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A simple model of the resistive wall mode in tokamaks

Richard Fitzpatrick?
Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712

(Received 13 February 2002; accepted 19 March 2002

A simple set of evolution equations is derived for the resistive wall mode in a large aspect-ratio,
rotating, viscous, tokamak plasma. The equations take into account the nonlinear deceleration of the
plasma rotation generated by mode interaction with both the resistive wall and a static error field.
Furthermore, the equations are largely able to explain resistive wall mode data recently obtained
from the DIII-D tokamal{Plasma Physics and Controlled Nuclear Fusion Reseélaternational

Atomic Energy Agency, Vienna, 1986p. 159. In particular, the role of the error field in triggering
plasma deceleration is elucidated. Z002 American Institute of Physics.

[DOI: 10.1063/1.1491254

I. INTRODUCTION sipation is associated with internal Alfveesonances in the
_ _ o latest RWM theoried®* Fitzpatrick and Aydemir have de-
The economic attractiveness of the promising “advanced,g|gped a simplified cylindrical model of this rather compli-

tokamak’ (AT) concept*is a strongly increasing function of - cateq stabilization mechanism in which the required plasma
the normalized plasma pressurg,” Now, the maximum issipation is provided by edge plasma viscosityn the
achievable in AT devices is limited by pressure gradient |a¢er model, the dispersion relation of the RWM reduces to a
driven, ideal external-kink modésln.degd,. AT designs are  gjmnje cubic equation. Nevertheless, the predictions of the
only advantageous if the external-kigklimit is raised sub- 7 hatrick—Aydemir model agree surprisingly well with the
stanpally due to the presence of a close fittipgifectly con- 1 51e sophisticated models of Bondeson, Betti, and co-
ductingwall surrounding the plasma. Unfortunately, all réal- 5 kers. According to all models, the critical toroidal plasma

izable conducting walls possess non-negligible resistivityvebcity required to stabilize the RWM is of ordek,&)V,,
According to conventional theory, when a tokamak plasma i%hereku is the parallelto the magnetic fieldwave number
surrounded by a close fittingesistivewall, the relatively fast ¢ the mode at the edge of the plasmahe plasma minor
growing ideal extgrnal-kink r_node is converted into the farradius, andV,, the typical Alfven velocity. It turns out that
more slowly growing ‘“resistive wall modeTRWM). The g iarnal-kink modes are only unstable in tokamak plasmas
latter mode grows on the characteridtiR time of the wall,  \ henk a<1. Hence, the critical rotation velocity is only a

7w, and has virtually identical stability boundaries to thoses,, perceni5%, say of the Alfvén velocity. Such velocities
of the external-kink mode in the complete absence of a?/vall.are regularly generated when present-day tokamaks are

Now, 7, is long compared to most plasma timescales, buheated via unbalanced neutral beam injectiddBl). Al-
still generally much shorter than the duration of the plasmgy,, gk plasma dissipation is needed for the stabilization of
d|scharg§. Hence, all attracuvg advanced tokamak de3|gqﬁe RWM, the width of the stability windouin 8) becomes
are predicated on the assumption that the RWM can somgqgependent of the dissipation once it exceedsmaal) criti-
how be stabilized. cal magnitude. This fact helps to explain why the
Experimentally, it is found that tokamak plasmas cangii,natrick—Aydemir model agrees fairly well with the mod-
exceed the no-walB limit (i.e., the idealg limit calculated  ¢|5 of Bondeson, Betti, and co-workers, despite the some-
in the complete absence of a watbr time periods much ot gifferent dissipation mechanism in the former model.
anger tha_anG, 8pr0\_/|ded that the plasma is rotating suffi- The physics of the RWM has been investigated exten-
ciently rapidly”’~° This suggests that the RWM can somehowsi\,e|y on the DIII-D tokamak®1” The critical plasma toroi-
be stabilized via plasmeotation. A plausible stabilization 4, angular frequency at the=2 surface required to stabi-

mechanism was first discovered numerically by BondesoR,q the mode is observed to l6k,/277~ 6 kHz. The models
and Ward® and later accounted for analytically by Betti and of Bondeson, Betti, and co-workers, which depend on

Freidbergl.(.’ According to this mechanism, stabilization of ,1a5ma dissipation at internal Affaeresonances, predict
the RWM 'S_ a combm.ed effept of _plasmlaIatlonal inertia QO /27m~10 kHz. Other theories which require the formation
anddissipationdue to interaction with the sound wave con- ¢ internally resonant magnetic islantfsor linear tearing

tinuum at a toroidally coupled resonant surface lying within ers'® for RWM stabilization yield much smaller critical
the plasma. It was subsequently discovered that neoclassiq@gquenciesﬂ /27~50 Hz. The models of Bondeson. Betti
C . L] L]

effects significantly weaken sound wave dissipation, whiley,q co-workers agree fairly well with experiment. On the

simultaneously enhancing dissipation due to interaction Withyer hand, the predictions of the remaining models disagree
toroidally coupled Alfv resonanceS.**Hence, plasma dis- yith experimental observations to such an extent that they

can be safely ruled out.
3Electronic mail: rfitzp@farside.ph.utexas.edu The plasma rotation in DIII-D starts tdecelerateas
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soon as the no-walB limit is exceeded. The deceleration m/n—q(a)
occurs in three distinct phases: a slowly decreasing plasma €= W’
rotation with little or no mode activity, followed by a more

rapid deceleration of the rotation as a slowly growing modeyneres(r)=(r/q)(dg/dr) is the magnetic shear.

appears, followed by a rapid growth of the mode. The latter  The radial magnetic field associated with the nmode
phase is usually terminated by a plasma disruption. To datggn pe written

the only theory to investigate the effect of the RWM on
plasma rotation is that of Gimblett and HasffeThe m _
Gimblett—Hastie model yields predictions which are in quali- ~ bf™"(r,6,¢,t)=i — (r)emi=neran, 4
tative agreement with DIII-D experimental data. However,

this model relies on dissipation via an internally resonant

linear tearing layer—as has already been discussed, suchBa Plasma physics

dissipation mechanism gives far too low a critical plasma

rotation frequency_ heeded to stabilize the RWM. rational surface, on which=m/n, liesjust beyondhe edge
__The deceleration of DIII-D plasmas after the no-wall ¢ 1he plasma. Hence,<0c<1. The bulk of the plasma is
limit is exceedgd seems to pe related to the magnitude of th&overned by conventional, marginally stable, ideal magneto-
resonantrror field. It is certainly the case that a plasma can hydrodynamics(MHD). However, a thininertial layer, of

be maintained above the no-wallimit for the longest pe- iy nesera, forms at the outer edge of the plasma. An even

riod when the error field is minimized. Conversely, plasmasynneryviscouslayer forms at the outer edge of the inertial
with large error fields tend to disrupt prematurely whenghe layer. The response of the plasma is fully described by the

limit is exceeded. There is experimental evidence that thﬁuantity AW, =[rdy/dr]®" . According to Ref. 15, this
a a—* . y

error field is stronglyamplified by t_he_ plasma wherB lies quantity takes the approximate form
above the no-wall limit. Hence, it is conjectured that the
plasma deceleration observed in DIII-D is associated with
the nonlinear locking torque generated by an amplified error
field. Recently, Boozer has developed a general theory which

implies that error-field amplification peaks strongly as theVNere¥a=#(a), ¥y=v/n€o, =0,/

()

The Fitzpatrick—Aydemir model assumes that then

dAV,=[(#—iQ4)%+ v, (¥—1Q4)1V,, (5)

no-wall B limit is achieved®® However, this theory is too 3
empirical to allow quantitative predictions. Qo7a= \ /FC %1 (6)

The aim of this paper is to construct a simypleysics-
basedmodel of the RWM which accounts for the DIII-D
data. This goal will be achieved by combining the 12
Fitzpatrick—Aydemir dispersion relation with a plasma equa- Y _SCzrVnQO'
tion of rotational motion.

)

and 7= (R /B ) Vuop(d), rv=a’p(a)lu(a). Here (), is
the plasma toroidal angular velocity within the inertial layer,

Il THE FITZPATRICK—AYDEMIR DISPERSION p(r) the plasma mass density, apdr) the perpendicular

viscosity. In Eq.(5), the first term inside the square brackets
RELATION . .

o corresponds to plasmiaertia, whereas the second term cor-
A. Definitions responds tosziscous dissipationThe parameter, measures

Consider the stability of then, n mode—which is as- the strength of this dissipation. Note that Ef) is derived
sumed to beon-resonant-in a cylindrical, zero8 plasma. under Fhe assumption that the plasma dissipation is relatively
Standard right-handed polar coordinates#(z) are adopted. Weak(i.e., v, <1).

The plasma is assumed to be periodic in zltérection with

period 2Ry, whereR, is the simulated major radius. It is

convenient to define the simulated toroidal angle zZ/R,. C. Wall physics

The equilibrium magnetic field is writtef0,B4(r),B]. Fi-

nally, the “safety factor” is defined)(r)=rB 4/RB,. The L/R time of the resistive wall is definedr,

Let a be the minor radius of the plasma, the minor &0l wOw/ 7w, Wheres,, and,, are the wall thickness and
radius of the resistive wall, anti the critical wall radius ~ '€SISUVIty, respectively. The response of the wall is fully de-
(i.e., the minor radius beyond which a perfectly conductingScriPed by the quantipAW,,=[rd/dr]"". In the “thin
wall is incapable of stabilizing then, nideal external-kink  shell” limit, in which &,,/r,<|y|r,<ry/é,, this quantity
mode. It is helpful to define takes the form

1 (ry,/a)?m—1 dAW ,=%S, ¥
- Y : 8
m (rW/a)szrl’ @ " o

om where ¥ = y(r,,) and S,=dr,n{,. The parametelS,
:i (refa)™=1 2 (which is assumed to be much larger than unityeasures
¢ m(r./a)®m+1’ the conductivity of the wall.
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D. Outer solution

e\

15
2

Perfect wall
The quantitiesAW, and AW, must be asymptotically  stabiity limit

matched to the outer solution, which is governed by margin-
ally stable ideal MHD. As described in Ref. 15, this match-

#5572

7

ing procedure yields ! / Second stable region
dAW, = —(1— k) (1—-md) W+ V1—(md)2W,,, (9
No wall i e N = m mmm e e e e e =
dA\PW:—(l'f'md)\I’W'F /1—(md)2‘l'a+2md\lfc. stability limit /K=K2
(10 First /
Here, stable /
region /
_ (Udy)—m
“@Wdh-m 1y i : A
0 K=Kl c Q‘b—>

measures the intrinsic stability of the plasma in the absence

of rotation. The no-wall stability limiti.e., the stability limit ~ FIG. 1. Low dissipation stability boundaries for the resistive wall and ideal
in the complete absence of a waltorresponds tox=0, external-kink modes in plasma rotatiofi) §) versus plasma stabilityx)
whereas the perfect-wall limiti.e., the stability limit when SPace. The plasma becomes more unstable iasreases.

the wall becomes perfectly conductingorresponds tac

=1. Note, incidentally, that in the Fitzpatrick—Aydemir

model them, n mode is destabilized bgurrent gradients ) o A

rather tharpressure gradientsThe quantity¥ . parametrizes A i[1-(md)]r, Oy

the m, n static error fieId_JIfC is actually defined as the 4 S*[(l—K)(l—md)—f)é]z

error-field flux at the wall in the absence of plasma.

(1+md)[ k(1-md)+ 03]
. . . + ~ l
E. RWM dispersion relation S, [(1— K)(l—md)—Q(Zﬁ]

(15

Neglecting the error field, for the moment, E@5), (8),
(9), and(10) can be combined to give the following simple

cubic RWM dispersion relation: 3’2i[ﬁ¢— ~/(1—K)(1—md)]
[(3#=i1Q )%+ v, (¥—i1Q )+ (1— k) (1—md)] 1—(md)?

" +
X(¥8, +1+md=1-(md)”. (12 25, V(1-k)(1-md[Q 4~ V(1K) (1-md)]

whereas thelasma mode&oot obeys

F. Error-field amplification v,
Suppose that the plasma is stable, and subjectstati 2 (18
error field (hence,y=0, and|¥+0). Equations(5), (8), ) - -
(9), and(10) can be combined to give ' The mar'gmal stability .condltlon for the.wall mode root
coincides with the error-field resonance: i.e5 ;. The
[P 1—md|"? 2md marginal stability condition for the plasma mode root takes

v, |1+md

A A ' the formk = k,, wherek, is obtain by solving the quadratic
Q5+ k(L=md) 12+ (v, Q 5) 312 2 2
R I+ (r ) }(13) equationx?— ,x+e=0, with x=+/(1—«,)(1-md) and

i . e=[1—(md)?]/S, v, . Figure 1 shows a sketch of the low
Clearly, the plasma response to the error fieldesonant  issipation stability boundaries for the resistive wall and

when k=, where ideal external-kink modes in—ﬁ¢ space. It can be seen that
032 there are two separate stable regions. The first stable region

¢ .
K1= = T mad’ (14 s restricted to lowx and{},, values, and is bounded by the
. ) curve k= k,. The second stable region only exists for finite
The magnitude of the fluX\V,|, driven at the plasma edge Q,, and is bounded by the curwe= «,. In fact, the critical

peaks at the reson_ance—the.str.eng.th of this peaklng_ Va”?ﬁormalized plasma rotation rate above which this region
inversely with the size of the dissipation parametgr, This

appears is
result is similar to that recently reported by BooZer. PP
. 2yY1—(md)?
. . . Qe=—r== (17)
G. Low dissipation stability boundaries Sy vy

In the low dissipation limit,y, <1, there are only two Hence, it can be seen that there is no second stable region in
possibly unstable roots of the RWM dispersion relatib). the absence of plasma dissipati®e., v, —0). Note that the
The wall moderoot satisfies boundaries of the second stable region rapidly become inde-
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pendent ofy, as Q¢ increases. Note, also, that the upper Perfect wall
boundary of this region lies very close to the perfect-wall stability timit
stability limit, k=1.

It is evident, from Fig. 1, that the stability boundary for
the first stable regions= x,, decreasess the plasma rota-
tion increases. In other words, plasma rotation initially has a
destabilizingeffect on the RWM.1%5Somewhat higher lev-
els of rotation cause a transition to the second stable region  «
Thus, high levels of rotation havestabilizing effect on the
RWM.>1%15Note that there is a finite-width band of instabil-

ity separating the first and second stable regi3ns. No wall
stability limit O

Resist
/4% | Stable region
(IDiLe

H. High dissipation stability boundaries

In the high dissipation limity,>1, there are again two
possibly unstable roots of the RWM dispersion relatib®). FIG. 2. High dissipation stability boundaries for the resistive wall and ideal

The wall moderoot satisfies external-kink modes in plasma rotatioﬁlg) versus plasma stabilityx)
space. The plasma becomes more unstableiasreases.

_1+md| k(1-k)(1-md)2= 2507
'yz

S, (1—K)2(1—md)2+ViQ§5 v, . When the dissipation is lowi.e., v, =0.1), there is a
band of instability separating the first and second stable re-
iv*f2¢ gions (as sketched in Fig.)1 However, this band gradually
+ 5 P (18 closes up as the dissipation increases. Thus, whereaches
(1= )" (1=md)*+ v O 0.5 there is only a vestigial band, and whep reaches 1.0
whereas th@lasma modeoot obeys the band has disappeared entirédg sketched in Fig.)2
Note that the error-field resonanoes x4, corresponds,
= (k=1)(1—md) +i0 (19) almost exactly, to the lower stability boundary foy =0.1
Vy ' shown in Fig. 3. It is clear from the figure that, unless the

In this limit, the dissipative layer at the edge of the plasmadiSSip"’ltion s fairly weaki.e., v, <0.1), the error-field reso-

becomes wider than the inertial layer, and plasma inemgancedoes nqt:qrrespond toa RV,VM stability boundary. The
ceases to play a significant role in RWM physics. Inciden-€ason for this is that, unless, is small, the RWM pos-
tally, the above roots are identical to those obtained from th§€SS€S @ non-negligibteal frequencyat its marginal stabil-
well-known dispersion relation of Bondeson and Per&on 'y Point. Itis easily demonstrated that a real frequency of
for an edge tearing mode coupled to a resistive wall. Thifrder the inverse wall time is sufficient to shift the error-field

observation gives us confidence that the dispersion reIatioﬁaSon"’mce(""hiCh Is corresponds to. the response of the
(12) remains valid wherv, =0(1), despite the fact that it plasma to azero frequencyperturbation away from the

was derived in the limity, <1. RWM stability boundary.

The marginal stability condition for the wall mode root
is 2V\/An;[ten K= K23, where -K3(1—K.3.): a. .I-.|ere, @ Perfect wall — ]
=v;Qy/(1-md)°. The marginal stability condition for the  stability limit
plasma mode root is simplg=1. The RWM is completely
stabilized(for k<1) as soon as thénormalized plasma ro-

tation exceeds the critical valu@., where

-~ 1—-md

Q.= 20, (20
Figure 2 shows a sketch of the high dissipation stability
boundaries for the resistive wall and ideal external-kink
modes inx—ﬁd, space. It can be seen that, in the high dis- -05
sipation regime, the first and second stable regions of Fig. 1 Errorfield
merge together to form a continuous stable region which  resonance

extends all the way to the perfect-wall stability boundary. _1(; E—— Rl e
. ~ 1 1.5

Stable

Unstable

0.5

No wall
stability limit

I. Intermediate dissipation stability boundaries

. . . ... FIG. 3. Stability boundaries for the Fitzpatrick—Aydemir RWM dispersion
Flgure 3 shows the numenca"y determined St"ibllltyrelation, evaluated numerically fow, =0.10 (solid curve, v, =0.30

boundaries of thg Fitzpatrick—Aydemir. dispgrsion relation gotted—dashed curyev, =0.50(short-dashed curyeand v, = 1.00(long-
calculated for various values of the dissipation parametejashed curje as well asS, =100, m=3, andr,=1.2a.
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Ill. DERIVATION OF EVOLUTION EQUATIONS

A. Plasma angular equation of motion

The toroidal angular equation of motion of the inertial

A simple model of the resistive wall mode in tokamaks 3463

plasma rotation is effectively quenched is very small com-
pared with the equilibrium magnetic field strendtiee Sec.
V).

It is helpful to express the electromagnetic torque on the

layer (radial thicknesga) at the edge of the plasma takes the right-hand side of Eq(26) in a more physically meaningful

approximate form
1_2 m(a) Ty Em

dQ
L (-0 = 20

2
R TR 477RY’

(21)

Wherng’) is the unperturbed rotation rate, ag gy is the

electromagnetic torque acting on the layer due to the error-
field and eddy currents excited in the resistive wall. The firsLI_
term on the left-hand side of the above equation corresponds
to the inertia of the layer, whereas the second term describes
the viscous restoring torque exerted by the remainder of th

plasma.
The electromagnetic torque takes the f&tm

ZRO

Mo
B. Normalized evolution equations
Let

- _ \I}a,w,c
M aB,y2cdTaQq

and 0 =0010,. Equations(5), (8), (9), (10), and (21)
can be combined to give

(23

a2y, . dy
= +(V*_2|Q¢) N
dt dt

+H(1- ) (1-md) = Q5 —iv, O]V,

=V1-(md?¥,,,

(24

dw,, .
S*—A +(1+ md)\I’W
dt
=\J1—(md)2¥ +2md¥,, (25)
dQ) A
d”t¢ (005

=V1-(md)?Im(¥,¥%),

wheret=nQ,t. Here, Eqs(5), (8), (9), and(10) have been

(26)

form. Writing ¥, =| ¥, |e'¢w, Eq. (25) yields

R d R
V1= (mdZIm(¥, @)= -8, —2 |4, |2

dt

—2mdim(¥,,¥¥). (27

hus, the torque consists of the familiar slowing down
orque due to eddy currents excited in the wall, plus a con-
yentional error-field locking torqué Now, || ande,, can
only evolve on the relatively slovi./R time of the wall.
Settingd/dt~1/S, in Egs.(24) and(25), and recalling that
S, >1, it is possible to show that

doy . o o
—s*%|qfw|2—2md|m(qquf§): — 2, Q2
(28

It follows that the electromagnetic torque always acts to
dampthe plasma rotation. Moreover, there is zero torque in
the absence of plasma dissipatio®., v, =0).
Equations(24)—(26) can be rewritten
d>¥, . d¥,
T (v =210 ) —
dt? dt

+[(1-k)(1-md)-Q5-ir, Q4 ¥,

=V1-(md>¥,,, (29
dw,, . . .
S,—— +(1+md¥,=Vi-(md>*¥ +2md¥., (30
dt
dQ A A o
— L0, (= 0= v, QT2 (31

dt
These equations constitute a closed set which describe the
evolution of the RWM in the presence of a static error field,
taking into account the nonlinear effect of the mode on the
plasma rotation. The dynamic variables are the plasma flux,
\ifa, the wall qux,‘i’W, and the plasma rotatio@¢. The
parameters, , S, , k, QY , and¥ specify the strength of
the plasma dissipation, the conductivity of the wall, the sta-
bility of the plasma, the unperturbed plasma rotation, and the

conveniently converted into ordinary differential equations.@mplitude and phase of the error field, respectively. The ad-

The basic approach adopted in this paper is to treaSthe
v, , and the normalizations as constant, while allowing

ditional parametersn andd specify the poloidal mode num-
ber of the RWM, and the radius of the wall, respectively.

O, and¥ to vary. This is not quite self-consistent. How- |\, NUMERICAL SIMULATIONS

ever, the dependencies 8f , v, , and the normalizations on
« are physically unimportant. Note that it makes sense t
combine thelinear Fitzpatrick—Aydemir dispersion relation

éA. Introduction

This section describes a number of simulations per-

for the RWM with anon-linearplasma equation of rotational formed by integrating the RWM evolution equatioti29)—
motion because the critical RWM amplitude above which the(31).
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FIG. 4. Simulation of a DIII-D NBI heating ramp in which the equilibrium plasma rotation and stability parameters increase linearly. The othéernsarame
are¥,=0.01,v, =0.33,S, =100,m=3, andr,,= 1.2a. The five panels show) the stability parametek (triangles, and the equilibrium rotation parameter,
Qﬁ,?) (squares (2) the mode amplitude paramete,=log;o(|¥|.]), (3) the mode phasep,=arg(¥,) (units of m), (4) the mode phase velocityp,
=de/dt, (5) the plasma rotation parametél,, .

B. Access to the wall stabilized region: v, =0.33 propriate to the RWM in DIllI-D(see Sec. IV ). The error-

According to Sec. Il, when the dissipation parametgr ~ field parameter¥ ., is taken to beeal. Hence, the helical
is less than about 0.5 there are two separate stable regionsphase of the error field is 0°. Figure 4 shows details of a
Q¢—K space(see Fig. 1 The first region is restricted to simulation in which¥ =0.01, and the plasma equilibrium
relatively low (), values, and lies well below the perfect- rotation and stability parameter§)” and «, are ramped
wall stability boundary £=1). The second region only ex- linearly over a period of 10 normalized time units(i.e.,
ists for 0,>Q., where (), [see Eq.(17)] is the critical ~about 100 wallL/R times. Figure 5 shows the trajectory of
rotation rate needed to stabilize the RWM, and extendshe same simulation through ,—« space.
nearly all the way to the perfect-wall stability boundary.  Note, first of all, from Fig. 5, that the first and second
Clearly, in order to obtain strongly enhanced plasma stabilitystable regionsmergebelow x=—0.7 (see Sec. Ill. In the

due to the presence of the resistive wall, it is necessary f%itial stage of the rami.e., i< 2500, the plasma traverses

the plasma to make a transition from the first stable regioqhe first stable region. During this phase, tien mode is
(in which it starts off to the second stable region. This tran- maintained in the plasma by the error fiéld. Note that the

sition is initiated when the NBI power is ramped up, and themode is initially locked in phase with the error field. How-

plasma rotation angB (or, in this paper,x) consequently . o
increase. Unfortunately, in order to reach the second Stab%V:rr,n?jjctehEebc%ur:\]ggr%g:ggsi:;; S;ﬁg';tﬁ;gg;:%ﬁ:ggmed’

region, the plasma must first pass through a region of parant- . , i
eter space in which the RWM imstable Let us simulate the tion of plasma r.otatlo)jwnh respect .to 'the error .fleld, and
transition process, using realistic plasma parameters and Ngi¢ mode amplitude increases. This increase in the mode
heating rates, in order to determine which factors effectivey@MPplitude is a manifestation of enhanced error-field amplifi-
control access to the second stable region. cation at the error-field resonantsee Sec. Il F; which lies

The chosen p|a5ma parameters for our study Bre falrly close to the bOUndary of the first stable region. In the
=0.33,S, =100,m=3, andr,= 1.2a. These values are ap- middle stage of the ramfp.e., fromt=2500 tot =4500), the
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L O I s S S B B A increasing. The deceleration of the plasma effectively pre-
vents access to the second stable region and takes place in
three main stages. In the first stage, the mode amplitude is
slowly increasing, and there is no plasma deceleration. In the
second stage, the mode amplitude increases somewhat faster,
and the plasma rotation slowly ramps down. During this
] phase, the rate of deceleration is limited by the fact that the
plasma cannot re-enter the first stable region—if it did, the
b 0 mode would decay, and the plasma would consequently re-
N 1 rotate. Hence, as can be seen from Fig. 7, the simulation
trajectory remains just outside the boundary of the first stable
region. In the final stage, the continuedramp takes the
plasma away from the boundary of the first stable region.
\ j During this phase, the plasma rotation collapses completely,
\ y and the mode grows rapidly—indeed, the mode amplitude
Y | . quickly attains values which woulfpresumably trigger a
! T 15 2 disruption. The behavior described above is quite similar to
O that seen in the DIII-D experiment.
A4 The above simulations suggest that there are three main
factors which govern access to the wall stabilized region: the
FIG. 5. The trajectorytriangle$ of the simulation shown in Fig. 4 plotted magnitude of theerror field, the rate at which the plasma
at equal time intervals i) ,—« space. The dashed curve shows the error-rotation is ramped, and the strength of the plasdissipa-
field resonance. The solid curve shows the stability boundary for the RWM¢jqn.
The magnitude of the error field determines the mode
amplitude as the plasma enters the band of instability sepa-
plasma traverses the band of instability separating the firgtating the two stable regions. If this amplitude is too high
and second stable regions. During this phase, the rmode (i.e., if the error field is too largethen the mode is able to
locks from the error field andgrows spontaneously. The grow sufficiently large to trigger plasma deceleration before
mode rotates at about the inverse wallR time (i.e., the plasma reaches the other side of the band—hence, the

d@a/difvs;l), Note that the mode amplitude never be-plasma is prevented from accessing the second stable region.
comes sufficiently large to trigger plasma deceleration. ~The faster the rotation is ramped, the less time the
Hence, the plasma rotatioﬁz¢, always tracks the equilib- plasm_a spends traversmg_the u_nstable band, and, hence, the
fium rotation, O(© very closely. In the final stage of the less time the mode has in which to grow to a dangerous

A amplitude. It follows that a fast NBI ramp rate facilitates
ramp (i.e., t>4500, the plasma traverses the second stable-entry into the second stable region

region. During this phase, the mode is again maintained in Ao o he seen from Fig. 3, the width of the unstable
the plasma by the error field. The mode amplitude dropsb

il he ol h d bl _ némd separating the first and second stable regions is a rap-
rapidly as the plasma enters the second stable region, ag y deceasing function of increasing plasma dissipatign,

ever;tui':llly rr;*]achehs an _eqllullblrlum_ va;:uef_whlch blls Slgr?'ﬂ'Hence, increased dissipation is likely to favor entry into the
cantly less than the typical value in the first stable regiongo.,nq stable region.

Clearly, error-field amplification is a far smaller effect in the
second stable region when compared with the first, since the
latter region lies closer to the error-field resonance. Note th
the mode locks imntiphasewith the error field in the second
stable regiorthowever, the wall flux¥,, still locksin phase According to Sec. II, when the dissipation parametgr
with the error field. exceeds about 0.5 the first and second stable regions merge
Figures 6 and 7 show the results of a second simulatioto form a region of stability which extends all the way to the
whose parameters are the same as the first, except that tAerfect-wall stability boundary{=1). Under these circum-
amplitude of the error field is increased ¥0.=0.02. It can  stances, it is possible for an NBI-induced ramp<and{} 4
be seen that the mode evolution remains similar to thato take the plasma to the perfect-wall stability boundary
shown in the first simulation up to the period when thewithoutthe RWM ever becoming unstable. This is illustrated
plasma traverses the band of instability separating the twi Figs. 8 and 9, which show details of a simulation in which
stable regions. During this period, the mode grows to suffiv, =0.66, S, =100, m=3, r,,=1.23, \ifC=0.05, and the
cient amplitude to trigger plasma deceleration. This is indi-equilibrium rotation and stability parametef3,, and «, are
cated in Fig. 7 by the sudden deviation of the simulationramped linearly over a period of about 100 walR times.

trajectory upwards and to the left. From Fig. 6, it can be seeThese parameter values are appropriate to the RWM in
that the plasma rotation ceases its linear increase, and actpi||-D (see Sec. IV

ally starts todecreasgdespite the fact that more and more It can be seen, from Fig. 9, that the plasma remains
“momentum” is being injected into the plasmae., flg’) is  stable throughout the duration of the simulated NBI ramp.

0.5

-0.5

T T T

a - .
é. Access to the wall stabilized region: v, =0.66
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FIG. 6. Simulation of a DIII-D NBI heating ramp in which the equilibrium plasma rotation and stability parameters increase linearly. The othéersarame
are¥,=0.02,v, =0.33,S, =100,m=3, andr,,= 1.2a. The five panels shoW) the stability parametek (triangles, and the equilibrium rotation parameter,
f)ﬁ,?) (squarel (2) the mode amplitude paramete,=log,q(|¥|.]), (3) the mode phasep,=arg(¥,) (units of m), (4) the mode phase velocityp,
=de/dt, (5) the plasma rotation parametél, .

Nevertheless, the plasma comes very close to the RWM sta L L A L
bility boundary shortly after the no-wall stability boundary i ]
(k=0) is exceeded. According to Fig. 8, the mode amplitude - 1
peaks as the plasma crosses the error-field resonance, whic
happens somewhat before the no-wall stability boundary is 05 - -
reached. As the plasma grazes the RWM stability boundary - 1
there are induced oscillations in the mode amplitude and
phase, but the mode does not unlock from the error field anc th_
its amplitude never becomes sufficiently large to trigger 0
plasma deceleration. N
Figures 10 and 11 show details of a second simulation 5 , 4
whose parameters are the same as the previous simulatior - \ 1
except that the error-field amplitude has been increased tc =05 7
\ifc=0.1. It can be seen that as the plasma crosses the erro - \ .
field resonance the mode amplitude becomes sufficiently i ' 1
large to trigger plasma deceleration. This deceleration modi- P /S R S
fies the plasma trajectory iﬁd,—x space such that it inter- A
sects the RWM stability boundary. As soon as this occurs, the Q¢
RWM becomes unstable and unlocks from the error fieldFIG. 7. The trajectorytriangles of the simulation shown in Fig. 6 plotted
After a few mode rotations, the plasma rotation collapses; equal time intervals i) ,—« space. The dashed curve shows the error-
completely and the mode amplitude starts to grow, quicklyfield resonance. The solid curve shows the stability boundary for the RWM.
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FIG. 8. Simulation of a DIII-D NBI heating ramp in which the equilibrium plasma rotation and stability parameters increase linearly. The othéernsarame
are¥,=0.05,v, =0.66,S, =100,m=3, andr,,= 1.2a. The five panels shoW) the stability parametek (triangles, and the equilibrium rotation parameter,
fl(z/?) (squares (2) the mode amplitude paramete,=log,(|¥|.]), (3) the mode phasep,=arg(¥,) (units of m), (4) the mode phase velocityp,
=de/dt, (5) the plasma rotation parametél, .

reaching values which woultbresumably trigger a disrup-
tion.

The above simulations confirm that the three main fac-
tors which govern access to the wall stabilized region are the
magnitude of theerror field, the rate at which the plasma
rotation is ramped, and the strength of the plasdissipa-
tion.

The magnitude of the error field determines the maxi-
mum mode amplitude: i.e., the amplitude as the plasma
crosses the error-field resonance. If this amplitude is too high
(i.e., if the error field is too largehen plasma deceleration is
triggered, which has the effect of deviating the plasma into
the unstable region of parameter space once the no-wall sta-
bility limit is exceeded.

The faster the rotation is ramped, the less time the
plasma spends in the vicinity of the error-field resonance,
and, hence, the less time the mode has in which to grow to a
dangerous amplitude.

FIG. 9. The trajectorytriangles of the simulation shown in Fig. 8 plotted _AS can be seen from Flg. 3, the eXFent. of the. unstable
at equal time intervals itﬁ(,,—x space. The dashed curve shows the error- region of parameter space decreases with increasing plasma
field resonance. The solid curve shows the stability boundary for the RwMdissipation, making it more difficult for error-field induced
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FIG. 10. Simulation of a DIII-D NBI heating ramp in which the equilibrium plasma rotation and stability parameters increase linearly. The otletensaram
are¥,=0.10,v, =0.66,S, =100,m=3, andr,,= 1.2a. The five panels show) the stability parametek (triangles, and the equilibrium rotation parameter,
QE/?) (squares (2) the mode amplitude paramete,=log,o(|¥|.]), (3) the mode phasep,=arg(¥,) (units of m), (4) the mode phase velocityp,
=de/dt, (5) the plasma rotation parametél,, .

plasma deceleration to deviate the plasma into the unstable
region. —— ]

D. Estimate of critical parameters for DIII-D plasmas

Let us estimate the values of the various normalized
guantities appearing in our mode evolution equations for a
typical DIII-D plasma. The major parameters of the DIII-D 0.5
device are as follow$®'’ Ry,=1.67m, a=0.67m, r v
=1.2a, 7,=6ms,B,=2.1T, andn,=2x10" m™3, where 2
ne is the electron number density. Our reference plasma dis-
charge is characterized lof0)= 1.3 andqg(a) = 2.9 (the low
edgeg value is an artifact of the cylindrical nature of our
mode). For them=3, n=1 mode, we findc=1.7xX10" 2,
d=0.17, k=0.33, d.=0.25, ands(a)=2. It follows that
Qol27~14 kHz, O /27~6 kHz, v, ~0.2y (m/$), and S,
~90. Here,y is the edge momentum diffusivity. Since
typically lies between 1 and 5 n#/sn DIII-D plasmas, the
dissipation parameter, lies in the range 0.1 to 1. Note that
our estimate foK) is a little high, but in the right ballpark. FIG. 11. The trajectorytriangles of the simulation shown in Fig. 10 plotted

All times are normalized byO: 1/QON 10us, and all mode at equal time intervals itﬁd,—x space. The dashed curve shows the error-
amplitudes byby=B4\ycd(7a0)=3X 10 3 T. It can be field resonance. The solid curve shows the stability boundary for the RWM.
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seen that the parameter values used in the previous simulapace. The reason for this is that, in general, the RWM pos-
tions are fairly appropriate to DIlI-D plasmas. We estimatesesses a nonzero real frequency at marginal stability. Of
that the typical RWM amplitude needed to trigger plasmacourse, the error-field resonance is associated with the re-
deceleration in DIII-D(unity in normalized unitsis about 30  sponse of the plasma to a zero frequency perturbation.

G, whereas the critical error-field strength above which ac- The estimated critical plasma rotation frequency in
cess to the wall stabilized region is denigatween 0.02 and DIII-D needed to stabilize the RWM is about 6 kHz. The
0.1 in normalized unitslies in the range 1-3 G. These esti- estimated RWM amplitude required to trigger plasma decel-
mates accord well with experimental observations. Notegration is about 30 G. Finally, the estimated error-field am-
however, that the above estimates are fairly inexact due tplitude needed to prevent access to the wall stabilized region
the difficulty in representing highly shaped, single-null,is about 2 G. These estimates are in broad agreement with
DIII-D plasmas using a cylindrical model. experimental observations.

V. SUMMARY
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