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ABSTRACT

A theory of the three-wave coupling of triplets of tearing modes in toroidal pinches [i.e., either reversed field pinches (RFPs) or tokamaks]
was proposed by R. Fitzpatrick [Phys. Plasmas 6, 1168 (1999)]. However, this theory only applies to toroidal pinches with negligible equilib-
rium plasma pressure gradients. Such a limitation is particularly inappropriate to RFPs. This paper generalizes the analysis of R. Fitzpatrick
[Phys. Plasmas 6, 1168 (1999)] in order to take the equilibrium pressure gradient into account. However, for the sake of simplicity, a stepped
pressure profile, rather than a continuous profile, is employed. In the limit in which the number of steps becomes very large, the results
obtained from the generalized theory are presumably equivalent to those that would have been achieved using a continuous pressure profile.
The generalized theory is used to investigate the formation of the characteristic toroidally localized pattern of phase-locked m¼ 1 and m¼ 0
tearing modes in RFP plasmas that is known as the “slinky” pattern. The incorporation of the equilibrium plasma pressure into the analysis is
found to be of crucial importance when determining the properties of the pattern. This is the case because the plasma pressure controls the
number of unstable m¼ 1 and m¼ 0 tearing modes, and also significantly affects the strength of three-wave coupling, as well as the phase
relation between the phase-locked m¼ 1 and m¼ 0 modes.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0203908

I. INTRODUCTION

This paper investigates the nonlinear coupling of tearing modes
in reversed field pinches (RFPs). At its most basic level, such coupling
involves a triplet of modes that satisfy the three-wave coupling relation
ðm1; n1Þ þ ðm2; n2Þ ¼ ðm3; n3Þ, where m denotes a poloidal mode
number and n a toroidal mode number. Moreover, the strength of the
coupling characteristically scales as the square of the mode amplitude,
whereas the electromagnetic torques that develop in the plasma as a
consequence of the coupling scale as the cube of the mode amplitude.
Like a tokamak,1 a RFP is an axisymmetric toroidal device that con-
fines a plasma on a set of nested toroidal magnetic flux-surfaces.2,3

However, RFPs have weaker toroidal magnetic fields, relative to the
poloidal field, than tokamaks and are consequently much more unsta-
ble to macroscopic magnetohydrodynamical (MHD) instabilities such
as tearing modes.4–6 Indeed, the saturated amplitude of tearing modes
(relative to the amplitude of the equilibriummagnetic field) is typically,
at least, an order of magnitude greater in RFPs than in tokamaks.
Consequently, the nonlinear coupling of tearing modes is much more
prevalent in RFPs than in tokamaks. For example, the characteristic
relaxation cycle of RFP plasmas, which periodically broadens the

parallel current profile, and thereby maintains the reversal of the toroi-
dal magnetic field, is associated with the nonlinear coupling of m¼ 1
tearing modes, resonant in the plasma core, to m¼ 0 tearing modes,
resonant at the reversal surface (where the equilibrium toroidal mag-
netic field changes direction).7–10 The same coupling leads to the for-
mation of the commonly observed, toroidally localized, phase-locked
pattern of multiple m¼ 1 and m¼ 0 tearing modes that is known as
the slinky pattern.11–13 Note, however, that the nonlinear coupling of
tearing modes has also been observed in tokamak plasmas.14–16 In par-
ticular, nonlinear coupling is inferred to play a role in the triggering of
neoclassical tearing modes in tokamaks,17 which is often associated
with the interaction of two modes that do not couple directly, such as
the (1, 1) and the (4, 3), but could conceivably couple via an intermedi-
ate mode; in this example, the (3, 2). Indeed, a clear observation of this
exact process is described in Ref. 16.

A theory of the three-wave coupling of triplets of tearing modes
in toroidal pinches (i.e., either RFPs or tokamaks) was proposed in
Ref. 18. This theory was subsequently employed to investigate the for-
mation of the slinky pattern in RFPs,19 and the coupling of neoclassical
tearing modes in tokamaks.20 However, the theory has a serious
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limitation. Namely, it only applies to toroidal pinches with negligi-
ble equilibrium plasma pressure gradients. Such a limitation is par-
ticularly inappropriate to RFPs. The aim of this paper is to remove
the limitation, and, thus, to develop a theory of the three-wave cou-
pling of tearing modes in finite-pressure toroidal pinches.
Unfortunately, a direct generalization of the analysis of Ref. 18
using a continuous equilibrium pressure profile is prohibitively dif-
ficult. [This can be appreciated from an examination of Eq. (56),
which illustrates how the inclusion of equilibrium pressure gra-
dients leads to a very large number of additional terms in the linear
eigenmode equation of a given tearing mode.] However, inspired
by recent research,21,22 we have discovered that the analysis of Ref.
18 can be generalized in a relatively straightforward manner on the
assumption that the equilibrium plasma pressure profile is stepped.
Indeed, as described in this paper, in the limit in which the number
of steps becomes very large, results can be achieved that are pre-
sumably equivalent to those that would have been achieved had we
found a way of directly incorporating a continuous pressure profile
into the analysis.

Alternative or complementary theories to that proposed in Ref.
18 were proposed in Refs. 23–26. The theory proposed in Ref. 23 pre-
dicts the same structure of three-wave coupling between tearing mode
triplets as that proposed in Ref. 18, but employs assumptions that are
only valid in tokamaks, and also neglects equilibrium plasma pressure
gradients. The theory presented in Ref. 24 is based on that of Ref. 23,
only applies to tokamaks, and neglects equilibrium plasma pressure
gradients. The theory presented in Ref. 25 seems to imply that three-
wave coupling in RFPs depends crucially on the variation of the mag-
netic field-strength around magnetic flux-surfaces due to toroidicity.
However, as demonstrated in Ref. 18, to lowest order, three-wave cou-
pling in RFPs is a cylindrical effect. Finally, the theory presented in
Ref. 26 is based on that in Ref. 18, but neglects equilibrium plasma
pressure gradients.

This paper is organized as follows. After some preliminary analy-
ses in Sec. II, we introduce the idea of a stepped pressure equilibrium
in Sec. III. In Sec. IV, we give a more complete and self-consistent ver-
sion of the nonlinear mode coupling theory developed in Ref. 18.
Likewise, in Sec. V, we give a more complete and self-consistent ver-
sion of the theory of slinky pattern formation in RFPs that was pre-
sented in Ref. 19. Section VI discusses an example calculation that
highlights the important role that equilibrium plasma pressure plays in
the nonlinear coupling of tearing modes, and especially in the forma-
tion of the slinky pattern, in RFP plasmas. Finally, the paper is summa-
rized in Sec. VII.

II. PRELIMINARY ANALYSIS
A. Plasma equilibrium

Consider a thermonuclear plasma confined in a conventional
toroidal pinch.4 For the case of an RFP, the equilibrium is very well
approximated as a periodic cylinder of circular cross section. Let r, h, z
be right-handed cylindrical coordinates, and let er ¼ rr=jrrj;
eh ¼ rh=jrhj, and ez ¼ rz=jrzj be the corresponding unit vectors.
The system is assumed to be periodic in the z-direction with periodic-
ity length 2pR0, where R0 is the simulated major radius of the plasma.
It is convenient to define the simulated toroidal angle / ¼ z=R0, as
well as the corresponding simulated unit vector e/ ¼ r/=jr/j ¼ ez .
Finally, let a be the minor radius of the plasma.

The equilibrium magnetic field is written

B ¼ BhðrÞ eh þ B/ðrÞ e/: (1)

The equilibrium plasma current density takes the form

l0 J ¼ r� B ¼ �B0
/ eh þ

ðr BhÞ0
r

e/; (2)

where 0 denotes d/dr. Note that

r � B ¼ r � J ¼ 0; (3)

in accordance with Maxwell’s equations and charge conservation, and

ðJ � rÞB� ðB � rÞ J ¼ 0: (4)

The safety-factor profile is written4

qðrÞ ¼ �B/

Bh
; (5)

where

�ðrÞ ¼ r
R0

(6)

is the inverse aspect-ratio profile.
Equilibrium force balance requires that4

J� B ¼ rP; (7)

where P(r) is the equilibrium pressure profile. It follows from Eq. (2)
that

B0
/ ¼ � r

a
Bh � l0 P

0 B/

B2
; (8)

B0
h þ

Bh

r
¼ r

a
B/ � l0 P

0 Bh

B2
; (9)

where rðrÞ is a dimensionless function that specifies the equilibrium
parallel current density. Of course, P ¼ r ¼ 0 in the vacuum region,
r> a, surrounding the plasma. The previous two equations can be
combined to give the force balance constraint,4

0 ¼ l0 P þ B2
h þ B2

/

2

� �0
þB2

h

r
; (10)

as well as

r q0 ¼ 2 q� r
�a

ð�2 þ q2Þ; (11)

where �a ¼ a=R0. The previous equation implies that the safety-factor
profile in a (cylindrical) toroidal pinch is determined solely by the par-
allel current profile and is completely independent of the pressure
profile.

B. Perturbed plasma equilibrium

Let us assume that the plasma equilibrium is stable to rapidly
growing (i.e., growing on timescales comparable to the Alfv�en time)
ideal-MHD modes, but is perturbed by multiple slowly growing (i.e.,
growing on timescales that are much longer than the Alfv�en time) tear-
ing modes.6 It follows that the perturbed plasma equilibrium is gov-
erned by the perturbed force balance equation4,6
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ðJþ jÞ � ðBþ bÞ ¼ rðP þ pÞ: (12)

Here, b, j, and p are the perturbed magnetic field, plasma current den-
sity, and pressure, respectively. The neglect of plasma inertia in the
previous equation is justified because tearing modes evolve on time-
scales that are much longer than the Alfv�en time.6 Furthermore, non-
ideal terms, such as plasma resistivity and viscosity, are much smaller
in magnitude than the leading order terms, and can, therefore, safely
be neglected in the previous equation.4,6 Note that plasma inertia,
resistivity, and viscosity must be taken into account in a number of
radially thin regions of the plasma in which ideal force balance breaks
down6,27 (see Sec. IIIB). We shall asymptotically match our ideal solu-
tions across these regions.6,28,29

Maxwell’s equations (neglecting the displacement current,
because we are dealing with slowly growing perturbations) imply that

r � b ¼ 0; (13)

l0 j ¼ r� b: (14)

It follows from the previous equation that

r � j ¼ 0: (15)

The curl of l0 times Eq. (12) yields

ðl0 j � rÞBþ ðl0 J � rÞ b� ðb � rÞ ðl0 JÞ � ðB � rÞ ðl0 jÞ ¼ A;

(16)

where

A � r� ðl0 j� bÞ ¼ ðb � rÞ ðl0 jÞ � ðl0 j � rÞ b; (17)

and use has been made of Eqs. (3), (4), (13), and (15). The previous
equation implies that

r � A ¼ 0: (18)

(Note, incidentally, that A does not denote the magnetic vector poten-
tial in this paper.)

C. Perturbed quantities

A general perturbed vector quantity associated with multiple tear-
ing modes can be written in the form

aðr; tÞ ¼
X
m;n

am;nðr; tÞ eiðmh�n/Þ; (19)

where

am;nðr; tÞ ¼ am;n
r ðr; tÞ er þ am;n

h ðr; tÞ eh þ am;n
/ ðr; tÞ e/: (20)

Here,m and n are poloidal and toroidal mode numbers, respectively.
Let

Fm;nðrÞ ¼ mBh � n �B/; (21)

Gm;nðrÞ ¼ n �Bh þmB/; (22)

Hm;nðrÞ ¼ m2 þ ðn �Þ2: (23)

The radial component of the (m, n) harmonic of Eq. (16) yields

l0 j
mn
r ¼ �ðGm;nÞ0

Fm;n
bm;n
r þ r

Fm;n
iAm;n

r ; (24)

where use has been made of Eq. (2). Likewise, the h-component of the
(m, n) harmonic of Eq. (16) gives

l0 j
m;n
h ¼ �ðGm;nÞ0

Fm;n
bm;n
h þ Bh

r

� �0ðGm;nÞ0
Fm;n

� B0
/

r

� �0" #
r2

Fm;n
ibm;n

r

þ Bh

r

� �0
r3

ðFm;nÞ2 Am;n
r þ r

Fm;n
iAm;n

h : (25)

Finally, the /-component of the (m, n) harmonic of Eq. (16) yields

l0 j
m;n
/ ¼ �ðGm;nÞ0

Fm;n
bm;n
/ þ B0

/
ðGm;nÞ0
Fm;n

þ r Bh½ �0
r

� �0" #
r

Fm;n
ibm;n

r

þ B0
/

r2

ðFm;nÞ2 Am;n
r þ r

Fm;n
iAm;n

/ : (26)

It is easily verified that

@ðr jm;n
r Þ

@r
þ i ðm jm;n

h � n � jm;n
/ Þ ¼ 0; (27)

as is required by Eq. (15), provided that

@ðr Am;n
r Þ

@r
þ i ðmAm;n

h � n �Am;n
/ Þ ¼ 0; (28)

as is required by Eq. (18).
The (m, n) harmonic of Eq. (13) and the radial component of the

(m, n) harmonic of Eq. (14) yield

@ðr bm;n
r Þ

@r
¼ �i ðmbm;n

h � n � bm;n
/ Þ; (29)

l0 r j
m;n
r ¼ i ðn � bm;n

h þmbm;n
/ Þ; (30)

respectively. The previous two equations can be inverted to give

bm;n
r ðr; tÞ ¼ iwm;nðr; tÞ

r
; (31)

bm;n
h ðr; tÞ ¼ � m

Hm;n

@wm;n

@r
� n �
Hm;n

ðGm;nÞ0
Fm;n

wm;n þ n �
Hm;n

r2

Fm;n
Am;n
r ;

(32)

bm;n
/ ðr; tÞ ¼ n �

Hm;n

@wm;n

@r
� m
Hm;n

ðGm;nÞ0
Fm;n

wm;n þ m
Hm;n

r2

Fm;n
Am;n
r ;

(33)

where use has been made of Eq. (24). Finally, Eqs. (24)–(26) yield

l0 j
m;n
r ðr; tÞ ¼ � ðGm;nÞ0

r Fm;n
iwm;n þ r

Fm;n
iAm;n

r ; (34)

l0 j
m;n
h ðr;tÞ¼ m

Hm;n

ðGm;nÞ0
Fm;n

@wm;n

@r

þ n�
Hm;n

ð Gm;n½ �0Þ2
Fm;n

� r
Bh

r

� �0ðGm;nÞ0
Fm;n

þ r
B0
/

r

� �0" #
wm;n

Fm;n

þ r
Bh

r

� �0
� n�
Hm;n

ðGm;nÞ0
" #

r2

ðFm;nÞ2 A
m;n
r þ r

Fm;n
iAm;n

h ;

(35)
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l0 j
m;n
/ ðr; tÞ ¼ � n �

Hm;n

ðGm;nÞ0
Fm;n

@wm;n

@r

þ m
Hm;n

ð Gm;n½ �0Þ2
Fm;n

� B0
/
ðGm;nÞ0
Fm;n

� r Bh½ �0
r

� �0" #
wm;n

Fm;n

þ B0
/ � m

Hm;n
ðGm;nÞ0

� �
r2

ðFm;nÞ2 Am;n
r þ r

Fm;n
iAm;n

/ :

(36)

The h- and the /-components of the (m, n) harmonics of Eq.
(14) take the respective forms

l0 r j
m;n
h ¼ �i n � bm;n

r � r
@bm;n

/

@r
; (37)

l0 r j
m;n
/ ¼ �imbm;n

r þ @ðr bm;n
h Þ

@r
: (38)

Equations (31)–(38) give

0 ¼ n � ðum;n
r þ Um;n

r Þ � um;n
h wm;n � Um;n

h ; (39)

0 ¼ m ðum;n
r þ Um;n

r Þ � um;n
/ wm;n � Um;n

/ : (40)

Here,

um;n
r ðr; tÞ ¼ @

@r
r

Hm;n

@wm;n

@r

� �
� wm;n

r
þ r
Hm;n

ðGm;nÞ0
Fm;n

� �2
wm;n;

(41)

um;n
h ðrÞ ¼ r

m
Hm;n

ðGm;nÞ0
Fm;n

� �0
þ r2

Bh

r

� �0 ðGm;nÞ0
ðFm;nÞ2 � r

B0
/

r

� �0
r

Fm;n
;

(42)

um;n
/ ðrÞ ¼ � n �

Hm;n

r ðGm;nÞ0
Fm;n

� �0
þ r B0

/
ðGm;nÞ0
ðFm;nÞ2 þ

ðr BhÞ0
r

� �0
r

Fm;n
;

(43)

Um;n
r ðr; tÞ ¼ � r3

Hm;n

ðGm;nÞ0
ðFm;nÞ2 Am;n

r ; (44)

Um;n
h ðr; tÞ ¼ �r

@

@r
m

Hm;n

r2

Fm;n
Am;n
r

� �

� r
Bh

r

� �0
r3

ðFm;nÞ2 Am;n
r � r2

Fm;n
iAm;n

h ; (45)

Um;n
/ ðr; tÞ ¼ @

@r
n �
Hm;n

r3

Fm;n
Am;n
r

� �
� B0

/
r3

ðFm;nÞ2 Am;n
r � r2

Fm;n
iAm;n

/ :

(46)

Equations (39) and (40) require that

m ðum;n
h þ Um;n

h Þ ¼ n � ðum;n
/ þ Um;n

/ Þ; (47)

for self-consistency. In fact, it is easily demonstrated that

mum;n
h ¼ n � um;n

/ ; (48)

and that
mUm;n

h ¼ n �Um;n
/ ; (49)

provided that Eq. (28) is satisfied.

Finally, Eqs. (39) and (40) yield

0 ¼ Hm;n ðum;n
r þ Um;n

r Þ � ðn � um;n
h þmum;n

/ Þ
� ðn �Um;n

h þmUm;n
/ Þ; (50)

which reduces to the nonlinear eigenmode equation

@

@r
f m;n @wm;n

@r

� �
� gm;n wm;n � Vm;n ¼ 0; (51)

where

f m;nðrÞ ¼ r
Hm;n

; (52)

gm;nðrÞ ¼ 1
r
þ r3

Hm;n Fm;n

1
r

Fm;n

r

� �0" #0
� 2mn � ðGm;nÞ0

ðHm;nÞ2 Fm;n

� 2 n � ðGm;nÞ0 Bh

Hm;n ðFm;nÞ2 þ 4mr
Hm;n Fm;n

Bh

r

� �0
; (53)

Vm;nðr; tÞ ¼ 2mn �

ðHm;nÞ2 Fm;n
r2 Am;n

r þ 2 n �Bh

Hm;n ðFm;nÞ2 r2 Am;n
r

� i
r2

Hm;n Fm;n
ðn �Am;n

h þmAm;n
/ Þ: (54)

D. Linear eigenmode equation

If we neglect the nonlinear term (i.e., the term involving Vm;n) in
the general eigenmode equation, (51), then it reduces to the following
linear eigenmode equation:

@

@r
f m;n @wm;n

L

@r

� �
� gm;n wm;n

L ¼ 0: (55)

Here, wm;n
L ðr; tÞ is the linear eigenmode of a tearing perturbation pos-

sessingm periods in h, and n periods in /.
Making use of Eqs. (6), (8), (9), and (21)–(23), the expression for

gm;nðrÞ given in Eq. (53) reduces to

gm;nðrÞ ¼ 1
r
þ 2mn �

ðHm;nÞ2
r
a
� 1
Hm;n

�
r

r
a

� �2

� l0 P
0

B2
þ r l0 P

00

B2

þ r ðl0 P0Þ2
B4

þ 2B2
h l0 P

0

B4

�

þ Gm;n

Hm;n Fm;n

�
r
r0

a
� 2 r

r
a
l0 P

0

B2
þ 2mn �

Hm;n

l0 P
0

B2

þ 2 n �Bh

Fm;n

l0 P
0

B2

�
: (56)

Note that the final term on the right-hand side of the previous equa-
tion ensures that wLðxÞ / jxj�L ; jxj�S , where x ¼ ðr � rm;n

s Þ=rm;n
s ; �L

¼ 1=2� ð1=4þDÞ1=2; �S ¼ 1=2þ ð1=4þDÞ1=2, and D¼ ½ð2l0 P0=
s2 B2

/Þ�r m;n
s

, in the vicinity of a rational surface, r ¼ rm;n
s , at which

Fm;nðrm;n
s Þ ¼ 0. Here, s¼ r q0=q. In fact, the correct result is

D¼ ½ð2l0 P0=s2 B2
/Þ ð1� q2Þ�r m;n

s
, where the additional multiplicative

factor comes from the toroidal curvature of equilibrium magnetic
field-lines.4,30–32 Fortunately, this correction is irrelevant in RFPs,
which are characterized by q� 1.
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III. STEPPED PRESSURE EQUILIBRIUM
A. Control surfaces

As is clear from Eqs. (55) and (56), including a continuous equi-
librium pressure profile in our analysis leads to a great proliferation of
additional terms in the linear eigenmode equation. One approach to
simplifying the analysis is to approximate the equilibrium pressure
profile as a stepped profile,21,22 while still allowing the equilibrium par-
allel current profile to be smooth. Let us define the control surfaces
r¼ ri, for i¼ 0, Iþ 1, where ri < riþ1 for i¼ 0, I, and r0 ¼ 0, rI¼ a,
rIþ1 ¼ b. Here, I> 1 is a positive integer, and b is the minor radius of
a concentric perfectly conducting wall that surrounds the plasma.
Suppose that the equilibrium pressure profile is such that PðrÞ ¼ Pi,
where Pi is a constant for ri < r < riþ1. Note that PI¼ 0 (i.e., the pres-
sure is zero in the vacuum region surrounding the plasma). According
to Eq. (10), B2

h and B
2
/ are both discontinuous across the control surfa-

ces. However, given that the safety-factor profile only depends on the
parallel current profile [see Eq. (11)], which is smooth, the safety-
factor profile must be continuous across the control surfaces, hence,
making use of Eqs. (5) and (10),

lim
d!0

B2
h

� �r¼riþd
r¼ri�d ¼ 2 l0 ðPi � Piþ1Þ �2

�2 þ q2

 !
r¼ri

; (57)

lim
d!0

B2
/

h ir¼riþd

r¼ri�d
¼ 2 l0 ðPi � Piþ1Þ q2

�2 þ q2

 !
r¼ri

; (58)

for i¼ 1, I.
Between the control surfaces, Eqs. (8) and (9) reduce to

B0
/ ¼ � r

a
Bh; (59)

B0
h þ

Bh

r
¼ r

a
B/: (60)

Making use of Eqs. (5), (59), and (60), the safety-factor profile can
determined from the parallel current profile by solving Eq. (11) subject
to the boundary condition

qð0Þ ¼ 2 �a
rð0Þ : (61)

Furthermore, Eqs. (5) and (60) imply that

r B0
h ¼

r q
�a

� 1
� �

Bh; (62)

between the control surfaces. We can solve this equation, subject to the
boundary condition

lim
r!0

Bh

r

� �
¼ B0

qð0ÞR0
; (63)

where B0 is the toroidal magnetic field-strength on the magnetic
axis and also subject to the jump conditions (57) at the control sur-
faces. Once we have determined the equilibrium poloidal magnetic
field profile, BhðrÞ, the equilibrium toroidal magnetic field is speci-
fied by

B/ðrÞ ¼ q Bh

�
: (64)

Finally, if we integrate the linear eigenmode equation (55) across
each control surface, making use of Eqs. (8), (9), (21)–(23), (52), and
(53), then we obtain

lim
d!0

wm;n
L

� �r¼riþd
r¼ri�d¼ 0; (65)

lim
d!0

r
@wm;n

L

@r

� �r¼riþd

r¼ri�d
¼ Jm;n

i wm;n
L ðri; tÞ; (66)

for i¼ 1, I, where

Jm;n
i ¼ Km;nðriÞ lim

d!0

B2
h

� �r¼riþd
r¼ri�d

Bhðri � dÞBhðri þ dÞ ; (67)

Km;nðrÞ ¼ 1
m� n q

"
mþ ðmnqþ n2 �2Þ r

2 n �a
� m
m2 þ n2 �2

� �#

� ðmnqþ n2 �2Þ
ðm� n qÞ2 : (68)

B. Simplified linear eigenmode equation

Between the control surfaces, the linear eigenmode equation,
(55), takes a greatly simplified form in which18

gm;nðrÞ ¼ 1
r
þ 2mn �

ðHm;nÞ2
r
a
� r
Hm;n

r
a

� �2

þ r Gm;n

Hm;n Fm;n

r0

a
: (69)

[See Eq. (56).]
As is clear from Eqs. (52) and (69), the simplified linear eigen-

mode equation is singular at the equilibrium magnetic flux-surface,
r ¼ rm;n

s , at which

Fm;nðrm;n
s Þ ¼ 0; (70)

assuming that 0 < rm;n
s < a. It follows from Eqs. (5) and (21) that the

safety-factor takes the rational value,

qðrm;n
s Þ ¼ m

n
; (71)

at the so-called (m, n) rational surface. The singular behavior of the lin-
ear eigenmode equation at the rational surface is indicative of a break-
down of the perturbed force balance relation, (12), in the immediate
vicinity of the surface, and is ultimately resolved by incorporating
plasma inertia, resistivity, and viscosity into the analysis.27

The most general solution of the simplified linear eigenmode
equation in the immediate vicinity of the (m, n) rational surface is27

wm;n
L ðx; tÞ ¼ Cm;n

l ðtÞ 1þ km;n x ðln jxj � 1Þ þ Oðx2 ln jxjÞ� �
þ Cm;n

s ðtÞ x þOðx2Þ� �
; (72)

where

x ¼ r � rm;n
s

rm;n
s

; (73)

km;n ¼ r Gm;n

ðFm;nÞ0
r0

a

" #
r¼r m;n

s

: (74)

(Note that the Mercier indices take the simplified values �L ¼ 0 and
�S ¼ 1 on rational surfaces lying between the control surfaces.) Here,
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Cm;n
l and Cm;n

s are known as the coefficients of the large and small sol-
utions, respectively.

As is well known, if we neglect twisting parity modes, as is rea-
sonable,29 the coefficient of the large solution must be continuous
across the (m, n) rational surface, whereas the coefficient of the small
solutions may be discontinuous.27–29,33 The discontinuity in the coeffi-
cient of the small solution is associated with a helical current sheet
(with m periods in h, and n periods in /) that flows parallel to the
equilibrium magnetic field in the immediate vicinity of the rational
surface. Thus, the (m, n) linear eigenmode can be characterized by the
following two complex parameters:28

Wm;nðtÞ ¼ Cm;n
l ðtÞ

Hm;nðrm;n
s Þ� �1=2 ; (75)

DWm;nðtÞ ¼
limd!0 Cm;n

s ðtÞ� �r¼r m;n
s þd

r¼r m;n
s �d

Hm;nðrm;n
s Þ� �1=2 : (76)

Here, Wm;nðtÞ is the reconnected helical magnetic flux (divided by
p2 R0) at the (m, n) rational surface, whereas DWm;nðtÞ parameterizes
the amplitude and phase of the current sheet.

Let

wm;n
L ðr; tÞ ¼ Wm;nðtÞ ŵm;nðrÞ; (77)

where ŵ
m;nðrÞ is a real solution of

d
dr

f m;n dŵ
m;n

dr

 !
� gm;n ŵ

m;n ¼ 0 (78)

[see Eq. (55)], with f m;nðrÞ and gm;nðrÞ specified by Eqs. (52) and (69),
respectively, that is continuous across the (m, n) rational surface, is
subject to the normalization constraint

ŵ
m;nðrm;n

s Þ ¼ 1; (79)

and satisfies the jump conditions

lim
d!0

ŵ
m;n

h ir¼riþd

r¼ri�d
¼ 0; (80)

lim
d!0

r
dŵ

m;n

dr

" #r¼riþd

r¼ri�d

¼ Jm;n
i ŵ

m;nðriÞ; (81)

for i¼ 1, I, at the control surfaces [see Eqs. (65) and (66)].
When written in terms of Wm;nðtÞ and ŵ

m;nðrÞ, the linearized
magnetic field and plasma current density perturbations associated
with an (m, n) tearing mode take the forms [see Eqs. (21)–(23), (31)–
(36), (59), and (60)]18

bm;n
rL ðr; tÞ ¼ iWm;nðtÞ b̂m;n

r ðrÞ; (82)

bm;n
hL ðr; tÞ ¼ Wm;nðtÞ b̂m;n

h ðrÞ; (83)

bm;n
/L ðr; tÞ ¼ Wm;nðtÞ b̂m;n

/ ðrÞ; (84)

l0 j
m;n
rL ðr; tÞ ¼ iWm;nðtÞ ĵm;n

r ðrÞ; (85)

l0 j
m;n
hL ðr; tÞ ¼ Wm;nðtÞ ĵm;n

h ðrÞ; (86)

l0 j
m;n
/L ðr; tÞ ¼ Wm;nðtÞ ĵm;n

/ ðrÞ; (87)

where18

b̂
m;n

r ðrÞ ¼ ŵ
m;n

r
; (88)

b̂
m;n

h ðrÞ ¼ � m
Hm;n

�
ŵ

m;n
	0

þ n �
Hm;n

r
a
ŵ

m;n
; (89)

b̂
m;n

/ ðrÞ ¼ n �
Hm;n

�
ŵ

m;n
	0

þ m
Hm;n

r
a
ŵ

m;n
; (90)

ĵ
m;n
r ðrÞ ¼ r

a
ŵ

m;n

r
; (91)

ĵ
m;n
h ðrÞ ¼ r

a
� m
Hm;n

�
ŵ

m;n
	0

þ n �
Hm;n

r
a
ŵ

m;n
� �

� Bh

Fm;n

r0

a
ŵ

m;n
;

(92)

ĵ
m;n
/ ðrÞ ¼ r

a
n �
Hm;n

�
ŵ

m;n
	0

þ m
Hm;n

r
a
ŵ

m;n
� �

� B/

Fm;n

r0

a
ŵ

m;n
: (93)

C. Spatial boundary conditions

Close to the magnetic axis (i.e., r ! 0), the normalized linear
eigenmode equation, (78), reduces to

r
d
dr

r
dŵ

m;n

dr

 !
�m2 ŵ

m;n ¼ 0: (94)

Here, use has been made of Eqs. (52) and (69), as well as the fact that
r, Hm;n; Gm;n / r0, and r0; Fm;n / r, as r ! 0. Thus, the solution
that is well behaved at the magnetic axis satisfies the boundary
condition

d ln ŵ
m;n

d ln r

 !
r¼0

¼ jmj: (95)

However, for the special case m¼ 0, Hm;n / r2, and the boundary
condition becomes

d ln ŵ
0;n

d ln r

 !
r¼0

¼ 2: (96)

In the vacuum region outside the plasma, r> a (where r¼ 0),
the normalized linear eigenmode equation, (78), reduces to

r
d
dr

r
m2 þ n2 �2

dŵ
m;n

dr

 !
� ŵ

m;n ¼ 0; (97)

where use has been made of Eqs. (23), (52), and (69). Let

vm;nðrÞ ¼ r
m2 þ n2 �2

dŵ
m;n

dr
: (98)

It follows from Eq. (97) that:

ŵ
m;nðrÞ ¼ r

dvm;n

dr
; (99)

and

z2
d2vm;n

dz2
þ z

dvm;n

dz
� ðm2 þ z2Þ vm;n ¼ 0; (100)
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where z ¼ n �. The physical boundary condition at the perfectly con-
ducting wall surrounding the plasma is

bm;n
rL ðb; tÞ ¼ 0; (101)

which, from Eqs. (82) and (88), implies that

ŵ
m;nðbÞ ¼ 0: (102)

It follows from Eq. (99) that

dvm;nðbÞ
dr

¼ 0: (103)

Hence, according to Eq. (100), in the vacuum region surrounding the
plasma (a � r � b),

vm;nðrÞ ¼ A Imðn �ÞK 0
mðn �bÞ � Kmðn �Þ I0mðn �bÞ

� �
; (104)

where ImðzÞ; KmðzÞ are modified Bessel functions, I0mðzÞ ¼ dIm=dz;
K 0
mðzÞ ¼ dKm=dz; �b ¼ b=R0, and A is an arbitrary constant.

Equation (99) yields

ŵ
m;nðrÞ ¼ An � I0mðn �ÞK 0

mðn �bÞ � K 0
mðn �Þ I0mðn �bÞ

� �
: (105)

The previous two equations can be combined with Eq. (98) to give the
following boundary condition at the edge of the plasma:

d ln ŵ
m;n

d ln r

 !
r¼a

¼m2 þ n2 �2a
n �a

Imðn �aÞK 0
mðn �bÞ �Kmðn �aÞ I0mðn �bÞ

I0mðn �aÞK 0
mðn �bÞ �K 0

mðn �aÞ I0mðn �bÞ
:

(106)

The continuous solution of the normalized linear eigenmode
equation, (78), that satisfies the boundary conditions (95) and (106), as
well as the normalizing constraint (79), and the jump conditions (80)
and (81), is unique, and, in general, possesses a gradient discontinuity
at the (m, n) rational surface. This discontinuity is conveniently
parameterized by the real dimensionless parameter27,28

Dm;n ¼ r
dŵ

m;n

dr

" #r¼r m;n
s þ

r¼r m;n
s �

: (107)

According to conventional analysis, the (m, n) tearing mode is unstable
when Dm;n > 0 and is stable otherwise.27,34 Moreover, an unstable
tearing mode eventually saturates at an amplitude that is such that the
width of the magnetic island chain [see Eq. (175)] that forms at the
rational surface is roughly proportional to Dm;n.35–39 Note that if there
is no (m, n) rational surface in the plasma, then the only solution to
Eq. (78) that satisfies the boundary conditions (95) and (106) is

ŵ
m;nðrÞ ¼ 0 for 0 � r � a.

IV. NONLINEAR MODE COUPLING THEORY
A. Nonlinear coupling coefficients

Consider the nonlinear coupling of three tearing modes with
poloidal and toroidal mode numbers (m1, n1), and (m2, n2), and (m3,
n3), where

m3 ¼ m1 þm2; (108)

n3 ¼ n1 þ n2: (109)

Let us calculate the various nonlinear coupling coefficients from Eq.
(17) using the linear eigenfunctions.

Making use of Eqs. (17) and (82)–(87),

Am3 ;n3
r ðr; tÞ ¼ 1

2
Wm1;n1 Wm2 ;n2

�
� b̂

m1 ;n1
r

d̂j
m2 ;n2
r

dr
� b̂

m2 ;n2
r

d̂j
m1 ;n1
r

dr
þ ĵ

m1 ;n1
r

db̂
m2 ;n2
r

dr

þ ĵ
m2;n2
r

db̂
m1 ;n1
r

dr
� b̂

m1 ;n1
h

m2

r
ĵ
m2 ;n2
r � b̂

m2 ;n2
h

m1

r
ĵ
m1;n1
r þ ĵ

m1 ;n1
h

m2

r
b̂
m2;n2
r

þ ĵ
m2;n2
h

m1

r
b̂
m1 ;n1
r þ b̂

m1 ;n1
/

n2 �
r

ĵ
m2 ;n2
r þ b̂

m2 ;n2
/

n1 �
r

ĵ
m1;n1
r � ĵ

m1 ;n1
/

n2 �
r

b̂
m2 ;n2
r � ĵ

m2;n2
/

n1 �
r

b̂
m1;n1
r

�
: (110)

Hence, it follows from Eqs. (88)–(93) that18

Am3 ;n3
r ðr; tÞ ¼ � 1

2
Wm1;n1 Wm2 ;n2 r

0

a
ŵ

m1 ;n1
ŵ

m2 ;n2

r2
ðFm3 ;n3Þ2

Fm1 ;n1 Fm2 ;n2
: (111)

Analogous calculations reveal that

Am1 ;n1
r ðr; tÞ ¼ � 1

2
ðWm2 ;n2Þ	 Wm3 ;n3 r

0

a
ŵ

m2 ;n2
ŵ

m3 ;n3

r2
ðFm1 ;n1Þ2

Fm2 ;n2 Fm3 ;n3
; (112)

Am2 ;n2
r ðr; tÞ ¼ � 1

2
Wm3;n3 ðWm1 ;n1Þ	 r0

a
ŵ

m3 ;n3
ŵ

m1 ;n1

r2
ðFm2 ;n2Þ2

Fm3 ;n3 Fm1 ;n1
: (113)

Making use of Eqs. (17) and (82)–(87),
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Am3 ;n3
h ðr; tÞ ¼ 1

2
Wm1;n1 Wm2;n2 i

�
b̂
m1 ;n1
r r

dð̂jm2;n2
h =rÞ
dr

þ b̂
m2 ;n2
r r

dð̂jm1 ;n1
h =rÞ
dr

� ĵ
m1 ;n1
r r

dðb̂m2 ;n2
h =rÞ
dr

� ĵ
m2;n2
r r

dðb̂m1;n1
h =rÞ
dr

þ b̂
m1 ;n1
h

m2

r
ĵ
m2 ;n2
h þ b̂

m2 ;n2
h

m1

r
ĵ
m1;n1
h � ĵ

m1 ;n1
h

m2

r
b̂
m2;n2
h � ĵ

m2 ;n2
h

m1

r
b̂
m1 ;n1
h � b̂

m1 ;n1
/

n2 �
r

ĵ
m2;n2
h

� b̂
m2 ;n2
/

n1 �
r

ĵ
m1;n1
h þ ĵ

m1 ;n1
/

n2 �
r

b̂
m2 ;n2
h þ ĵ

m2 ;n2
/

n1 �
r

b̂
m1 ;n1
h

�
: (114)

Hence, it follows from Eqs. (88)–(93) that18

Am3 ;n3
h ðr; tÞ ¼ 1

2
Wm1 ;n1 Wm2 ;n2 i

"
r0

a
ŵ

m1 ;n1 ðŵm2;n2Þ0
r

n3 �Gm2 ;n2

Hm2;n2 Fm1;n1
þ r0

a
ŵ

m2 ;n2 ðŵm1 ;n1Þ0
r

n3 �Gm1;n1

Hm1 ;n1 Fm2 ;n2

þ r0

a
r
a
n3 � ŵ

m1 ;n1
ŵ

m2 ;n2

r
Fm1 ;n1

Hm1 ;n1 Fm2;n2
þ Fm2 ;n2

Hm2 ;n2 Fm1 ;n1

� �
�
�
r0

a
ŵ

m1;n2
ŵ

m2;n2

r
Bh Fm3 ;n3

Fm1 ;n1 Fm2 ;n2

�0#
: (115)

Analogous calculations reveal that

Am1 ;n1
h ðr; tÞ ¼ 1

2
ðWm2 ;n2Þ	 Wm3 ;n3 i

"
r0

a
ŵ

m2 ;n2 ðŵm3 ;n3Þ0
r

n1 �Gm3 ;n3

Hm3;n3 Fm2 ;n2
þ r0

a
ŵ

m3 ;n3 ðŵm2 ;n2Þ0
r

n1 �Gm2;n2

Hm2 ;n2 Fm3 ;n3

þ r0

a
r
a
n1 � ŵ

m2 ;n2
ŵ

m3 ;n3

r
Fm2 ;n2

Hm2 ;n2 Fm3;n3
þ Fm3 ;n3

Hm3 ;n3 Fm2 ;n2

� �
�
�
r0

a
ŵ

m2;n2
ŵ

m3;n3

r
Bh Fm1 ;n1

Fm2 ;n2 Fm3 ;n3

�0#
; (116)

and

Am2 ;n2
h ðr; tÞ ¼ 1

2
ðWm1 ;n1Þ	 Wm3 ;n3 i

"
r0

a
ŵ

m3 ;n3 ðŵm1 ;n1Þ0
r

n2 �Gm1 ;n1

Hm1;n1 Fm3 ;n3
þ r0

a
ŵ

m1 ;n1 ðŵm3 ;n3Þ0
r

n2 �Gm3;n3

Hm3 ;n3 Fm1 ;n1

þ r0

a
r
a
n2 � ŵ

m3 ;n3
ŵ

m1 ;n1

r
Fm3 ;n3

Hm3 ;n3 Fm1;n1
þ Fm1 ;n1

Hm1 ;n1 Fm3 ;n3

� �
�
�
r0

a
ŵ

m3;n3
ŵ

m1;n1

r
Bh Fm2 ;n2

Fm3 ;n3 Fm1 ;n1

�0#
: (117)

Making use of Eqs. (17) and (82)–(87),

Am3;n3
/ ðr; tÞ ¼ 1

2
Wm1;n1 Wm2;n2 i

�
b̂
m1 ;n1
r

d̂j
m2 ;n2
/

dr
þ b̂

m2;n2
r

d̂j
m1 ;n1
/

dr
� ĵ

m1 ;n1
r

db̂
m2;n2
/

dr
� ĵ

m2 ;n2
r

db̂
m1;n1
/

dr
þ b̂

m1;n1
h

m2

r
ĵ
m2;n2
/

þ b̂
m2 ;n2
h

m1

r
ĵ
m1 ;n1
/ � ĵ

m1 ;n1
h

m2

r
b̂
m2;n2
/ � ĵ

m2 ;n2
h

m1

r
b̂
m1 ;n1
/ � b̂

m1 ;n1
/

n2 �
r

ĵ
m2;n2
/ � b̂

m2;n2
/

n1 �
r

ĵ
m1 ;n1
/

þ ĵ
m1;n1
/

n2 �
r

b̂
m2 ;n2
/ þ ĵ

m2 ;n2
/

n1 �
r

b̂
m1;n1
/

�
: (118)

Hence, it follows from Eqs. (88)–(93) that18

Am3 ;n3
/ ðr; tÞ ¼ 1

2
Wm1 ;n1 Wm2 ;n2 i

"
r0

a
ŵ

m1 ;n1 ðŵm2;n2Þ0
r

m3 Gm2;n2

Hm2;n2 Fm1;n1
þ r0

a
ŵ

m2 ;n2 ðŵm1 ;n1Þ0
r

m3 Gm1 ;n1

Hm1 ;n1 Fm2 ;n2

þ r0

a
r
a
m3 ŵ

m1 ;n1
ŵ

m2 ;n2

r
Fm1;n1

Hm1 ;n1 Fm2 ;n2
þ Fm2;n2

Hm2;n2 Fm1 ;n1

� �
� 1

r
r0

a
ŵ

m1 ;n1
ŵ

m2 ;n2 B/ Fm3 ;n3

Fm1;n1 Fm2;n2

� �0#
: (119)

Analogous calculations reveal that

Am1 ;n1
/ ðr; tÞ ¼ 1

2
ðWm2 ;n2Þ	 Wm3 ;n3 i

"
r0

a
ŵ

m2 ;n2 ðŵm3 ;n3Þ0
r

m1 Gm3;n3

Hm3;n3 Fm2 ;n2
þ r0

a
ŵ

m3 ;n3 ðŵm2 ;n2Þ0
r

m1 Gm2 ;n2

Hm2 ;n2 Fm3 ;n3

þ r0

a
r
a
m1 ŵ

m2 ;n2
ŵ

m3 ;n3

r
Fm2;n2

Hm2 ;n2 Fm3 ;n3
þ Fm3;n3

Hm3;n3 Fm2 ;n2

� �
� 1

r
r0

a
ŵ

m2 ;n2
ŵ

m3 ;n3 B/ Fm1 ;n1

Fm2;n2 Fm3;n3

� �0#
; (120)

and
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Am2 ;n2
/ ðr; tÞ ¼ 1

2
Wm3 ;n3 ðWm1 ;n1Þ	 i

"
r0

a
ŵ

m3 ;n3 ðŵm1 ;n1Þ0
r

m2 Gm1;n1

Hm1;n1 Fm3 ;n3
þ r0

a
ŵ

m1 ;n1 ðŵm3 ;n3Þ0
r

m2 Gm3 ;n3

Hm3 ;n3 Fm1 ;n1

þ r0

a
r
a
m2 ŵ

m3 ;n3
ŵ

m1 ;n1

r
Fm3;n3

Hm3 ;n3 Fm1 ;n1
þ Fm1;n1

Hm1;n1 Fm3 ;n3

� �
� 1

r
r0

a
ŵ

m3 ;n3
ŵ

m1 ;n1 B/ Fm2 ;n2

Fm3;n3 Fm1;n1

� �0#
: (121)

Note that the nonlinear coupling coefficients are all zero in the
vacuum region surrounding the plasma (where r0 ¼ 0). This is to be
expected because the nonlinear coupling is generated by the j� b force
density, and j ¼ 0 in a vacuum.

Finally, it is easily verified, from Eqs. (111)–(113), (115)–(117),
and (119)–(121), that the self-consistency constraint (28) is separately
satisfied for ðm; nÞ ¼ ðm1; n1Þ or (m2, n2) or (m3, n3).

B. Electromagnetic torques

The flux-surface integrated poloidal electromagnetic torque act-
ing on the plasma can be written as

Thðr; tÞ ¼
þ þ

r ðJþ jÞ � ðBþ bÞ½ � � eh r dhR0 d/

¼ R0

þ þ
r2 j� b � eh dh d/

¼ p2 R0

l0

@

@r

X
m;n

Xm;n
h ðr; tÞ

� �
; (122)

where

Xm;n
h ðr; tÞ ¼ r2 bm;n

r ðbm;n
h Þ	 þ ðbm;n

r Þ	 bm;n
h

� �
; (123)

and use has been made Eqs. (13), (14), and (19). Note that equilib-
rium terms make no contribution to the torque. Moreover, linear
terms average to zero over a flux-surface. Hence, we are just
left with nonlinear terms. Likewise, the flux-surface integrated
toroidal electromagnetic torque acting on the plasma can be writ-
ten as

T/ðr; tÞ ¼
þ þ

R0 ðJþ jÞ � ðBþ bÞ½ � � e/ r dhR0 d/

¼ R2
0

þ þ
r j� b � e/ dh d/

¼ � p2 R0

l0

@

@r

X
m;n

Xm;n
/ ðr; tÞ

� �
; (124)

where

Xm;n
/ ðr; tÞ ¼ �r R0 bm;n

r ðbm;n
/ Þ	 þ ðbm;n

r Þ	 bm;n
/

h i
: (125)

Making use of Eqs. (23), (31)–(33), and (52), we find that

Xm;n
h ðr; tÞ ¼ i m f m;n @wm;n

@r
ðwm;nÞ	 � n � r3 Am;n

r ðwm;nÞ	
Hm;n Fm;n

� �
þ c:c:;

(126)

Xm;n
/ ðr; tÞ ¼ i n f m;n @wm;n

@r
ðwm;nÞ	 þmr2 R0 Am;n

r ðwm;nÞ	
Hm;n Fm;n

� �
þ c:c::

(127)

Thus, it follows from Eq. (51) that

@Xh

@r
¼ imVm;n ðwm;nÞ	 � i

@

@r
n � r3 Am;n

r ðwm;nÞ	
Hm;n Fm;n

� �
þ c:c:; (128)

@X/

@r
¼ i nVm;n ðwm;nÞ	 þ i

@

@r
m r2 R0 Am;n

r ðwm;nÞ	
Hm;n Fm;n

� �
þ c:c::

(129)

Here, we have made use of the fact that f m;nðrÞ and gm;nðrÞ are real
functions.

Making use of Eqs. (54), (77), (111)–(113), (115)–(117), and
(119)–(121), the previous two equations yield18

@Xm1;n1
h

@r
¼ Im ðWm1 ;n1 Wm2 ;n2Þ	 Wm3 ;n3

� �

� �m1 sþ r0

a
ŵ

m1;n1
ŵ

m2;n2
ŵ

m3 ;n3
r B/

Fm2;n2 Fm3;n3

 !02
4

3
5
; (130)

@Xm2;n2
h

@r
¼ Im ðWm1 ;n1 Wm2 ;n2Þ	 Wm3 ;n3

� �

� �m2 sþ r0

a
ŵ

m1;n1
ŵ

m2;n2
ŵ

m3 ;n3
r B/

Fm1;n1 Fm3;n3

 !02
4

3
5
; (131)

@Xm3;n3
h

@r
¼ Im ðWm1 ;n1 Wm2 ;n2Þ	 Wm3 ;n3

� �

� m3 s� r0

a
ŵ

m1;n1
ŵ

m2;n2
ŵ

m3 ;n3
r B/

Fm1;n1 Fm2;n2

 !02
4

3
5
; (132)

and

@Xm1;n1
/

@r
¼ Im ðWm1 ;n1 Wm2 ;n2Þ	 Wm3 ;n3

� �

� �n1 sþ r0

a
ŵ

m1 ;n1
ŵ

m2 ;n2
ŵ

m3 ;n3
r Bh

� Fm2 ;n2 Fm3 ;n3

 !02
4

3
5
; (133)

@Xm2;n2
/

@r
¼ Im ðWm1 ;n1 Wm2 ;n2Þ	 Wm3 ;n3

� �

� �n2 sþ r0

a
ŵ

m1 ;n1
ŵ

m2 ;n2
ŵ

m3 ;n3
r Bh

� Fm1 ;n1 Fm3 ;n3

 !02
4

3
5
; (134)
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@Xm3 ;n3
/

@r
¼ Im ðWm1;n1 Wm2;n2Þ	 Wm3;n3

� �

� n3 s� r0

a
ŵ

m1;n1
ŵ

m2;n2
ŵ

m3;n3
r Bh

� Fm1 ;n1 Fm2 ;n2

 !02
4

3
5
; (135)

where18

sðrÞ ¼ r0

a

(
r ðŵm1 ;n1Þ0 ŵm2;n2

ŵ
m3;n3 Gm1 ;n1

Hm1;n1 Fm2;n2 Fm3 ;n3

þ r ðŵm2 ;n2Þ0 ŵm3 ;n3
ŵ

m1 ;n1 Gm2 ;n2

Hm2 ;n2 Fm3 ;n3 Fm1 ;n1

þ r ðŵm3 ;n3Þ0 ŵm1 ;n1
ŵ

m2 ;n2 Gm3 ;n3

Hm3 ;n3 Fm1 ;n1 Fm2 ;n2

þ r
r
a
ŵ

m1;n1
ŵ

m2;n2
ŵ

m3;n3
�

Fm1;n1

Hm1;n1 Fm2;n2 Fm3 ;n3

þ Fm2;n2

Hm2;n2 Fm3 ;n3 Fm1 ;n1
þ Fm3;n3

Hm3;n3 Fm1 ;n1 Fm2 ;n2

�

þ ŵ
m1 ;n1

ŵ
m2;n2

ŵ
m3;n3 2Bh B/ � r ðr=aÞ ðB2

h þ B2
/Þ

Fm1 ;n1 Fm2 ;n2 Fm3;n3

� �)
:

(136)

Let

Xhðr; tÞ ¼ Xm1 ;n1
h þ Xm2 ;n2

h þ Xm3;n3
h ; (137)

X/ðr; tÞ ¼ Xm1 ;n1
/ þ Xm2;n2

/ þ Xm3;n3
/ : (138)

According to Eqs. (122) and (124)

Thðr; tÞ ¼ p2 R0

l0

@Xh

@r
; (139)

T/ðr; tÞ ¼ � p2 R0

l0

@X/

@r
: (140)

However, it follows from Eqs. (130)–(135) that

@Xh

@r
¼ @X/

@r
¼ 0; (141)

where use has been made of Eqs. (21), (108), and (109). Hence, we
deduce that zero flux-surface averaged electromagnetic torque is
exerted throughout the bulk of the plasma as a consequence of the
nonlinear coupling of tearing modes. This is the expected result
because it is obvious from Eqs. (122) and (124) that zero flux-surface
averaged electromagnetic torque can be exerted in any region of the
plasma governed by the perturbed force balance equation, (12), given
that Pþ p is a single-valued function of h and /.

C. Localized electromagnetic torques

The previous demonstration that the nonlinear coupling of tear-
ing modes gives rise to zero flux-surface averaged electromagnetic tor-
que is valid in all regions of the plasma governed by Eq. (12).
However, this equation breaks down in the immediate vicinity of the
rational surfaces associated with the three coupled modes, so it is still
possible that localized electromagnetic torques can develop at these
surfaces. The fact that (the linearized form of) ðwm;nÞ0ðr; tÞ is

discontinuous (in r) across the (m, n) mode rational surface (see Sec.
III B), whereas wm;nðr; tÞ, the wm0;n0 ðr; tÞ, and the ðwm0;n0 Þ0ðr; tÞ are
continuous (where m0; n0 6¼ m, n), implies from Eqs. (31)–(33), (123),
and (125) that (to lowest order) Xm;n

h ðr; tÞ and Xm;n
/ ðr; tÞ are also dis-

continuous across this surface, whereas the Xm0 ;n0
h ðr; tÞ and Xm0;n0

/ ðr; tÞ
are continuous. Thus, Eqs. (122) and (124) yield

Thðr; tÞ ¼
X
m;n

dThðtÞ dðr � rm;n
s Þ; (142)

T/ðr; tÞ ¼
X
m;n

dT/ðtÞ dðr � rm;n
s Þ; (143)

where

dTm;n
h ðtÞ ¼ p2 R0

l0
lim
d!0

Xm;n
h ðr; tÞ� �r¼r m;n

s þd
r¼r m;n

s �d; (144)

dTm;n
/ ðtÞ ¼ � p2 R0

l0
lim
d!0

Xm;n
/ ðr; tÞ

h ir¼r m;n
s þd

r¼r m;n
s �d

: (145)

Here, it is understood that the delta functions appearing in Eqs. (142)
and (143) represent radially thin regions, centered on each coupled
rational surface, in which the perturbed force balance equation, Eq.
(12), breaks down.

Now, the boundary conditions on the linearized tearing eigen-
functions discussed in Sec. III C suggest that Xm;n

h ðr; tÞ and Xm;n
/ ðr; tÞ

(which are constructed from the linear eigenfunctions) are zero at
r¼ 0 and r¼ b. Thus, Eq. (130) can be integrated to give

Xm1;n1
h ðr; tÞ ¼ Im ðWm1 ;n1 Wm2;n2Þ	 Wm3;n3

� �
� �m1

ðr
0
sðr0Þ dr0 þ r

a
ŵ

m1 ;n1
ŵ

m2 ;n2
ŵ

m3 ;n3
r B/

Fm2 ;n2 Fm3;n3

" #
;

(146)

for 0 � r � rm;n
s , and

Xm1;n1
h ðr; tÞ ¼ Im ðWm1;n1 Wm2;n2Þ	 Wm3;n3

� �
� m1

ðb
r
sðr0Þ dr0 þ r

a
ŵ

m1;n1
ŵ

m2;n2
ŵ

m3 ;n3
r B/

Fm2;n2 Fm3;n3

" #
;

(147)

for rm;n
s � r � b. Clearly,18

lim
d!0

Xm1;n1
h ðr; tÞ� �r¼r m1 ;n1

s þd
r¼r m1 ;n1

s �d

¼ Im ðWm1 ;n1 Wm2 ;n2Þ	 Wm3 ;n3
� �

m1

ða
0
sðrÞ dr: (148)

Note that we can change the upper limit of integration of the integral
in the previous expression from b to a, because sðrÞ ¼ 0 in the vac-
uum region surrounding the plasma (where r0 ¼ 0). Similarly, integra-
tion of Eqs. (131)–(135) yields

lim
d!0

Xm2;n2
h ðr; tÞ� �r¼r m2 ;n2

s þd
r¼r m2 ;n2

s �d

¼ Im ðWm1 ;n1 Wm2 ;n2Þ	 Wm3 ;n3
� �

m2

ða
0
sðrÞ dr; (149)
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lim
d!0

Xm3 ;n3
h ðr; tÞ� �r¼r m3 ;n3

s þd
r¼r m3 ;n3

s �d

¼ �Im ðWm1;n1 Wm2;n2Þ	 Wm3;n3
� �

m3

ða
0
sðrÞ dr; (150)

lim
d!0

Xm1 ;n1
/ ðr; tÞ

h ir¼r m1 ;n1
s þd

r¼r m1 ;n1
s �d

¼ Im ðWm1;n1 Wm2 ;n2Þ	 Wm3 ;n3
� �

n1

ða
0
sðrÞ dr; (151)

lim
d!0

Xm2 ;n2
/ ðr; tÞ

h ir¼r m2 ;n2
s þd

r¼r m2 ;n2
s �d

¼ Im ðWm1;n1 Wm2 ;n2Þ	 Wm3 ;n3
� �

n2

ða
0
sðrÞ dr; (152)

lim
d!0

Xm3 ;n3
/ ðr; tÞ

h ir¼r m3 ;n3
s þd

r¼r m3 ;n3
s �d

¼ �Im ðWm1;n1 Wm2 ;n2Þ	 Wm3 ;n3
� �

n3

ða
0
sðrÞ dr: (153)

The previous analysis suggests that18

dTm1;n1
h ðtÞ¼p2R0

l0
Im ðWm1 ;n1 Wm2;n2Þ	Wm3 ;n3
� �

m1 J
m1;n1 ;m2 ;n2;m3;n3ðaÞ;

(154)

dTm2;n2
h ðtÞ¼ p2R0

l0
Im ðWm1;n1 Wm2 ;n2Þ	Wm3 ;n3
� �

m2 J
m1;n1 ;m2 ;n2;m3 ;n3ðaÞ;

(155)

dTm3 ;n3
h ðtÞ¼�p2R0

l0
Im ðWm1 ;n1Wm2 ;n2Þ	Wm3 ;n3
� �

m3J
m1 ;n1;m2 ;n2 ;m3 ;n3ðaÞ;

(156)

and

dTm1;n1
/ ðtÞ¼�p2R0

l0
Im ðWm1 ;n1Wm2;n2Þ	Wm3 ;n3
� �

n1 J
m1 ;n1;m2 ;n2 ;m3 ;n3ðaÞ;

(157)

dTm2;n2
/ ðtÞ¼�p2R0

l0
Im ðWm1 ;n1Wm2;n2Þ	Wm3 ;n3
� �

n2 J
m1 ;n1;m2 ;n2 ;m3 ;n3ðaÞ;

(158)

dTm3;n3
/ ðtÞ¼p2R0

l0
Im ðWm1;n1 Wm2 ;n2Þ	Wm3 ;n3
� �

n3 J
m1;n1 ;m2 ;n2;m3 ;n3ðaÞ;

(159)

where

Jm1 ;n1 ;m2 ;n2 ;m3;n3ðrÞ ¼
ðr
0
sðr0Þ dr0 (160)

is termed the overlap integral. Note, incidentally, that the expressions
for the nonlinear torques given in Ref. 18 erroneously differ from the
expressions (154)–(159) by a factor of 2.

According to Eqs. (108), (109), and (154)–(159),

dTm1 ;n1
h ðtÞ þ dTm2;n2

h ðtÞ þ dTm3;n3
h ðtÞ ¼ 0; (161)

dTm1 ;n1
/ ðtÞ þ dTm2;n2

/ ðtÞ þ dTm3;n3
/ ðtÞ ¼ 0: (162)

In other words, the sum of all of the localized nonlinear electromag-
netic torques acting within the plasma is zero, as is required by the
conservation of angular momentum.

D. Nonlinear tearing mode dispersion relation

Consider the nonlinear coupling of the (m1, n1), the (m2, n2), and
the (m3, n3) tearing modes, where the poloidal and toroidal mode
numbers are related according to Eqs. (108) and (109), respectively.
Asymptotic matching across the three coupled rational surfaces yields
the nonlinear dispersion relations of the three modes,

DWm1 ;n1ðtÞ ¼ Dm1 ;n1 Wm1 ;n1ðtÞ þ Nm1 ;n1ðtÞ; (163)

DWm2 ;n2ðtÞ ¼ Dm2 ;n2 Wm2 ;n2ðtÞ þ Nm2 ;n2ðtÞ; (164)

DWm3 ;n3ðtÞ ¼ Dm3 ;n3 Wm3 ;n3ðtÞ þ Nm3 ;n3ðtÞ; (165)

where Nm1 ;n1 ; Nm2;n2 , and Nm3;n3 are the nonlinear corrections. Here,
use has been made of Eqs. (72), (75)–(77), and (107). However, it fol-
lows from Eqs. (31)–(33), (72), (75), (76), (123), (125), (144), and
(145) that, to lowest order,

dTm;n
h ðtÞ ¼ � 2p2 R0

l0
m Im DWm;n ðWm;nÞ	� �

; (166)

dTm;n
/ ðtÞ ¼ 2p2 R0

l0
n Im DWm;n ðWm;nÞ	� �

: (167)

A comparison between Eqs. (154)–(159) and the previous two equa-
tions reveals that18

Nm1;n1ðtÞ ¼ � 1
2
ðWm2 ;n2Þ	 Wm3;n3 Jm1 ;n1;m2 ;n2 ;m3 ;n3ðaÞ; (168)

Nm2;n2ðtÞ ¼ � 1
2
ðWm1 ;n1Þ	 Wm3;n3 Jm1 ;n1;m2 ;n2 ;m3 ;n3ðaÞ; (169)

Nm3;n3ðtÞ ¼ � 1
2
Wm1 ;n1 Wm2;n2 Jm1 ;n1;m2 ;n2 ;m3 ;n3ðaÞ: (170)

E. Regularization at rational surfaces

The linearized (m, n) perturbed magnetic field, bm;n
L ðr; tÞ, is

related to the ideal (m, n) plasma displacement, nm;nðr; tÞ, via4

bm;n
L ¼ r� ðnm;n � BÞ: (171)

It follows that

bm;n
L ¼ ðB � rÞ nm;n � ðnm;n � rÞB; (172)

given thatr � bm;n
L ¼ 0, and assuming thatr � nm;n ¼ 0.4 Making use

of Eqs. (19), (21), (82), and (88), we obtain

nm;n
r ðr; tÞ ¼ Wm;nðtÞ ŵ

m;nðrÞ
Fm;nðrÞ : (173)

In the immediate vicinity of the (m, n) rational surface, the previ-
ous expression reduces to

nm;n
r ’ Wm;n

rm;n
s ðFm;nÞ0r¼r m;n

s
x
; (174)

where x is specified in Eq. (73). According to the previous equation,
the radial displacement of magnetic flux-surfaces associated with an
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(m, n) tearing mode is singular at the (m, n) rational surface (x¼ 0). In
reality, the magnitude of the displacement is limited by the change in
topology of magnetic flux-surfaces consequent on the formation of a
magnetic island chain at the rational surface.6 The full radial width of
the magnetic island chain that forms at the (m, n) rational surface is28

Wm;nðtÞ ¼ 4 jWm;nj1=2 ðHmnÞ1=2
jðFm;nÞ0j

" #1=2
r¼rm;n

s

: (175)

The plasma displacement attains its maximum value at the edge of the
island chain (i.e., when jxj 
 Wm;n=rm;n

s ). It follows that the peak
value of jŵm;n

=Fm;nj in the vicinity of the (m, n) rational surface is



 ŵ
m;n

Fm;n






max

’ 1

jðFm;nÞ0jr¼r m n
s

Wm;n
¼ q

�B/

� �
r¼r m n

s

1
n jq0jr¼r m n

s
Wm;n

:

(176)

Note that the function sðrÞ, defined in Eq. (136), is singular at
the three coupled rational surfaces. However, a comparison with
Eq. (173) reveals that these singularities are associated with the sin-
gularities of the resonant harmonics of the ideal plasma displace-
ments at the rational surfaces. Because, in reality, the ideal
displacements are not actually singular at the rational surfaces, it
follows that the function sðrÞ is also not singular at the rational
surfaces. Thus, when evaluating the overlap integral,

Ð a
0 sðrÞ dr, we

can regularize the function sðrÞ by writing
1

Fm;n
! q

�B/

m� n q

ðm� n qÞ2 þ ðn q0Þr¼r m n
s

Wm;n
h i2 : (177)

Similarly,

1
m� n q

! m� n q

ðm� n qÞ2 þ ðn q0Þr¼r m n
s

Wm;n
h i2 ; (178)

in Eq. (68).

F. Validity of quasilinear approach

Constructing the nonlinear coupling coefficients, Am;n, from the
linear eigenfunctions is only accurate if the nonlinear contributions to
the expressions for (say) bm3 ;n3

h and bm3 ;n3
/ , given in Eqs. (32) and (33),

are smaller than the linear contributions. The linear contributions are
the first two terms on the right-hand sides of the equations, whereas
the nonlinear contributions are the final terms involving Am3 ;n3

r .
Roughly speaking, in the general case, the condition for the nonlinear
terms to be smaller than the linear terms is

Wm3;n3

a

� �2

� Wm1 ;n1

a

� �2
Wm2 ;n2

a

� �2

: (179)

Making use of the regularization procedure discussed in Sec. IVE, in
the immediate vicinity of the (m1, n1) rational surface the condition
becomes

Wm3;n3

a

� �2

� Wm1 ;n1

a

� �
Wm2 ;n2

a

� �2

: (180)

Likewise, in the immediate vicinity of the (m2, n2) rational surface the
condition becomes

Wm3 ;n3

a

� �2

� Wm1 ;n1

a

� �2
Wm2;n2

a

� �
: (181)

Thus, the condition is satisfied in all cases provided that

Wm1;n1

a
;
Wm2 ;n2

a
;
Wm2 ;n2

a
� 1: (182)

In other words, the condition is satisfied provided that the radial
widths of the magnetic island chains in the plasma are all much less
than the plasma minor radius.

V. SLINKY PATTERN FORMATION IN RFP PLASMAS
A. Introduction

A reversed field pinch is characterized by a safety-factor profile
that is everywhere much less than unity and decreases with increasing
plasma minor radius,2,3 see Fig. 1. The safety-factor passes through
zero in the outer regions of the plasma at the so-called reversal surface,
where the equilibrium toroidal magnetic field changes direction. The
plasma is unstable to multiple m¼ 1 tearing modes, resonant at differ-
ent rational surfaces in the plasma core (i.e., inside the reversal sur-
face), and also to multiple m¼ 0 tearing modes that are all resonant at
the reversal surface.9 The various unstable m¼ 1 and m¼ 0 modes
invariably phase lock to one another to produce a characteristic toroi-
dally localized pattern in the perturbed magnetic field that is known as
the slinky pattern.11–13

B. Phase locking of m50 modes

Making use of Eqs. (19), (37), (38), (77), (79), (82)–(84), (88)–
(90), and (107), as well as the fact that ŵ

m;nðrÞ is continuous across a
rational surface (see Sec. IIIB), whereas dŵ

m;n
=dr is discontinuous,

the linear resonant component of the radial magnetic field at the
(m, n) rational surface is

brðh;/Þ ¼ � B0

r̂m;n
s

Ŵ
m;n

sin m h� n/þ um;nð Þ; (183)

whereas the poloidal and toroidal components of the radially inte-
grated helical current sheet that flows at the surface are

Khðh;/Þ ¼ �B0

l0

n �
r̂ Hm;n

� �
r m;n
s

Ŵ
m;n

Dm;n cos m h� n/þ um;nð Þ;

(184)

K/ðh;/Þ ¼ �B0

l0

m
r̂ Hm;n

� �
r m;n
s

Ŵ
m;n

Dm;n cos m h� n/þ um;nð Þ;

(185)

respectively. Here, r̂ ¼ r=a and r̂m;n
s ¼ rm;n

s =a. Moreover, we have
written

Wm;nðtÞ ¼ a B0 Ŵ
m;nðtÞ eium;nðtÞ; (186)

where B0 ¼ B/ð0Þ; Ŵm;nðtÞ is real, positive, and dimensionless, and
um;nðtÞ is a helical phase angle. The lowest-order non-flux-surface-
averaged poloidal and toroidal electromagnetic torques that are exerted
on the plasma in the vicinity of the (m, n) rational surface are
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dThðh;/Þ ¼ R0 ðrm;n
s Þ2 brðh;/ÞK/ðh;/Þ; (187)

dT/ðh;/Þ ¼ �R2
0 r

m;n
s brðh;/ÞKhðh;/Þ; (188)

respectively [see Eqs. (122) and (124)]. It follows that

dThðh;/Þ ¼ B2
0 R0 a2

l0

m
2Hm;nðrm;n

s Þ ðŴ
m;nÞ2 Dm;n

� sin 2 m h� n/þ um;nð Þ½ �; (189)

dT/ðh;/Þ ¼ �B2
0 R0 a2

l0

n
2Hm;nðrm;n

s Þ ðŴ
m;nÞ2 Dm;n

� sin 2 m h� n/þ um;nð Þ½ �: (190)

Note that dThðh;/Þ and dT/ðh;/Þ both average to zero around the
rational flux-surface. This behavior is what allows the higher order
(because they scale as the cube, rather than the square, of the mode
amplitude) nonlinear torques (154)–(159) to play a significant role in
tearing mode dynamics.

The previous analysis applies to the unstablem¼ 1 modes, which
are resonant at different rational surfaces in the plasma. However, the
unstable m¼ 0 modes are all resonant at the reversal surface, whose
radius is (say) rv. Thus, the resonant component of the radial magnetic
field at the reversal surface is

bm¼0
r ð/Þ ¼ B0

r̂v

X
n

Ŵ
0;n

sin n/� u0;n
� �

; (191)

where the sum is over the toroidal mode numbers of the unstable
m¼ 0 modes, and r̂ v ¼ rv=a. Likewise, the radially integrated poloidal
current sheet that flows at the reversal surface is

Km¼0
h ð/Þ ¼ � B0 R0

l0 a r̂
2
v

X
n

Ŵ
0;n

n
D0;n cos n/� u0;n

� �
: (192)

Thus, the lowest-order non-flux-surface-averaged toroidal electromag-
netic torque that is exerted on the plasma at the reversal surface is

dT/ð/Þ ¼ B2
0 R0 a2

l0

R0

rv

� �2X
n;n0

Ŵ
0;n

Ŵ
0;n0

D0;n0

n0

� sin n/� u0;n
� �

cos n0 /� u0;n0
� �

: (193)

Note that this torque averages to zero around the reversal flux-surface.
Nevertheless, the amplitude of the torque is larger than the torques
(189) and (190) by a factor ðR0=rvÞ2 (assuming similar m¼ 0 and
m¼ 1 mode amplitudes), which is a substantial factor in a conven-
tional RFP. Following Ref. 19, we hypothesize that the large torque
exerted at the reversal surface drives local plasma flows that rearrange
the helical phases of the various m¼ 0 modes in such a manner as to
minimize the amplitude of the torque.

Let us assume that them¼ 0 modes phase lock-in such a manner
that

u0;n ¼ n/0 � D0: (194)

This assumed phase relation can be justified via a variational argu-
ment.19 It follows that

dT/ð/Þ ¼ B2
0 R0 a2

l0

R0

rv

� �2

dT̂/ð/Þ; (195)

where

dT̂/ð/Þ ¼
X
k>0

Ck cos k ð/� /0Þ½ � þ Sk sin k ð/� /0Þ½ �ð Þ; (196)

and

Ck ¼ ak sinð2D0Þ; (197)

Sk ¼ ak cosð2D0Þ þ bk; (198)

ak ¼ 1
2

X
n

Ŵ
0;n

Ŵ
0;k�n

D0;n

n
; (199)

FIG. 1. Stepped pressure RFP equilibrium
characterized by �a ¼ 0:25; q0 ¼ 0:14;
b0 ¼ 0:06; ar ¼ 4; �r ¼ 1:6, ap ¼ 4,
and �p ¼ 2. There are 500 equally
spaced control surfaces in the plasma.
Here, r is the (normalized) parallel current
profile, q the safety-factor profile, P̂ the
(normalized) pressure profile, B̂h the (nor-
malized) poloidal magnetic field profile,
and B̂/ the (normalized) toroidal magnetic
field profile. The vertical lines in the
safety-factor plot indicate the locations of
the (1, 8), (1, 9), and (0, 1) rational surfa-
ces, in order from the left to the right. The
dotted curves in the magnetic field plot
show the zero pressure magnetic field
profiles. Here, r̂ represents normalized
radial distance from the magnetic axis.
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bk ¼ 1
2

X
n

Ŵ
0;n

Ŵ
0;nþk D0;n

n
� D0;nþk

nþ k

� �
: (200)

Now, the mean square of the normalized toroidal torque exerted
at the reversal surface isþ

dT̂/ð/Þ
h i2 d/

2p
¼ 1

2

X
k>0

C2
k þ S2k

� �

¼ 1
2

X
k>0

a2k þ 2 ak bk cosð2D0Þ þ b2k
� �

: (201)

Note that the ak are all positive definite. Moreover, as long as D0;n is a
decreasing function of increasing n, as is generally the case (see Fig. 3),
we deduce that the bk are all positive. Thus, the mean square torque
assumes its minimum value,þ

dT̂/ð/Þ
h i2 d/

2p
¼ 1

2

X
k>0

ðak � bkÞ2; (202)

when cosð2D0Þ ¼ �1. Hence, we conclude that the unstable m¼ 0
tearing modes in the plasma phase lock-in such a manner that
D0 ¼ 6p=2.19

Making use of Eqs. (191) and (194), the m¼ 0 radial magnetic
field at the reversal surface is

bm¼0
r ð/Þ ¼ B0

sinD0

r̂ v

X
n

Ŵ
0;n

cos n ð/� /0Þ½ �: (203)

It can be seen that the m¼ 0 modes phase lock such that their radial
fields interfere constructively at / ¼ /0. Consequently, there is a
toroidally localized spike in the m¼ 0 radial magnetic field at / ¼ /0
(see Fig. 4).

Note that /0 is undetermined. In fact, if we adopt the simplistic
assumption that m¼ 0 modes are convected by the plasma at the
reversal surface,40 then we conclude that

d/0

dt
¼ X/ðrvÞ; (204)

where X/ðrÞ is the equilibrium plasma toroidal angular velocity pro-
file. It follows that the toroidally localized spike in the m¼ 0 radial
magnetic field is convected by the plasma at the reversal surface.
However, the spike may lock to gaps in the conducting wall surround-
ing the plasma.19,26,41 in which case /0 becomes constant in time, and
the toroidal plasma rotation at the reversal surface is arrested.

C. Phase locking of m5 1 modes

According to Eqs. (158) and (186), the flux-surface integrated,
nonlinear, toroidal electromagnetic torque exerted at the reversal surface
as a consequence of the coupling of the ð1; nÞ; ð0; kÞ, and ð1; nþ kÞ
tearing modes is

Tn;k
/ ¼�p2B2

0R0 a2

l0
Ŵ

1;n
Ŵ

0;k
Ŵ

1;nþk
Ĵ
n;k

k sin u1;nþk�u1;n�u0;k
� �

;

(205)

where

Ĵ
n;k ¼ B0 a J

1;n;0;k;1;nþkðaÞ (206)

is a dimensionless measure of the coupling strength. Thus, the total
nonlinear torque exerted at the reversal surface can be written

T/ ¼ p2 B2
0 R0 a2

l0
T̂/; (207)

where

T̂/ ¼ �
X
n;k

Ŵ
1;n

Ŵ
0;k

Ŵ
1;nþk

Ĵ
n;k

k sin u1;nþk � u1;n � u0;k
� �

:

(208)

Here, the sum is over the toroidal mode numbers of all the unstable
m¼ 1 and m¼ 0 modes. Again following Ref. 19, we hypothesize that
the nonlinear torque exerted at the reversal surface, and the associated
torques exerted at the m¼ 1 rational surfaces, drive flows in the
plasma core that rearrange the helical phases of the various m¼ 1
modes so as tominimize the torque. Note that this hypothesis was veri-
fied by plasma dynamic simulations described in Ref. 19.

Let us assume that them¼ 1 modes phase lock such that

u1;n ¼ n/1 � D1: (209)

Making use of Eq. (194), as well as the fact that D0 ¼ 6p=2, it follows
that

T̂/ð/1 � /0Þ ¼ �sinðD0Þ
X
n;k

Ŵ
1;n

Ŵ
0;k

Ŵ
1;nþk

Ĵ
n;k

k

� cos k ð/1 � /0Þ½ �: (210)

If we write

T̂ ð/Þ ¼ dV
d/

; (211)

then the so-called locking potential takes the form

Vð/1 � /0Þ ¼ �sinðD0Þ
X
n;k

Ŵ
1;n

Ŵ
0;k

Ŵ
1;nþk

Ĵ
n;k

sin k ð/1 � /0Þ½ �:

(212)

The torque (210) is set to zero at a minimum of the locking potential
(a maximum of the potential is dynamically unstable). In other words,
/1 � /0 takes a fixed value that is determined by finding the mini-
mum of the locking potential (see Fig. 8).

The net m¼ 1 radial magnetic field at the reversal surface due to
them¼ 1 modes resonant in the plasma core can be written

bm¼1
r ðh;/Þ ¼ B0 C

m¼1ð/� /1Þ cosðh� D1Þ
þ B0 S

m¼1ð/� /1Þ sinðh� D1Þ; (213)

where

Cm¼1ð/� /1Þ ¼
X
n

Ŵ
1;n

ŵ
1;nðrvÞ

r̂ v
sin n ð/� /1Þ½ �; (214)

Sm¼1ð/� /1Þ ¼ �
X
n

Ŵ
1;n

ŵ
1;nðrvÞ

r̂ v
cos n ð/� /1Þ½ �: (215)

It is clear that the radial fields of the phase-locked m¼ 1 modes inter-
fere constructively at / ¼ /1 (see Fig. 7). Moreover, /1 is tied to /0.
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Thus, we deduce that the unstable m¼ 1 and m¼ 0 tearing modes in
the plasma generate toroidally localized perturbations in the radial
magnetic field that are phase locked to one another, and that co-rotate
with the plasma at the reversal surface. These phase-locked perturba-
tions constitute the slinky pattern. Note that D1 is undetermined. In
fact, this parameter generally increases linearly in time at a rate deter-
mined by flows in the plasma core.19

VI. EXAMPLE CALCULATION
A. Plasma equilibrium

It is helpful to define the dimensionless quantities r̂ ¼ r=a; b̂

¼ b=a; r̂ i ¼ ri=a; Ŵ
m;n ¼Wm;n=a; B̂h ¼ Bh=B0, B̂/ ¼ B/=B0; b̂

m¼0

r

¼ bm¼0
r =B0, P̂ðr̂Þ ¼ l0 PðrÞ=B2

0, ŝðr̂Þ ¼ a2 B0 sðrÞ, where B0 ¼ B/ð0Þ.
Our model parallel current and continuous pressure profiles are

rðr̂Þ ¼ 2 �a
q0

1� r̂arð Þ�r ; (216)

P̂continuousðr̂Þ ¼ b0
2

1� r̂apð Þ�p ; (217)

respectively. In the stepped pressure equilibrium, the pressures
between the control surfaces are P̂ steppedðr̂Þ ¼ P̂ i for r̂ i < r̂ < r̂ iþ1,
where P̂ i ¼ P̂continuousðr̂ iÞ (see Sec. IIIA).

Figure 1 shows a stepped pressure RFP equilibrium characterized
by �a ¼ 0:25; q0 ¼ 0:14; b0 ¼ 0:06; ar ¼ 4; �r ¼ 1:6, ap ¼ 4, and
�p ¼ 2. The corresponding zero pressure equilibrium magnetic fields
are also shown. There are 500 equally spaced control surfaces in the
plasma. With this many control surfaces, the stepped pressure equilib-
rium is essentially indistinguishable from the continuous equilibrium

obtained by integrating Eqs. (8) and (9), using the continuous profiles
(216) and (217). The equilibrium has all of the expected features of a
RFP equilibrium. Namely, it possesses a fairly broad parallel current
profile, a safety-factor profile that is much less than unity and
decreases with increasing minor radius, and a toroidal magnetic field
that reverses direction in the outer regions of the plasma. It is clear
from the figure that the equilibrium pressure gradient leads to a mod-
est increase in the poloidal magnetic field in the outer regions of the
plasma, as well as a slight strengthening of the reversal of the toroidal
magnetic field.

It is conventional to parameterize an RFP equilibrium in terms of
the pinch parameter, H ¼ BhðaÞ=hB/i, and the reversal parameter,
F ¼ B/ðaÞ=hB/i, where h� � �i denotes a volume average.2,3 The pinch
and reversal parameters for the zero pressure equilibrium (i.e., b0 ¼ 0)
shown in Fig. 1 are 1.88 and �0.48, respectively, whereas the corre-
sponding quantities for the finite pressure equilibrium (i.e., b0 ¼ 0:06)
are 2.12 and�0.54.

B. Tearing eigenfunctions

Figure 2 shows the linear eigenfunctions of the tearing mode trip-
let ð1; 8Þ þ ð0; 1Þ ¼ ð1; 9Þ calculated from the stepped pressure equi-
librium shown in Fig. 1. The zero pressure eigenfunctions are also
shown. The normalized radius of the perfectly conducting wall sur-
rounding the plasma is b̂ ¼ 1:01. Note that there are a sufficient num-
ber of control surfaces in the plasma that the eigenfunctions, and their
radial derivatives, appear completely smooth. It can be seen that the
equilibrium pressure gradient significantly modifies the eigenfunctions
in the region outside the corresponding rational surfaces.

FIG. 2. Normalized tearing eigenfunctions,
and their radial derivatives, for the
stepped pressure equilibrium shown in
Fig. 1. Here, ðm1; n1Þ ¼ ð1; 8Þ; ðm2; n2Þ
¼ ð0; 1Þ, and ðm3; n3Þ ¼ ð1; 9Þ. The wall
radius is b̂ ¼ 1:01. The vertical lines indi-
cate the locations of the rational surfaces.
The dotted curves show the zero pressure
eigenfunctions. Here, r̂ represents nor-
malized radial distance from the magnetic
axis.
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C. m50 modes

Figure 3 shows the tearing stability indices of the unstable m¼ 0
modes in our example RFP equilibrium, calculated as functions of the
normalized equilibrium plasma pressure, b0. It can be seen that at zero
pressure, there are 11 unstable m¼ 0 tearing modes. Moreover, as the
pressure is increased, more and more modes become unstable. In all
cases, the tearing stability index, D0;n, is a decreasing function of
increasing toroidal mode number, n. The (0, 1) mode actually becomes
ideally unstable at b0 ¼ 0:176. Hence, this is the effective beta limit for
the equilibrium.4 As expected, the beta limit decreases as the perfectly
conducting wall surrounding the plasma becomes more distant from
the plasma (i.e., as b̂ increases).

Figure 4 shows the phase-locked pattern in the normalizedm¼ 0
radial magnetic field at the reversal surface, b̂

m¼0

r , in our example RFP
equilibrium, calculated as a function of the toroidal angle, /, for vari-
ous different values of b0. This pattern is calculated from Eq. (203)
on the assumption that Ŵ

0;n / ðD0;nÞ2, which is consistent with an
unstable ð0; nÞ tearing mode saturating at an amplitude such that the
associated magnetic island width is proportional to D0;n [see Eq.
(175)]. For the sake of example, we have selected D0 ¼ þp=2. It can
be seen that b̂

m¼0

r ð/Þ exhibits a characteristic positive spike19 at a par-
ticular toroidal angle, /0. (If D0 ¼ �p=2 then the spike is negative.)
As b0 is gradually increased from a small value, the spike initially

becomes more sharply defined, as more and more unstable m¼ 0
modes are incorporated into the phase-locked pattern. However, the
spike dissipates somewhat as the beta limit is approached, because the
(0, 1) mode amplitude becomes much larger than those of the other
m¼ 0 modes.

D. Overlap integral

Figure 5 shows the incomplete overlap integral,
Ð r̂
0 ŝðr̂ 0Þ dr̂ 0, and

its integrand, calculated from the linear tearing eigenfunctions shown
in Fig. 2. The island widths at the three rational surfaces are given the
plausible values Ŵ

1;8 ¼ Ŵ
0;1 ¼ Ŵ

1;9 ¼ 0:01. It can be seen that the
equilibrium pressure gradient significantly increases the magnitude of,
and changes the sign of, the complete overlap integral,

Ð 1
0 ŝðr̂Þ dr̂ , rela-

tive to that in a zero pressure equilibrium. A significant increase in the
magnitude of the complete overlap integral signifies a much stronger
nonlinear coupling between the (1, 8), (0, 1), and (1, 9) tearing modes
in a finite pressure equilibrium, compared to that in a zero pressure
equilibrium, at fixed mode amplitude (see Sec. IVD). Moreover, the
sign of overlap integral affects the relative phase relation between the
phase-locked m¼ 0 and the m¼ 1 interference maxima (see Sec.
VI E). Thus, we can appreciate that the incorporation of the equilib-
rium pressure profile into the analysis is of crucial importance when
calculating the nonlinear coupling of tearing modes in an RFP.

FIG. 3. Tearing stability indices of unstable
m¼ 0 modes in a stepped pressure RFP
equilibrium characterized by �a ¼ 0:25;
q0 ¼ 0:14; ar ¼ 4; �r ¼ 1:6, ap ¼ 4;
�p ¼ 2; b̂ ¼ 1:01, and various different
values of b0. There are 500 equally spaced
control surfaces in the plasma. Here, n is
the toroidal mode number.

FIG. 4. Radial magnetic field of phase-
locked m¼ 0 modes at the reversal
surface in a stepped pressure RFP equi-
librium characterized by �a ¼ 0:25; q0
¼ 0:14; ar ¼ 4; �r ¼ 1:6, ap ¼ 4; �p
¼ 2; b̂ ¼ 1:01, and various different val-
ues of b0. There are 500 equally spaced
control surfaces in the plasma. Here, / is
the toroidal angle. Note that D0 ¼ þp=2.
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E. m5 1 modes

Figure 6 shows the tearing stability indices of the unstable m¼ 1
modes in our example RFP equilibrium, calculated as functions of the
normalized equilibrium plasma pressure, b0. There are no unstable
m¼ 1 modes at zero pressure. However, it can be seen that there are
18 unstable tearing modes when b0 ¼ 0:03. Moreover, as the pressure
is further increased, more and more modes become unstable. In all
cases, the tearing stability index, D1;n, initially increases with increasing
toroidal mode number, n, but eventually decreases.

Figure 7 shows the cosine and sine components (in the poloidal
angle) of the phase-locked pattern in the normalized radialm¼ 1 mag-
netic field at the reversal surface, Cm¼1 and Sm¼1, respectively, in our
example RFP equilibrium, calculated as functions of the toroidal angle,
/, for various different values of b0. These patterns are calculated from
Eqs. (214) and (215) on the assumption that Ŵ

1;n / ðD1;nÞ2, which is
consistent with an unstable ð1; nÞ tearing mode saturating at an ampli-
tude such that the associated magnetic island width is proportional

to D1;n. It can be seen that both Cm¼1ð/Þ and Sm¼1ð/Þ are strongly
peaked at a particular toroidal angle, /1. As b0 is gradually increased
from a small value, the peaking becomes more sharply defined, as
more and more unstable m¼ 1 modes are incorporated into the
phase-locked pattern.

Figure 8 shows the locking potential for m¼ 1 modes in our
example RFP equilibrium, calculated for various different values of b0.
This potential is calculated from Eq. (212) on the assumption that

Ŵ
m;n / ðDm;nÞ2, which is consistent with an unstable (m, n) tearing

mode saturating at an amplitude such that the associated magnetic
island width is proportional to Dm;n. We have again selected
D0 ¼ þp=2. Note that the locking potential incorporates 153, 741,
990, 1540, and 2080 triplets of unstable m¼ 1 and m¼ 0 tearing
modes at b0 ¼ 0:03, 0.06, 0.09, 0.12, and 0.15, respectively. Now, /1
and /0 are the toroidal angular locations of the interference maxima
of the phase-locked m¼ 1 and m¼ 0 modes, respectively, see Figs. 4
and 7. Moreover, the argument of the locking potential, /1 � /0, takes

FIG. 5. The incomplete overlap integral,Ð r̂
0 ŝ ð̂r 0Þ dr̂ 0, and its integrand, for the
plasma equilibrium shown in Fig. 1 and
the tearing eigenfunctions shown in Fig. 2.

Here, Ŵ
m1 ;n1 ¼ Ŵ

m2 ;n2 ¼ Ŵ
m3 ;n3 ¼ 0:01.

The wall radius is b̂ ¼ 1:01. There are
500 equally spaced control surfaces in the
plasma. The vertical lines indicate the
locations of the rational surfaces. The dot-
ted curves show the zero pressure cases.
Here, r̂ represents normalized radial dis-
tance from the magnetic axis.

FIG. 6. Tearing stability indices of unsta-
ble m¼ 1 modes in a stepped pressure
RFP equilibrium characterized by �a
¼ 0:25; q0 ¼ 0:14; ar ¼ 4; �r ¼ 1:6,
ap ¼ 4; �p ¼ 2; b̂ ¼ 1:01, and various
different values of b0. There are 500
equally spaced control surfaces in the
plasma. Here, n is the toroidal mode
number.
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a value that minimizes the potential. It can be seen that /1 < /0 at
comparatively low plasma pressures, whereas /1 > /0 at higher
plasma pressures. This switch in sign of /1 � /0 is associated with a
switch in sign of the overlap integrals (from negative at low pressures,
to positive at high pressures). The magnitude of j/1 � /0j decreases
with increasing plasma pressure, implying a tighter coupling between
the m¼ 0 and the m¼ 1 interference patterns, as more and more
unstable triplets are incorporated into the slinky pattern. However, as
the beta limit is approached, the (0, 1) mode starts to dominate, caus-
ing a dispersion of the m¼ 0 interference pattern (see Fig. 4), and an
increase in j/1 � /0j. Note that the sign of /1 � /0 is swapped when
D0 ¼ �p=2.

The RFX experimental data discussed in Ref. 19 indicate that
D0 ¼ þp=2 [i.e., the spike in bm¼0

r ð/Þ is positive], which suggests,
from the previous analysis, that /1 < /0 at low plasma pressures,
and /1 > /0 at high plasma pressures. In fact, the observed value of
/1 � /0 in RFX was negative, which is consistent with our low pres-
sure results.

VII. SUMMARY

A theory of the three-wave coupling of triplets of tearing modes
in toroidal pinches (i.e., either RFPs or tokamaks) was proposed in
Ref. 18. However, this theory only applies to toroidal pinches with neg-
ligible equilibrium plasma pressure gradients. Such a limitation is

FIG. 7. Cosine and sine components
(in the poloidal angle) of the radial mag-
netic field of phase-locked m¼ 1 modes
at the reversal surface in a stepped pres-
sure RFP equilibrium characterized by
�a ¼ 0:25; q0 ¼ 0:14; ar ¼ 4; �r ¼ 1:6,
ap ¼ 4; �p ¼ 2; b̂ ¼ 1:01, and various
different values of b0. There are 500
equally spaced control surfaces in the
plasma. Here, / is the toroidal angle.

FIG. 8. Locking potential for m¼ 1 modes
in a stepped pressure RFP equilibrium
characterized by �a ¼ 0:25; q0 ¼ 0:14;
ar ¼ 4; �r ¼ 1:6, ap ¼ 4; �p ¼ 2; b̂
¼ 1:01, and various different values of
b0. There are 500 equally spaced control
surfaces in the plasma. Here, /0 and /1
are the toroidal angular locations of the
interference maxima of the phase-locked
m¼ 0 and m¼ 1 modes, respectively.
/1 � /0 takes the value that minimizes
the potential. Note that D0 ¼ þp=2.
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particularly inappropriate to RFPs. In this paper, we generalize the
analysis of Ref. 18 in order to take the equilibrium pressure gradient
into account. However, for the sake of simplicity, we employ a stepped
pressure profile, rather than a continuous profile. In the limit of a large
number of pressure steps, it seems reasonable to expect the result of
the stepped pressure calculation to be the same as that obtained from a
continuous pressure calculation. However, the continuous pressure
calculation has not been performed.

We have used our generalized theory of three-wave coupling to
investigate the formation of the characteristic toroidally localized pat-
tern of phase-locked m¼ 1 and m¼ 0 tearing modes in RFP plasmas
that is known as the slinky pattern. We find that the incorporation of
the equilibrium plasma pressure into the analysis is of crucial impor-
tance when determining the properties of this pattern. This is the case
because the plasma pressure controls the number of unstable m¼ 1
and m¼ 0 tearing modes, and also significantly affects the strength of
three-wave coupling, as well as the phase relation between the phase-
locked m¼ 1 and m¼ 0 modes. Our predictions of the properties of
the slinky pattern are, in general, agreement with experimental
observations.19

In future work, we hope to apply our generalized theory to inves-
tigate the triggering of neoclassical tearing modes in tokamak plasmas
via three-wave coupling.
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