from the latter. Howevering theory.
the J(t) curve produced by the improved Laplace transform |t is clear from the numerical(t) curve shown in Fig. 5
theory again agrees exactly with the numerical curve. that there is a delay of about 1.5 Aliveimes between the
Figure 5 showsJ(t) curves evaluated at very early times switch-on of the wall perturbation and the onset of driven
for a case where the wall perturbation is switchedveny
rapidly (i.e., 7<7,). The dominant feature of the numerical
curve generated by the FLASH code is a set of evenly spaced 0.006
spikes. It can be seen that this feature is reproduced exactly |
by the improved Laplace transform theory, but not at all by I
conventional asymptotic matching theory. Figure 6 shows 0.004
J(t) evaluated at later times for the same case. The numeri-
cal data are generated by the University of lowa MHD -
codel® (Incidentally, the U. lowa code is in good agreement
with the FLASH code. It can be seen that the spikes in the
reconnection rate persist, although the average reconnection
rate remains roughly in agreement with that predicted by
conventional asymptotic matching thedgs long ags<7,). 0
Figure 7 shows density plots af(x,y,t) for the same
calculation as that presented in Fig. 5. It can be seen that the
sudden switch-on of the wall perturbation generates tw{;?c-u&ti::ee’:‘fi?:q‘ztécufseiﬁgnne;g?? Ir_aﬂeéas ai‘éﬂgtion Ogti;?fjt' f%r 1a
strongly localizedpulseswhich propagate toward the reso- The spiky cErve shows datg((_):;enerat’ed by ihﬂe Unive’rspigy ofllowaTl\;HiD.code.
nant surface at the center of the plasma, pass through 0R®e smooth curve shows the solution produced by conventional asymptotic
another, and reflect off the walls. The two pulses subsematching theory. The vertical dotted line indicates whenr; .

0.002
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FIG. 7. Density plots of the-velocity, u(x,y,t), evaluated at various times for a calculation performed usigg 10”4, L=8, =105, po=1, andr=0.1.
Data generated by the FLASH code.

reconnection at the resonant surface. This delay simply corurve, since the FLASH code cannot operate in the incom-
responds to the travel time of a compressional Alfveave  pressible limit. Fortunately, however, there is no such restric-
between the wall and the resonant surface. As the centralon on the improved Laplace transform theory presented in
pressurepg increases, we expect the time delay between thehis paper. Thel(t) curve generated by the improved theory
pulse switch-on and the onset of driven reconnection to deexhibits no time delay between the perturbation switch-on
crease, since the propagation speed of compressionalnlfveand the onset of magnetic reconnection. This is as expected,
waves varies as/po. Let us investigate the incompressible since information regarding the wall perturbation is carried
limit po— . Figure 8 shows(t) curves evaluated at very by compressionaRlfvén waves, which travel infinitely fast
early times for a case where the wall perturbation is switchedh the incompressible limit. Note, however, that tiét)

on very rapidly andpy—. There is no numerical(t) curve generated by the improved theory still lies significantly



4290 Phys. Plasmas, Vol. 10, No. 11, November 2003 Fitzpatrick et al.

0.001 ~——T Alfvén wave-pulses are generated which bounce backward
[ 3 and forward between the walls many times. Each time these
8x10~ |- // ] wave-pulses cross the resonant surface they generate a tran-
1 S ] sient surge in the reconnection rate. Indeed, the maximum
6x10™ - // y pulse driven reconnection rate can be much larger than that
- i e ] predicted by conventional asymptotic matching theory. Note
4x10~4 |- /’ . that the pulses only remain coherent over many transits
: g ] across the plasma when the wavelength of the wall perturba-
2x104 | // 1 tion greatly exceeds the wall separation.
// 1 In the incompressible limit, the pulses are absent, but
T T T T ™ 0 there is still a significant wave driven contribution to the
t initial reconnection rate which is not accounted for by

FIG. 8. Th . tion rate function of dmet, 4 asymptotic matching theory.
. 8. The magnetic reconnection rafe,as a function of timet, for an - _
incompressible calculation performed usiBg=10"4, L=8, =105, and The improved Laplace transform theory has been suc

7=0.1. The long-dashed curve shows the solution produced by convention&€SSfully benchmarked against numerical results from the

asymptotic matching theory. The solid curve shows the solution generateBFLASH code.

by the improved Laplace transform calculation. Note that the deviations from standard asymptotic
matching theory reported here only affect the initial stages of

above that produced by conventional asymptotic matchin%he driven reconnection and have no influence on the final
[

theory. This demonstrates that, even in the incompressib
limit, wave driven magnetic reconnectigpresumably medi-

ated by infinitely fast compressional Alfeavaves is impor- . ) . .
tant at early times. Note that the wave driven reconnection Pulse-like driven magnetic reconnection has been re-

. . . . . 1-13
exhibits none of the pulse-like behavior shown in previousportecj previously n stresseiz{—pomt ponf|gurat|on§.
figures. This is true no matter how rapidly the wall perturba-NOte’ however, that in such configurations the pulses always
tion is switched on stall at theX-point (which is equivalent to our resonant sur-
Up to now, we have only considered cases wHerea face, and are only able to propagate pastXapoint through
(e k<1) In'the opposite limitL=<a (i.e., k=1), com- the agency of resistivity. The problem considered in this pa-
pres'sional Alfve pulses generatéd by the fast switch-on ofP€' IS somewhat different, since our pulses pass through the

the wall perturbation tend to disperse fairly rapidly, and Con_resonant surface with a finite speed even in the lipi0.

sequently lose coherence after a few passes through the

plasma. In marked contrast, the pulses shown in Figs. 5 angCKNOWLEDGMENTS
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considered in this paper
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