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(Euratom/UKAEA Fusion Association) 
(Received 1 August 1988 ; and in revised form 2 February 1989) 

Abstract-The linear resistive-MHD layer equations are solved numerically for the internal kink mode 
and the dispersion relation is obtained. We consider two rather unorthodox types of q(r) profile, both of 
which have zero shear at the layer; i.e. 

(i) non-monotonic q(r)  with a minimum value lying just above unity, 
(ii) monotonic q ( r )  with a point of inflection at q = 1. 

One interesting feature of our results for both types of q(r) profile is the appearance of overstable solutions 
for certain parameter ranges. For class (i), we find that the mode becomes first overstable and then purely 
growing as the minimum value of q(r) decreases. For realistic plasma parameters the band of overstability 
is thin, but non-negligible. For class (ii), we find that for realistic plasma parameters the mode is completely 
stable. 

1 .  I N T R O D U C T I O N  
IN A RECENT PAPER dealing with the trigger mechanism for “sawtooth” collapses in 
Tokamaks, HASTIE et al. (1987) emphasized the importance of obtaining reliable 
growth rates close to marginal stability for the resistive “internal” kink mode (this 
mode is generally believed to be responsible for the initial displacement of the plasma 
core observed in a sawtooth collapse). Two rather unorthodox classes of q(r) profile 
(where q is the safety factor) were found to be especially significant in this context ; 
namely 

(i) non-monotonic q ( r )  with a minimum value just above unity at Y = r l ,  
(ii) monotonic q ( r )  for which q ( u , )  = 1, and r = r1  is a point of inflection of q. 

Numerical results from a linear toroidal resistive-MHD code (FAR) indicated that 
these profiles could be stable to resistive m = 1, n = 1 modes under certain conditions, 
and moreover could yield very large growth rates close to the marginal stability 
boundary. This last result is very interesting since, up to now, it has been difficult to 
account for the rapidity of the initial plasma displacement in a sawtooth collapse 
using the standard model, in which the equilibrium evolves resistively through some 
marginal stability boundary for the m = 1, n = 1 mode. The problem is that the 
growth rates which are obtained close to marginality, for orthodox q(r)  profiles, are 
usually far too small to account for the observations. 

In this paper we solve the linear resistive-MHD layer equations for the internal 
kink mode, using the two previously mentioned classes of q(r )  profile. The approach 
is analogous to that of COPPI et al. (1976), who obtained analytic solutions for q ( r )  
profiles with finite shear at the layer. We hope to be able to confirm the previously 
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mentioned numerical results, especially the prediction of large growth rates close to 
marginality. For the second class of q(r)  profile, the results from FAR rather sur- 
prisingly indicated that the m = 1, n = 1 resistive mode could become overstable for 
certain ranges of parameters-we also hope to be able to gain some insight into this 
effect. In our analysis we shall make use of the low 8, large aspect ratio orderings. 
Our results should be applicable to both cylindrical and toroidal equilibria, provided 
that the appropriate expression for 6 W is used (see later). 

2.  P R E L I M I N A R Y  ANALYSIS  
By analogy with COPPI et al. (1976), the general linearized m = 1, n = 1 resistive 

layer equations for a thin layer in the limit of small 8 and large aspect ratio are : 

where 

and 

(3) 

Here, r l  is the radial coordinate of the centre of the layer, p the density, 5 the plasma 
displacement, 1: the growth rate, y the resistivity and B1, the perturbed radial field. In 
the following, R is the major radius, E the inverse aspect ratio, and S the magnetic 
Reynolds number. The resistive layer solution is matched to the outer ideal solution 
by imposing the following boundary conditions on equations ( 1 )  and (2) : 

d5 5, 
+ ~- l1 g(r )  dr on inner edge of layer, + dx r : F y X )  

d5 5, 
-+ ___ l' g(r)  dr on outer edge oflayer, 

( - O ;  dx r:F2(X) 

where the function g ( r )  is defined in COPPI et al. (1976). 

the zero-order plasma displacement 5, can be written 
Now, in cylindrical geometry, the change in potential energy of the system due to 

where 



Equilibria with unorthodox q(r)  profiles 

for zero p. It can easily be shown that 
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(7) 

Clearly, the layer solution is completely determined, from equations (l), ( 2 ) ,  (5) and 
(8), once 6W") [which is a function of the q(r)  profile outside the layer] is specified. 

It is well known that the expression for 6W in toroidal geometry is completely 
different to that for cylindrical geometry given above-this is because the leading- 
order cylindrical contribution to SW, which is 0 ( c 2 )  and usually dominates the 
expression, is exactly cancelled out by a corresponding toroidal term for an m = 1, 
n = 1 mode. Thus, in toroidal geometry the relatively simple expression 6W"' must 
be replaced by a far more complicated term 6 W(T), which is detailed in BUSSAC et al. 
(1975). The layer solution itself is independent of the geometry of the system once the 
appropriate expression (6 W(') or 6 is substituted in equation (8) to determine 
the boundary conditions. 

3 .  NON-MONOTONIC q(r )  P R O F I L E S  WITH q ' ( r l )  = 0 

3.1. Introduction 

F(x)  in the vicinity of the layer as follows : 
Consider a plasma with the q(r )  distribution sketched in Fig. 1. We can expand 

where 

Substitution of the above into (1) and (2) yields the appropriate layer equations : 

r = q  

FIG. 1.-A typical type (i) q(r)  profile. 
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where $ = -iBlr/(Boq”r)r=rl and A = y t X .  Here the AlfvCn* time-scale (cf. 
KADOMTSEV, 1975) is given by 72 = r l / ( (Bs iJp) (q”r2)}r , I I ,  and the magnetic 
Reynolds number is defined as S = (r:/v)/zX. Substitution of (9) into equations (5) 
gives the layer boundary conditions : 

on inner edge of layer, dt t a A H  t+ t , ;  x4-+-- 
dx 71 

on outer edge of layer, dt ( m n H  t + o ;  x4-+-- 
dX 7L 

where 

The ordering which makes every term in (1 1) and (12) comparable is 

Normalizing with respect to this ordering yields the following form for the resistive 
layer equations : 

where t,b = S- ‘I2$, x = S- ‘142 etc. Information about the external solution (via the 
boundary condition) now enters in the normalized variables through the quantity 2, 

The ideal layer equations can be solved analytically to give the following dispersion 
defined by iH = S-  3’4,f H. 

relation 

This has a marginal stability boundary at  
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thus agreeing with HASTIE et al. (1987). 
Unlike the standard case considered by COPPI et al. (1976), the present problem is far 

too complex to solve analytically ; we must therefore resort to a numerical approach. In 
the following, we shall employ the two-point boundary value technique of Lentini 
and Pereyra, in which the boundary conditions are simultaneously specified at i = 0 
and i = B (where B >> l), and the intermediate solution then obtained by a finite- 
difference algorithm. 

After making allowances for the possibility of complex growth rates, we can reduce 
our problem to a system of eight first-order differential equations. Appropriate nor- 
malizations and symmetry arguments easily yield six boundary conditions at 2 = 0. 
The remaining two boundary conditions hold at x = B and are obtained from the 
asymptotic expansion of equations (16) and (17), always taking care to choose only 
physically acceptable solutions. Finally, the eigenvalue is fixed in the complex plane 
by the requirement that ,fH be real. 

3.2. Numerical results 

displayed in Figs 2(a-c). Note that : 
First, let us consider the results for which the mode is purely growing; these are 

FIG. 2(a).-The purely growing branches of the ideal and resistive dispersion relations, 
calculated for a type (i) q(r)  profile with 6 = 0.0. 
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-4.0 1 
FIG. 2(b).-The purely growing branches of the ideal and resistive dispersion relations, 

calculated for a type (i) q(r)  profile with h = 1.0. 

(a) for IbH >> S-3/4, the resistive growth rate approaches the ideal growth rate 
asymptotically ; 

(b) for i, - S-3'4  , the resistive mode has a correspondingly greater growth rate than 
the ideal mode-both modes having comparable growth rates ; 

(c) the ideal mode is stabilized when A, falls below a critical value 

However, the purely growing resistive mode is only stabilized when j-, falls below 
AHl ,  where it is always found that E,,, < iH2. Note that iH2-%H1 - O(S-314), 
with both values increasing rapidly with increasing h. 

The behaviour of 2, as a function of /1. in Figs 2(a-c), in particular the minimum 
f o r i  # 0, strongly points to the existence of an overstable resistive mode for AH < L,,, 
with 2, = E,,, the point of bifurcation into the complex plane. 

The numerical results for which the growth rate is complex are displayed in Figs 
3(a-c). (In fact, since the solutions for the growth rate occur in complex conjugate 
pairs, only one half of the complex plane is shown.) Note that : 
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FIG. 2(c).-The purely growing branches of the ideal and resistive dispersion relations, 
calculated for a type (i) q(r) profile with h = $2.5.  

(a) there is indeed an overstable resistive mode for values of I,, lying below ,IH1, with 

(b) there exists a critical jv, (denoted %,,,) below which the overstable resistive mode 
= iHI the point of bifurcation of the solution; 

is damped. At 1, = iHO the mode is marginally stable and oscillatory. 

The behaviour of XHO, XH1 and X H 2  as functions of 2d3 is shown in Fig. 4. 

4 .  MONOTONIC g ( r )  PROFILES WITH y’ (rJ  = q”(r,) = 0 

4.1. Introduction 

in the vicinity of the layer as follows : 
Suppose now that the q ( r )  distribution is as sketched in Fig. 5. We can expand F(x) 

Substitution of the above into (1) and (2) yields the new layer equations 
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growing solutions \ 
i -marginal solutions 1 

L 
FIG. 3(a).-The overstable branch of the resistive dispersion relation, calculated for a type 
(i) q(r)  profile with 6 = 0.0. i., is the real part of the growth rate, with 1., the imaginary part. 
Values of ,fH are given at  various points. The arrows indicate the direction of decreasing Lw 

growing solutions 

marginal solutions 

damped solutions 

x i  62 

- 

-0.5 - i m 0 = l . 2 5 4  xHo = - 6.828 

FIG. 3(b).-The overstable branch of the resistive dispersion relation, calculated for a type 
(i) q(r)  profile with h = 1.0. 

where I) = -iBlr/(Bsq'"r2)r=rl and ZX = v l / { (Bs /~p)(q" ' r3)}r=,1 .  
The new layer boundary conditions are 
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1:5.46 

*I 

0.5'2.97 resistive overstable mode growing solutions 
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i ' " 

im0=1.474 iHo=-4.531 

(i) q(r)  profile with 6 = $2.5. 
FIG. 3(c).-The overstable branch of the resistive dispersion relation, calculated for a type 

FIG. 4.--The for type (i) 
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r =  r, 

FIG. 5.-A typical type (ii) q(r)  profile. 

where 

di" 5 s j i H  i"-g,; x 6 - 3 - -  on inner edge of layer, 
dx 71 

5 - 0 ;  on outer edge of layer, 

The ordering which makes every term in (22)  and (23) comparable is 

hence the normalized layer equations can be written, 

Note that asymptotic matching to the external solution now appears through the 
quantity / f H  defined by 3.H = S-  ' IH.  

The following analytic ideal dispersion relation can easily be obtained from the 
layer equations after the neglect of the resistive term ; 

4.2. Numerical results 
The layer equations can be solved numerically using an analogous technique to that 

discussed in the previous section. The results obtained for the case of a purely growing 
mode are displayed in Fig. 6. Note that : 

(a) for AH >> S -  ', the resistive growth rate approaches the ideal growth rate asymptot- 
ically ; 
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FIG. 6.-The purely growing branches of the ideal and resistive dispersion relations, cal- 
culated for a type (ii) q(r)  profile. 

(b) for ;IH - S -  l ,  the resistive mode has a correspondingly greater growth rate than 
the ideal mode-both modes having comparable growth rates ; 

(c) the ideal mode is stabilized when ;IH falls below zero, and the purely growing 
resistive mode disappears when iH falls below ; I H 1 ,  where iH1 < 0. Note that 

The results obtained for the case of a complex growth rate are displayed in Fig. 7. 
Note that: 

(a) there is again an overstable resistive mode for values of ;IH lying below A H 1 ,  with 
LH = lH1 the point of bifurcation of the solution; 

(b) there exists a critical 1,, (denoted 3.HO) below which the overstable resistive mode 
is damped. At AH = LHo the mode is marginally stable and oscillatory. Once again 
this result differs markedly from that finite shear layer theory of COPPI et al., 
where resistive instability is predicted for all &, and is therefore inevitable if the 
axial value of q is less than unity. 

l H ,  - O(S-1). 

5 .  CONCLUSIONS 

5.1. Non-monotonic q(r) with q’(rl) = 0 
There are many reasons for believing that this type of q(r)  profile may actually 

occur in a real discharge. One argument is as follows : immediately after a sawtooth 
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$ 
m v, 'I5.' i 

I 

-55 57 -35 82 

-23.17 -77.98 
:-6 027 I 

1.5 
A, = 53/51, - 0.0 

growing solutions I 
I 

' marginal solutions -i 
i I ir, = 0,463 i,, = - 37.869 \ damped solutions 

1 i 
FIG. 7.-The overstable branch of the resistive dispersion relation, calculated for a type (ii) 
q ( r )  profile. i, is the real part of the growth rate, with /I, the imaginary part. Values of xH 

are given at various points. The arrows indicate the direction of decreasing 1,. 

collapse q(r) should be raised above unity everywhere and the temperature profile 
centrally flattened (assuming reconnection has taken place). The consequent large 
temperature gradients at  the inversion radius give rise to enhanced transport there, 
which should eventually lead to a local minimum in q. The whole q(r)  profile will 
subsequently evolve downwards (i.e. 6q will decrease) on a resistive timescale, as a 
result of Ohmic heating. Note, however, that non-monotonic q(r)  profiles are possible 
even if reconnection does not take place, as has been shown by some recent transport 
simulations, e.g. PARAIL and PEREVERZEV (1980) ; PFEIFFER (1985) and DENTON et al. 
(1987). 

In a standard Tokamak the poloidal beta is often small ; we would therefore expect 
6W") < 0 (AH > 0) for a toroidal equilibrium in which q > 1 everywhere. It follows 
that the ideal mode is stable, provided 6q lies above a critical value, 

For realistic equilibria 6q:) is quite small (6q:) - 0.01, say). By the time 6q has evolved 
resistively to zero the ideal growth rate will have risen to a value 

which under realistic conditions is fairly substantial. It is clear that for this type of 
q(r)  profile a small decrease in 6q of order 0.01 can cause the rapid onset of the ideal 
instability. 

Once resistivity is taken into account we find that as 6q is decreased the mode 
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becomes first overstable and then purely unstable. The boundary between overstability 
and pure growth occurs at.6q = 6qt) .  Note that bq:) approaches 6q:) as S -+ a. The 
overstable resistive mode grows when 6qF) < 6q < 6q$“, where (from Fig. 4) 6qp) is 
well approximated by 

In the limit as S -+ CO, bqp) -+ 1.286qt) ; thus we obtain the significant result that, as 
6q is decreased, the band of overstability preceding the pure growth of the mode is 
of non-negligible thickness for all values of S. In fact, as S -+ CO the overstable resistive 
mode transforms into an ideal oscillatory mode, with the real part of the growth rate 
become vanishingly small. We conclude that for large S (S N lo8, say) the charac- 
teristic rapid switch-on of the mode, as bq is decreased slightly, is unaffected. For 
smaller S ( S  < lo5, say), however, the onset of the mode will be preceded by a broad 
band of overstability. 

5 .2 .  Monotonic q(r) with q’(rl) = q”(r,) = 0 
A q(r)  profile with a point of inflexion at  q = 1 was introduced by HASTIE et al. 

(1987) in order to attempt an explanation of the TEXTOR q(r)  observations in which 
q(0) < 1 throughout the whole sawtooth cycle-however it must be admitted that 
such a profile is fairly unlikely to ever occur in a real discharge. It is, nevertheless, a 
very interesting result that by a slight flattening of the q(r)  profile around q = 1, an 
equilibrium that under realistic conditions (6W(T) > 0, %H < 0) would have been 
unstable to either a resistive internal kink mode or a tearing mode can be stabilized 
at high enough S. In fact, the resistive internal kink mode is stable when S > S,, where 

Thus, under realistic conditions a q(r)  profile with a point of inflection at q = 1 is 
completely stable to resistive m = 1, n = 1 modes. 

5 .3 .  Discussion 
Using just the linearized resistive-MHD equations, we have found that the absence 

of shear across the “inner” layer [i.e. q ’ ( r l )  = 01 leads to the appearance of an 
overstable mode for certain ranges of 6W(T), and the disappearance of the tearing 
mode limit as 6W(T) -+ CO. It is, as yet, unclear whether or not these results will persist 
for more realistic layer dynamics. 

The Bussac expression 6 W(’) takes into account the fact that in toroidal geometry 
there is a small m = 2 ,  n = 1 harmonic associated with an m = 1, n = 1 displacement 
eigenfunction. If, however, we allow for finite resistivity at the q = 2 surface (assuming, 
of course, that it lies within the plasma) then poloidal coupling occurs between the 
m = 1 and m = 2 models, and the situation is greatly complicated (BUSSAC et al., 1977 ; 
CONNOR et al., 1988). Note that this effect will only produce significant deviations from 
the results quoted in this paper if the shear around the q = 1 surface is very small. 
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