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Nonlinear dynamo mode dynamics in reversed field pinches *

Richard Fitzpatrick and Edmund P. Yu
Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712

(Received 31 January 2000; accepted 19 May 2000

The nonlinear dynamics of a typical dynamo mode in a reversed field pinch, under the action of the
braking torque due to eddy currents excited in a resistive vacuum vessel and the locking torque due
to a resonant error-field, is investigated. A simple set of phase evolution equations for the mode is
derived: these equations represent an important extension of the well-known equations of Zohm
et al.[Europhys. Lettl11, 745(1990] which incorporate a self-consistent calculation of the radial
extent of the region of the plasma which corotates with the mode; the width of this region being
determined by plasma viscosity. Using these newly developed equations, a comprehensive theory of
the influence of a resistive vacuum vessel on error-field locking and unlocking thresholds is
developed. Under certain circumstances, a resistive vacuum vessel is found to statafjlye

locked mode formation. Hopefully, the results obtained in this paper will allow experimentalists to
achieve a full understanding of why the so-called “slinky mode” locks in some reversed field pinch
devices, but not in others. The locking of the slinky mode is currently an issue of outstanding
importance in reversed field pinch research. 2600 American Institute of Physics.
[S1070-664X00)01309-4

I. INTRODUCTION ated between the edge of the plasma and the stabilizing shell.
The key to the success of the RFP concept lies in the
A reversed field pinchlor RFP is a magnetic fusion control of MHD instabilities; there is clear experimental evi-
device in which a thermonuclear plasma is confined via ajence that a relatively modest reduction in ambient mode
combination of a toroidal magnetic fielB,,, and a poloidal amplitudes leads to a dramatic improvement in plasma
magnetic field, B,, in an axisymmetric toroidal confinemenf. However, in order to reliably control dynamo
configuration: The RFP concept derives its name from themodes in RFPs, it is first necessary to fullgderstandheir
fact that the toroidal magnetic field spontaneously reversegynamics.
direction in the outer regions of the plasma. This reversal is  The complex nonlinear dynamics of dynamo modes in
a consequence of relaxation to a minimum energy statRFPs is a fascinating subject in its own right, as well as a
driven by intense magnetohydrodynami@lHD) mode ac-  topic of great practical importance. Dynamo modes in RFPs
tivity during the plasma start-up phaddntermittent, rela-  are generally observed fthase locko one another, at rela-
tively low-level, mode activity maintains the reversal, by dy- tively low amplitudes, so as to form @roidally localized
namo action, throughout the duration of the plasmastructure in the perturbed magnetic field known as a “slinky
discharge. mode.”®° This effect can be understood as a natural conse-
A conventional RFP plasma is surrounded by a thickquence of the mutual nonlinear couplings of the various
conducting shell whose resistive penetration time is muchmodes in the plasm®. The slinky mode per se dogwmt
longer than the duration of the discharge. Such a shell i&ppear to significantly degrade the global plasma
necessary in order to stabilize external kink modes whiclconfinement! Instead, it gives rise to a toroidally localized
would otherwise rapidly destroy the plasrthim the presence “nhot spot” on the plasma facing surface, presumably be-
of the shell, the dominant MHD modes ane=1 tearing cause the radial transport due to the diffusion of chaotic
modes resonant in the plasma core. These modes possesgagnetic field-lines peaks at the toroidal angle where the
range of toroidal mode numbers, characterized by amplitude of the slinky mode attains its maximum value. The
~2Ry/a. Here,m,n are poloidal and toroidal mode num- hot spot is not a problem as long as the slinky maatates
bers, respectively, whereasandR are the minor and major in the laboratory frame. Conversely, if, for some reason, the
radii of the plasma, respectively. The core tearing modes arglinky mode ceases to rotate then the hot spot is forced to
responsible for the dynamo action which maintains the fielchover over the same point on the plasma facing surface, lead-
reversal, and are, therefore, generally knowndgsamo ing almost inevitably to overheating, the influx of impurities
modes’ into the plasma, and the premature termination of the dis-
The majority of RFP experimentge.g., the Reversed charge. The enhanced plasma—wall interaction associated
Field ExperimentRFX) (Ref. 5, and the TPE-RXRef. 6  with a locked slinky mode is of major concern to fusion
experiment also feature a thin resistive vacuum vessel situresearchers, since it is a limiting factor in virtually all current
RFP experiment$?'® Recent experiments on RFX have
*This paper was presented as an invited talk at the 41st Annual Meeting Jiémonstrated that this problem can be alleviated, to some
the American Physical Society, Division of Plasma Physics, Seattle 1999.extent, byforcing the locked slinky mode to rotate via the
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imposition of a propagating ripple pattern onto the equilib-  The equilibrium magnetic field is written B
rium toroidal magnetic field* These experiments seem to =[0By(r),B4(r)], whereVOB=o(r)B.

confirm the idea that the slinky mode is only a major prob-
lem when it fails to rotate.

The physical mechanisms which are most likely to be
responsible for converting slinky modes, and their constitu-  Suppose that the plasnfainor radiusa) is surrounded
ent dynamo modes, from rotating modéseir natural state by a concentric, thin, resistive shell of minor radinsThe
to locked modes in RFPs are “error-fields” and eddy cur-resistive shell is, in turn, surrounded by a concentric, per-
rents excited in the resistive vacuum vessel. Error-fields aréectly conducting shell of minor radius It follows thata
small nonaxisymmetric perturbations in the equilibrium <b<c. The conducting shell is assumed to contain thin
magnetic field generated by field—coil misalignments, curvacuum gaps though which a static, externally generated,
rent feeds, and the presence of insulating gaps in the comonaxisymmetric error-field can leak. This paper investigates
ducting shell. The ability of those helical components ofthe effect of such an error-field, and any helical eddy cur-
error-fields whichresonatewith the plasma core to arrest rents excited in the resistive shell, on the rotation of a typical
dynamo mode rotation in RFPs is well-knot®ft’ and well ~ core tearing mode; then,n mode, say. All other modes in
understood® However, it was recently pointed out that the the plasma are ignored, for the sake of simplicity.
eddy currents excited in the resistive vacuum vessels of
present-day RFPs by rotating dynamp modes exert slowingc-:. The perturbed magnetic field
down torques on these modes which are generally suffi-

B. Outline of the problem

ciently strong to reduce their rotation textremelylow ~ The magnetic perturbation associated with e tear-
levels!® Of course, eddy current torques cannot, by theming mode can be written
selves, completely halt the rotation of a dynamo mode, since b(r,t)=b™"(r t)e!(mo-n®) 1)

there is zero torque when the mode is stationary. It is con- o _
cluded, therefore, that the locking of dynamo modasd, In this paper, it is assumed that>0 andn#0. The linear-

hence, of slinky modesin RFPs is most probably eom-  ized magnetic flux functiony™"(r,t)=—irb™" satisfies
bined effect of resonant error-fields and eddy currents ex!Newcomb’s equatiof’
cited in the resistive vacuum vessel. d dymn
The aim of this paper is to develop a theoretical frame- ar fmn ar —g™y™N=0, 2
work within which thephase evolutiorof rotating dynamo
modes in RFPs, in the presence of resonant error-fields andvehere
thin resistive shell surrounding the plasma, can be analyzed. r
In particular, it is hoped to develop a set of phase evolution  f™n(y)= oy 3

equations which are sufficiently simple that experimentalists

can routir;zlyéemploy the[[n whilst interpreting data or design- mor) 1 . r(neB,+mBy) do

ing new experiments. (r)=— -
’ The model azopted in this paper is somewhat simplistic. ’ ' (m2+n262)(mBg—neB¢) dr

Instead of considering a range of unstabile=1 modes, it 2mneo ro?

focuses on the dynamics ofsingle representative dynamo + (M*+n2e)? m+n2e?’ (4)

mode in the presence of a resonant error-field and a thin . o

resistive vacuum vessel surrounded by a thick conducting"d €=r/Ro. As is well-known, Eq.(2) is singular at the

shell. Furthermore, the model only deals with zgdarge m/n rational surface, minor radiusg, which satisfies

aspect-ratio plasmas. Nevertheless, our model is probabfy" ("s) =0, where

sufficiently realistic to allow some progress to be made in F™(r)=mBy(r)—ne(r)By(r). (5)
our current understanding of locked mode formation in , ,
REPs. In the vacuum regiofic=0) surrounding the plasma, the
most general solution to Newcomb’s equation takes the form
Il. PRELIMINARY ANALYSIS Y= Aiy(ne) +Bky(ne), (6)
A. The plasma equilibrium whereA, B are arbitrary constants, and
Consider a large aspect-ratidzero3,?' RFP plasma im(ne)=|ne|l ny1(Inel)+miy(Inel), (7

equilibrium whose unperturbed magnetic flux-surfaces ma
ogt (almos) concentricpcircles in the poloidal plane. Such anp ki(ne) == [nelKn1(Inel) + mKin(Inel). ®)
equilibrium is well approximated as a periodic cylinder. Sup-Here,l ,,, K, represent standard modified Bessel functions.
pose that the minor radius of the plasmaaisStandard cy-
lindrical polar coordinatesr(6,z) are adopted. The system
is assumed to be periodic in tzelirection, with periodicity -
length 2mR,y, whereR, is the simulated major radius of the Let ¢0""(r,d) represent the normalizech,n tearing
plasma. It is convenient to define a simulated toroidal angleigenfunction calculated assuming the presence of a single,
d=2IR,. perfectly conducting shell located at minor radiudn other

D. Standard tearing eigenfunctions
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words, fpg"'”(r,d) is areal solution to Newcomb'’s equation
(2) which is well behaved as— 0, and satisfies

9
(10

P(rg,d)=1,
$™"(d,d)=0.

It is easily demonstrated thf}@'”(r,d) is zero in the region
r>d. In general,y""(r,d) possesses gradient discontinui-
ties atr=rg andr=d. The real quantity

dg™"(r ,d)
dr

s+

E™N(d)=|r (11)

g

can be identified as the standard,n tearing stability

R. Fitzpatrick and E. P. Yu

is conventionally known as the “no slip” condition. In this
paper, it is assumed that the plasma rotai@y in the toroi-
dal direction, for the sake of simplicity.

Standard asymptotic matchitigacross the rational sur-
face and the resistive shell yields

[E™"(c)—E™"(b)]

AV={E™"(b)+ T pn
+EDMYT, (18
where
E™"(c)—E™"(b
Am’“ZnQSTb[ © (b)] (19

m,nE=m,n
Esb bs

fectly conducting shell at a minor radias

E. Asymptotic matching
The quantity
V() =¢™"(rs,1) (12

represents theeconnected magnetic fluat them,n rational
surface. Likewise,

d¢m,ﬂ
dr

s+

AV (t)=|r

13

is a measure of thm,n helical current flowing in the vicinity

of the rational surface. Note that both]*" and AW " are
complex quantities.

response is analyzed using the well-known “thin shell”
approximation'® Furthermore,

#™"(a,b)(m?+n2ed)

B = R nep)im(nes) — kn(Ne)imnep) 20
- #™"(a,b)(m2+n2e?)
5~ K(New)im(Nea) —Knm(Neim(Nep) D
Em"= @0 (M e (22)

Kn(nee)im(Ney) —km(ney)im(nee)’

where e,=r¢ /Ry, ez=alRy, €,=b/Ry, and e.;=c/R,.
Note that, under normal circumstancé&s’-"(c)—E™"(b),
Epy", EZy", andED" are all positive quantities.

Suppose that, in the absence of plasma and the perfectfy Electromagnetic torques

conducting shell, the externally generated, static error-field is

characterized by a magnetic flux functign,(r,6,¢). The
perfectly conducting sheliminor radiusc) is assumed to
possessarrow gaps which allow the error-field to penetrate
into the plasma. Then,n component of the error-field filter-
ing through these gaps is characterized by

_ déd
vrr= [ [ pegcpgreimna 52

gaps 2 Z ’ (14)

where the integral is taken over the angular extent of the

gapst’ Note that?™" is also a complex quantity.
Let
IN() =Wl (15)
Y= el (16)

Where\ifs and\ifC are both real. Nowg, is a constant for a
static error-field. However,

des
dt

=nQ(1), 17

where() is the plasma toroidal angular velocity at timen

The toroidal electromagnetic torque acting in the vicinity
of them,n rational surface is given B§

27T2R0 n
Qian: P m2+n26§|m{Aqf2“'”(\If2“'”)*}, (23)
It follows from Eq. (18) that
ST 2m°Ry N
$EM Mo m2+ n26§
)\m,n[Em,n(C)_Em,n(b)]\i,g
1+ (A™M)?
+E210’n Sin((Ps_ (Pc)q,s\Pc . (29

Here, the first term on the right-hand side represents the
braking torque due to eddy currents excited in the resistive
shell, whereas the second term represents the locking torque
due to the error-field. Incidentally, the electromagnetic
torque exerted on the plasma by resistive shell eddy currents
and the error-field isocalizedin the vicinity of the rational
surface because of a standard result in MHD theory: namely,

rational surface. This result follows since, according to stanthat net electromagnetic torques can only develop in those

dard MHD theory?* the m,n tearing mode is convected by

regions of a plasma in whiclinertia-freg ideal-MHD breaks

the plasma at its own rational surface. The above constrairdown (e.g., close to a rational surfacd
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G. Plasma rotation

i
Let Q(r) represent the toroidal angular velocity profile aS:A_O’ (32
of the plasma. LikewiseQ(®)(r) represents the unperturbed o ~
velocity profile (i.e., the profile in the absence of resistive a— Esc @ & 33)
shell eddy currents and the resonant error-fidkinally, let © AE™"(c)—E™"(b)] vs Ag’
Q(r,)=0(r)+AQ(r 1), (25) ESh Ebs
= , 34
whereAQ represents thenodificationto the plasma velocity ~° nQP 7, [E™(c)— E™(b)] 39
profile induced by the eddy currents and the error-field.
; . 1
The perturbed angular equation of motion of the plasmq”: S— (35)
can be written anQ O 7 ([3dT/E )?
R (r 0AQ)_ T St - Q727 1 m?+n2e2 1 ad?|M?
Poot ar\ ' F or | T 4n?R3 s Ao= v 2 n? ENERN Lﬁ
(36)

wherep(r) is the plasma mass density profile, aafr) is
the plasma(anomalous perpendicular viscosity profile. Here,aqis the normalized dynamo mode amplitudg,s the
Here, the radial extent of the nonideal region, centered on theormalized amplitude of the error-field is the critical nor-
rational surface, in which the electromagnetic torque develmalized mode rotation velocity above which the resistive
ops is assumed to be negligible, for the sake of simplicity. shell starts to act like a perfect conductoy,is the critical
The boundary conditions which must be satisfied by thenormalized mode rotation velocity above which the oscillat-
perturbed velocity profile are ing component of the plasma velocity profile, driven by the
error-field, becomes localized around the rational surface,
JAQ(0}) . . : )
— ', (27) and A is a convenient scale amplitude. Under normal cir-
ar cumstances, the parametegsanda, areO(1), whereag,
AQ(a,t)=0. (29) v, andA g are expected to be much less than unity.

S The normalized phase evolution equations take the form
The second boundary condition implies that the edge plasma

velocity is essentiallyunaffectedby the electromagnetic Tp dAQ d . 0AQ) Ié o1 37
torque which develops in the vicinity of the rational surface.  4J%y, gt or R A ( ’
The assumptions underlying the analysis in this section are

described in more detail in Ref. 24. T= a_§ Qs + 8s8c i — ) (39)

The no slip condition (17) can be rewritten 42402y, sin(gs™ ¢c).

199 6 =00+ A0(r,.0 (29 a8 0(0])

ndt S s s = =0, (39
whereQ?=0O(r). A

AQ(a,1)=0, (40)
- do. - A

H. Normalization F‘Pt_SEQS: 1+A0(1]), (41)

Equations(24), (26), (27), (28), and (29) form a com- A
plete set which describe the phase evolution of a typical dywhere J= [3dT/f x. Equation(37) is the normalized equa-
namo mode in a RFP under the influence of a resonant errotion of motion of the perturbed plasma rotation profile driven
field and eddy currents excited in the resistive shell. It is nowpy the electromagnetic torque exerted at the rational surface.
convenient to rewrite this set of equations in normalizedequation(38) specifies the nature of this torque; it is the sum
foom. . of contributions from eddy currents excited in the resistive

Let Wo=W/(riFl), W,=W./(rZF,), T=r/rs, a shell and the resonant error-field, respectively. Equations
=alrg, p=plp(ry), p=plu(ry), t=nQt, 0=0/0, (39 and(40) represent the boundary conditions which must
Q=009 A0=A0/09, where Fg=(dFm'”/dr)rS. be satisfied by the solution of E7). Finally, Eq.(41) is
The typical hydromagnetic and viscous diffusion time scaled® no slip constraint, which relates the phase evolution of

can be written the dynamo mode to the plasma rotation velocity at its ratio-
nal surface.
_ Viop(rs) 30
TH_F—é’ 0| piscussion
rgp(rs) This is an appropriate point at which to highlight the
V= , (31)  major assumptions made during the derivation of E§8)—
w(rs) (41), and also to discuss the relationship between this paper
respectively. and previously published theoretical research on mode lock-

Let ing effects in magnetic fusion experiments.
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The key assumptions made during the derivation of Eqs. present-day RFPgbecause of the far larger saturated

(37)—(41) are as follows: tearing mode amplitudes prevalent in RFPs compared to

D

2

(4)

tokamaks.
éS) Any poloidal rotation of the plasma is neglected. This
assumption is made mostly for convenieriitemay ac-
tually be justified if RFP plasmas are subject to strong
poloidal flow dampind), and could fairly easily be re-
laxed.

The m,n dynamo mode is assumed to benvectedby
the plasma at its own rational surface. Furthermore, th
electromagnetic torques exerted on the plasma by eddy
currents excited in the resistive shell and the resonant
error-field are assumed to hecalizedin the vicinity of

the rational surface. Both of these results follow imme-

d|ate|y from standard MHD theory, prOVided that the Many previous|y pub“shed papers have studied the dy_
response of the plasma can be modeled according to limamics of tearing modes in magnetic fusion experiments un-
earized, inertia-free, ideal-MHD everywhere apart fromder the influence of resonant error-fields and/or eddy currents
a narrow region centered on the rational surface. For thexcited in the vacuum vessel. The interested reader is re-
typical mode amplitudes(between dynamo evenis ferred to Refs. 33—44, in addition to those papers which have
plasma densities and temperatures, and plasma rotaticfiready been mentioned. The present study differs from pre-
velocities observed in present-day RFPs, this approach ious studies in three respects. First, the analysis is carried
perfectly reasonable. out using RFP, rather than tokamak, orderings. Note that the
The plasma in the vicinity of then,n rational surface, tokamak ordering is simply a subset of the RFP ordering,
which co-rotates with the mode, is assumed to beobtained by taking the limim?>n2e?. Hence, in this re-
strongly coupledo the rest of the plasma vi@noma-  spect, the present study sore generathan most previous
lous) perpendicular viscosity. This assumption is cer-studies. Secondly, this paper does not assume the existence
tainly justified, given the typical momentum confinement of a fixed-width region of the plasma, centered on the ratio-
time-scales observed in present-day REPEhe oppo- nal surface, i.e., magnetic islandwhich corotates with the

site approach, in which the plasma in the vicinity of the mode. Instead, a far more physical model is adopted in
rational surface is assumed to be free to slip with respeatvhich the width of the plasma region which corotates with
to the bulk plasm&®?’ would appear to be somewhat the mode is determined by plasmiscosity and, therefore,
unphysical. The only possible exception to this rule oc-variesas the mode angular acceleration varies. Finally, this
curs when the torque acting on the mode varies verypaper deals with error-field and vacuum vessel eddy current
rapidly in time (e.g., when the mode amplitude grows effectssimultaneouslyand presents, for the first timecam-
explosively®). prehensive theorgf the influence of a resistive vacuum ves-
It is assumed that the edge plasma rotation profile isel on the error-field locking and unlocking thresholds.
determined by the balance of torques which are far larger

in magnitude than those which typically develop in the

plasma due to error-field or resistive shell eddy currentll. DERIVATION OF PHASE EVOLUTION EQUATIONS
effects. It follows that the edge plasma rotation is un-a_ |ntroduction

likely to be substantially affected by either error-field or , o
eddy current torques; i.e., the plasma rotation profile acts The standard approach to tearing mode dynamics in
like it is “clamped at the edge. This assumption is magnetic fusion experiments, as exemplified by the classic

40
justified theoretically in Ref. 24. It also seems to be inPaPer of Zohmet aI.: leads to the following set of phase
accordance with experimental observatigaee, for in-  €volution equations:

stance, Fig. 4 in Ref. 29 and Fig(a} in Ref. 30. The do

opposite approach, in which the rotation profile is as-  G7 =~ (42
sumed to be subject to “free slip” boundary conditions

at the plasma edg®,is difficult to justify on physical - dv aZ asa,

grounds. ¢d +(v—1)+— 45 —2—+ oo °sing=0. (43

The amplitude evolution of the,,n mode is assumed to

take place on a much slower time-scale than its phasklere, =g¢s— ¢ is the helical phase of the tearing mode
evolution, and is, therefore, neglected in this paper. Inmeasured with respect to that of the error-fieles () is the
other words, the amplitude evolution of dynamo modesnormalized toroidal angular velocity of the mode, ahpl

is assumedhot to play adirect role in their locking or  =1,nQ{”n,/[47%2R3p(rs)] is the normalized toroidal
unlocking to resonant error-fields or the resistive shellmoment of inertia of the fixed region of the plasma which is
This assumption is reasonable, given the typical modassumed to corotate with the modg is the actual moment
rotation velocities and resistive growth-ratésetween of inertia of this region The first term in Eq(43) represents
dynamo eventsobserved in present-day RFPs. In Ref.the inertia of the corotating region, the second term is the
24 it was found that the periodic modulation in the width restoring torque due to viscous coupling with the remainder
of a magnetic island chain, as it rotates past a statiof the plasma, the third term represents the braking torque
error-field in a tokamak, can give rise to a significant,due to eddy currents excited in the resistive shell, and the
nonoscillating locking torque acting on that chain. It is fourth term is the locking torque due to the resonant error-
easily demonstrated that this effect is negligible infield. Although the above set of equations does not, in gen-
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eral, possess an analytic solution, its numerical solution islere,\ is a positive constant chosen so as to optimize the

very straightforward. Hence, this set of equatidas some  convergence of the solution of the above equation towards a

closely related variantis used extensively by experimental- final fixed-point[which is equivalent to the physical root of

ists to interpret mode locking data obtained from magneticg. (46)].

fusion experiment&>~4’ Equations(44), (45), and(46) can be combined with the
Instead of assuming the existence of a fixed-width regiororiginal phase evolution equatioi(37)—(41) to give a new

of the plasma which corotates with the mode, E§3)—(41) set of phase evolution equations,

take into account the fact that the width of the corotating

region is actually determined by the viscous coupling of the tp Vi (.. .V B T1

plasma in the immediate vicinity of the rational surface to  43%, 4t dr o Eri _5“_ 1), (48)
the bulk plasma, and is, thereforegriable Unfortunately,

Egs. (37)—(41) are far more complicated than Eqgl2)- . a§ v Vo asa.

(43), since the former set of equations containpatial T1=Z w2102 02+ 02 ] \/— sing, (49)
differential equation whereas the latter set merely consists s s 0 vl

of two coupled, first-orderprdinary differential equations N1(0D)

Certainly, in their present form, the improved phase evolu- #:o, (50)
tion equations, Eq9437)—(41), are too complicated for con- ar

venient use by experimentalists. The aim of the remainder of . A

this section is to reduce this set of equations to a more man- Vi(a,1)=0, (51
ageable form via the judicious use of approximations. v —v=Vy(1D). (52)

Here,v=d¢/dt is the (normalized angular velocity of the
B. Derivation mode in the presence of both the resistive shell and the error-

. . . field.
According to Eq.(38), the electromagnetic torque acting According to Eq.(49), the electromagnetic torque driv-
in the vicinity of the rational surface consists of two parts:,

e . ing the oscillating component of the perturbed plasma rota-
the steadytorque QUe.to eddy currents excited in the re:~:|:~:t|vetlon profile consists of two parts; the time-varying compo-
shell, and theoscillating torque due to the resonant error- nent of the eddy current braking torque induced by error-
field. Itis, therefore, natural to suppose that thermalized

, ! “on ) field driven oscillations of the mode angular veloaityabout
perturbed rotation profile of the plasm&()(r,t), consists of

- ) its steady valuevy, and the oscillating torque due to the
a steady component/o(r), driven by the eddy current oo field. The latter torque modulates like ginwhered is
torque, and an oscillating compone¥t,(r,t), driven by the

_ the helical phase of the mode measured with respect to that
error-field torque. In other words, of the error-field. It is the fundamental assumption of this
NF T\ (7 a2 derivation that the former torque also modulates like¢sin
AQ(r,t)=Vo(r)+V(r,1). 44 _ . L
(NH=Vo(N+Va(r.h . “4 This assumption can be justifiedposteriorj it is found to
Suppose that the steady componenA6X(7,t) is simply  hold exactly for locked modes, to be a fairly good approxi-
taken to be the perturbed rotation profile calculated in thénation for most rotating modes, and to only seriously break

absenceof the error-field. It follows thaf2* down in a narrow region of parameter space close to the
. error-field locking threshold. Hence, this assumption—which
Vo(r)=(vo—1) greatly simplifies the analysis—can be used, with a fair de-

gree of confidence, to map out the nature of the various time
asymptotic solutions of the above set of phase evolution
dr/r,&/ f di/f o for 1<f<3a’ equations in parameter space. _

The fundamental assumption is equivalent to the adop-
(45) tion of the following trial solution to Eqs48)—(52):

for r<1

where Vi(F, D)= =iV, (P exp(i ). (53)
_a§ Vo Obviously, the actual solution is theal part of the above
l_UO_Z vZ+vl (46) expression. Equation$48), (50), (51), and (53) possess

simple analytic solutions in two limits. The first limit corre-
Here, v, is the steady(normalized angular velocity of the  sponds tay<uv,, in which case
mode in the presence of the resistive shell, but the absence of

the error-field. It is generally convenient to search for the for r<1

physical roots of the above expression by converting itintoa ;. (F)=V A

dynamical equation, ! s dr/r,u/ f di/fp  for 1<f<a’
d2U0 dUO ag Uo (54)
U P g T 47) . -
dt dt 4 vstug The second limit corresponds te>v,, in which case
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. exd + ol (F—1)/(23)]  for <1 {[1+ (v/v))?]"*~1}12 dv
Vi(r)=V .  an =- 0
1(N)=Vs exd —\ivlv (F—1)/(23)]  for 1<f<a NA dt
59 ([1+ (/) 2]V2+ 112
The above expressions indicate that when the mode rotation ~ — 2 (v—vo), (63

velocity v lies well below the critical value, then the os-
cillating component of the perturbed angular velocity profile,where use has been made of Ef8). Finally, the above
driven by the error-field, extends over the whole plasma. Orequation can be combined with Eq46) and (49) to give
the other hand, when the rotation velocity greatly excegds
then the oscillating component of the perturbed velocity pro- {[1+ (/o) Pe- 11" gl,’,
file becomedocalizedin the vicinity of the rational surface. \/§|v| dt
In this paper, it is assumed that if a magnetic island structure 2912 1 A11/2
exists at the rational surface then its radial width is always + {[1+ (/o)™ 1}

(v—vg)+(vo—1)

much less than the radial width of the oscillating velocity 2

profile. Hence, it is alwaywiscositywhich determines the )

extent of the region of the plasma which corotates with the a v n @sinqs:O (64)
mode, rather than the magnetic island width. For the typical 4 vz+v2 \/U_| '

island widths, mode rotation velocities, and momentum con-
finement time scales encountered in present-day magnet€ piscussion
fusion experiments, this assumption is perfectly reasonable.

Now, according to Eqs(54) and (55), According to the previous analysis, the improved phase
— _ . . gvolutlon equation$37)—(41) can be reducgd to thg foIIovy—
T.—il¢s avy|© Viv/v, or v>v (56) ing set of four, coupled, first-order, ordinary differential
AT 17_ 511 for v<v,’ equations:
It is a reasonably good approximation to write do 65
o E’{ =0, ( )
T,=-VR, (57)
where {[1+(U/U|)2]1/2_ 1}1/222
V2|v dt
R=\1+iv/v,. (58 o
- - . . - {[1+(v/v|)2]1/2+1}1/2
In the Appendix, the above approximation is discussed and + 2 (v—vg)t(vp—1)
justified.
Let V,=|V exp(fd) and R=|R|exp(dg). According to a2 aa
Egs.(52)-(57), + ZS 73t %sinq&z 0, (66)
v—vo=Va(11)=|Vdsin( b+ ), (59) ° ol
PN . dvo
T1(t) = —|Vd|R|SIN(p+ O+ OR). (60) H»tr=a0, (67)
Now, it follows from the fundamental assumpti@3) that g )
- =l as v
dVy(1i ; — +Nag+(vg—1)+ — =0. (68)
—;(»t—)=ivvl(1,t), 61) dt 70O 4 vi+vg
. ) The physical dynamical variables ape—the helical phase of
which yields the mode measured with respect to that of the error-field—
dv  dVy(1}) andv—the normalized angular velocity of the mode. Recall
T T:U|VS|COS(¢+ 0s). (62)  that Eqgs.(67) and (68) are merely a numerical device for

finding the appropriate roots of E¢46), and have no direct
It is clear that the fundamental assumption boils down to thephysical interpretation. However, the dynamical varialyje
assertion that the time variation of the mode angular velocitys interpreted as the steady component afbtained by bal-
v is dominated by the modulation of the helical phase ancing plasma viscosity against the eddy current braking
rather than any variation in the amplitufié| or the phase torque, whilst neglecting the oscillating error-field torque.
angle 6. The parameterg [defined in Eq.(32)] is the normalized
Equations(59), (60), and(62) yield mode amplitudea, [defined in Eq.(33)] is the normalized
AoA . . amplitude of the error-fieldy [defined in Eq.(34)] is the
T1(t)=—|Vd|[Rlcod ¢+ 6)sin O — V|| R]sin( ¢ critical value ofy above which the resistive shell starts to act
+ 65)coSbg, like a perfect conductor, and, [defined in Eq.35)] is the
critical value ofv above which the oscillating component of
the perturbed plasma rotation profile, driven by the error-

) 1dv
=~ IRlsin Ory af_|R|COSGR(v_U°)’ field, becomes localized in the vicinity of the rational sur-



Phys. Plasmas, Vol. 7, No. 9, September 2000 Nonlinear dynamo mode dynamics in reversed field pinches 3617

face. In addition) is an optionalO(1), positive parameter, V. ANALYSIS OF PHASE EVOLUTION EQUATIONS

with no direct physical significance, which is used to facili- , pasistive shell braking and release

tate the numerical solution of the above equations. thresholds
Virtually all of the physics content of the above set of ) .

preted as the angular equation of motion of the mode. Th@PProaches zerg.e., a.—0). In this limit, the phase evolu-
first term represents the inertia of the region of the plasm&©on equations(65)—(68) simplify greatly to givev=uy,
which corotates with the mode, the second term is the restofv/dt=a,=0, and

ing torque due to viscous coupling between the plasma in the 22
immediate vicinity of the rational surface and the oscillating 1, =5 " (71)
component of the perturbed plasma rotation profile, the third 4 vstv

term represents the restoring torque due to viscous COur)"nl%te that in the absence of the error-field the mode rotates

between the plasma in the immediate vicinity of the rational . . : o
with a steadyvelocity. The solution of the above equation in
surface and the steady component of the perturbed plasm)

rotation profile, the fourth term is the braking torque due totﬁ‘e physically relevant regime <1 is f airly s'tra|ghtfor .
o . . ward. There are two branches of solutions. First, there is a
eddy currents excited in the resistive shell, and the fifth term

represents the locking torque due to the error-field. rapidly rotating branch,

In the limit v,>1, Egs.(65) and(66) reduce to v=1+1 /—1—a§, (72)
d¢ on which the mode rotation velocity is sufficiently high that
gt v (69 the resistive shell acts like a perfect conductor. Secondly,
there is aslowly rotatingbranch,
1 dv 1 az v asd; . o 20 a2
o @t POV T U0 e V- (VBudag 73

Note that since the variabig, does not appear in these equa- on which the mode rotation velocity is sufficiently low that
tions, they form a complete set, and E¢7) and (68) are  the mode eigenfunction can penetrate through the resistive
redundant. Of course, the above pair of phase evolutioghell. Moreover, there is orbidden bandof (normalized
equations has the same form as the Zohm equatié@sand  mode rotation velocities,

(43). However, for the typical momentum confinement time

scales and mode rotation velocities observed in present-day vs<v=1/2, (74)

RFPs, the parametej is usually much less than unityThe separating these two branches. When the normalized mode

; ; R 0),52 . .. .
approximate formula for this parameter dg~ x, /-Q(Sga., amplitudea, exceeds theesistive shell braking threshald
where y, is the anomolous momentum dlffuswltﬂ(s) is

the typical dynamo mode rotation frequency, amds the (as)p=1, (79
plasma minor radius. The anomolous momentum diffusion in

the core of present-day RFPs is predominately due to mad- . .
netic fluctuations: the typical diffusivity i, ~50 m/€.25 and the mode makes a transition from the rapidly to the

Likewise, the typical mode rotation frequency ®§°)~5 slowly rotating branch(assuming that it starts off on the
<108 rad’/s and the typical minor radius &~0.5m2® former branch When the normalized mode amplitude falls

Hence,v;~0.04 in present-day RFPs. This estimate is suffi-beIOW theresistive shell release threshold

ciently small compared. tq unity that we can bg certain that (ag), = \/gs (76)

all present-day RFPs lie in the parameter regime&l, as

assumed in this paper. Another important assumption, madi#en the slowly rotating branch of solutions ceases to exist,
in this paper, is that the radial width of the oscillating com-and the mode makes a transition from the slowly to the rap-
ponent of the perturbed velocity profile is much wider thatidly rotating branchlassuming that it starts off on the former
the radial magnetic island widthy, at the rational surface. branch. There is considerableysteresisn the resistive shell
This assumption is valid providedV/r < \v,~0.2, which is  braking/release cycle, since the release threshold is generally
reasonably well satisfied in present-day REPs.this pa-  significantly smaller than the braking threshold. Note that the
rameter regime, the Zohm equations are replaced by Eqg@evitable penetration of the mode eigenfunction through the
(65)—(68). Fortunately, the numerical solution of this new setresistive shell on the slowly rotating branch of solutions has
of phase evolution equations is almost as straightforward aa destabilizing effect on the mode, leading to a somewhat
that of the Zohm equations. Equatio(85)—(68) are more larger saturated amplitud&e., largerag) on the slowly ro-
complicated than the Zohm equations because they contatating branch, and, hence, to some deepening of this hyster-
additional physics; namely, a self-consistent calculation ogsis.

the radial extent of the region of the plasma which corotates  Figure 1 shows an example hysteresis diagram for the
with the mode; the width of this region being determined byresistive shell braking/release cycle, calculated foy
plasma viscosity. =0.05.
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rapidly rotating branch 1.5 T T T T T T T T
1.0 N T -// .
08 - = E
L 4 1.0 -]
0.6 [ release threshold ] > locking threshold T
> - -1 - ~
0.4 - braking | I —-
[ t}:reshald ] 05 = ]
02 — 3 ]
0.0 L~ T . e S
0.0 0.5 1.0 1.5 0.0 0.2 0.4 0.6
a, a

s
slowly rotating branch

o o . FIG. 2. The rotating branch of solutions, calculated &y=1 and v,
FIG. 1. The hysteresis diagram for the resistive shell braking/release cycle. g o5. The maximum and minimum values of the normalized mode rota-

calculated fow=0.05. The normalized mode rotation velocityis plotted  tjon velocity v are plotted as functions of the normalized mode amplitude
as a function of the normalized mode amplituale as.

Note that the above theoretical results were first derivedncreases. When the product of the normalized mode ampli-
in Ref. 24, and were later confirmed experimentally intudeas and the normalized error-field amplitude exceeds
Ref. 45. the error-field locking threshold

(asa.);=0.51, (80

then the rotating branch of solutions ceases to exist, and the
Suppose that the parametey goes to infinity. In this mode makes a transition from the rotating to the locked
limit, the resistive shell acts like a perfect conductor, anddranch (assuming that it starts off on the former branch
there is zero eddy current braking torque. Furthermore, th&lote that the error-field locking thresholavhich is deter-
phase evolution equatiori65)—(68) simplify greatly to give =~ mined numerically is a very weak function ob,. Note,

B. Error-field locking and unlocking thresholds

vo=1,a,=0, and further, that the disappearance of the rotating branch of so-
lutions corresponds to the point at which the minimum ve-
d_f’z:v, 77 locity of the mode is reduced to zero by the error-field.
dt Figure 3 illustrates the nature of the locked branch of
291/2_ 11112 solutions. It can be seen that as the normalized mode ampli-
{1+ @] 1 ili tude a decreases the locking angleincreases. According
\/§|U| dt to Eq. (79), when the product of the normalized mode am-
plitude ag and the normalized error-field amplitude falls
MRS (v/v)?]%+ 1}1/2(1) 1)+ 2 ging—o. below theerror-field unlocking threshold
V2 Yo (a8c)u= o1, (81)
(78)
The numerical solution of the above pair of equations in the
physically relevant regime;<1 is fairly straightforward. 0.5 R
There are two branches of solutions. First, thereristating - ]
branch on which the mode angular velocity is modulated 04 - ]
periodically, as the mode rotates, by the oscillating error- C ]
field torque. Secondly, there islecked brancton which the 03 [ -
mode is held stationar{i.e., v=0) via the balance of the *
error-field and viscous restoring torques. For the locked e o2 [ b
branch, the above phase evolution equations simplify further Tr ]
to give C ]
0.1 -
aga, C : unlocking threshold 3
sing=1. (79 T
Vo %%0 02 04 06 08 10
Figure 2 illustrates the nature of the rotating branch of 8y

solutions. It can be seen that as the normalized mode amplg':-IG. 3. The locked branch of solutions, calculated fy—1 and v,

tl_Jde_as in(_;reases the amplitude of the e_rror'ﬁeld _driven 0S-=0.05. The locking angleb is plotted as a function of the normalized mode
cillations in the normalized mode rotation velocity also  amplitudeas .
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a.<+v,/8vs. The curve labeled 2 represents the resistive

shell braking threshold: the approximate formula for this

curve isag=1 for a,<\v;. The curve labeled 3 represents

the combined error-field locking and unlocking threshold,;
S the approximate formula for this curve #&a.= v, for ag

=1. The curve labeled 4 represents the error-field unlocking

threshold: the approximate formula for this curveasa,

= /v, for a;<1. The curve labeled 5 represents the error-

field locking threshold; the approximate formula for this

curve isaga.=[ v a2+ 0.51(1—a?)] for a;<1. Finally, the

1/2
(v;/8v,) : . .
e I curve labeled 6 represents the error-field locking threshold in

1/2

(w) the absence of the resistive shell; the approximate formula
W for this curve isaga,=0.51.
Note that the location of the error-field unlocking thresh-
0

old curve (curves 3 and 4 in Fig. )dis unaffectedby the
presence of the resistive shell. This is as expected, since a
FIG. 4. A schematic diagram showing the various threshold curves assocr-eSIStIVe shell exerts Ze_ro torqu? on a locked mode, and,
ated with the phase evolution of a dynamo mode in a RFP in the presence dherefore, cannot affect its unlocking threshold. On the other
both a resistive shell and a resonant error-field. The curves are plotted ihand, the location of the error-field locking threshold curve
normalized mode amplitude, vs normalized error-field amplitude, space. in the presence of the resistive shellirves 3 and 5 in Fig.)4
Curve 1 is the resistive shell release threshold; curve 2 is the resistive shell, . . .
braking threshold; curve 3 is the combined error-field locking and unlocking'é, different from_ that in the absence of th(_a_sk(elhrve 6in
threshold; curve 4 is the error-field unlocking threshold; curve 5 is theFigd. 4). In fact, it can be seen that the critical value of the
error-field locking threshold; and curve 6 is the error-field locking thresholdproductaga, above which a transition to a locked mode is
in the absence of the resistive shell. The extents of the si{®ndnterme- triggered is alwayseducedin the presence of the resistive
i -field regi Iso indicated. .
diate(1), and weak W) error-field regimes are aiso indicate shell. In other words, the resistive shell acts astalystfor

the formation of an error-field locked mode. Incidentally, the

then the locked branch of solutions ceases to exist, and tH&€ Of the term “catalyst” here is appropriate, since the re-
mode makes a transition from the locked to the rotating>'Stive shell plays no role in the dynamics of the mode once
branch (assuming that it starts off on the former brapch It has locked to the error-field. _

Note that the disappearance of the locked branch of solutions Figure 4 suggests the existencettwieebroad regimes of
corresponds to the point at which the locking angke behavior, depending on the value of the normalized error-

0 8v)'"? 1 a;—

reaches/2. field amplitudea. . Theweak error-field regimeorresponds
There is considerablehysteresisin the error-field to
locking/unlocking cycle, since the unlocking threshold is 5 <./, (82)

generally significantly smaller than the locking threshold. ) ] ] )

The origin of this hysteresis is the strong variation in the Th€intermediate error-field regimeorresponds to

radial width of the plasma region W_hich corotates with the Jui<a.<\v,/8v.. (83)
mode as the normalized mode veloaitghanges. Of course, ) )

the more efficient interaction between the mode and th&inally, thestrong error-field regimesorresponds to
grror—field on the locked brangh of solutions has a destabiliz- a.> /8. (84)
ing effect on the mode, leading to a somewhat larger satu- ) ) ) )
hence, to some deepening of this hysteresis.

C. Resistive shell modified error-field locking and D. The weak error-field regime

unlocking thresholds Figure 5 illustrates the typical behavior encountered in

The simultaneous presence of a resistive shell and the weak error-field regime. As the normalized mode ampli-
static error-field necessitates the use of the full set of phaseide a is gradually increased from a small value, the time-
evolution equationg65)—(68). Fortunately, the numerical asymptotic solution starts off on the rapidly rotating branch
solution of these equations is a relatively straightforwardof solutions, and then makes a transition to the slowly rotat-
task. A comprehensive parameter scan, in the physically reing branch when the resistive shell braking thresHaolarve
evant regimev,, vs<1, leads to the diagram shown in Fig. 2 in Fig. 4 is reached. The solution makes a second transi-
4. This diagram indicates tteproximatdocations of all the  tion to the locked branch when the error-field locking thresh-
various threshold curves in normalized mode amplitages  old (curve 3 in Fig. 4 is reached. Asag is gradually de-
normalized error-field amplitude, space. Note that the lo- creased from a large value, the solution starts off on the
cations of these curves are determined numerically. Thécked branch of solutions, and then makes a transition to the
curve labeled 1 represents the resistive shell release thresslowly rotating branch when the error-field unlocking thresh-
old: the approximate formula for this curveas=\8vs for  old (curve 3 in Fig. 4 is reached. The solution makes a
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a, increasing a, decreasing
1.5 T 15 ————r1— —r—
[ rapidly islowly : locked ] [ rapidly : slowly :locked ]
braking | T°lanng irotating: 1 release __[ rotatingi rotating ] FIG. 5. The weak error-field regime.
threshold ~F——u_ | | threshold _\._ : i The maximum and minimum values of
1.0 - 1.0 : - the normalized rotation velocity are
- i locking 4 i _unlocking - plotted as functions of the normalized
> r i~ threshold b { threshola mode amplitudea, for a,=0.12, v
[ i ] =0.1, andv;=0.05. The cases where
05 - ] 05 _~ the normalized mode amplituds; is
L i 1 increasing and decreasing are shown
| 3 1 separately.
[ 518 SR FL W fereenrermsennnians . [/ E: O T re—
0.0 — e 0.0 ]
0 2 3 0 1 2 3

second transition to the rapidly rotating branch when theetrate through the shell, or with the destabilization of the
resistive shell release threshgttirve 1 in Fig. 4is reached. mode due to the more efficient interaction with the error-field
Note that in the weak error-field regime there is hyster-when it is non-rotating.
esis in the resistive shell braking/release cycle but thene is It is clear that in the weak error-field regime the catalysis
hysteresisn the error-field locking/unlocking cycle. of locked mode formation by the resistive shell operates so
In order to help explain the somewhat surprising absenceffectively that a locked mode forms as soon as a locked
of hysteresis in the error-field locking/unlocking cycle, Fig. 6 mode solution becomes a possibilifye., as soon as the
shows a typical slowly rotating solution which lies close to error-field unlocking threshold is exceeded
the error-field locking threshold in parameter space. It can be
seen that the mode rotategermittently In other words, the
mode remains locked for a certain period of time, then SUdE The intermediate error-field reqime
denly executes a single rotation, remains locked for the same’ 9
period of time, then suddenly executes another rotation, and Figure 7 illustrates the typical behavior encountered in
so on. As the error-field locking threshold is approached irthe intermediate error-field regime. As the normalized mode
parameter space, the time interval between these intermitteamplitudeag is gradually increased from a small value, the
rotation events increases rapidly, and effectively becomeme-asymptotic solution starts off on the rapidly rotating
infinite as the threshold is attained. Hence, there is a combranch of solutions, and then makes a direct transition to the
pletely reversible(i.e., hysteresis frgetransition between a locked branch when the error-field locking thresh@drve
slowly rotating mode and a locked mode as the error-fields in Fig. 4 is reached. A is gradually decreased from a
locking/unlocking threshold is crossed. This reversible trandarge value, the solution starts off on the locked branch of
sition should be contrasted with the irreversible transitionsolutions, and then makes a transition to the slowly rotating
illustrated in Fig. 8 below. The latter transition is typical of branch when the error-field unlocking threshétdirve 4 in
the behavior of the error-field locking/unlocking cycle in the Fig. 4) is reached. The solution makes a second transition to
absence of a resistive shell. the rapidly rotating branch when the resistive shell release
It is important to note that the resistive shell is unable tothreshold(curve 1 in Fig. 4 is reached.
remove those components of the hysteresis in the error-field Note that in the intermediate error-field regime the
locking/unlocking cycle which are associated with the destaslowly rotating branch of solutions is only accessible when
bilization of the mode when its eigenfunction is able to pen-the normalized mode amplitudg, is decreasing. Note, also,

12 1 - rrrrrrrrrrr ) 003 7T T T T T T T
10 | 3 [ ]
8 :_ _: 0.02 [ N FIG. 6. A slowly rotating solution
r ] ’ | i which lies close to the error-field lock-
E L i L i ing threshold. The angular positiap
; 6 7 > L . and the normalized rotation velocity
i ] F of the mode are plotted as functions of
4r- - 0.01 H t/7, where 7 is the unperturbed mode
- . rotation period, for ag=1.75, a.
2 - =0.12,v4=0.1, andv,;=0.05.
0 P TN SN BRI I 0.00 [ PRl B T RS i
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a, increasing a, decreasing
1.5 prrrrr e 1.5 1y
i rafi;i_ly i locked ] rapidly | locked ]
L rovanng y "Zleaze e rotating ] FIG. 7. The intermediate error-field
F 1 thresno \ : R regime. The maximum and minimum
1.0 : - 1.0 P — values of the normalized rotation ve-
- : locking 4 - L unlocking - locity v are plotted as functions of the
————— D
> - : threshold - > - P threshold normalized mode amplituda, for a.
[ ] =0.23, v5=0.1, andv;=0.05. The
; P cases where the normalized mode am-
05 - : - 05 - ;i — . o . .
L : ] L \ § plitude ag is increasing and decreasing
L : 4 L slowly __—*: ] are shown separately.
L ti i | rotating . 4
U koo e i D b
0 Os 1 AN L . 0 os ] il 1
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that there is now a small amount of hysteresis in the errorV. APPLICATION TO EXPERIMENTS

field locking/unlocking cycle. . , o . .
Consider the typical RFX plasma equilibrium investi-

gated in Ref. 19. The parameters for this equilibrium laye
F. The strong error-field regime =600kA, €,=0.23, FEBé(a)/<B_¢>_: —-0.2, and ©
_ ) ) _ _=By(a)/(B,4)=1.56. The characteristic dynamo mode for
Figure 8 illustrates the typical behavior encountered inis equilibrium is them=1, n=9 mode. Making the same
the strong error-field regime. As the normalized mode aMyzssumptions as those made in Sec. VB of Ref. 19, except
plitude a, is gradually increased from a small value, the that the plasma viscosity profile is now assumed to be radi-
time-asymptotic solution starts off on the rapidly rotating ally uniform (for the sake of simplicity, the following esti-

branch of solutions, and then makes a direct transition to thgated values for the parameters controlling the phase evolu-
locked branch when the error-field locking thresh@drve  tion of the 1.9 mode in RFX are obtained:

5 in Fig. 4 is reached. A is gradually decreased from a

large value, the solution starts off on the locked branch of v =0.12, (85
solutions, and then makes a direct transition to the rapidly
rotating branch when the error-field unlocking threshold  v,=0.013, (86)
(curve 4 in Fig. 4 is reached.

Note that in the strong error-field regime the slowly ro-  as=3.7, (87

tating branch of solutions no longer exists. Note, also, that

. .. . . . bl,9
there is strong hysteresis in the error-field locking/unlocking r

; ) . ) : a.,=380 =] .
cycle in this regime. In fact, as the normalized error-field |B] .
amplitudea. increases beyond the critical valye,/8v, the
resistive shell has progressively less effect on the location dflere, it is assumed that the nominal island width of the 1,9
the error-field locking threshold, which quickly reverts to mode is 20% of the plasma minor radius. Furthermore,

(88)

that calculated in the absence of a shell. (b>%|B|). represents the ratio of the radial component of the
a, increasing a, decreasing
1~5"'|"'|"'|";'|--- 15 —— 71—V 17
3 rapidly : locked A - rapidly : locked 1

3 rotating 4 L rotating .
; g - : L FIG. 8. The strong error-field regime.
: E The maximum and minimum values of

- the normalized rotation velocity are
: unlocking - plotted as functions of the normalized
threshold mode amplitudea, for a.=0.5, v,

1.0 locking — 1.0

threshold '

> >

I ] i i =0.1, andv,=0.05. The cases where

0.5 B ] 05 B a the normalized mode amplituds, is
L ] L : | increasing and decreasing are shown

L J L | separately.
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FIG. 9. The functionsg andgg, de-
fined in Eq.(A3), plotted against the
normalized mode phase velocityv, .
The solid lines show the exact forms
for these functions, derived from Eq.
(A2). The dotted lines show the ap-
proximate forms for the functions, de-
rived from the approximationA6).
The calculations are performed far
=1/0.7.
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1,9 harmonic of the error-field to the magnitude of the equi-
librium magnetic field, evaluated at the radius of the con-
ducting shell.

According to the analysis of Sec. IV, the locking and (2)
unlocking of the 1, 9 dynamo mode in RFX occurs in the
weak error-field regime Hence, the combined locking/
unlocking threshold corresponds to the cua@.= v, in
parameter space. In the absence of the resistive shell, the
unlocking threshold still corresponds #&a.= \v,, but the
locking threshold becomesasa.=0.51. Hence, the critical
error-field amplitude required to lock a typical dynamo mode
in RFX is estimated to be

bl? .
—| ~8x10°°. (89)
C

B
©)
In the absence of the resistive vacuum vessel, the critical
amplitude becomes

1,9
(-) ~4Xx10°4. (90

p
|B|
In other words, the resistive vacuum vessel in RFX reduces
the critical error-field amplitude required to generate a
locked mode by a factor of 5. This result suggests that the
primary cause of the locked mode problems observed in
RFX (and other large RFPs possessing thin resistive vacuum
vessels, e.g., TPE-RXs the high resistance vacuum vessel,
which renders otherwise innocuous error-fields problematic.

VI. SUMMARY

This paper investigates the nonlinear dynamics of a typi-
cal dynamo mode in a RFP plasma in the presence of a
resistive vacuum vessel and a resonant error-field. The
achievements of this paper are as follows: (4)

(1) The derivation of a fundamental set of phase evolution
equations(37)—(41) (see Sec. )l These equations de-
scribe the phase evolution of a typical dynamo mode in a
RFP under the influence of the braking torque due to
eddy currents excited in a resistive vacuum vessel and
the locking torque due to a resonant error-field. They are
derived using the five physics-based assumptions listed
and justified in Sec. Ill. Unfortunately, Eq&37)—(41)

20
v/v,

30

»
o

are too complicated for convenient use by experimental-
ists whilst interpreting data or designing new RFP ex-
periments.

The reduction of the fundamental phase evolution equa-
tions to a more manageable set of four, coupled, first-
order, ordinary differential equatiori§5)—(68) (see Sec.
IIl'). These equations represent an important extension of
the well-known Zohm equatiorf§, (42)—(43), which
have been used extensively by experimentalists to inter-
pret mode locking data obtained from magnetic fusion
devices. The nature of the extension is the incorporation
of a self-consistent calculation of the radial extent of the
plasma region which corotates with the mode; the width
of this region being determined by plasma viscosity.
The numerical solution of Eq$65)—(68), so as to obtain

a comprehensive theory of the influence of a resistive
vacuum vessel on error-field locking and unlocking
thresholds(see Sec. Y. This theory is encapsulated in
Fig. 4, which shows the locations of all the various
threshold curves for resistive shell braking, error-field
locking, etc., in mode amplitude versus error-field am-
plitude space. Not surprisingly, a resistive vacuum vessel
is found to have no effect on error-field unlocking
thresholds. On the other hand, such a vessel is found to
facilitate error-field locking; i.e., it reduces the error-field
locking threshold. Under certain circumstandes., in

the weak error-field regime indicated in Fig), 4his ef-

fect is so strong that a locked mode forms as soon as a
locked solution becomes a possibility, i.e., as soon as the
error-field unlocking threshold is exceeded. Note that, in
the absence of a resistive vacuum vessel, the error-field
unlocking threshold usually needs to be exceeded by a
substantial factor before a locked mode forms.

The application of the results obtained in Sec. IV to the
problem of the locking of typical dynamo modes in RFX
(see Sec. Y. The thin resistive vacuum vessel in RFX is
found to reduce the critical error-field amplitude required
to generate a locked mode by a factor of 5. This result
suggests that the high electrical resistance of the vacuum
vessel is the primary cause of the locked mode problems
in RFX, rather than the presence of excessively large
error-fields.
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cess will allow experimentalists to achieve a full understand-
ing of why the so-called “slinky mode” locks in some re- APPENDIX: AN EXACT FORM FOR THE PHASE

versed field pinch devices, but not in others. As explained iffYOLUTION EQUATION

the Introduction, the locking of the slinky mode is currently

In the limit of a uniform density profiléi.e., p=1) and

an issue of outstanding importance in reversed field pincla uniform viscosity profildi.e., x=1), Egs.(48), (50), (51),

research.

lo(VinT)

lo(viN)
Ko(ViN&)1o(ViINT) = Ko(ViXF)Io(+inE)
Ko(ViN&)1o(ViN) —Ko(ViN)Io(1iN)

Vi(f)=V,

where J=Ina and A= (v/v,)/(4J%). Here, 1, and K, are

and(53) can be solved exactly to give

(A1)

excellent. This justifies the use of the approximate formula

standard modified Bessel functions. In this limit, the function(A6) (which is far simpler than the exact formuldarough-

R, defined in Eqs(56) and(57), takes the exact form

[ 11(+in)
R=JJIN{ ——
Jix lo(\iN)
~ KoGWiNa) (VM) + Ka (Vi) To(Vira)
Ko(Vira)lo(Vin)—Ko(ViM)lg(vira) |’

out the bulk of this paper.
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