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A simple model of the resistive wall mode in tokamaks
Richard Fitzpatricka)

Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712

~Received 13 February 2002; accepted 19 March 2002!

A simple set of evolution equations is derived for the resistive wall mode in a large aspect-ratio,
rotating, viscous, tokamak plasma. The equations take into account the nonlinear deceleration of the
plasma rotation generated by mode interaction with both the resistive wall and a static error field.
Furthermore, the equations are largely able to explain resistive wall mode data recently obtained
from the DIII-D tokamak@Plasma Physics and Controlled Nuclear Fusion Research~International
Atomic Energy Agency, Vienna, 1986!, p. 159#. In particular, the role of the error field in triggering
plasma deceleration is elucidated. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1491254#

I. INTRODUCTION

The economic attractiveness of the promising ‘‘advanced
tokamak’’~AT! concept1,2 is a strongly increasing function of
the normalized plasma pressure,b.3 Now, the maximum
achievableb in AT devices is limited by pressure gradient
driven, ideal external-kink modes.4 Indeed, AT designs are
only advantageous if the external-kinkb limit is raised sub-
stantially due to the presence of a close fitting,perfectly con-
ductingwall surrounding the plasma. Unfortunately, all real-
izable conducting walls possess non-negligible resistivity.
According to conventional theory, when a tokamak plasma is
surrounded by a close fitting,resistivewall, the relatively fast
growing ideal external-kink mode is converted into the far
more slowly growing ‘‘resistive wall mode’’~RWM!. The
latter mode grows on the characteristicL/R time of the wall,
tw , and has virtually identical stability boundaries to those
of the external-kink mode in the complete absence of a wall.5

Now, tw is long compared to most plasma timescales, but
still generally much shorter than the duration of the plasma
discharge. Hence, all attractive advanced tokamak designs
are predicated on the assumption that the RWM can some-
how be stabilized.

Experimentally, it is found that tokamak plasmas can
exceed the no-wallb limit ~i.e., the idealb limit calculated
in the complete absence of a wall! for time periods much
longer thantw , provided that the plasma is rotating suffi-
ciently rapidly.6–8 This suggests that the RWM can somehow
be stabilized via plasmarotation. A plausible stabilization
mechanism was first discovered numerically by Bondeson
and Ward,9 and later accounted for analytically by Betti and
Freidberg.10 According to this mechanism, stabilization of
the RWM is a combined effect of plasmarotational inertia
anddissipationdue to interaction with the sound wave con-
tinuum at a toroidally coupled resonant surface lying within
the plasma. It was subsequently discovered that neoclassical
effects significantly weaken sound wave dissipation, while
simultaneously enhancing dissipation due to interaction with
toroidally coupled Alfvén resonances.11,12Hence, plasma dis-

sipation is associated with internal Alfve´n resonances in the
latest RWM theories.13,14 Fitzpatrick and Aydemir have de-
veloped a simplified cylindrical model of this rather compli-
cated stabilization mechanism in which the required plasma
dissipation is provided by edge plasma viscosity.15 In the
latter model, the dispersion relation of the RWM reduces to a
simple cubic equation. Nevertheless, the predictions of the
Fitzpatrick–Aydemir model agree surprisingly well with the
more sophisticated models of Bondeson, Betti, and co-
workers. According to all models, the critical toroidal plasma
velocity required to stabilize the RWM is of order (kia)Va ,
whereki is the parallel~to the magnetic field! wave number
of the mode at the edge of the plasma,a the plasma minor
radius, andVa the typical Alfvén velocity. It turns out that
external-kink modes are only unstable in tokamak plasmas
when kia!1. Hence, the critical rotation velocity is only a
few percent~5%, say! of the Alfvén velocity. Such velocities
are regularly generated when present-day tokamaks are
heated via unbalanced neutral beam injection~NBI!. Al-
though plasma dissipation is needed for the stabilization of
the RWM, the width of the stability window~in b! becomes
independent of the dissipation once it exceeds a~small! criti-
cal magnitude. This fact helps to explain why the
Fitzpatrick–Aydemir model agrees fairly well with the mod-
els of Bondeson, Betti, and co-workers, despite the some-
what different dissipation mechanism in the former model.

The physics of the RWM has been investigated exten-
sively on the DIII-D tokamak.16,17 The critical plasma toroi-
dal angular frequency at theq52 surface required to stabi-
lize the mode is observed to beVc/2p;6 kHz. The models
of Bondeson, Betti, and co-workers, which depend on
plasma dissipation at internal Alfve´n resonances, predict
Vc/2p;10 kHz. Other theories which require the formation
of internally resonant magnetic islands,18 or linear tearing
layers,19 for RWM stabilization yield much smaller critical
frequencies:Vc/2p;50 Hz. The models of Bondeson, Betti,
and co-workers agree fairly well with experiment. On the
other hand, the predictions of the remaining models disagree
with experimental observations to such an extent that they
can be safely ruled out.

The plasma rotation in DIII-D starts todecelerateasa!Electronic mail: rfitzp@farside.ph.utexas.edu
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soon as the no-wallb limit is exceeded. The deceleration
occurs in three distinct phases: a slowly decreasing plasma
rotation with little or no mode activity, followed by a more
rapid deceleration of the rotation as a slowly growing mode
appears, followed by a rapid growth of the mode. The latter
phase is usually terminated by a plasma disruption. To date,
the only theory to investigate the effect of the RWM on
plasma rotation is that of Gimblett and Hastie.20 The
Gimblett–Hastie model yields predictions which are in quali-
tative agreement with DIII-D experimental data. However,
this model relies on dissipation via an internally resonant
linear tearing layer—as has already been discussed, such a
dissipation mechanism gives far too low a critical plasma
rotation frequency needed to stabilize the RWM.

The deceleration of DIII-D plasmas after the no-wallb
limit is exceeded seems to be related to the magnitude of the
resonanterror field. It is certainly the case that a plasma can
be maintained above the no-wallb limit for the longest pe-
riod when the error field is minimized. Conversely, plasmas
with large error fields tend to disrupt prematurely when theb
limit is exceeded. There is experimental evidence that the
error field is stronglyamplifiedby the plasma whenb lies
above the no-wall limit. Hence, it is conjectured that the
plasma deceleration observed in DIII-D is associated with
the nonlinear locking torque generated by an amplified error
field. Recently, Boozer has developed a general theory which
implies that error-field amplification peaks strongly as the
no-wall b limit is achieved.21 However, this theory is too
empirical to allow quantitative predictions.

The aim of this paper is to construct a simplephysics-
basedmodel of the RWM which accounts for the DIII-D
data. This goal will be achieved by combining the
Fitzpatrick–Aydemir dispersion relation with a plasma equa-
tion of rotational motion.

II. THE FITZPATRICK–AYDEMIR DISPERSION
RELATION

A. Definitions

Consider the stability of them, n mode—which is as-
sumed to benon-resonant—in a cylindrical, zero-b plasma.
Standard right-handed polar coordinates (r ,u,z) are adopted.
The plasma is assumed to be periodic in thez direction with
period 2pR0 , whereR0 is the simulated major radius. It is
convenient to define the simulated toroidal anglef5z/R0 .
The equilibrium magnetic field is written@0,Bu(r ),Bf#. Fi-
nally, the ‘‘safety factor’’ is definedq(r )5rBf /R0Bu .

Let a be the minor radius of the plasma,r w the minor
radius of the resistive wall, andr c the critical wall radius
~i.e., the minor radius beyond which a perfectly conducting
wall is incapable of stabilizing them, n ideal external-kink
mode!. It is helpful to define

d5
1

m

~r w /a!2m21

~r w /a!2m11
, ~1!

dc5
1

m

~r c /a!2m21

~r c /a!2m11
, ~2!

c5
m/n2q~a!

s~a!q~a!
, ~3!

wheres(r )5(r /q)(dq/dr) is the magnetic shear.
The radial magnetic field associated with them, nmode

can be written

br
m,n~r ,u,f,t !5 i

m

r
c~r !ei ~mu2nf!1gt. ~4!

B. Plasma physics

The Fitzpatrick–Aydemir model assumes that them, n
rational surface, on whichq5m/n, lies just beyondthe edge
of the plasma. Hence, 0,c!1. The bulk of the plasma is
governed by conventional, marginally stable, ideal magneto-
hydrodynamics~MHD!. However, a thininertial layer, of
thicknessca, forms at the outer edge of the plasma. An even
thinner viscouslayer forms at the outer edge of the inertial
layer. The response of the plasma is fully described by the
quantity DCa5@r dc/dr#a2

a1 . According to Ref. 15, this
quantity takes the approximate form

dDCa.@~ ĝ2 i V̂f!21n* ~ ĝ2 i V̂f!#Ca , ~5!

whereCa5c(a), ĝ5g/nV0 , V̂f5Vf /V0 ,

V0tA5A3c

d

cs~a!

12c/dc
, ~6!

n* 5
12

5c2tVnV0
, ~7!

andtA5(R0 /Bf)Am0r(a), tV5a2r(a)/m(a). Here,Vf is
the plasma toroidal angular velocity within the inertial layer,
r(r ) the plasma mass density, andm(r ) the perpendicular
viscosity. In Eq.~5!, the first term inside the square brackets
corresponds to plasmainertia, whereas the second term cor-
responds toviscous dissipation. The parametern* measures
the strength of this dissipation. Note that Eq.~5! is derived
under the assumption that the plasma dissipation is relatively
weak ~i.e., n* !1!.

C. Wall physics

The L/R time of the resistive wall is definedtw

5m0r wdw /hw , wheredw andhw are the wall thickness and
resistivity, respectively. The response of the wall is fully de-
scribed by the quantityDCw5@r dc/dr# r w2

r w1. In the ‘‘thin

shell’’ limit, in which dw /r w!ugutw!r w /dw , this quantity
takes the form

dDCw5ĝS* Cw , ~8!

where Ca5c(r w) and S* 5dtw nV0 . The parameterS*
~which is assumed to be much larger than unity! measures
the conductivity of the wall.
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D. Outer solution

The quantitiesDCa and DCw must be asymptotically
matched to the outer solution, which is governed by margin-
ally stable ideal MHD. As described in Ref. 15, this match-
ing procedure yields

dDCa52~12k!~12md!Ca1A12~md!2Cw , ~9!

dDCw52~11md!Cw1A12~md!2Ca12mdCc .
~10!

Here,

k5
~1/dc!2m

~1/d!2m
~11!

measures the intrinsic stability of the plasma in the absence
of rotation. The no-wall stability limit~i.e., the stability limit
in the complete absence of a wall! corresponds tok50,
whereas the perfect-wall limit~i.e., the stability limit when
the wall becomes perfectly conducting! corresponds tok
51. Note, incidentally, that in the Fitzpatrick–Aydemir
model them, n mode is destabilized bycurrent gradients
rather thanpressure gradients. The quantityCc parametrizes
the m, n static error field—Cc is actually defined as the
error-field flux at the wall in the absence of plasma.

E. RWM dispersion relation

Neglecting the error field, for the moment, Eqs.~5!, ~8!,
~9!, and~10! can be combined to give the following simple
cubic RWM dispersion relation:

@~ ĝ2 i V̂f!21n* ~ ĝ2 i V̂f!1~12k!~12md!#

3~ ĝS* 111md!512~md!2. ~12!

F. Error-field amplification

Suppose that the plasma is stable, and subject to astatic
error field ~hence,ĝ50, and uCcuÞ0!. Equations~5!, ~8!,
~9!, and~10! can be combined to give

uCau

uCcu
5S 12md

11md
D 1/2

2md

$@V̂f
2 1k~12md!#21~n* V̂f!2%1/2

.

~13!

Clearly, the plasma response to the error field isresonant
whenk5k1 , where

k152
V̂f

2

12md
. ~14!

The magnitude of the flux,uCau, driven at the plasma edge
peaks at the resonance—the strength of this peaking varies
inversely with the size of the dissipation parameter,n* . This
result is similar to that recently reported by Boozer.21

G. Low dissipation stability boundaries

In the low dissipation limit,n* !1, there are only two
possibly unstable roots of the RWM dispersion relation~12!.
The wall moderoot satisfies

ĝ.
i @12~md!2#n* V̂f

S* @~12k!~12md!2V̂f
2 #2

1
~11md!@k~12md!1V̂f

2 #

S* @~12k!~12md!2V̂f
2 #

, ~15!

whereas theplasma moderoot obeys

ĝ. i @V̂f2A~12k!~12md!#

1
12~md!2

2S*
A~12k!~12md!@V̂f2A~12k!~12md!#

2
n*
2

. ~16!

The marginal stability condition for the wall mode root
coincides with the error-field resonance: i.e.,k5k1 . The
marginal stability condition for the plasma mode root takes
the formk5k2 , wherek2 is obtain by solving the quadratic
equationx22V̂fx1e50, with x5A(12k2)(12md) and
e5@12(md)2#/S* n* . Figure 1 shows a sketch of the low
dissipation stability boundaries for the resistive wall and
ideal external-kink modes ink –V̂f space. It can be seen that
there are two separate stable regions. The first stable region
is restricted to lowk andV̂f values, and is bounded by the
curvek5k1 . The second stable region only exists for finite
V̂f , and is bounded by the curvek5k2 . In fact, the critical
~normalized! plasma rotation rate above which this region
appears is

V̂c5
2A12~md!2

AS* n*
. ~17!

Hence, it can be seen that there is no second stable region in
the absence of plasma dissipation~i.e.,n* →0!. Note that the
boundaries of the second stable region rapidly become inde-

FIG. 1. Low dissipation stability boundaries for the resistive wall and ideal

external-kink modes in plasma rotation (V̂f) versus plasma stability~k!
space. The plasma becomes more unstable ask increases.

3461Phys. Plasmas, Vol. 9, No. 8, August 2002 A simple model of the resistive wall mode in tokamaks

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.83.179.197 On: Tue, 10 Mar 2015 19:40:28



pendent ofn* as V̂f increases. Note, also, that the upper
boundary of this region lies very close to the perfect-wall
stability limit, k51.

It is evident, from Fig. 1, that the stability boundary for
the first stable region,k5k1 , decreasesas the plasma rota-
tion increases. In other words, plasma rotation initially has a
destabilizingeffect on the RWM.9,10,15Somewhat higher lev-
els of rotation cause a transition to the second stable region.
Thus, high levels of rotation have astabilizingeffect on the
RWM.9,10,15Note that there is a finite-width band of instabil-
ity separating the first and second stable regions.10

H. High dissipation stability boundaries

In the high dissipation limit,n* @1, there are again two
possibly unstable roots of the RWM dispersion relation~12!.
The wall moderoot satisfies

ĝ.
11md

S*
H k~12k!~12md!22n

*
2 V̂f

2

~12k!2~12md!21n
*
2 V̂f

2

1
in* V̂f

~12k!2~12md!21n
*
2 V̂f

2 J , ~18!

whereas theplasma moderoot obeys

ĝ.
~k21!~12md!

n*
1 iV. ~19!

In this limit, the dissipative layer at the edge of the plasma
becomes wider than the inertial layer, and plasma inertia
ceases to play a significant role in RWM physics. Inciden-
tally, the above roots are identical to those obtained from the
well-known dispersion relation of Bondeson and Persson22

for an edge tearing mode coupled to a resistive wall. This
observation gives us confidence that the dispersion relation
~12! remains valid whenn* >O(1), despite the fact that it
was derived in the limitn* !1.

The marginal stability condition for the wall mode root
is written k5k3 , where k3(12k3)5a. Here, a

5n
*
2 V̂f

2 /(12md)2. The marginal stability condition for the
plasma mode root is simplyk51. The RWM is completely
stabilized~for k,1! as soon as the~normalized! plasma ro-
tation exceeds the critical valueV̂c , where

V̂c5
12md

2n*
. ~20!

Figure 2 shows a sketch of the high dissipation stability
boundaries for the resistive wall and ideal external-kink
modes ink –V̂f space. It can be seen that, in the high dis-
sipation regime, the first and second stable regions of Fig. 1
merge together to form a continuous stable region which
extends all the way to the perfect-wall stability boundary.

I. Intermediate dissipation stability boundaries

Figure 3 shows the numerically determined stability
boundaries of the Fitzpatrick–Aydemir dispersion relation
calculated for various values of the dissipation parameter,

n* . When the dissipation is low~i.e., n* 50.1!, there is a
band of instability separating the first and second stable re-
gions ~as sketched in Fig. 1!. However, this band gradually
closes up as the dissipation increases. Thus, whenn* reaches
0.5 there is only a vestigial band, and whenn* reaches 1.0
the band has disappeared entirely~as sketched in Fig. 2!.

Note that the error-field resonance,k5k1 , corresponds,
almost exactly, to the lower stability boundary forn* 50.1
shown in Fig. 3. It is clear from the figure that, unless the
dissipation is fairly weak~i.e., n* <0.1!, the error-field reso-
nancedoes notcorrespond to a RWM stability boundary. The
reason for this is that, unlessn* is small, the RWM pos-
sesses a non-negligiblereal frequencyat its marginal stabil-
ity point. It is easily demonstrated that a real frequency of
order the inverse wall time is sufficient to shift the error-field
resonance~which is corresponds to the response of the
plasma to azero frequencyperturbation! away from the
RWM stability boundary.

FIG. 2. High dissipation stability boundaries for the resistive wall and ideal

external-kink modes in plasma rotation (V̂f) versus plasma stability~k!
space. The plasma becomes more unstable ask increases.

FIG. 3. Stability boundaries for the Fitzpatrick–Aydemir RWM dispersion
relation, evaluated numerically forn* 50.10 ~solid curve!, n* 50.30
~dotted–dashed curve!, n* 50.50~short-dashed curve!, andn* 51.00~long-
dashed curve!, as well asS* 5100,m53, andr w51.2a.
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III. DERIVATION OF EVOLUTION EQUATIONS

A. Plasma angular equation of motion

The toroidal angular equation of motion of the inertial
layer ~radial thicknessca! at the edge of the plasma takes the
approximate form

a2cr~a!
dVf

dt
1

12

5

m~a!

c
~Vf2Vf

~0!!5
Tf EM

4p2R0
3 , ~21!

whereVf
(0) is the unperturbed rotation rate, andTf EM is the

electromagnetic torque acting on the layer due to the error-
field and eddy currents excited in the resistive wall. The first
term on the left-hand side of the above equation corresponds
to the inertia of the layer, whereas the second term describes
the viscous restoring torque exerted by the remainder of the
plasma.

The electromagnetic torque takes the form23

Tf EM5
2p2R0

m0
n Im~DCaCa* !. ~22!

B. Normalized evolution equations

Let

Ĉa,w,c5
Ca,w,c

aBfA2cdtAV0

, ~23!

and V̂f
(0)5Vf

(0)/V0 . Equations~5!, ~8!, ~9!, ~10!, and ~21!
can be combined to give

d2Ĉa

d t̂2
1~n* 22i V̂f!

dĈa

d t̂

1@~12k!~12md!2V̂f
2 2 in* V̂f#Ca

5A12~md!2Ĉw , ~24!

S*
dĈw

d t̂
1~11md!Ĉw

5A12~md!2Ĉa12mdĈc , ~25!

dV̂f

d t̂
1n* ~V̂f2V̂f

~0!!

5A12~md!2Im~ĈwĈa* !, ~26!

where t̂5nV0t. Here, Eqs.~5!, ~8!, ~9!, and~10! have been
conveniently converted into ordinary differential equations.
The basic approach adopted in this paper is to treat theS* ,
n* , and the normalizations as constant, while allowingk,
V̂f

(0) , andĈc to vary. This is not quite self-consistent. How-
ever, the dependencies ofS* , n* , and the normalizations on
k are physically unimportant. Note that it makes sense to
combine thelinear Fitzpatrick–Aydemir dispersion relation
for the RWM with anon-linearplasma equation of rotational
motion because the critical RWM amplitude above which the

plasma rotation is effectively quenched is very small com-
pared with the equilibrium magnetic field strength~see Sec.
IV !.

It is helpful to express the electromagnetic torque on the
right-hand side of Eq.~26! in a more physically meaningful
form. Writing Ĉw5uĈwueiww, Eq. ~25! yields

A12~md!2 Im~ĈwĈa* !52S*
dww

d t̂
uĈwu2

22md Im~ĈwĈc* !. ~27!

Thus, the torque consists of the familiar slowing down
torque due to eddy currents excited in the wall, plus a con-
ventional error-field locking torque.24 Now, uĈwu andww can
only evolve on the relatively slowL/R time of the wall.
Settingd/d t̂;1/S* in Eqs.~24! and ~25!, and recalling that
S* @1, it is possible to show that

2S*
dww

d t̂
uĈwu222md Im~ĈwĈc* !.2n* V̂fuĈau2.

~28!

It follows that the electromagnetic torque always acts to
dampthe plasma rotation. Moreover, there is zero torque in
the absence of plasma dissipation~i.e., n* 50!.

Equations~24!–~26! can be rewritten

d2Ĉa

d t̂2
1~n* 22i V̂f!

dĈa

d t̂

1@~12k!~12md!2V̂f
2 2 in* V̂f#Ĉa

5A12~md!2Ĉw , ~29!

S*
dĈw

d t̂
1~11md!Ĉw5A12~md!2Ĉa12mdĈc , ~30!

dV̂f

d t̂
1n* ~V̂f2V̂f

~0!!52n* V̂fuĈau2. ~31!

These equations constitute a closed set which describe the
evolution of the RWM in the presence of a static error field,
taking into account the nonlinear effect of the mode on the
plasma rotation. The dynamic variables are the plasma flux,
Ĉa , the wall flux, Ĉw , and the plasma rotation,V̂f . The
parametersn* , S* , k, V̂f

(0) , andĈc specify the strength of
the plasma dissipation, the conductivity of the wall, the sta-
bility of the plasma, the unperturbed plasma rotation, and the
amplitude and phase of the error field, respectively. The ad-
ditional parametersm andd specify the poloidal mode num-
ber of the RWM, and the radius of the wall, respectively.

IV. NUMERICAL SIMULATIONS

A. Introduction

This section describes a number of simulations per-
formed by integrating the RWM evolution equations,~29!–
~31!.
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B. Access to the wall stabilized region: n*Ä0.33

According to Sec. II, when the dissipation parametern*
is less than about 0.5 there are two separate stable regions in
V̂f –k space~see Fig. 1!. The first region is restricted to
relatively low V̂f values, and lies well below the perfect-
wall stability boundary (k51). The second region only ex-
ists for V̂f.V̂c , where V̂c @see Eq.~17!# is the critical
rotation rate needed to stabilize the RWM, and extends
nearly all the way to the perfect-wall stability boundary.
Clearly, in order to obtain strongly enhanced plasma stability,
due to the presence of the resistive wall, it is necessary for
the plasma to make a transition from the first stable region
~in which it starts off! to the second stable region. This tran-
sition is initiated when the NBI power is ramped up, and the
plasma rotation andb ~or, in this paper,k! consequently
increase. Unfortunately, in order to reach the second stable
region, the plasma must first pass through a region of param-
eter space in which the RWM isunstable. Let us simulate the
transition process, using realistic plasma parameters and NBI
heating rates, in order to determine which factors effectively
control access to the second stable region.

The chosen plasma parameters for our study aren*
50.33,S* 5100,m53, andr w51.2a. These values are ap-

propriate to the RWM in DIII-D~see Sec. IV D!. The error-

field parameter,Ĉc , is taken to bereal. Hence, the helical
phase of the error field is 0°. Figure 4 shows details of a

simulation in whichĈc50.01, and the plasma equilibrium

rotation and stability parameters,V̂f
(0) and k, are ramped

linearly over a period of 104 normalized time units~i.e.,
about 100 wallL/R times!. Figure 5 shows the trajectory of

the same simulation throughV̂f –k space.
Note, first of all, from Fig. 5, that the first and second

stable regionsmergebelow k.20.7 ~see Sec. III!. In the

initial stage of the ramp~i.e., t̂,2500!, the plasma traverses
the first stable region. During this phase, them,n mode is
maintained in the plasma by the error field. Note that the
mode is initially locked in phase with the error field. How-
ever, as the boundary of the first stable region is approached,
the mode becomes increasingly phase shifted~in the direc-
tion of plasma rotation! with respect to the error field, and
the mode amplitude increases. This increase in the mode
amplitude is a manifestation of enhanced error-field amplifi-
cation at the error-field resonance~see Sec. II F!, which lies
fairly close to the boundary of the first stable region. In the

middle stage of the ramp~i.e., from t̂.2500 tot̂.4500!, the

FIG. 4. Simulation of a DIII-D NBI heating ramp in which the equilibrium plasma rotation and stability parameters increase linearly. The other parameters

areĈc50.01,n* 50.33,S* 5100,m53, andr w51.2a. The five panels show~1! the stability parameter,k ~triangles!, and the equilibrium rotation parameter,

V̂f
(0) ~squares!, ~2! the mode amplitude parameter,Aa5 log10(uĈuau), ~3! the mode phase,wa5arg(Ca) ~units of p!, ~4! the mode phase velocity,ẇa

5dw/d t̂, ~5! the plasma rotation parameter,V̂f .
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plasma traverses the band of instability separating the first
and second stable regions. During this phase, the modeun-
locks from the error field andgrows spontaneously. The
mode rotates at about the inverse wallL/R time ~i.e.,
dwa /d t̂;S

*
21!. Note that the mode amplitude never be-

comes sufficiently large to trigger plasma deceleration.
Hence, the plasma rotation,V̂f , always tracks the equilib-
rium rotation, V̂f

(0) , very closely. In the final stage of the
ramp ~i.e., t̂.4500!, the plasma traverses the second stable
region. During this phase, the mode is again maintained in
the plasma by the error field. The mode amplitude drops
rapidly as the plasma enters the second stable region, and
eventually reaches an equilibrium value which is signifi-
cantly less than the typical value in the first stable region.
Clearly, error-field amplification is a far smaller effect in the
second stable region when compared with the first, since the
latter region lies closer to the error-field resonance. Note that
the mode locks inantiphasewith the error field in the second
stable region~however, the wall flux,Ĉw still locks in phase
with the error field!.

Figures 6 and 7 show the results of a second simulation
whose parameters are the same as the first, except that the
amplitude of the error field is increased toĈc50.02. It can
be seen that the mode evolution remains similar to that
shown in the first simulation up to the period when the
plasma traverses the band of instability separating the two
stable regions. During this period, the mode grows to suffi-
cient amplitude to trigger plasma deceleration. This is indi-
cated in Fig. 7 by the sudden deviation of the simulation
trajectory upwards and to the left. From Fig. 6, it can be seen
that the plasma rotation ceases its linear increase, and actu-
ally starts todecrease, despite the fact that more and more
‘‘momentum’’ is being injected into the plasma~i.e., V̂f

(0) is

increasing!. The deceleration of the plasma effectively pre-
vents access to the second stable region and takes place in
three main stages. In the first stage, the mode amplitude is
slowly increasing, and there is no plasma deceleration. In the
second stage, the mode amplitude increases somewhat faster,
and the plasma rotation slowly ramps down. During this
phase, the rate of deceleration is limited by the fact that the
plasma cannot re-enter the first stable region—if it did, the
mode would decay, and the plasma would consequently re-
rotate. Hence, as can be seen from Fig. 7, the simulation
trajectory remains just outside the boundary of the first stable
region. In the final stage, the continuedk ramp takes the
plasma away from the boundary of the first stable region.
During this phase, the plasma rotation collapses completely,
and the mode grows rapidly—indeed, the mode amplitude
quickly attains values which would~presumably! trigger a
disruption. The behavior described above is quite similar to
that seen in the DIII-D experiment.

The above simulations suggest that there are three main
factors which govern access to the wall stabilized region: the
magnitude of theerror field, the rate at which the plasma
rotation is ramped, and the strength of the plasmadissipa-
tion.

The magnitude of the error field determines the mode
amplitude as the plasma enters the band of instability sepa-
rating the two stable regions. If this amplitude is too high
~i.e., if the error field is too large! then the mode is able to
grow sufficiently large to trigger plasma deceleration before
the plasma reaches the other side of the band—hence, the
plasma is prevented from accessing the second stable region.

The faster the rotation is ramped, the less time the
plasma spends traversing the unstable band, and, hence, the
less time the mode has in which to grow to a dangerous
amplitude. It follows that a fast NBI ramp rate facilitates
entry into the second stable region.

As can be seen from Fig. 3, the width of the unstable
band separating the first and second stable regions is a rap-
idly deceasing function of increasing plasma dissipation,n* .
Hence, increased dissipation is likely to favor entry into the
second stable region.

C. Access to the wall stabilized region: n*Ä0.66

According to Sec. II, when the dissipation parametern*
exceeds about 0.5 the first and second stable regions merge
to form a region of stability which extends all the way to the
perfect-wall stability boundary (k51). Under these circum-
stances, it is possible for an NBI-induced ramp ink andV̂f

to take the plasma to the perfect-wall stability boundary
without the RWM ever becoming unstable. This is illustrated
in Figs. 8 and 9, which show details of a simulation in which
n* 50.66, S* 5100, m53, r w51.2a, Ĉc50.05, and the
equilibrium rotation and stability parameters,V̂f andk, are
ramped linearly over a period of about 100 wallL/R times.
These parameter values are appropriate to the RWM in
DIII-D ~see Sec. IV D!.

It can be seen, from Fig. 9, that the plasma remains
stable throughout the duration of the simulated NBI ramp.

FIG. 5. The trajectory~triangles! of the simulation shown in Fig. 4 plotted

at equal time intervals inV̂f –k space. The dashed curve shows the error-
field resonance. The solid curve shows the stability boundary for the RWM.
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Nevertheless, the plasma comes very close to the RWM sta-
bility boundary shortly after the no-wall stability boundary
(k50) is exceeded. According to Fig. 8, the mode amplitude
peaks as the plasma crosses the error-field resonance, which
happens somewhat before the no-wall stability boundary is
reached. As the plasma grazes the RWM stability boundary
there are induced oscillations in the mode amplitude and
phase, but the mode does not unlock from the error field and
its amplitude never becomes sufficiently large to trigger
plasma deceleration.

Figures 10 and 11 show details of a second simulation
whose parameters are the same as the previous simulation,
except that the error-field amplitude has been increased to
Ĉc50.1. It can be seen that as the plasma crosses the error-
field resonance the mode amplitude becomes sufficiently
large to trigger plasma deceleration. This deceleration modi-
fies the plasma trajectory inV̂f –k space such that it inter-
sects the RWM stability boundary. As soon as this occurs, the
RWM becomes unstable and unlocks from the error field.
After a few mode rotations, the plasma rotation collapses
completely and the mode amplitude starts to grow, quickly

FIG. 7. The trajectory~triangles! of the simulation shown in Fig. 6 plotted

at equal time intervals inV̂f –k space. The dashed curve shows the error-
field resonance. The solid curve shows the stability boundary for the RWM.

FIG. 6. Simulation of a DIII-D NBI heating ramp in which the equilibrium plasma rotation and stability parameters increase linearly. The other parameters

areĈc50.02,n* 50.33,S* 5100,m53, andr w51.2a. The five panels show~1! the stability parameter,k ~triangles!, and the equilibrium rotation parameter,

V̂f
(0) ~squares!, ~2! the mode amplitude parameter,Aa5 log10(uĈuau), ~3! the mode phase,wa5arg(Ca) ~units of p!, ~4! the mode phase velocity,ẇa

5dw/d t̂, ~5! the plasma rotation parameter,V̂f .
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reaching values which would~presumably! trigger a disrup-
tion.

The above simulations confirm that the three main fac-
tors which govern access to the wall stabilized region are the
magnitude of theerror field, the rate at which the plasma
rotation is ramped, and the strength of the plasmadissipa-
tion.

The magnitude of the error field determines the maxi-
mum mode amplitude: i.e., the amplitude as the plasma
crosses the error-field resonance. If this amplitude is too high
~i.e., if the error field is too large! then plasma deceleration is
triggered, which has the effect of deviating the plasma into
the unstable region of parameter space once the no-wall sta-
bility limit is exceeded.

The faster the rotation is ramped, the less time the
plasma spends in the vicinity of the error-field resonance,
and, hence, the less time the mode has in which to grow to a
dangerous amplitude.

As can be seen from Fig. 3, the extent of the unstable
region of parameter space decreases with increasing plasma
dissipation, making it more difficult for error-field induced

FIG. 8. Simulation of a DIII-D NBI heating ramp in which the equilibrium plasma rotation and stability parameters increase linearly. The other parameters

areĈc50.05,n* 50.66,S* 5100,m53, andr w51.2a. The five panels show~1! the stability parameter,k ~triangles!, and the equilibrium rotation parameter,

V̂f
(0) ~squares!, ~2! the mode amplitude parameter,Aa5 log10(uĈuau), ~3! the mode phase,wa5arg(Ca) ~units of p!, ~4! the mode phase velocity,ẇa

5dw/d t̂, ~5! the plasma rotation parameter,V̂f .

FIG. 9. The trajectory~triangles! of the simulation shown in Fig. 8 plotted

at equal time intervals inV̂f –k space. The dashed curve shows the error-
field resonance. The solid curve shows the stability boundary for the RWM.
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plasma deceleration to deviate the plasma into the unstable
region.

D. Estimate of critical parameters for DIII-D plasmas

Let us estimate the values of the various normalized
quantities appearing in our mode evolution equations for a
typical DIII-D plasma. The major parameters of the DIII-D
device are as follows:16,17 R051.67 m, a50.67 m, r w

51.2a, tw56 ms,Bf52.1 T, andne5231019 m23, where
ne is the electron number density. Our reference plasma dis-
charge is characterized byq(0)51.3 andq(a)52.9 ~the low
edge-q value is an artifact of the cylindrical nature of our
model!. For them53, n51 mode, we findc51.731022,
d50.17, k50.33, dc50.25, ands(a)52. It follows that
V0/2p;14 kHz, Vc/2p;6 kHz, n* ;0.2x ~m/s2!, and S*
;90. Here,x is the edge momentum diffusivity. Sincex
typically lies between 1 and 5 m/s2 in DIII-D plasmas, the
dissipation parametern* lies in the range 0.1 to 1. Note that
our estimate forVc is a little high, but in the right ballpark.
All times are normalized byt051/V0;10ms, and all mode
amplitudes byb05BfAcd(tAV0)5331023 T. It can be

FIG. 11. The trajectory~triangles! of the simulation shown in Fig. 10 plotted

at equal time intervals inV̂f –k space. The dashed curve shows the error-
field resonance. The solid curve shows the stability boundary for the RWM.

FIG. 10. Simulation of a DIII-D NBI heating ramp in which the equilibrium plasma rotation and stability parameters increase linearly. The other parameters

areĈc50.10,n* 50.66,S* 5100,m53, andr w51.2a. The five panels show~1! the stability parameter,k ~triangles!, and the equilibrium rotation parameter,

V̂f
(0) ~squares!, ~2! the mode amplitude parameter,Aa5 log10(uĈuau), ~3! the mode phase,wa5arg(Ca) ~units of p!, ~4! the mode phase velocity,ẇa

5dw/d t̂, ~5! the plasma rotation parameter,V̂f .
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seen that the parameter values used in the previous simula-
tions are fairly appropriate to DIII-D plasmas. We estimate
that the typical RWM amplitude needed to trigger plasma
deceleration in DIII-D~unity in normalized units! is about 30
G, whereas the critical error-field strength above which ac-
cess to the wall stabilized region is denied~between 0.02 and
0.1 in normalized units! lies in the range 1–3 G. These esti-
mates accord well with experimental observations. Note,
however, that the above estimates are fairly inexact due to
the difficulty in representing highly shaped, single-null,
DIII-D plasmas using a cylindrical model.

V. SUMMARY

In Sec. II, the previously published15 Fitzpatrick–
Aydemir dispersion relation for the resistive wall mode
~RWM! in a large-aspect ratio, rotating, viscous tokamak
plasma is discussed. At low plasma dissipation, there are two
stable regions in the parameter space of plasma rotation ver-
sus plasma stability. The first stable region is restricted to
relatively low plasma rotation rates, and lies well below the
perfect-wall stability boundary. The second stable region
only exists above a critical plasma rotation rate, which de-
pends on the dissipation, and extends almost to the perfect-
wall boundary. These two regions are separated by a band of
instability. The thickness and extent of this band both de-
crease as the plasma dissipation increases. At high plasma
dissipation, the band of instability disappears altogether, and
the first and second stable regions merge.

In Sec. III, a set of evolution equations for the RWM is
derived which take into account the nonlinear deceleration of
the plasma rotation generated by mode interaction with both
the resistive wall and a static error field. This is achieved by
combining the Fitzpatrick–Aydemir dispersion relation with
a plasma equation of rotational motion.

In Sec. IV, a number of simulations are performed with
the above mentioned RWM evolution equations in order to
study access to the wall stabilized region in DIII-D. We gen-
erally expect a DIII-D plasma to start off well below the
no-wall stability boundary, and to access the wall stabilized
region via an NBI induced ramp in the plasmab and rota-
tion. Unfortunately, the plasma must cross an error-field
resonance and~possibly! an unstable region of parameter
space in order to achieve this goal. The simulations presented
in this paper indicate that this is possible provided that the
error-field amplitude is not too large. If the error field is too
large then the RWM grows to a sufficiently high amplitude to
trigger plasma deceleration, which effectively blocks entry
into the wall stabilized region.

Note that, in general, the error-field resonancedoes not
correspond to a RWM marginal stability curve in parameter

space. The reason for this is that, in general, the RWM pos-
sesses a nonzero real frequency at marginal stability. Of
course, the error-field resonance is associated with the re-
sponse of the plasma to a zero frequency perturbation.

The estimated critical plasma rotation frequency in
DIII-D needed to stabilize the RWM is about 6 kHz. The
estimated RWM amplitude required to trigger plasma decel-
eration is about 30 G. Finally, the estimated error-field am-
plitude needed to prevent access to the wall stabilized region
is about 2 G. These estimates are in broad agreement with
experimental observations.
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