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Nonlinear dynamo mode dynamics in reversed field pinches *
Richard Fitzpatrick and Edmund P. Yu
Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712

~Received 31 January 2000; accepted 19 May 2000!

The nonlinear dynamics of a typical dynamo mode in a reversed field pinch, under the action of the
braking torque due to eddy currents excited in a resistive vacuum vessel and the locking torque due
to a resonant error-field, is investigated. A simple set of phase evolution equations for the mode is
derived: these equations represent an important extension of the well-known equations of Zohm
et al. @Europhys. Lett.11, 745 ~1990!# which incorporate a self-consistent calculation of the radial
extent of the region of the plasma which corotates with the mode; the width of this region being
determined by plasma viscosity. Using these newly developed equations, a comprehensive theory of
the influence of a resistive vacuum vessel on error-field locking and unlocking thresholds is
developed. Under certain circumstances, a resistive vacuum vessel is found to stronglycatalyze
locked mode formation. Hopefully, the results obtained in this paper will allow experimentalists to
achieve a full understanding of why the so-called ‘‘slinky mode’’ locks in some reversed field pinch
devices, but not in others. The locking of the slinky mode is currently an issue of outstanding
importance in reversed field pinch research. ©2000 American Institute of Physics.
@S1070-664X~00!01309-4#

I. INTRODUCTION

A reversed field pinch~or RFP! is a magnetic fusion
device in which a thermonuclear plasma is confined via a
combination of a toroidal magnetic field,Bf , and a poloidal
magnetic field, Bu , in an axisymmetric toroidal
configuration.1 The RFP concept derives its name from the
fact that the toroidal magnetic field spontaneously reverses
direction in the outer regions of the plasma. This reversal is
a consequence of relaxation to a minimum energy state
driven by intense magnetohydrodynamical~MHD! mode ac-
tivity during the plasma start-up phase.2 Intermittent, rela-
tively low-level, mode activity maintains the reversal, by dy-
namo action, throughout the duration of the plasma
discharge.

A conventional RFP plasma is surrounded by a thick
conducting shell whose resistive penetration time is much
longer than the duration of the discharge. Such a shell is
necessary in order to stabilize external kink modes which
would otherwise rapidly destroy the plasma.3 In the presence
of the shell, the dominant MHD modes arem51 tearing
modes resonant in the plasma core. These modes possess a
range of toroidal mode numbers, characterized byn
;2 R0 /a. Here,m,n are poloidal and toroidal mode num-
bers, respectively, whereasa andR0 are the minor and major
radii of the plasma, respectively. The core tearing modes are
responsible for the dynamo action which maintains the field
reversal, and are, therefore, generally known asdynamo
modes.4

The majority of RFP experiments@e.g., the Reversed
Field Experiment~RFX! ~Ref. 5!, and the TPE-RX~Ref. 6!
experiment# also feature a thin resistive vacuum vessel situ-

ated between the edge of the plasma and the stabilizing shell.
The key to the success of the RFP concept lies in the

control of MHD instabilities; there is clear experimental evi-
dence that a relatively modest reduction in ambient mode
amplitudes leads to a dramatic improvement in plasma
confinement.7 However, in order to reliably control dynamo
modes in RFPs, it is first necessary to fullyunderstandtheir
dynamics.

The complex nonlinear dynamics of dynamo modes in
RFPs is a fascinating subject in its own right, as well as a
topic of great practical importance. Dynamo modes in RFPs
are generally observed tophase lockto one another, at rela-
tively low amplitudes, so as to form atoroidally localized
structure in the perturbed magnetic field known as a ‘‘slinky
mode.’’8,9 This effect can be understood as a natural conse-
quence of the mutual nonlinear couplings of the various
modes in the plasma.10 The slinky mode per se doesnot
appear to significantly degrade the global plasma
confinement.11 Instead, it gives rise to a toroidally localized
‘‘hot spot’’ on the plasma facing surface, presumably be-
cause the radial transport due to the diffusion of chaotic
magnetic field-lines peaks at the toroidal angle where the
amplitude of the slinky mode attains its maximum value. The
hot spot is not a problem as long as the slinky moderotates
in the laboratory frame. Conversely, if, for some reason, the
slinky mode ceases to rotate then the hot spot is forced to
hover over the same point on the plasma facing surface, lead-
ing almost inevitably to overheating, the influx of impurities
into the plasma, and the premature termination of the dis-
charge. The enhanced plasma–wall interaction associated
with a locked slinky mode is of major concern to fusion
researchers, since it is a limiting factor in virtually all current
RFP experiments.12,13 Recent experiments on RFX have
demonstrated that this problem can be alleviated, to some
extent, byforcing the locked slinky mode to rotate via the
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imposition of a propagating ripple pattern onto the equilib-
rium toroidal magnetic field.14 These experiments seem to
confirm the idea that the slinky mode is only a major prob-
lem when it fails to rotate.

The physical mechanisms which are most likely to be
responsible for converting slinky modes, and their constitu-
ent dynamo modes, from rotating modes~their natural state!
to locked modes in RFPs are ‘‘error-fields’’ and eddy cur-
rents excited in the resistive vacuum vessel. Error-fields are
small nonaxisymmetric perturbations in the equilibrium
magnetic field generated by field–coil misalignments, cur-
rent feeds, and the presence of insulating gaps in the con-
ducting shell. The ability of those helical components of
error-fields whichresonatewith the plasma core to arrest
dynamo mode rotation in RFPs is well-known15–17 and well
understood.18 However, it was recently pointed out that the
eddy currents excited in the resistive vacuum vessels of
present-day RFPs by rotating dynamo modes exert slowing-
down torques on these modes which are generally suffi-
ciently strong to reduce their rotation toextremely low
levels.19 Of course, eddy current torques cannot, by them-
selves, completely halt the rotation of a dynamo mode, since
there is zero torque when the mode is stationary. It is con-
cluded, therefore, that the locking of dynamo modes~and,
hence, of slinky modes! in RFPs is most probably acom-
bined effect of resonant error-fields and eddy currents ex-
cited in the resistive vacuum vessel.

The aim of this paper is to develop a theoretical frame-
work within which thephase evolutionof rotating dynamo
modes in RFPs, in the presence of resonant error-fields and a
thin resistive shell surrounding the plasma, can be analyzed.
In particular, it is hoped to develop a set of phase evolution
equations which are sufficiently simple that experimentalists
can routinely employ them whilst interpreting data or design-
ing new RFP experiments.

The model adopted in this paper is somewhat simplistic.
Instead of considering a range of unstablem51 modes, it
focuses on the dynamics of asingle representative dynamo
mode in the presence of a resonant error-field and a thin
resistive vacuum vessel surrounded by a thick conducting
shell. Furthermore, the model only deals with zero-b, large
aspect-ratio plasmas. Nevertheless, our model is probably
sufficiently realistic to allow some progress to be made in
our current understanding of locked mode formation in
RFPs.

II. PRELIMINARY ANALYSIS

A. The plasma equilibrium

Consider a large aspect-ratio,20 zero-b,21 RFP plasma
equilibrium whose unperturbed magnetic flux-surfaces map
out ~almost! concentric circles in the poloidal plane. Such an
equilibrium is well approximated as a periodic cylinder. Sup-
pose that the minor radius of the plasma isa. Standard cy-
lindrical polar coordinates (r ,u,z) are adopted. The system
is assumed to be periodic in thez-direction, with periodicity
length 2pR0 , whereR0 is the simulated major radius of the
plasma. It is convenient to define a simulated toroidal angle
f5z/R0 .

The equilibrium magnetic field is written B
5@0,Bu(r ),Bf(r )#, where¹∧B5s~r !B.

B. Outline of the problem

Suppose that the plasma~minor radiusa! is surrounded
by a concentric, thin, resistive shell of minor radiusb. The
resistive shell is, in turn, surrounded by a concentric, per-
fectly conducting shell of minor radiusc. It follows that a
,b,c. The conducting shell is assumed to contain thin
vacuum gaps though which a static, externally generated,
nonaxisymmetric error-field can leak. This paper investigates
the effect of such an error-field, and any helical eddy cur-
rents excited in the resistive shell, on the rotation of a typical
core tearing mode; them,n mode, say. All other modes in
the plasma are ignored, for the sake of simplicity.

C. The perturbed magnetic field

The magnetic perturbation associated with them,n tear-
ing mode can be written

b~r ,t !5bm,n~r ,t !ei ~mu2nf!. ~1!

In this paper, it is assumed thatm.0 andnÞ0. The linear-
ized magnetic flux functioncm,n(r ,t)[2 irb r

m,n satisfies
Newcomb’s equation,22

d

dr F f m,n
dcm,n

dr G2gm,ncm,n50, ~2!

where

f m,n~r !5
r

m21n2e2 , ~3!

gm,n~r !5
1

r
1

r ~neBu1mBf!

~m21n2e2!~mBu2neBf!

ds

dr

1
2mnes

~m21n2e2!22
rs2

m21n2e2 , ~4!

and e5r /R0 . As is well-known, Eq.~2! is singular at the
m/n rational surface, minor radiusr s , which satisfies
Fm,n(r s)50, where

Fm,n~r ![mBu~r !2ne~r !Bf~r !. ~5!

In the vacuum region~s50! surrounding the plasma, the
most general solution to Newcomb’s equation takes the form

cm,n5Aim~ne!1Bkm~ne!, ~6!

whereA, B are arbitrary constants, and

i m~ne!5uneuI m11~ uneu!1mIm~ uneu!, ~7!

km~ne!52uneuKm11~ uneu!1mKm~ uneu!. ~8!

Here,I m , Km represent standard modified Bessel functions.

D. Standard tearing eigenfunctions

Let ĉs
m,n(r ,d) represent the normalizedm,n tearing

eigenfunction calculated assuming the presence of a single,
perfectly conducting shell located at minor radiusd. In other
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words, ĉs
m,n(r ,d) is a real solution to Newcomb’s equation

~2! which is well behaved asr→0, and satisfies

ĉs
m,n~r s ,d!51, ~9!

ĉs
m,n~d,d!50. ~10!

It is easily demonstrated thatĉs
m,n(r ,d) is zero in the region

r .d. In general,ĉs
m,n(r ,d) possesses gradient discontinui-

ties atr 5r s and r 5d. The real quantity

Em,n~d!5F r
dĉs

m,n~r ,d!

dr
G

r s2

r s1

~11!

can be identified as the standardm,n tearing stability
index,23 calculated assuming the presence of a single, per-
fectly conducting shell at a minor radiusd.

E. Asymptotic matching

The quantity

Cs
m,n~ t ![cm,n~r s ,t ! ~12!

represents thereconnected magnetic fluxat them,n rational
surface. Likewise,

DCs
m,n~ t ![F r

dcm,n

dr G
r s2

r s1

~13!

is a measure of them,n helical current flowing in the vicinity
of the rational surface. Note that bothCs

m,n andDCs
m,n are

complex quantities.
Suppose that, in the absence of plasma and the perfectly

conducting shell, the externally generated, static error-field is
characterized by a magnetic flux functioncext(r ,u,f). The
perfectly conducting shell~minor radiusc! is assumed to
possessnarrow gaps which allow the error-field to penetrate
into the plasma. Them,n component of the error-field filter-
ing through these gaps is characterized by

Cc
m,n5E E

gaps
cext~c,u,f!e2 i ~mu2nf!

du

2p

df

2p
, ~14!

where the integral is taken over the angular extent of the
gaps.10 Note thatCc

m,n is also a complex quantity.
Let

Cs
m,n~ t !5Ĉse

iws~ t !, ~15!

Cc
m,n5Ĉce

iwc, ~16!

whereĈs andĈc are both real. Now,wc is a constant for a
static error-field. However,

dws

dt
5nVs~ t !, ~17!

whereVs is the plasma toroidal angular velocity at them,n
rational surface. This result follows since, according to stan-
dard MHD theory,24 the m,n tearing mode is convected by
the plasma at its own rational surface. The above constraint

is conventionally known as the ‘‘no slip’’ condition. In this
paper, it is assumed that the plasma rotatesonly in the toroi-
dal direction, for the sake of simplicity.

Standard asymptotic matching19 across the rational sur-
face and the resistive shell yields

DCs
m,n5H Em,n~b!1

@Em,n~c!2Em,n~b!#

11 ilm,n J Cs
m,n

1Esc
m,nCc

m,n , ~18!

where

lm,n5nVstb

@Em,n~c!2Em,n~b!#

Esb
m,nEbs

m,n . ~19!

Here, tb is the time constantof the resistive shell, whose
response is analyzed using the well-known ‘‘thin shell’’
approximation.19 Furthermore,

Ebs
m,n5

ĉs
m,n~a,b!~m21n2eb

2!

km~neb!i m~nea!2km~nea!i m~neb!
, ~20!

Esb
m,n5

ĉs
m,n~a,b!~m21n2es

2!

km~neb!i m~nea!2km~nea!i m~neb!
, ~21!

Esc
m,n5

ĉs
m,n~a,c!~m21n2es

2!

km~nec!i m~nea!2km~nea!i m~nec!
, ~22!

where es5r s /R0 , ea5a/R0 , eb5b/R0 , and ec5c/R0 .
Note that, under normal circumstances,Em,n(c)2Em,n(b),
Ebs

m,n , Esb
m,n , andEsc

m,n are all positive quantities.

F. Electromagnetic torques

The toroidal electromagnetic torque acting in the vicinity
of the m,n rational surface is given by18

dTfEM
m,n 5

2p2R0

m0

n

m21n2es
2 Im$DCs

m,n~Cs
m,n!* %. ~23!

It follows from Eq. ~18! that

dTfEM
m,n 52

2p2R0

m0

n

m21n2es
2

3H lm,n@Em,n~c!2Em,n~b!#Ĉs
2

11~lm,n!2

1Esc
m,n sin~ws2wc!ĈsĈcJ . ~24!

Here, the first term on the right-hand side represents the
braking torque due to eddy currents excited in the resistive
shell, whereas the second term represents the locking torque
due to the error-field. Incidentally, the electromagnetic
torque exerted on the plasma by resistive shell eddy currents
and the error-field islocalizedin the vicinity of the rational
surface because of a standard result in MHD theory: namely,
that net electromagnetic torques can only develop in those
regions of a plasma in which~inertia-free! ideal-MHD breaks
down ~e.g., close to a rational surface!.24
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G. Plasma rotation

Let V(r ) represent the toroidal angular velocity profile
of the plasma. Likewise,V (0)(r ) represents the unperturbed
velocity profile ~i.e., the profile in the absence of resistive
shell eddy currents and the resonant error-field!. Finally, let

V~r ,t !5V~0!~r !1DV~r ,t !, ~25!

whereDV represents themodificationto the plasma velocity
profile induced by the eddy currents and the error-field.

The perturbed angular equation of motion of the plasma
can be written

rr
]DV

]t
2

]

]r S rm
]DV

]r D5
dTfEM

m,n

4p2R0
3 d~r 2r s!, ~26!

wherer(r ) is the plasma mass density profile, andm(r ) is
the plasma ~anomalous! perpendicular viscosity profile.
Here, the radial extent of the nonideal region, centered on the
rational surface, in which the electromagnetic torque devel-
ops is assumed to be negligible, for the sake of simplicity.

The boundary conditions which must be satisfied by the
perturbed velocity profile are

]DV~0,t !

]r
50, ~27!

DV~a,t !50. ~28!

The second boundary condition implies that the edge plasma
velocity is essentiallyunaffectedby the electromagnetic
torque which develops in the vicinity of the rational surface.
The assumptions underlying the analysis in this section are
described in more detail in Ref. 24.

The no slip condition ~17! can be rewritten

1

n

dws

dt
5Vs~ t !5Vs

~0!1DV~r s ,t !, ~29!

whereVs
(0)5V (0)(r s).

H. Normalization

Equations~24!, ~26!, ~27!, ~28!, and ~29! form a com-
plete set which describe the phase evolution of a typical dy-
namo mode in a RFP under the influence of a resonant error-
field and eddy currents excited in the resistive shell. It is now
convenient to rewrite this set of equations in normalized
form.

Let C̃s5Ĉs /(r s
2Fs8), C̃c5Ĉc /(r s

2Fs8), r̂ 5r /r s , â
5a/r s , r̂5r/r(r s), m̂5m/m(r s), t̂5nVs

(0)t, V̂5V/Vs
(0) ,

V̂s5Vs /Vs
(0) , DV̂5DV/Vs

(0) , where Fs85(dFm,n/dr) r s
.

The typical hydromagnetic and viscous diffusion time scales
can be written

tH5
Am0r~r s!

Fs8
, ~30!

tV5
r s

2r~r s!

m~r s!
, ~31!

respectively.
Let

as5
C̃s

L0
, ~32!

ac5
Esc

m,n

4@Em,n~c!2Em,n~b!#

Av l

vs

C̃c

L0
, ~33!

vs5
Esb

m,nEbs
m,n

nVs
~0!tb@Em,n~c!2Em,n~b!#

, ~34!

v l5
1

4nVs
~0!tV~*1

âdr̂/ r̂ m̂ !2 , ~35!

L05F ~nVs
~0!tH!2tb

tV

1

2

m21n2es
2

n2es
2

1

Esb
m,nEbs

m,nY E
1

âdr̂

r̂ m̂G1/2

.

~36!

Here,as is the normalized dynamo mode amplitude,ac is the
normalized amplitude of the error-field,vs is the critical nor-
malized mode rotation velocity above which the resistive
shell starts to act like a perfect conductor,v l is the critical
normalized mode rotation velocity above which the oscillat-
ing component of the plasma velocity profile, driven by the
error-field, becomes localized around the rational surface,
and L0 is a convenient scale amplitude. Under normal cir-
cumstances, the parametersas andac areO(1), whereasvs ,
v l , andL0 are expected to be much less than unity.

The normalized phase evolution equations take the form

r̂ r̂

4J2v l

]DV̂

] t̂
2

]

] r̂ S r̂ m̂
]DV̂

] r̂ D 52
T̂

J
d~ r̂ 21!, ~37!

T̂5
as

2

4

V̂s

vs
21V̂s

2 1
asac

Av l

sin~ws2wc!, ~38!

]DV̂~0,t̂ !

] r̂
50, ~39!

DV̂~ â, t̂ !50, ~40!

dws

dt̂
[V̂s511DV̂~1,t̂ !, ~41!

whereJ5*1
âdr̂/ r̂ m̂. Equation~37! is the normalized equa-

tion of motion of the perturbed plasma rotation profile driven
by the electromagnetic torque exerted at the rational surface.
Equation~38! specifies the nature of this torque; it is the sum
of contributions from eddy currents excited in the resistive
shell and the resonant error-field, respectively. Equations
~39! and ~40! represent the boundary conditions which must
be satisfied by the solution of Eq.~37!. Finally, Eq. ~41! is
the no slip constraint, which relates the phase evolution of
the dynamo mode to the plasma rotation velocity at its ratio-
nal surface.

I. Discussion

This is an appropriate point at which to highlight the
major assumptions made during the derivation of Eqs.~37!–
~41!, and also to discuss the relationship between this paper
and previously published theoretical research on mode lock-
ing effects in magnetic fusion experiments.
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The key assumptions made during the derivation of Eqs.
~37!–~41! are as follows:

~1! The m,n dynamo mode is assumed to beconvectedby
the plasma at its own rational surface. Furthermore, the
electromagnetic torques exerted on the plasma by eddy
currents excited in the resistive shell and the resonant
error-field are assumed to belocalizedin the vicinity of
the rational surface. Both of these results follow imme-
diately from standard MHD theory, provided that the
response of the plasma can be modeled according to lin-
earized, inertia-free, ideal-MHD everywhere apart from
a narrow region centered on the rational surface. For the
typical mode amplitudes~between dynamo events!,
plasma densities and temperatures, and plasma rotation
velocities observed in present-day RFPs, this approach is
perfectly reasonable.

~2! The plasma in the vicinity of them,n rational surface,
which co-rotates with the mode, is assumed to be
strongly coupledto the rest of the plasma via~anoma-
lous! perpendicular viscosity. This assumption is cer-
tainly justified, given the typical momentum confinement
time-scales observed in present-day RFPs.25 The oppo-
site approach, in which the plasma in the vicinity of the
rational surface is assumed to be free to slip with respect
to the bulk plasma,26,27 would appear to be somewhat
unphysical. The only possible exception to this rule oc-
curs when the torque acting on the mode varies very
rapidly in time ~e.g., when the mode amplitude grows
explosively28!.

~3! It is assumed that the edge plasma rotation profile is
determined by the balance of torques which are far larger
in magnitude than those which typically develop in the
plasma due to error-field or resistive shell eddy current
effects. It follows that the edge plasma rotation is un-
likely to be substantially affected by either error-field or
eddy current torques; i.e., the plasma rotation profile acts
like it is ‘‘ clamped’’ at the edge. This assumption is
justified theoretically in Ref. 24. It also seems to be in
accordance with experimental observations@see, for in-
stance, Fig. 4 in Ref. 29 and Fig. 4~a! in Ref. 30#. The
opposite approach, in which the rotation profile is as-
sumed to be subject to ‘‘free slip’’ boundary conditions
at the plasma edge,31 is difficult to justify on physical
grounds.

~4! The amplitude evolution of them,n mode is assumed to
take place on a much slower time-scale than its phase
evolution, and is, therefore, neglected in this paper. In
other words, the amplitude evolution of dynamo modes
is assumednot to play adirect role in their locking or
unlocking to resonant error-fields or the resistive shell.
This assumption is reasonable, given the typical mode
rotation velocities and resistive growth-rates~between
dynamo events! observed in present-day RFPs. In Ref.
24 it was found that the periodic modulation in the width
of a magnetic island chain, as it rotates past a static
error-field in a tokamak, can give rise to a significant,
nonoscillating locking torque acting on that chain. It is
easily demonstrated that this effect is negligible in

present-day RFPs~because of the far larger saturated
tearing mode amplitudes prevalent in RFPs compared to
tokamaks!.

~5! Any poloidal rotation of the plasma is neglected. This
assumption is made mostly for convenience~it may ac-
tually be justified if RFP plasmas are subject to strong
poloidal flow damping32!, and could fairly easily be re-
laxed.

Many previously published papers have studied the dy-
namics of tearing modes in magnetic fusion experiments un-
der the influence of resonant error-fields and/or eddy currents
excited in the vacuum vessel. The interested reader is re-
ferred to Refs. 33–44, in addition to those papers which have
already been mentioned. The present study differs from pre-
vious studies in three respects. First, the analysis is carried
out using RFP, rather than tokamak, orderings. Note that the
tokamak ordering is simply a subset of the RFP ordering,
obtained by taking the limitm2@n2e2. Hence, in this re-
spect, the present study ismore generalthan most previous
studies. Secondly, this paper does not assume the existence
of a fixed-width region of the plasma, centered on the ratio-
nal surface, i.e., amagnetic island, which corotates with the
mode. Instead, a far more physical model is adopted in
which the width of the plasma region which corotates with
the mode is determined by plasmaviscosity, and, therefore,
variesas the mode angular acceleration varies. Finally, this
paper deals with error-field and vacuum vessel eddy current
effectssimultaneously, and presents, for the first time, acom-
prehensive theoryof the influence of a resistive vacuum ves-
sel on the error-field locking and unlocking thresholds.

III. DERIVATION OF PHASE EVOLUTION EQUATIONS

A. Introduction

The standard approach to tearing mode dynamics in
magnetic fusion experiments, as exemplified by the classic
paper of Zohmet al.,40 leads to the following set of phase
evolution equations:

df

dt̂
5v, ~42!

Î f

dv
dt̂

1~v21!1
as

2

4

v

vs
21v2 1

asac

Av l

sinf50. ~43!

Here, f[ws2wc is the helical phase of the tearing mode
measured with respect to that of the error-field,v[V̂s is the
normalized toroidal angular velocity of the mode, andÎ f

5I fnVs
(0)tV /@4p2r s

2R0
3r(r s)# is the normalized toroidal

moment of inertia of the fixed region of the plasma which is
assumed to corotate with the mode~I f is the actual moment
of inertia of this region!. The first term in Eq.~43! represents
the inertia of the corotating region, the second term is the
restoring torque due to viscous coupling with the remainder
of the plasma, the third term represents the braking torque
due to eddy currents excited in the resistive shell, and the
fourth term is the locking torque due to the resonant error-
field. Although the above set of equations does not, in gen-
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eral, possess an analytic solution, its numerical solution is
very straightforward. Hence, this set of equations~or some
closely related variant! is used extensively by experimental-
ists to interpret mode locking data obtained from magnetic
fusion experiments.45–47

Instead of assuming the existence of a fixed-width region
of the plasma which corotates with the mode, Eqs.~37!–~41!
take into account the fact that the width of the corotating
region is actually determined by the viscous coupling of the
plasma in the immediate vicinity of the rational surface to
the bulk plasma, and is, therefore,variable. Unfortunately,
Eqs. ~37!–~41! are far more complicated than Eqs.~42!–
~43!, since the former set of equations contains apartial
differential equation, whereas the latter set merely consists
of two coupled, first-order,ordinary differential equations.
Certainly, in their present form, the improved phase evolu-
tion equations, Eqs.~37!–~41!, are too complicated for con-
venient use by experimentalists. The aim of the remainder of
this section is to reduce this set of equations to a more man-
ageable form via the judicious use of approximations.

B. Derivation

According to Eq.~38!, the electromagnetic torque acting
in the vicinity of the rational surface consists of two parts:
thesteadytorque due to eddy currents excited in the resistive
shell, and theoscillating torque due to the resonant error-
field. It is, therefore, natural to suppose that the~normalized!
perturbed rotation profile of the plasma,DV̂( r̂ , t̂), consists of
a steady component,V0( r̂ ), driven by the eddy current
torque, and an oscillating component,V1( r̂ , t̂), driven by the
error-field torque. In other words,

DV̂~ r̂ , t̂ !5V0~ r̂ !1V1~ r̂ , t̂ !. ~44!

Suppose that the steady component ofDV̂( r̂ , t̂) is simply
taken to be the perturbed rotation profile calculated in the
absenceof the error-field. It follows that19,24

V0~ r̂ !5~v021!

3H 1 for r̂<1

E
r̂

â
d r̂/ r̂ m̂Y E

1

â
dr̂/ r̂ m̂ for 1, r̂<â

,

~45!

where

12v05
as

2

4

v0

vs
21v0

2 . ~46!

Here, v0 is the steady~normalized! angular velocity of the
mode in the presence of the resistive shell, but the absence of
the error-field. It is generally convenient to search for the
physical roots of the above expression by converting it into a
dynamical equation,

d2v0

dt̂2
1l

dv0

dt̂
512v02

as
2

4

v0

vs
21v0

2 . ~47!

Here,l is a positive constant chosen so as to optimize the
convergence of the solution of the above equation towards a
final fixed-point@which is equivalent to the physical root of
Eq. ~46!#.

Equations~44!, ~45!, and~46! can be combined with the
original phase evolution equations~37!–~41! to give a new
set of phase evolution equations,

r̂ r̂

4J2v l

]V1

] t̂
2

]

] r̂ S r̂ m̂
]V1

] r̂ D52
T̂1

J
d~ r̂ 21!, ~48!

T̂15
as

2

4 H v

vs
21v22

v0

vs
21v0

2J 1
asac

Av l

sinf, ~49!

]V1~0,t̂ !

] r̂
50, ~50!

V1~ â, t̂ !50, ~51!

v2v05V1~1,t̂ !. ~52!

Here,v[df/dt̂ is the ~normalized! angular velocity of the
mode in the presence of both the resistive shell and the error-
field.

According to Eq.~49!, the electromagnetic torque driv-
ing the oscillating component of the perturbed plasma rota-
tion profile consists of two parts; the time-varying compo-
nent of the eddy current braking torque induced by error-
field driven oscillations of the mode angular velocityv about
its steady valuev0 , and the oscillating torque due to the
error-field. The latter torque modulates like sinf, wheref is
the helical phase of the mode measured with respect to that
of the error-field. It is the fundamental assumption of this
derivation that the former torque also modulates like sinf.
This assumption can be justifieda posteriori; it is found to
hold exactly for locked modes, to be a fairly good approxi-
mation for most rotating modes, and to only seriously break
down in a narrow region of parameter space close to the
error-field locking threshold. Hence, this assumption—which
greatly simplifies the analysis—can be used, with a fair de-
gree of confidence, to map out the nature of the various time
asymptotic solutions of the above set of phase evolution
equations in parameter space.

The fundamental assumption is equivalent to the adop-
tion of the following trial solution to Eqs.~48!–~52!:

V1~ r̂ , t̂ !52 iV̄1~ r̂ !exp~ if!. ~53!

Obviously, the actual solution is thereal part of the above
expression. Equations~48!, ~50!, ~51!, and ~53! possess
simple analytic solutions in two limits. The first limit corre-
sponds tov!v l , in which case

V̄1~ r̂ !.VsH 1 for r̂<1

E
r̂

â
d r̂/ r̂ m̂Y E

1

â
dr̂/ r̂ m̂ for 1, r̂<â

.

~54!

The second limit corresponds tov@v l , in which case
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V̄1~ r̂ !.VsH exp@1Aiv/v l~ r̂ 21!/~2J!# for r̂<1

exp@2Aiv/v l~ r̂ 21!/~2J!# for 1, r̂<â
.

~55!

The above expressions indicate that when the mode rotation
velocity v lies well below the critical valuev l then the os-
cillating component of the perturbed angular velocity profile,
driven by the error-field, extends over the whole plasma. On
the other hand, when the rotation velocity greatly exceedsv l

then the oscillating component of the perturbed velocity pro-
file becomeslocalizedin the vicinity of the rational surface.
In this paper, it is assumed that if a magnetic island structure
exists at the rational surface then its radial width is always
much less than the radial width of the oscillating velocity
profile. Hence, it is alwaysviscositywhich determines the
extent of the region of the plasma which corotates with the
mode, rather than the magnetic island width. For the typical
island widths, mode rotation velocities, and momentum con-
finement time scales encountered in present-day magnetic
fusion experiments, this assumption is perfectly reasonable.

Now, according to Eqs.~54! and ~55!,

T̄15JF r̂ m̂
dV̄1

dr̂ G
12

11

52VsHAiv/v l for v@v l

1 for v!v l
. ~56!

It is a reasonably good approximation to write

T̄152VsR, ~57!

where

R.A11 iv/v l . ~58!

In the Appendix, the above approximation is discussed and
justified.

Let Vs5uVsuexp(ius) and R5uRuexp(iuR). According to
Eqs.~52!–~57!,

v2v05V1~1,t̂ !5uVsusin~f1us!, ~59!

T̂1~ t̂ !52uVsuuRusin~f1us1uR!. ~60!

Now, it follows from the fundamental assumption~53! that

dV1~1,t̂ !

dt̂
5 ivV1~1,t̂ !, ~61!

which yields

dv
dt̂

5
dV1~1,t̂ !

dt̂
5vuVsucos~f1us!. ~62!

It is clear that the fundamental assumption boils down to the
assertion that the time variation of the mode angular velocity
v is dominated by the modulation of the helical phasef,
rather than any variation in the amplitudeuVsu or the phase
angleus .

Equations~59!, ~60!, and~62! yield

T̂1~ t̂ !52uVsuuRucos~f1us!sinuR2uVsuuRusin~f

1us!cosuR ,

52uRusinuR

1

v
dv
dt̂

2uRucosuR~v2v0!,

.2
$@11~v/v l !

2#1/221%1/2

A2uvu

dv
dt̂

2
$@11~v/v l !

2#1/211%1/2

A2
~v2v0!, ~63!

where use has been made of Eq.~58!. Finally, the above
equation can be combined with Eqs.~46! and ~49! to give

$@11~v/v l !
2#1/221%1/2

A2uvu

dv
dt̂

1
$@11~v/v l !

2#1/211%1/2

A2
~v2v0!1~v021!

1
as

2

4

v

vs
21v2 1

asac

Av l

sinf50. ~64!

C. Discussion

According to the previous analysis, the improved phase
evolution equations~37!–~41! can be reduced to the follow-
ing set of four, coupled, first-order, ordinary differential
equations:

df

dt̂
5v, ~65!

$@11~v/v l !
2#1/221%1/2

A2uvu

dv
dt̂

1
$@11~v/v l !

2#1/211%1/2

A2
~v2v0!1~v021!

1
as

2

4

v

vs
21v2 1

asac

Av l

sinf50, ~66!

dv0

dt̂
5a0 , ~67!

da0

dt̂
1la01~v021!1

as
2

4

v0

vs
21v0

2 50. ~68!

The physical dynamical variables aref—the helical phase of
the mode measured with respect to that of the error-field—
andv—the normalized angular velocity of the mode. Recall
that Eqs.~67! and ~68! are merely a numerical device for
finding the appropriate roots of Eq.~46!, and have no direct
physical interpretation. However, the dynamical variablev0

is interpreted as the steady component ofv obtained by bal-
ancing plasma viscosity against the eddy current braking
torque, whilst neglecting the oscillating error-field torque.
The parameteras @defined in Eq.~32!# is the normalized
mode amplitude,ac @defined in Eq.~33!# is the normalized
amplitude of the error-field,vs @defined in Eq.~34!# is the
critical value ofv above which the resistive shell starts to act
like a perfect conductor, andv l @defined in Eq.~35!# is the
critical value ofv above which the oscillating component of
the perturbed plasma rotation profile, driven by the error-
field, becomes localized in the vicinity of the rational sur-
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face. In addition,l is an optional,O(1), positive parameter,
with no direct physical significance, which is used to facili-
tate the numerical solution of the above equations.

Virtually all of the physics content of the above set of
phase evolution equations resides in Eq.~66!, which is inter-
preted as the angular equation of motion of the mode. The
first term represents the inertia of the region of the plasma
which corotates with the mode, the second term is the restor-
ing torque due to viscous coupling between the plasma in the
immediate vicinity of the rational surface and the oscillating
component of the perturbed plasma rotation profile, the third
term represents the restoring torque due to viscous coupling
between the plasma in the immediate vicinity of the rational
surface and the steady component of the perturbed plasma
rotation profile, the fourth term is the braking torque due to
eddy currents excited in the resistive shell, and the fifth term
represents the locking torque due to the error-field.

In the limit v l@1, Eqs.~65! and ~66! reduce to

df

dt̂
5v, ~69!

1

2v l

dv
dt̂

1~v21!1
as

2

4

v

vs
21v2 1

asac

Av l

sinf50. ~70!

Note that since the variablev0 does not appear in these equa-
tions, they form a complete set, and Eqs.~67! and ~68! are
redundant. Of course, the above pair of phase evolution
equations has the same form as the Zohm equations,~42! and
~43!. However, for the typical momentum confinement time
scales and mode rotation velocities observed in present-day
RFPs, the parameterv l is usually much less than unity.@The
approximate formula for this parameter isv l;x' /Vs

(0)a2,
wherex' is the anomolous momentum diffusivity,Vs

(0) is
the typical dynamo mode rotation frequency, anda is the
plasma minor radius. The anomolous momentum diffusion in
the core of present-day RFPs is predominately due to mag-
netic fluctuations: the typical diffusivity isx';50 m/s2.25

Likewise, the typical mode rotation frequency isVs
(0);5

3103 rad/s, and the typical minor radius isa;0.5 m.16

Hence,v l;0.04 in present-day RFPs. This estimate is suffi-
ciently small compared to unity that we can be certain that
all present-day RFPs lie in the parameter regimev l!1, as
assumed in this paper. Another important assumption, made
in this paper, is that the radial width of the oscillating com-
ponent of the perturbed velocity profile is much wider that
the radial magnetic island width,W, at the rational surface.
This assumption is valid providedW/r s,Av l;0.2, which is
reasonably well satisfied in present-day RFPs.# In this pa-
rameter regime, the Zohm equations are replaced by Eqs.
~65!–~68!. Fortunately, the numerical solution of this new set
of phase evolution equations is almost as straightforward as
that of the Zohm equations. Equations~65!–~68! are more
complicated than the Zohm equations because they contain
additional physics; namely, a self-consistent calculation of
the radial extent of the region of the plasma which corotates
with the mode; the width of this region being determined by
plasma viscosity.

IV. ANALYSIS OF PHASE EVOLUTION EQUATIONS

A. Resistive shell braking and release
thresholds

Suppose that the amplitude of the resonant error-field
approaches zero~i.e., ac→0!. In this limit, the phase evolu-
tion equations~65!–~68! simplify greatly to givev5v0 ,
dv/dt̂5a050, and

12v5
as

2

4

v

vs
21v2 . ~71!

Note that in the absence of the error-field the mode rotates
with a steadyvelocity. The solution of the above equation in
the physically relevant regimevs!1 is fairly straightfor-
ward. There are two branches of solutions. First, there is a
rapidly rotating branch,

v. 1
21 1

2A12as
2, ~72!

on which the mode rotation velocity is sufficiently high that
the resistive shell acts like a perfect conductor. Secondly,
there is aslowly rotatingbranch,

v.
as

2

8
$12A12~A8vs/as!

4%, ~73!

on which the mode rotation velocity is sufficiently low that
the mode eigenfunction can penetrate through the resistive
shell. Moreover, there is aforbidden bandof ~normalized!
mode rotation velocities,

vs,v,1/2, ~74!

separating these two branches. When the normalized mode
amplitudeas exceeds theresistive shell braking threshold,

~as!b51, ~75!

then the rapidly rotating branch of solutions ceases to exist,
and the mode makes a transition from the rapidly to the
slowly rotating branch~assuming that it starts off on the
former branch!. When the normalized mode amplitude falls
below theresistive shell release threshold,

~as!r5A8vs, ~76!

then the slowly rotating branch of solutions ceases to exist,
and the mode makes a transition from the slowly to the rap-
idly rotating branch~assuming that it starts off on the former
branch!. There is considerablehysteresisin the resistive shell
braking/release cycle, since the release threshold is generally
significantly smaller than the braking threshold. Note that the
inevitable penetration of the mode eigenfunction through the
resistive shell on the slowly rotating branch of solutions has
a destabilizing effect on the mode, leading to a somewhat
larger saturated amplitude~i.e., largeras! on the slowly ro-
tating branch, and, hence, to some deepening of this hyster-
esis.

Figure 1 shows an example hysteresis diagram for the
resistive shell braking/release cycle, calculated forvs

50.05.
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Note that the above theoretical results were first derived
in Ref. 24, and were later confirmed experimentally in
Ref. 45.

B. Error-field locking and unlocking thresholds

Suppose that the parametervs goes to infinity. In this
limit, the resistive shell acts like a perfect conductor, and
there is zero eddy current braking torque. Furthermore, the
phase evolution equations~65!–~68! simplify greatly to give
v051, a050, and

df

dt̂
5v, ~77!

$@11~v/v l !
2#1/221%1/2

A2uvu

dv
dt̂

1
$@11~v/v l !

2#1/211%1/2

A2
~v21!1

asac

Av l

sinf50.

~78!

The numerical solution of the above pair of equations in the
physically relevant regimev l!1 is fairly straightforward.
There are two branches of solutions. First, there is arotating
branchon which the mode angular velocityv is modulated
periodically, as the mode rotates, by the oscillating error-
field torque. Secondly, there is alocked branchon which the
mode is held stationary~i.e., v50! via the balance of the
error-field and viscous restoring torques. For the locked
branch, the above phase evolution equations simplify further
to give

asac

Av l

sinf51. ~79!

Figure 2 illustrates the nature of the rotating branch of
solutions. It can be seen that as the normalized mode ampli-
tudeas increases the amplitude of the error-field driven os-
cillations in the normalized mode rotation velocityv also

increases. When the product of the normalized mode ampli-
tudeas and the normalized error-field amplitudeac exceeds
the error-field locking threshold,

~asac! l.0.51, ~80!

then the rotating branch of solutions ceases to exist, and the
mode makes a transition from the rotating to the locked
branch ~assuming that it starts off on the former branch!.
Note that the error-field locking threshold~which is deter-
mined numerically! is a very weak function ofv l . Note,
further, that the disappearance of the rotating branch of so-
lutions corresponds to the point at which the minimum ve-
locity of the mode is reduced to zero by the error-field.

Figure 3 illustrates the nature of the locked branch of
solutions. It can be seen that as the normalized mode ampli-
tude as decreases the locking anglef increases. According
to Eq. ~79!, when the product of the normalized mode am-
plitude as and the normalized error-field amplitudeac falls
below theerror-field unlocking threshold,

~asac!u5Av l , ~81!

FIG. 1. The hysteresis diagram for the resistive shell braking/release cycle,
calculated forvs50.05. The normalized mode rotation velocityv is plotted
as a function of the normalized mode amplitudeas .

FIG. 2. The rotating branch of solutions, calculated forac51 and v l

50.05. The maximum and minimum values of the normalized mode rota-
tion velocity v are plotted as functions of the normalized mode amplitude
as .

FIG. 3. The locked branch of solutions, calculated forac51 and v l

50.05. The locking anglef is plotted as a function of the normalized mode
amplitudeas .
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then the locked branch of solutions ceases to exist, and the
mode makes a transition from the locked to the rotating
branch ~assuming that it starts off on the former branch!.
Note that the disappearance of the locked branch of solutions
corresponds to the point at which the locking anglef
reachesp/2.

There is considerablehysteresis in the error-field
locking/unlocking cycle, since the unlocking threshold is
generally significantly smaller than the locking threshold.
The origin of this hysteresis is the strong variation in the
radial width of the plasma region which corotates with the
mode as the normalized mode velocityv changes. Of course,
the more efficient interaction between the mode and the
error-field on the locked branch of solutions has a destabiliz-
ing effect on the mode, leading to a somewhat larger satu-
rated amplitude~i.e., largeras! on the locked branch, and,
hence, to some deepening of this hysteresis.

C. Resistive shell modified error-field locking and
unlocking thresholds

The simultaneous presence of a resistive shell and a
static error-field necessitates the use of the full set of phase
evolution equations~65!–~68!. Fortunately, the numerical
solution of these equations is a relatively straightforward
task. A comprehensive parameter scan, in the physically rel-
evant regimev l , vs!1, leads to the diagram shown in Fig.
4. This diagram indicates theapproximatelocations of all the
various threshold curves in normalized mode amplitudeas vs
normalized error-field amplitudeac space. Note that the lo-
cations of these curves are determined numerically. The
curve labeled 1 represents the resistive shell release thresh-
old: the approximate formula for this curve isas5A8vs for

ac<Av l /8vs. The curve labeled 2 represents the resistive
shell braking threshold: the approximate formula for this
curve isas51 for ac<Av l . The curve labeled 3 represents
the combined error-field locking and unlocking threshold;
the approximate formula for this curve isasac5Av l for as

>1. The curve labeled 4 represents the error-field unlocking
threshold: the approximate formula for this curve isasac

5Av l for as,1. The curve labeled 5 represents the error-
field locking threshold; the approximate formula for this
curve isasac5@Av las

210.51(12as
2)# for as,1. Finally, the

curve labeled 6 represents the error-field locking threshold in
the absence of the resistive shell; the approximate formula
for this curve isasac50.51.

Note that the location of the error-field unlocking thresh-
old curve ~curves 3 and 4 in Fig. 4! is unaffectedby the
presence of the resistive shell. This is as expected, since a
resistive shell exerts zero torque on a locked mode, and,
therefore, cannot affect its unlocking threshold. On the other
hand, the location of the error-field locking threshold curve
in the presence of the resistive shell~curves 3 and 5 in Fig. 4!
is different from that in the absence of the shell~curve 6 in
Fig. 4!. In fact, it can be seen that the critical value of the
productasac above which a transition to a locked mode is
triggered is alwaysreducedin the presence of the resistive
shell. In other words, the resistive shell acts as acatalystfor
the formation of an error-field locked mode. Incidentally, the
use of the term ‘‘catalyst’’ here is appropriate, since the re-
sistive shell plays no role in the dynamics of the mode once
it has locked to the error-field.

Figure 4 suggests the existence ofthreebroad regimes of
behavior, depending on the value of the normalized error-
field amplitudeac . Theweak error-field regimecorresponds
to

ac,Av l . ~82!

The intermediate error-field regimecorresponds to

Av l<ac<Av l /8vs. ~83!

Finally, thestrong error-field regimecorresponds to

ac.Av l /8vs. ~84!

These three regimes are described in the following.

D. The weak error-field regime

Figure 5 illustrates the typical behavior encountered in
the weak error-field regime. As the normalized mode ampli-
tudeas is gradually increased from a small value, the time-
asymptotic solution starts off on the rapidly rotating branch
of solutions, and then makes a transition to the slowly rotat-
ing branch when the resistive shell braking threshold~curve
2 in Fig. 4! is reached. The solution makes a second transi-
tion to the locked branch when the error-field locking thresh-
old ~curve 3 in Fig. 4! is reached. Asas is gradually de-
creased from a large value, the solution starts off on the
locked branch of solutions, and then makes a transition to the
slowly rotating branch when the error-field unlocking thresh-
old ~curve 3 in Fig. 4! is reached. The solution makes a

FIG. 4. A schematic diagram showing the various threshold curves associ-
ated with the phase evolution of a dynamo mode in a RFP in the presence of
both a resistive shell and a resonant error-field. The curves are plotted in
normalized mode amplitudeas vs normalized error-field amplitudeac space.
Curve 1 is the resistive shell release threshold; curve 2 is the resistive shell
braking threshold; curve 3 is the combined error-field locking and unlocking
threshold; curve 4 is the error-field unlocking threshold; curve 5 is the
error-field locking threshold; and curve 6 is the error-field locking threshold
in the absence of the resistive shell. The extents of the strong~S!, interme-
diate ~I!, and weak~W! error-field regimes are also indicated.
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second transition to the rapidly rotating branch when the
resistive shell release threshold~curve 1 in Fig. 4! is reached.

Note that in the weak error-field regime there is hyster-
esis in the resistive shell braking/release cycle but there isno
hysteresisin the error-field locking/unlocking cycle.

In order to help explain the somewhat surprising absence
of hysteresis in the error-field locking/unlocking cycle, Fig. 6
shows a typical slowly rotating solution which lies close to
the error-field locking threshold in parameter space. It can be
seen that the mode rotatesintermittently. In other words, the
mode remains locked for a certain period of time, then sud-
denly executes a single rotation, remains locked for the same
period of time, then suddenly executes another rotation, and
so on. As the error-field locking threshold is approached in
parameter space, the time interval between these intermittent
rotation events increases rapidly, and effectively becomes
infinite as the threshold is attained. Hence, there is a com-
pletely reversible~i.e., hysteresis free! transition between a
slowly rotating mode and a locked mode as the error-field
locking/unlocking threshold is crossed. This reversible tran-
sition should be contrasted with the irreversible transition
illustrated in Fig. 8 below. The latter transition is typical of
the behavior of the error-field locking/unlocking cycle in the
absence of a resistive shell.

It is important to note that the resistive shell is unable to
remove those components of the hysteresis in the error-field
locking/unlocking cycle which are associated with the desta-
bilization of the mode when its eigenfunction is able to pen-

etrate through the shell, or with the destabilization of the
mode due to the more efficient interaction with the error-field
when it is non-rotating.

It is clear that in the weak error-field regime the catalysis
of locked mode formation by the resistive shell operates so
effectively that a locked mode forms as soon as a locked
mode solution becomes a possibility~i.e., as soon as the
error-field unlocking threshold is exceeded!.

E. The intermediate error-field regime

Figure 7 illustrates the typical behavior encountered in
the intermediate error-field regime. As the normalized mode
amplitudeas is gradually increased from a small value, the
time-asymptotic solution starts off on the rapidly rotating
branch of solutions, and then makes a direct transition to the
locked branch when the error-field locking threshold~curve
5 in Fig. 4! is reached. Asas is gradually decreased from a
large value, the solution starts off on the locked branch of
solutions, and then makes a transition to the slowly rotating
branch when the error-field unlocking threshold~curve 4 in
Fig. 4! is reached. The solution makes a second transition to
the rapidly rotating branch when the resistive shell release
threshold~curve 1 in Fig. 4! is reached.

Note that in the intermediate error-field regime the
slowly rotating branch of solutions is only accessible when
the normalized mode amplitudeas is decreasing. Note, also,

FIG. 5. The weak error-field regime.
The maximum and minimum values of
the normalized rotation velocityv are
plotted as functions of the normalized
mode amplitudeas for ac50.12, vs

50.1, andv l50.05. The cases where
the normalized mode amplitudeas is
increasing and decreasing are shown
separately.

FIG. 6. A slowly rotating solution
which lies close to the error-field lock-
ing threshold. The angular positionf
and the normalized rotation velocityv
of the mode are plotted as functions of
t/t, wheret is the unperturbed mode
rotation period, for as51.75, ac

50.12,vs50.1, andv l50.05.
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that there is now a small amount of hysteresis in the error-
field locking/unlocking cycle.

F. The strong error-field regime

Figure 8 illustrates the typical behavior encountered in
the strong error-field regime. As the normalized mode am-
plitude as is gradually increased from a small value, the
time-asymptotic solution starts off on the rapidly rotating
branch of solutions, and then makes a direct transition to the
locked branch when the error-field locking threshold~curve
5 in Fig. 4! is reached. Asas is gradually decreased from a
large value, the solution starts off on the locked branch of
solutions, and then makes a direct transition to the rapidly
rotating branch when the error-field unlocking threshold
~curve 4 in Fig. 4! is reached.

Note that in the strong error-field regime the slowly ro-
tating branch of solutions no longer exists. Note, also, that
there is strong hysteresis in the error-field locking/unlocking
cycle in this regime. In fact, as the normalized error-field
amplitudeac increases beyond the critical valueAv l /8vs, the
resistive shell has progressively less effect on the location of
the error-field locking threshold, which quickly reverts to
that calculated in the absence of a shell.

V. APPLICATION TO EXPERIMENTS

Consider the typical RFX plasma equilibrium investi-
gated in Ref. 19. The parameters for this equilibrium areI f

5600 kA, ea50.23, F[Bf(a)/^Bf&520.2, and Q
[Bu(a)/^Bf&51.56. The characteristic dynamo mode for
this equilibrium is them51, n59 mode. Making the same
assumptions as those made in Sec. V B of Ref. 19, except
that the plasma viscosity profile is now assumed to be radi-
ally uniform ~for the sake of simplicity!, the following esti-
mated values for the parameters controlling the phase evolu-
tion of the 1,9 mode in RFX are obtained:

vs.0.12, ~85!

v l.0.013, ~86!

as.3.7, ~87!

ac.380S br
1,9

uBu D
c

. ~88!

Here, it is assumed that the nominal island width of the 1,9
mode is 20% of the plasma minor radius. Furthermore,
(br

1,9/uBu)c represents the ratio of the radial component of the

FIG. 7. The intermediate error-field
regime. The maximum and minimum
values of the normalized rotation ve-
locity v are plotted as functions of the
normalized mode amplitudeas for ac

50.23, vs50.1, and v l50.05. The
cases where the normalized mode am-
plitudeas is increasing and decreasing
are shown separately.

FIG. 8. The strong error-field regime.
The maximum and minimum values of
the normalized rotation velocityv are
plotted as functions of the normalized
mode amplitudeas for ac50.5, vs

50.1, andv l50.05. The cases where
the normalized mode amplitudeas is
increasing and decreasing are shown
separately.
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1,9 harmonic of the error-field to the magnitude of the equi-
librium magnetic field, evaluated at the radius of the con-
ducting shell.

According to the analysis of Sec. IV, the locking and
unlocking of the 1, 9 dynamo mode in RFX occurs in the
weak error-field regime. Hence, the combined locking/
unlocking threshold corresponds to the curveasac5Av l in
parameter space. In the absence of the resistive shell, the
unlocking threshold still corresponds toasac5Av l , but the
locking threshold becomesasac50.51. Hence, the critical
error-field amplitude required to lock a typical dynamo mode
in RFX is estimated to be

S br
1,9

uBu D
c

;831025. ~89!

In the absence of the resistive vacuum vessel, the critical
amplitude becomes

S br
1,9

uBu D
c

;431024. ~90!

In other words, the resistive vacuum vessel in RFX reduces
the critical error-field amplitude required to generate a
locked mode by a factor of 5. This result suggests that the
primary cause of the locked mode problems observed in
RFX ~and other large RFPs possessing thin resistive vacuum
vessels, e.g., TPE-RX! is the high resistance vacuum vessel,
which renders otherwise innocuous error-fields problematic.

VI. SUMMARY

This paper investigates the nonlinear dynamics of a typi-
cal dynamo mode in a RFP plasma in the presence of a
resistive vacuum vessel and a resonant error-field. The
achievements of this paper are as follows:

~1! The derivation of a fundamental set of phase evolution
equations~37!–~41! ~see Sec. II!. These equations de-
scribe the phase evolution of a typical dynamo mode in a
RFP under the influence of the braking torque due to
eddy currents excited in a resistive vacuum vessel and
the locking torque due to a resonant error-field. They are
derived using the five physics-based assumptions listed
and justified in Sec. II I. Unfortunately, Eqs.~37!–~41!

are too complicated for convenient use by experimental-
ists whilst interpreting data or designing new RFP ex-
periments.

~2! The reduction of the fundamental phase evolution equa-
tions to a more manageable set of four, coupled, first-
order, ordinary differential equations~65!–~68! ~see Sec.
III !. These equations represent an important extension of
the well-known Zohm equations,40 ~42!–~43!, which
have been used extensively by experimentalists to inter-
pret mode locking data obtained from magnetic fusion
devices. The nature of the extension is the incorporation
of a self-consistent calculation of the radial extent of the
plasma region which corotates with the mode; the width
of this region being determined by plasma viscosity.

~3! The numerical solution of Eqs.~65!–~68!, so as to obtain
a comprehensive theory of the influence of a resistive
vacuum vessel on error-field locking and unlocking
thresholds~see Sec. IV!. This theory is encapsulated in
Fig. 4, which shows the locations of all the various
threshold curves for resistive shell braking, error-field
locking, etc., in mode amplitude versus error-field am-
plitude space. Not surprisingly, a resistive vacuum vessel
is found to have no effect on error-field unlocking
thresholds. On the other hand, such a vessel is found to
facilitate error-field locking; i.e., it reduces the error-field
locking threshold. Under certain circumstances~i.e., in
the weak error-field regime indicated in Fig. 4!, this ef-
fect is so strong that a locked mode forms as soon as a
locked solution becomes a possibility, i.e., as soon as the
error-field unlocking threshold is exceeded. Note that, in
the absence of a resistive vacuum vessel, the error-field
unlocking threshold usually needs to be exceeded by a
substantial factor before a locked mode forms.

~4! The application of the results obtained in Sec. IV to the
problem of the locking of typical dynamo modes in RFX
~see Sec. V!. The thin resistive vacuum vessel in RFX is
found to reduce the critical error-field amplitude required
to generate a locked mode by a factor of 5. This result
suggests that the high electrical resistance of the vacuum
vessel is the primary cause of the locked mode problems
in RFX, rather than the presence of excessively large
error-fields.

FIG. 9. The functionsf R andgR , de-
fined in Eq. ~A3!, plotted against the
normalized mode phase velocityv/v l .
The solid lines show the exact forms
for these functions, derived from Eq.
~A2!. The dotted lines show the ap-
proximate forms for the functions, de-
rived from the approximation~A6!.
The calculations are performed forâ
51/0.7.
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In conclusion, this paper has developed a basic theoret-
ical framework within which the phase evolution of rotating
dynamo modes in RFPs can be analyzed. Hopefully, the
physical insights and model equations obtained in this pro-
cess will allow experimentalists to achieve a full understand-
ing of why the so-called ‘‘slinky mode’’ locks in some re-
versed field pinch devices, but not in others. As explained in
the Introduction, the locking of the slinky mode is currently
an issue of outstanding importance in reversed field pinch
research.
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APPENDIX: AN EXACT FORM FOR THE PHASE
EVOLUTION EQUATION

In the limit of a uniform density profile~i.e., r̂51! and
a uniform viscosity profile~i.e., m̂51!, Eqs.~48!, ~50!, ~51!,
and ~53! can be solved exactly to give

V̄1~ r̂ !.Vs5
I 0~Ail r̂ !

I 0~Ail!
for r̂<1

K0~Ailâ!I 0~Ail r̂ !2K0~Ail r̂ !I 0~Ailâ!

K0~Ailâ!I 0~Ail!2K0~Ail!I 0~Ailâ!
for 1, r̂<â

, ~A1!

where J5 ln â and l5(v/v l)/(4J2). Here, I 0 and K0 are
standard modified Bessel functions. In this limit, the function
R, defined in Eqs.~56! and ~57!, takes the exact form

R5JAilH I 1~Ail!

I 0~Ail!

2
K0~Ailâ!I 1~Ail!1K1~Ail!I 0~Ailâ!

K0~Ailâ!I 0~Ail!2K0~Ail!I 0~Ailâ!J . ~A2!

Repeating the analysis of Sec. III B, the above expression for
R yields the following phase evolution equation for the
mode:

f R

v l

dv
dt̂

1gR~v2v0!1~v021!1
as

2

4

v

vs
21v2 1

asac

Av l
sinf50,

~A3!

where

f R5
Im~R!

~v/v l !
, ~A4!

gR5Re~R!. ~A5!

The approximate expression

R.A11 iv/v l , ~A6!

employed in Sec. III B, leads to the following approximate
forms for the functionsf R andgR :

f R approx5
$@11~v/v l !

2#1/221%1/2

A2uv/v l u
, ~A7!

gR approx5
$@11~v/v l !

2#1/211%1/2

A2
. ~A8!

Figure 9 compares the above approximate forms forf R and
gR with the exact forms derived from Eq.~A2!. It can be
seen that the agreement between the two sets of functions is

excellent. This justifies the use of the approximate formula
~A6! ~which is far simpler than the exact formula! through-
out the bulk of this paper.
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